Changeset 8050 in ntrip for branches/BNC_2.12/src/bnchelp.html
- Timestamp:
- Sep 27, 2016, 8:16:38 PM (8 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/BNC_2.12/src/bnchelp.html
r8047 r8050 1 2 3 <!doctype html> 4 5 6 <html xmlns="http://www.w3.org/1999/xhtml"> 7 <head> 8 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 9 10 <title>BNC 2.12 documentation</title> 11 12 <link rel="stylesheet" href="_static/bizstyle.css" type="text/css" /> 13 <link rel="stylesheet" href="_static/pygments.css" type="text/css" /> 14 15 <script type="text/javascript"> 16 var DOCUMENTATION_OPTIONS = { 17 URL_ROOT: './', 18 VERSION: '2.12', 19 COLLAPSE_INDEX: false, 20 FILE_SUFFIX: '.html', 21 HAS_SOURCE: true 22 }; 23 </script> 24 <script type="text/javascript" src="_static/jquery.js"></script> 25 <script type="text/javascript" src="_static/underscore.js"></script> 26 <script type="text/javascript" src="_static/doctools.js"></script> 27 <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> 28 <script type="text/javascript" src="_static/bizstyle.js"></script> 29 <link rel="top" title="None" href="bnchelp.html#document-bnchelp" /> 30 <meta name="viewport" content="width=device-width,initial-scale=1.0"> 31 <!--[if lt IE 9]> 32 <script type="text/javascript" src="_static/css3-mediaqueries.js"></script> 33 <![endif]--> 34 </head> 35 <body role="document"> 36 <div class="related" role="navigation" aria-label="related navigation"> 37 <h3>Navigation</h3> 38 <ul> 39 <li class="nav-item nav-item-0"><a href="bnchelp.html#document-bnchelp">BNC 2.12 documentation</a> »</li> 40 </ul> 41 </div> 42 <div class="sphinxsidebar" role="navigation" aria-label="main navigation"> 43 <div class="sphinxsidebarwrapper"> 44 <p class="logo"><a href="bnchelp.html#document-bnchelp"> 45 <img class="logo" src="_static/bnc_logo.png" alt="Logo"/> 46 </a></p> 47 <h3><a href="bnchelp.html#document-bnchelp">Table Of Contents</a></h3> 48 <p class="caption"><span class="caption-text">Table of Contents</span></p> 49 <ul> 50 <li class="toctree-l1"><a class="reference internal" href="bnchelp.html#document-abbreviations">Abbreviations</a></li> 51 <li class="toctree-l1"><a class="reference internal" href="bnchelp.html#document-chapter1">Introduction</a><ul> 52 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#purpose">Purpose</a></li> 53 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#authors">Authors</a></li> 54 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#documentation">Documentation</a></li> 55 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#contact">Contact</a></li> 56 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#acknowledgements">Acknowledgements</a></li> 57 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#looking-back">Looking Back</a></li> 58 </ul> 1 <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1"> 2 <p><img src="IMG/screenshot43.png"/></p> 3 4 <h3>BKG Ntrip Client (BNC)<br> 5 Version 2.12.0</h3> 6 7 <p> 8 Georg Weber<sup>(1)</sup>, Leoš Mervart<sup>(2)</sup>, Andrea Stürze<sup>(1)</sup>, Axel Rülke<sup>(1)</sup>, Dirk Stöcker<sup>(3)</sup> 9 <p> 10 <sup>(1) Federal Agency for Cartography and Geodesy (BKG), Frankfurt, Germany</sup><br> 11 <sup>(2) Czech Technical University (CTU), Department of Geomatics, Prague, Czech Republic</sup><br> 12 <sup>(3) Alberding GmbH, Wildau, Germany</sup> 13 <br><br> 14 <b>Copyright</b><br> 15 ©<sup> </sup> 2005-2016 Federal Agency for Cartography and Geodesy (BKG), Frankfurt, Germany 16 <br><br> 17 ISSN 1436-3445<br> 18 ISBN 978-3-86482-083-0<br><br> 19 <b>Citation<sup> </sup></b><br> 20 To help justify funding the development of BNC,<sup> </sup>we kindly ask users to include a citation when applying the software results in a publication. We suggest: 21 <br><br> 22 Weber, G., L. Mervart, A. Stürze, A. Rülke and D. Stöcker (2016):<br> 23 BKG Ntrip Client, Version 2.12. Mitteilungen des Bundesamtes<br> 24 für Kartographie und Geodäsie, Vol. 49, Frankfurt am Main, 2016. 25 <br><br> 26 27 <b>Table of <a name="contents">Contents</b><br><br> 28 <b>1.</b> <a href=#genInstruction><b>General Information</b></a><br><br> 29 1.1 <a href=#introPurpose>Purpose</a><br> 30 1.2 <a href=#introSystem>Supported GNSS</a><br> 31 1.3 <a href=#introFlow>Data Flow</a><br> 32 1.4 <a href=#introHandling>Handling</a><br> 33 1.5 <a href=#introInst>Installation</a><br> 34 1.5.1 <a href=#introCompile>Compilation</a><br> 35 1.6 <a href=#introConf>Configuration</a><br> 36 1.6.1 <a href=#introExamples>Examples</a><br> 37 1.7 <a href=#introLimit>Limitations</a><br> 38 1.8 <a href=#introLBack>Looking Back</a><br><br> 39 <b>2.</b> <a href=#optsettings><b>Settings Details</b></a><br><br> 40 2.1 <a href=#topmenu><b>Top Menu Bar</b></a><br> 41 2.1.1 <a href=#file>File</a><br> 42 2.1.2 <a href=#help>Help</a><br> 43 2.2 <a href=#network><b>Network</b></a><br> 44 2.2.1 <a href=#proxy>Proxy</a><br> 45 2.2.2 <a href=#ssl>SSL</a><br> 46 2.3 <a href=#general><b>General</b></a><br> 47 2.3.1 <a href=#genlog>Logfile</a><br> 48 2.3.2 <a href=#genapp>Append Files</a><br> 49 2.3.3 <a href=#genconf>Reread Configuration</a><br> 50 2.3.4 <a href=#genstart>Auto Start</a><br> 51 2.3.5 <a href=#rawout>Raw Output File</a><br> 52 2.4 <a href=#rinex><b>RINEX Observations</b></a><br> 53 2.4.1 <a href=#rnxname>Filenames</a><br> 54 2.4.2 <a href=#rnxdir>Directory</a><br> 55 2.4.3 <a href=#rnxinterval>File Interval</a><br> 56 2.4.4 <a href=#rnxsample>Sampling</a><br> 57 2.4.5 <a href=#rnxskl>Skeleton Extension</a><br> 58 2.4.6 <a href=#sklMandat>Skeleton Mandatory</a><br> 59 2.4.7 <a href=#rnxscript>Script</a><br> 60 2.4.8 <a href=#rnxvers2>Version 2</a><br> 61 2.4.9 <a href=#rnxvers3>Version 3</a><br> 62 2.4.10 <a href=#rnxvers3File>Version 3 Filenames</a><br> 63 2.5 <a href=#ephemeris><b>RINEX Ephemeris</b></a><br> 64 2.5.1 <a href=#ephdir>Directory</a><br> 65 2.5.2 <a href=#ephint>Interval</a><br> 66 2.5.3 <a href=#ephport>Port</a><br> 67 2.5.4 <a href=#ephvers>Version</a><br> 68 2.5.5 <a href=#ephversFile>Version 3 Filenames</a><br> 69 2.6 <a href=#reqc><b>RINEX Editing & QC</b></a><br> 70 2.6.1 <a href=#reqcact>Action</a><br> 71 2.6.2 <a href=#reqcinp>Input Files</a><br> 72 2.6.3 <a href=#reqcout>Output Files</a><br> 73 2.6.4 <a href=#reqclog>Logfiles</a><br> 74 2.6.5 <a href=#reqcplots>Plots for Signals</a><br> 75 2.6.6 <a href=#reqcdir>Directory for Plots</a><br> 76 2.6.7 <a href=#reqcedit>Set Edit Options</a><br> 77 2.6.8 <a href=#reqccommand>Command Line, No Window</a><br> 78 2.7 <a href=#sp3comp><b>SP3 Comparison</b></a><br> 79 2.7.1 <a href=#sp3input>Input SP3 Files</a><br> 80 2.7.2 <a href=#sp3exclude>Exclude Satellites</a><br> 81 2.7.3 <a href=#sp3log>Logfile</a><br> 82 2.8 <a href=#correct><b>Broadcast Corrections</b></a><br> 83 2.8.1 <a href=#corrdir>Directory, ASCII</a><br> 84 2.8.2 <a href=#corrint>Interval</a><br> 85 2.8.3 <a href=#corrport>Port</a><br> 86 2.8.4 <a href=#corrwait>Wait for Full Corr Epoch</a><br> 87 2.9 <a href=#syncout><b>Feed Engine</b></a><br> 88 2.9.1 <a href=#syncport>Port</a><br> 89 2.9.2 <a href=#syncwait>Wait for Full Obs Epoch</a><br> 90 2.9.3 <a href=#syncsample>Sampling</a><br> 91 2.9.4 <a href=#syncfile>File</a><br> 92 2.9.5 <a href=#syncuport>Port (unsynchronized)</a><br> 93 2.10 <a href=#serial><b>Serial Output</b></a><br> 94 2.10.1 <a href=#sermount>Mountpoint</a><br> 95 2.10.2 <a href=#serport>Port Name</a><br> 96 2.10.3 <a href=#serbaud>Baud Rate</a><br> 97 2.10.4 <a href=#serflow>Flow Control</a><br> 98 2.10.5 <a href=#serparity>Parity</a><br> 99 2.10.6 <a href=#serdata>Data Bits</a><br> 100 2.10.7 <a href=#serstop>Stop Bits</a><br> 101 2.10.8 <a href=#serauto>NMEA</a><br> 102 2.10.9 <a href=#serfile>File</a><br> 103 2.10.10 <a href=#serheight>Height</a><br> 104 2.10.11 <a href=#sersampl>Sampling</a><br> 105 2.11 <a href=#advnote><b>Outages</b></a><br> 106 2.11.1. <a href=#obsrate>Observation Rate</a><br> 107 2.11.2. <a href=#advfail>Failure Threshold</a><br> 108 2.11.3. <a href=#advreco>Recovery Threshold</a><br> 109 2.11.4. <a href=#advscript>Script</a><br> 110 2.12 <a href=#misc><b>Miscellaneous</b></a><br> 111 2.12.1. <a href=#miscmount>Mountpoint</a><br> 112 2.12.2. <a href=#miscperf>Log Latency</a><br> 113 2.12.3. <a href=#miscscan>Scan RTCM</a><br> 114 2.12.4. <a href=#miscport>Port</a><br> 115 2.13 <a href=#pppclient><b>PPP Client</b></a><br> 116 2.13.1 <a href=#pppInp><b>PPP (1): Input and Output</b></a><br> 117 2.13.1.1 <a href=#pppdatasource>Data Source</a><br> 118 2.13.1.2 <a href=#ppprnxobs>RINEX Observation File</a><br> 119 2.13.1.3 <a href=#ppprnxnav>RINEX Navigation File</a><br> 120 2.13.1.4 <a href=#pppcorrstream>Corrections Stream</a><br> 121 2.13.1.5 <a href=#pppcorrfile>Corrections File</a><br> 122 2.13.1.6 <a href=#pppantexfile>ANTEX File</a><br> 123 2.13.1.7 <a href=#pppmarkcoor>Coordinates File</a><br> 124 2.13.1.8 <a href=#pppv3filename>Version 3 Filenames</a><br> 125 2.13.1.9 <a href=#ppplogfile>Logfile Directory</a><br> 126 2.13.1.10 <a href=#pppnmeafile>NMEA Directory</a><br> 127 2.13.1.11 <a href=#pppsnxtrofile>SNX TRO Directory</a><br> 128 2.13.1.11.1 <a href=#pppsnxtrointr>Interval</a><br> 129 2.13.1.11.2 <a href=#pppsnxtrosampl>Sampling</a><br> 130 2.13.1.11.3 <a href=#pppsnxAc>Analysis Center</a><br> 131 2.13.1.11.4 <a href=#pppsnxSol>Solution ID</a><br> 132 133 2.13.2 <a href=#pppStation><b>PPP (2): Processed Stations</b></a><br> 134 2.13.2.1 <a href=#pppsite>Station</a><br> 135 2.13.2.2 <a href=#pppnehsigma>Sigma North/East/Up</a><br> 136 2.13.2.3 <a href=#pppnehnoise>Noise North/East/Up</a><br> 137 2.13.2.4 <a href=#ppptropsigma>Tropo Sigma</a><br> 138 2.13.2.5 <a href=#ppptropnoise>Tropo Noise</a><br> 139 2.13.2.6 <a href=#pppnmeaport>NMEA Port</a><br> 140 2.13.3 <a href=#pppOptions><b>PPP (3): Processing Options</b></a><br> 141 2.13.3.1 <a href=#ppplinecombi>Linear Combinations</a><br> 142 2.13.3.2 <a href=#pppcodeobs>Code Observations</a><br> 143 2.13.3.3 <a href=#pppphaseobs>Phase Observations</a><br> 144 2.13.3.4 <a href=#pppeleweight>Elevation Dependent Weighting</a><br> 145 2.13.3.5 <a href=#pppminobs>Minimum Number of Observations</a><br> 146 2.13.3.6 <a href=#pppmineleva>Minimum Elevation</a><br> 147 2.13.3.7 <a href=#pppwaitclockcorr>Wait for Clock Corrections</a><br> 148 2.13.3.8 <a href=#pppseeding>Seeding</a><br> 149 2.13.4 <a href=#pppPlots><b>PPP (4): Plots</b></a><br> 150 2.13.4.1 <a href=#ppptimeseries>PPP Plot</a><br> 151 2.13.4.2 <a href=#pppaudioresp>Audio Response</a><br> 152 2.13.4.3 <a href=#ppptrackmap>Track Map</a><br> 153 2.13.4.3.1 <a href=#pppmaptype>Google/OSM</a><br> 154 2.13.4.4 <a href=#pppdotprop>Dot-properties</a><br> 155 2.13.4.4.1 <a href=#pppdotsize>Size</a><br> 156 2.13.4.4.2 <a href=#pppdotcolor>Color</a><br> 157 2.13.4.5 <a href=#pppspeed>Post Processing Speed</a><br> 158 2.14 <a href=#combi><b>Combine Corrections</b></a><br> 159 2.14.1 <a href=#combimounttab>Combine Corrections Table</a><br> 160 2.14.1.1 <a href=#combiadd>Add Row, Delete</a><br> 161 2.14.1.2 <a href=#combimethod>Method</a><br> 162 2.14.1.3 <a href=#combimax>Maximal Residuum</a><br> 163 2.14.1.4 <a href=#combismpl>Sampling</a><br> 164 2.14.1.5 <a href=#combiGLO>Use GLONASS</a><br> 165 2.15 <a href=#upclk><b>Upload Corrections</b></a><br> 166 2.15.1 <a href=#upadd>Add, Delete Row</a><br> 167 2.15.2 <a href=#uphost>Host, Port, Mountpoint, Password</a><br> 168 2.15.3 <a href=#upsystem>System</a><br> 169 2.15.4 <a href=#upcom>Center of Mass</a><br> 170 2.15.5 <a href=#upsp3>SP3 File</a><br> 171 2.15.6 <a href=#uprinex>RNX File</a><br> 172 2.15.7 <a href=#pidsidiod>PID, SID, IOD</a><br> 173 174 2.15.8 <a href=#upinter>Interval</a><br> 175 2.15.9 <a href=#upclksmpl>Sampling</a><br> 176 2.15.9.1 <a href=#upclkorb>Orbits</a><br> 177 2.15.9.2 <a href=#upclksp3>SP3</a><br> 178 2.15.9.3 <a href=#upclkrnx>RINEX</a><br> 179 2.15.10 <a href=#upcustom>Custom Trafo</a><br> 180 2.15.11 <a href=#upantex>ANTEX File</a><br> 181 2.16 <a href=#upeph><b>Upload Ephemeris</b></a><br> 182 2.16.1 <a href=#brdcserver>Host & Port</a><br> 183 2.16.2 <a href=#brdcmount>Mountpoint & Password</a><br> 184 2.16.3 <a href=#brdcsmpl>Sampling</a><br> 185 2.17 <a href=#streams><b>Streams Canvas</b></a><br> 186 2.17.1 <a href=#streamedit>Edit Streams</a><br> 187 2.17.2 <a href=#streamdelete>Delete Stream</a><br> 188 2.17.3 <a href=#streamconf>Reconfigure Stream Selection On-the-fly</a><br> 189 2.18 <a href=#logs><b>Logging Canvas</b></a><br> 190 2.18.1 <a href=#logfile>Log</a><br> 191 2.18.2 <a href=#throughput>Throughput</a><br> 192 2.18.3 <a href=#latency>Latency</a><br> 193 2.18.4 <a href=#ppptab>PPP Plot</a><br> 194 2.19 <a href=#bottom><b>Bottom Menu Bar</b></a><br> 195 2.19.1 <a href=#streamadd>Add Stream</a><br> 196 2.19.1.1 <a href=#streamcaster>Add Stream - Coming from Caster</a><br> 197 2.19.1.1.1 <a href=#streamhost>Caster Host and Port</a><br> 198 2.19.1.1.2 <a href=#streamtable>Casters Table</a><br> 199 2.19.1.1.3 <a href=#streamuser>User and Password</a><br> 200 2.19.1.1.4 <a href=#gettable>Get Table</a><br> 201 2.19.1.1.5 <a href=#ntripv>Ntrip Version</a><br> 202 2.19.1.1.6 <a href=#castermap>Map</a><br> 203 2.19.1.2 <a href=#streamip>Add Stream - Coming from TCP/IP Port</a><br> 204 2.19.1.3 <a href=#streamudp>Add Stream - Coming from UDP Port</a><br> 205 2.19.1.4 <a href=#streamser>Add Stream - Coming from Serial Port</a><br> 206 2.19.2 <a href=#streamsdelete>Delete Stream</a><br> 207 2.19.3 <a href=#streamsmap>Map</a><br> 208 2.19.4 <a href=#start>Start</a><br> 209 2.19.5 <a href=#stop>Stop</a><br> 210 2.19.6 <a href=#contexthelp>Help? = Shift+F1</a><br> 211 2.20 <a href=#cmd><b>Command Line Options</b></a><br> 212 2.20.1 <a href=#cmdVersion>Version</a><br> 213 2.20.2 <a href=#cmdDisplay>Display</a><br> 214 2.20.3 <a href=#nw>No Window Mode</a><br> 215 2.20.4 <a href=#post>File Mode</a><br> 216 2.20.5 <a href=#conffile>Configuration File</a><br> 217 2.20.6 <a href=#confopt>Configuration Options</a><br><br> 218 <b>3.</b> <a href=#annex><b>Annex</b></a><br><br> 219 3.1 <a href=#history>Revision History</a><br> 220 3.2 <a href=#rtcm>RTCM Standards</a><br> 221 3.2.1 <a href=#ntrip1>Ntrip Version 1</a><br> 222 3.2.2 <a href=#ntrip2>Ntrip Version 2</a><br> 223 3.2.3 <a href=#rtcm2>RTCM Version 2</a><br> 224 3.2.4 <a href=#rtcm3>RTCM Version 3</a><br> 225 3.3 <a href=#confList>Command Line Help</a><br> 226 3.4 <a href=#links>Further Reading</a><br> 227 3.5 <a href=#abbrev>Abbreviations</a> 228 </p> 229 230 231 <p><b>List of Figures</b><br><br> 232 <table> 233 <tr><td><b>Fig. </b></td><td><b>Title</b></td><td><b>Chapter</b></td></tr> 234 <tr><td>1</td><td>Flowchart, BNC connected to a GNSS rover for Precise Point Positioning</b></td><td>1.3</td></tr> 235 <tr><td>2</td><td>Flowchart, BNC converting RTCM streams to RINEX batches</td><td>1.3</td></tr> 236 <tr><td>3</td><td>Flowchart, BNC feeding a real-time GNSS engine and uploading encoded Broadcast Corrections</td><td>1.3</td></tr> 237 <tr><td>4</td><td>Flowchart, BNC combining Broadcast Correction streams</td><td>1.3</td></tr> 238 <tr><td>5</td><td>Sections on BNC's main window</td><td>1.4</td></tr> 239 <tr><td>6</td><td>Management of configuration options in BNC</td><td>1.6</td></tr> 240 <tr><td>7</td><td>BNC's 'Network' panel configured to ignore eventually occurring SSL error messages</td><td>2.2.2</td></tr> 241 <tr><td>8</td><td>BNC translating incoming streams to 15 min RINEX Version 3 files</td><td>2.4</td></tr> 242 <tr><td>9</td><td>BNC converting Broadcast Ephemeris stream to RINEX Version 3 Navigation files</td><td>2.5.5</td></tr> 243 <tr><td>10</td><td>Example for BNC's 'RINEX Editing Options' window</td><td>2.6.7</td></tr> 244 <tr><td>11</td><td>Example for RINEX file concatenation with BNC</td><td>2.6.7</td></tr> 245 <tr><td>12</td><td>Example for creating RINEX quality check analysis graphics output with BNC</td><td>2.6.7</td></tr> 246 <tr><td>13</td><td>Example for satellite availability, elevation and PDOP plots as a result of a RINEX quality check analysis with BNC</td><td>2.6.7</td></tr> 247 <tr><td>14</td><td>Sky plot examples for multipath, part of RINEX quality check analysis with BNC</td><td>2.6.7</td></tr> 248 <tr><td>15</td><td>Sky plot examples for signal-to-noise ratio, part of RINEX quality check analysis with BNC</td><td>2.6.7</td></tr> 249 <tr><td>16</td><td>Example for comparing two SP3 files with satellite orbit and clock data using BNC</td><td>2.7.3</td></tr> 250 <tr><td>17</td><td>Example for pulling, saving and output of Broadcast Corrections using BNC</td><td>2.8.3</td></tr> 251 <tr><td>18</td><td>Synchronized BNC output via IP port to feed a GNSS real-time engine</td><td>2.9</td></tr> 252 <tr><td>19</td><td>Flowcharts, BNC forwarding a stream to a serially connected receiver; sending NMEA sentences is mandatory for VRS streams</td><td>2.10</td></tr> 253 <tr><td>20</td><td>BNC pulling a VRS stream to feed a serially connected RTK rover</td><td>2.10</td></tr> 254 <tr><td>21</td><td>RTCM message numbers, latencies and observation types logged by BNC</td><td>2.12</td></tr> 255 <tr><td>22</td><td>Real-time Precise Point Positioning with BNC, PPP Panel 1</td><td>2.13.1</td></tr> 256 <tr><td>23</td><td>Precise Point Positioning with BNC, PPP Panel 2, using RTKPLOT for visualization</td><td>2.13.2</td></tr> 257 <tr><td>24</td><td>Precise Point Positioning with BNC, PPP Panel 3</td><td>2.13.3</td></tr> 258 <tr><td>25</td><td>Precise Point Positioning with BNC in 'Quick-Start' mode, PPP Panel 4</td><td>2.13.3.8</td></tr> 259 <tr><td>26</td><td>Track of positions from BNC with Google Maps in background</td><td>2.13.4.3</td></tr> 260 <tr><td>27</td><td>Example for background map from Google Maps and OpenStreetMap (OSM) resources</td><td>2.13.4.3.1</td></tr> 261 <tr><td>28</td><td>BNC combining Broadcast Correction streams</td><td>2.14</td></tr> 262 <tr><td>29</td><td>INTERNAL' PPP with BNC using a combination of Broadcast Corrections</td><td>2.14</td></tr> 263 <tr><td>30</td><td>Setting BNC's Custom Transformation Parameters window, example for 'ITRF2008->GDA94'</td><td>2.15.3</td></tr> 264 <tr><td>31</td><td>BNC producing Broadcast Corrections from incoming precise orbits and clocks and uploading them to an Ntrip Broadcaster</td><td>2.15.11</td></tr> 265 <tr><td>32</td><td>BNC uploading a combined Broadcast Correction stream</td><td>2.15.11</td></tr> 266 <tr><td>33</td><td>BNC producing Broadcast Ephemeris stream from globally distributed RTCM streams; upload in RTCM format to an Ntrip Broadcaster</td><td>2.16.3</td></tr> 267 <tr><td>34</td><td>Bandwidth consumption of RTCM streams received by BNC</td><td>2.18.2</td></tr> 268 <tr><td>35</td><td>Latency of RTCM streams received by BNC</td><td>2.18.3</td></tr> 269 <tr><td>36</td><td>Example for time series plot of displacements produced by BNC</td><td>2.18.4</td></tr> 270 <tr><td>37</td><td>Steam input communication links accepted by BNC</td><td>2.19</td></tr> 271 <tr><td>38</td><td>BNC's 'Select Broadcaster' table</td><td>2.19.1.1.2</td></tr> 272 <tr><td>39</td><td>Broadcaster source-table shown by BNC</td><td>2.19.1.1.4</td></tr> 273 <tr><td>40</td><td>Stream distribution map shown by BNC as derived from Ntrip Broadcaster source-table</td><td>2.19.1.1.6</td></tr> 274 <tr><td>41</td><td>BNC configuration for pulling a stream via serial port</td><td>2.19.1.4</td></tr> 275 </table> 276 </p> 277 278 <p><b>List of Tables</b><br><br> 279 <table> 280 <tr><td><b>Tab. </b></td><td><b>Title</b></td><td><b>Chapter</b></td></tr> 281 <tr><td>1</td><td>Status of RTCM Version 3 message implementations in BNC supporting various GNSS systems</td><td>1.2</td></tr> 282 <tr><td>2</td><td>Contents and format of synchronized output of observations feeding a GNSS engine</td><td>2.9</td></tr> 283 </table> 284 </p> 285 286 <p><h3>1. <a name="genInstruction">General Information</h3></p> 287 <p> 288 The BKG Ntrip Client (BNC) is a program for simultaneously retrieving, decoding, converting and processing or analyzing real-time GNSS data streams applying the 'Networked Transport of RTCM via Internet Protocol' (Ntrip) standard. It has been developed within the framework of the IAG sub-commission for Europe (EUREF) and the International GNSS Service (IGS). Although meant to be a real-time tool, it comes with some post processing functionality. It can be used for data coming from Ntrip Broadcasters like 289 <ul> 290 <li><u>http://www.euref-ip.net/home</u></li> 291 <li><u>http://www.igs-ip.net/home</u></li> 292 <li><u>http://products.igs-ip.net/home</u></li> 293 <li><u>http://mgex.igs-ip.net/home</u> </li> 294 </ul> 295 or similar caster installation. 296 </p> 297 298 <p> 299 BNC has been written under GNU General Public License (GPL). Source code is available from Subversion software archive <u>http://software.rtcm-ntrip.org/svn/trunk/BNC</u>. Precompiled binaries of BNC are available for MS Windows, Linux, and Mac OS X systems. They can be downloaded from <u>http://igs.bkg.bund.de/ntrip/download</u>. 300 </p> 301 <p> 302 Feel free to send us comments, suggestions or bug reports. Any contribution would be appreciated. 303 </p> 304 305 <p> 306 <b>Authors</b><br><br> 307 The BKG Ntrip Client (BNC) with a Qt Graphical User Interface (GUI) and a Command Line Interface (CLI) has been developed for 308 <pre> 309 Federal Agency for Cartography and Geodesy (BKG) 310 c/o Dr. Axel Rülke 311 Department of Geodesy, Section Satellite Navigation 312 Frankfurt, Germany 313 [axel.ruelke@bkg.bund.de] 314 </pre> 315 316 The software has been written by 317 318 <pre> 319 Prof. Dr. Leoš Mervart 320 Czech Technical University (CTU) 321 Department of Geomatics 322 Prague, Czech Republic 323 </pre> 324 </p> 325 326 <p> 327 Prof. Mervart started working on BNC in 2005. His sole responsibility for writing the program code ended February 2015. In March 2015, Dipl.-Ing. Andrea Stürze took over the responsibility for maintaining and further developing BNC's source code. 328 </p> 329 330 <p> 331 <b>Documentation</b><br><br> 332 BNC provides context-sensitive help (<i>What's This</i>) related to specific objects. It furthermore comes with the here presented documentation, available as part of the software and as a PDF file. Responsible for offline documentation as well as online documentation at <u>http://software.rtcm-ntrip.org/export/HEAD/ntrip/trunk/BNC/src/bnchelp.html</u> and the example configurations is Dr. Georg Weber. 333 </p> 334 335 <p> 336 Note that some figures presented in this documentation may show screenshots from earlier versions of BNC. If so, there is either no relevant change compared to the current appearance of the program or no change at all. 337 </p> 338 339 <p> 340 <b>Contact</b><br><br> 341 Feel free to send us comments, suggestions or bug reports. Any contribution would be appreciated. 342 <pre> 343 Federal Agency for Cartography and Geodesy (BKG) 344 Department of Geodesy, Section Satellite Navigation 345 Richard-Strauss-Allee 11 346 60598 Frankfurt am Main, Germany 347 email: igs-ip@bkg.bund.de 348 </pre> 349 </p> 350 351 <p> 352 <b>Acknowledgements</b><br> 353 <ul> 354 <li> 355 Oliver Montenbruck, German Space Operations Center, DLR, Oberpfaffenhofen, Germany published a RTCM Version 2 decoder unter GNU GPL which has been integrated in BNC. 59 356 </li> 60 <li class="toctree-l1"><a class="reference internal" href="bnchelp.html#document-chapter2">BNC Overview</a><ul> 61 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#supported-gnss-and-applications">Supported GNSS and applications</a></li> 62 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#data-flow">Data Flow</a></li> 63 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#handling">Handling</a></li> 64 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#limitations">Limitations</a></li> 65 </ul> 357 <li> 358 Thomas Yan, Australian NSW Land and Property Information, proofread earlier versions of BNC's Help Contents. Up to Version 2.11 he also provides builds of BNC for Mac OS X systems. 66 359 </li> 67 <li class="toctree-l1"><a class="reference internal" href="bnchelp.html#document-chapter3">Installation</a><ul> 68 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#pre-compiled-builds">Pre-compiled builds</a></li> 69 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#compilation">Compilation</a></li> 70 </ul> 360 Scott Glazier, OmniSTAR Australia, has been helpful in finding BNC bugs in version 1.5. 71 361 </li> 72 <li class="toctree-l1"><a class="reference internal" href="bnchelp.html#document-chapter4">Configuration</a><ul> 73 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#general-procedure">General procedure</a></li> 74 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#examples-configuration-files">Examples configuration files</a></li> 75 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#list-of-example-configuration-files">List of example configuration files</a></li> 76 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#command-line-configuration-options">Command Line configuration options</a></li> 77 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#command-line-configuration-options-overwriting-configuration-file-options">Command Line configuration options overwriting Configuration File options</a></li> 78 </ul> 362 <li> 363 James Perlt, BKG, helped fixing bugs and redesigned BNC's main window in version 1.5. 79 364 </li> 80 <li class="toctree-l1"><a class="reference internal" href="bnchelp.html#document-chapter5">BNC software settings</a><ul> 81 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#top-menu-bar">Top Menu Bar</a></li> 82 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#network">Network</a></li> 83 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#general">General</a></li> 84 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#rinex-observations">RINEX Observations</a></li> 85 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#rinex-ephemeris">RINEX Ephemeris</a></li> 86 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#rinex-editing-qc">RINEX Editing & QC</a></li> 87 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#sp3-comparison">SP3 Comparison</a></li> 88 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#broadcast-corrections">Broadcast Corrections</a></li> 89 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#feed-engine">Feed Engine</a></li> 90 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#serial-output">Serial output</a></li> 91 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#outages">Outages</a></li> 92 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#miscellaneous">Miscellaneous</a></li> 93 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#ppp-client">PPP Client</a></li> 94 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#combine-corrections">Combine Corrections</a></li> 95 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#upload-corrections">Upload Corrections</a></li> 96 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#upload-ephemeris">Upload Ephemeris</a></li> 97 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#streams-canvas">Streams Canvas</a></li> 98 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#logging-canvas">Logging Canvas</a></li> 99 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#bottom-menu-bar">Bottom Menu Bar</a></li> 100 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#command-line-options">Command Line Options</a></li> 101 </ul> 365 <li> 366 Andre Hauschild, German Space Operations Center, DLR, revised the RTCM Version 2 decoder. 102 367 </li> 103 <li class="toctree-l1"><a class="reference internal" href="bnchelp.html#document-annex">Annex</a><ul> 104 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#revision-history">Revision History</a></li> 105 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#rtcm-standards">RTCM Standards</a></li> 106 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#command-line-help">Command Line Help</a></li> 107 <li class="toctree-l2"><a class="reference internal" href="bnchelp.html#further-reading">Further Reading</a></li> 108 </ul> 368 <li> 369 Zdenek Lukes, Czech Technical University Prague, Department of Geodesy, extended the RTCM Version 2 decoder to handle message types 3, 20, 21, and 22 and added the loss of lock indicator. 109 370 </li> 110 </ul> 111 112 </div> 113 </div> 114 115 <div class="document"> 116 <div class="documentwrapper"> 117 <div class="bodywrapper"> 118 <div class="body" role="main"> 119 120 <div class="section" id="welcome-to-bnc-s-documentation"> 121 <h1>Welcome to BNC’s documentation!<a class="headerlink" href="#welcome-to-bnc-s-documentation" title="Permalink to this headline">¶</a></h1> 122 <p>Contents:</p> 123 <div class="toctree-wrapper compound" id="mastertoc"> 124 <span id="document-abbreviations"></span><span class="target" id="index-0"></span><span class="target" id="index-1"></span><span class="target" id="index-2"></span><span class="target" id="index-3"></span><span class="target" id="index-4"></span><span class="target" id="index-5"></span><span class="target" id="index-6"></span><span class="target" id="index-7"></span><span class="target" id="index-8"></span><span class="target" id="index-9"></span><span class="target" id="index-10"></span><span class="target" id="index-11"></span><span class="target" id="index-12"></span><span class="target" id="index-13"></span><span class="target" id="index-14"></span><span class="target" id="index-15"></span><span class="target" id="index-16"></span><span class="target" id="index-17"></span><span class="target" id="index-18"></span><span class="target" id="index-19"></span><span class="target" id="index-20"></span><span class="target" id="index-21"></span><span class="target" id="index-22"></span><span class="target" id="index-23"></span><span class="target" id="index-24"></span><span class="target" id="index-25"></span><span class="target" id="index-26"></span><span class="target" id="index-27"></span><span class="target" id="index-28"></span><span class="target" id="index-29"></span><span class="target" id="index-30"></span><span class="target" id="index-31"></span><span class="target" id="index-32"></span><span class="target" id="index-33"></span><span class="target" id="index-34"></span><span class="target" id="index-35"></span><span class="target" id="index-36"></span><span class="target" id="index-37"></span><span class="target" id="index-38"></span><span class="target" id="index-39"></span><span class="target" id="index-40"></span><span class="target" id="index-41"></span><span class="target" id="index-42"></span><span class="target" id="index-43"></span><span class="target" id="index-44"></span><span class="target" id="index-45"></span><span class="target" id="index-46"></span><span class="target" id="index-47"></span><span class="target" id="index-48"></span><span class="target" id="index-49"></span><span class="target" id="index-50"></span><span class="target" id="index-51"></span><span class="target" id="index-52"></span><span class="target" id="index-53"></span><span class="target" id="index-54"></span><span class="target" id="index-55"></span><span class="target" id="index-56"></span><span class="target" id="index-57"></span><span class="target" id="index-58"></span><span class="target" id="index-59"></span><span class="target" id="index-60"></span><span class="target" id="index-61"></span><span class="target" id="index-62"></span><span class="target" id="index-63"></span><span class="target" id="index-64"></span><span class="target" id="index-65"></span><span class="target" id="index-66"></span><span class="target" id="index-67"></span><span class="target" id="index-68"></span><span class="target" id="index-69"></span><span class="target" id="index-70"></span><span class="target" id="index-71"></span><span class="target" id="index-72"></span><span class="target" id="index-73"></span><span class="target" id="index-74"></span><span class="target" id="index-75"></span><span class="target" id="index-76"></span><span class="target" id="index-77"></span><span class="target" id="index-78"></span><span class="target" id="index-79"></span><span class="target" id="index-80"></span><span class="target" id="index-81"></span><span class="target" id="index-82"></span><span class="target" id="index-83"></span><span class="target" id="index-84"></span><span class="target" id="index-85"></span><span class="target" id="index-86"></span><span class="target" id="index-87"></span><span class="target" id="index-88"></span><div class="section" id="abbreviations"> 125 <span id="index-89"></span><h2>Abbreviations<a class="headerlink" href="#abbreviations" title="Permalink to this headline">¶</a></h2> 126 <table border="1" class="docutils"> 127 <colgroup> 128 <col width="13%" /> 129 <col width="87%" /> 130 </colgroup> 131 <tbody valign="top"> 132 <tr class="row-odd"><td>AC</td> 133 <td>Analysis Center</td> 134 </tr> 135 <tr class="row-even"><td>AFREF</td> 136 <td>IAG Reference Frame Sub-Commission for Africa</td> 137 </tr> 138 <tr class="row-odd"><td>ANTEX</td> 139 <td>Antenna Exchange Format</td> 140 </tr> 141 <tr class="row-even"><td>APC</td> 142 <td>Antenna Phase Center</td> 143 </tr> 144 <tr class="row-odd"><td>APREF</td> 145 <td>IAG Reference Frame Sub-Commission for Asia and Pacific</td> 146 </tr> 147 <tr class="row-even"><td>ARP</td> 148 <td>Antenna Reference Point</td> 149 </tr> 150 <tr class="row-odd"><td>BKG</td> 151 <td>Bundesamt für Kartographie und Geodäsie</td> 152 </tr> 153 <tr class="row-even"><td>BNC</td> 154 <td>BNK Ntrip Client</td> 155 </tr> 156 <tr class="row-odd"><td>BSW</td> 157 <td>Bernese GNSS Software</td> 158 </tr> 159 <tr class="row-even"><td>CC</td> 160 <td>Combination Center</td> 161 </tr> 162 <tr class="row-odd"><td>CLI</td> 163 <td>Command Line Interface</td> 164 </tr> 165 <tr class="row-even"><td>CoM</td> 166 <td>Center Of Mass</td> 167 </tr> 168 <tr class="row-odd"><td>DGNSS</td> 169 <td>Differential GNSS</td> 170 </tr> 171 <tr class="row-even"><td>DGPS-IP</td> 172 <td>Differential GPS via Internet Protocol</td> 173 </tr> 174 <tr class="row-odd"><td>DMG</td> 175 <td>Disk Image, File</td> 176 </tr> 177 <tr class="row-even"><td>DREF91</td> 178 <td>Geodetic Datum for Germany 1991</td> 179 </tr> 180 <tr class="row-odd"><td>ECEF</td> 181 <td>Earth-Centred-Earth-Fixed</td> 182 </tr> 183 <tr class="row-even"><td>EDGE</td> 184 <td>Enhanced Data Rates for GSM Evolution</td> 185 </tr> 186 <tr class="row-odd"><td>ETRF2000</td> 187 <td>European Terrestrial Reference Frame 2000</td> 188 </tr> 189 <tr class="row-even"><td>EUREF</td> 190 <td>IAG Reference Frame Sub-Commission for Europe</td> 191 </tr> 192 <tr class="row-odd"><td>EoE</td> 193 <td>End of Epoch</td> 194 </tr> 195 <tr class="row-even"><td>FKP</td> 196 <td>Flächen-Korrektur-Parameter</td> 197 </tr> 198 <tr class="row-odd"><td>FTP</td> 199 <td>File Transfer Protocol</td> 200 </tr> 201 <tr class="row-even"><td>GDA94</td> 202 <td>Geodetic Datum Australia 1994</td> 203 </tr> 204 <tr class="row-odd"><td>GM</td> 205 <td>Google Maps</td> 206 </tr> 207 <tr class="row-even"><td>GNSS</td> 208 <td>Global Navigation Satellite System</td> 209 </tr> 210 <tr class="row-odd"><td>GNU</td> 211 <td>GNU’s Not Unix</td> 212 </tr> 213 <tr class="row-even"><td>GPL</td> 214 <td>General Public License</td> 215 </tr> 216 <tr class="row-odd"><td>GPRS</td> 217 <td>General Packet Radio Service</td> 218 </tr> 219 <tr class="row-even"><td>GPSWD</td> 220 <td>GPS Week and Day</td> 221 </tr> 222 <tr class="row-odd"><td>GSM</td> 223 <td>Global System for Mobile Communications</td> 224 </tr> 225 <tr class="row-even"><td>GUI</td> 226 <td>Graphical User Interface</td> 227 </tr> 228 <tr class="row-odd"><td>HP MSM</td> 229 <td>High Precision Multiple Signal Messages</td> 230 </tr> 231 <tr class="row-even"><td>HR URA</td> 232 <td>High Rate User Range Accuracy</td> 233 </tr> 234 <tr class="row-odd"><td>HTTP</td> 235 <td>Hypertext Transfer Protocol</td> 236 </tr> 237 <tr class="row-even"><td>HTTPS</td> 238 <td>Hypertext Transfer Protocol Secure</td> 239 </tr> 240 <tr class="row-odd"><td>IAG</td> 241 <td>International Association of Geodesy</td> 242 </tr> 243 <tr class="row-even"><td>ICECAST</td> 244 <td>Streaming Media Server</td> 245 </tr> 246 <tr class="row-odd"><td>IGS08</td> 247 <td>IGS Reference Frame 2008</td> 248 </tr> 249 <tr class="row-even"><td>IGS</td> 250 <td>International GNSS Service</td> 251 </tr> 252 <tr class="row-odd"><td>IOD</td> 253 <td>Issue of Data</td> 254 </tr> 255 <tr class="row-even"><td>IP</td> 256 <td>Internet Protocol</td> 257 </tr> 258 <tr class="row-odd"><td>ITRF2008</td> 259 <td>International Terrestrial Reference Frame 2008</td> 260 </tr> 261 <tr class="row-even"><td>L3</td> 262 <td>Ionosphere-Free Linear Combination Of Phase Observations</td> 263 </tr> 264 <tr class="row-odd"><td>LAN</td> 265 <td>Local Area Network</td> 266 </tr> 267 <tr class="row-even"><td>LC</td> 268 <td>Linea Combination</td> 269 </tr> 270 <tr class="row-odd"><td>M-GEX</td> 271 <td>Multi GNSS-Experiment</td> 272 </tr> 273 <tr class="row-even"><td>MAC</td> 274 <td>Master Auxiliary Concept</td> 275 </tr> 276 <tr class="row-odd"><td>MJD</td> 277 <td>Modified Julian Date</td> 278 </tr> 279 <tr class="row-even"><td>MSI</td> 280 <td>Microsoft Installer, File</td> 281 </tr> 282 <tr class="row-odd"><td>MSM</td> 283 <td>Multiple Signal Messages</td> 284 </tr> 285 <tr class="row-even"><td>MW</td> 286 <td>Melbourne W”ubbena Linear Combination</td> 287 </tr> 288 <tr class="row-odd"><td>NAD83</td> 289 <td>North American Datum 1983</td> 290 </tr> 291 <tr class="row-even"><td>NAREF</td> 292 <td>IAG Reference Frame Sub-Commission for North America</td> 293 </tr> 294 <tr class="row-odd"><td>NMEA</td> 295 <td>National Marine Electronics Association Format</td> 296 </tr> 297 <tr class="row-even"><td>Ntrip</td> 298 <td>Networked Transport of RTCM via Internet Protocol</td> 299 </tr> 300 <tr class="row-odd"><td>OSM</td> 301 <td>OpenStreetMap</td> 302 </tr> 303 <tr class="row-even"><td>OSR</td> 304 <td>Observation Space Representation</td> 305 </tr> 306 <tr class="row-odd"><td>P3</td> 307 <td>Ionosphere-Free Linear Combination Of Code Observations</td> 308 </tr> 309 <tr class="row-even"><td>PDOP</td> 310 <td>Positional Dilution Of Precision</td> 311 </tr> 312 <tr class="row-odd"><td>PNG</td> 313 <td>Portable Network Graphics</td> 314 </tr> 315 <tr class="row-even"><td>PPP</td> 316 <td>Precise Point Positioning</td> 317 </tr> 318 <tr class="row-odd"><td>Qt</td> 319 <td>Cross-Platform Application Framework</td> 320 </tr> 321 <tr class="row-even"><td>REQC</td> 322 <td>RINEX Editing and Quality Checking</td> 323 </tr> 324 <tr class="row-odd"><td>RINEX</td> 325 <td>Receiver Independent Exchange Format</td> 326 </tr> 327 <tr class="row-even"><td>RTCM SC-104</td> 328 <td>Radio Technical Commission for Maritime Services, Special Committee 104</td> 329 </tr> 330 <tr class="row-odd"><td>RTK</td> 331 <td>Real Time Kinematic</td> 332 </tr> 333 <tr class="row-even"><td>RTKPLOT</td> 334 <td>View and Plot Positioning Solutions Software, Part of RTKLIB</td> 335 </tr> 336 <tr class="row-odd"><td>RTNET</td> 337 <td>Real-Time Network Format</td> 338 </tr> 339 <tr class="row-even"><td>RTP</td> 340 <td>Real-Time Transport Protocol</td> 341 </tr> 342 <tr class="row-odd"><td>RTSP</td> 343 <td>Real-Time Streaming Protocol</td> 344 </tr> 345 <tr class="row-even"><td>SBAS</td> 346 <td>Space Based Augmentation System</td> 347 </tr> 348 <tr class="row-odd"><td>SINEX TRO</td> 349 <td>Troposphere Solution Independent Exchange Format</td> 350 </tr> 351 <tr class="row-even"><td>SINEX</td> 352 <td>Solution Independent Exchange Format</td> 353 </tr> 354 <tr class="row-odd"><td>SIRGAS2000</td> 355 <td>Geodetic Datum for Latin America and Caribbean 2000</td> 356 </tr> 357 <tr class="row-even"><td>SIRGAS95</td> 358 <td>Geodetic Datum for Latin America and Caribbean 1995</td> 359 </tr> 360 <tr class="row-odd"><td>SIRGAS</td> 361 <td>IAG Reference Frame Sub-Commission for Latin America and Caribbean</td> 362 </tr> 363 <tr class="row-even"><td>SP3</td> 364 <td>Standard Product # 3</td> 365 </tr> 366 <tr class="row-odd"><td>SPP</td> 367 <td>Single Point Positioning</td> 368 </tr> 369 <tr class="row-even"><td>SSL</td> 370 <td>Secure Sockets Layer</td> 371 </tr> 372 <tr class="row-odd"><td>SSR</td> 373 <td>State Space Representation</td> 374 </tr> 375 <tr class="row-even"><td>SVN</td> 376 <td>Subversion, Revision Control System</td> 377 </tr> 378 <tr class="row-odd"><td>TCP</td> 379 <td>Transmission Control Protocol</td> 380 </tr> 381 <tr class="row-even"><td>TEQC</td> 382 <td>Translation, Editing and Quality Checking</td> 383 </tr> 384 <tr class="row-odd"><td>TLS</td> 385 <td>Transport Layer Security</td> 386 </tr> 387 <tr class="row-even"><td>UDP</td> 388 <td>User Datagram Protocol</td> 389 </tr> 390 <tr class="row-odd"><td>UMTS</td> 391 <td>Universal Mobile Telecommunications System</td> 392 </tr> 393 <tr class="row-even"><td>URA</td> 394 <td>User Range Accuracy</td> 395 </tr> 396 <tr class="row-odd"><td>VRS</td> 397 <td>Virtual Reference Station</td> 398 </tr> 399 <tr class="row-even"><td>VTEC</td> 400 <td>Vertical Total Electron Content</td> 401 </tr> 402 </tbody> 403 </table> 404 </div> 405 <span id="document-chapter1"></span><div class="section" id="introduction"> 406 <h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline">¶</a></h2> 407 <div class="section" id="purpose"> 408 <h3>Purpose<a class="headerlink" href="#purpose" title="Permalink to this headline">¶</a></h3> 409 <p>The BKG Ntrip Client (BNC) is a program for simultaneously retrieving, decoding, converting and processing or analyzing real-time GNSS data streams applying the ‘Networked Transport of RTCM via Internet Protocol’ (Ntrip) standard. It has been developed within the framework of the IAG sub-commission for Europe (EUREF) and the International GNSS Service (IGS). Although meant to be a real-time tool, it comes with some post processing functionality. It can be used for data coming from Ntrip Broadcasters like</p> 410 <ul class="simple"> 411 <li><a class="reference external" href="http://www.euref-ip.net/home">http://www.euref-ip.net/home</a></li> 412 <li><a class="reference external" href="http://www.igs-ip.net/home">http://www.igs-ip.net/home</a></li> 413 <li><a class="reference external" href="http://products.igs-ip.net/home">http://products.igs-ip.net/home</a></li> 414 <li><a class="reference external" href="http://mgex.igs-ip.net/home">http://mgex.igs-ip.net/home</a></li> 415 </ul> 416 <p>or similar caster installation.</p> 417 <p>BNC has been written under GNU General Public License (GPL). Source code is available from Subversion software archive <a class="reference external" href="http://software.rtcm-ntrip.org/svn/trunk/BNC">http://software.rtcm-ntrip.org/svn/trunk/BNC</a>. Precompiled binaries of BNC are available for MS Windows, Linux, and Mac OS X systems. They can be downloaded from <a class="reference external" href="http://igs.bkg.bund.de/ntrip/download">http://igs.bkg.bund.de/ntrip/download</a>.</p> 418 <p>Promoting Open RTCM Standards for streaming GNSS data over the Internet has been a major aspect in developing BNC as Open Source real-time software. Basically, the tool enables the test, validation and further evolution of new RTCM messages for precise satellite navigation. With high-level source code at hand, it also allows university education to catch up with comprehensive state-of-the-art positioning and potentially contributes fresh ideas which are free from any licensing.</p> 419 <p>BNC was designed to serve the following purposes</p> 420 <ul class="simple"> 371 <li> 372 Jan Dousa, Geodetic Observatory Pecny, Czech Republic, helped with fixing bugs in version 2.5. 373 </li> 374 <li> 375 Denis Laurichesse, Centre National d'Etudes Spatiales (CNES), suggested synchronizing observations and clock corrections to reduce high frequency noise in PPP solutions. 376 </li> 377 <li> 378 Lennard Huisman, Kadaster Netherlands, and Rolf Dach, Astronomical Institute University of Bern, assisted in handling satellite clocks in transformations from ITRF to regional reference frames. 379 </li> 380 </ul> 381 </p> 382 383 <p><h4>1.1 <a name="introPurpose">Purpose</h4></p> 384 385 <p> 386 Promoting Open RTCM Standards for streaming GNSS data over the Internet has been a major aspect in developing BNC as Open Source real-time software. Basically, the tool enables the test, validation and further evolution of new RTCM messages for precise satellite navigation. With high-level source code at hand, it also allows university education to catch up with comprehensive state-of-the-art positioning and potentially contributes fresh ideas which are free from any licensing. 387 </p> 388 389 <p> BNC was designed to serve the following purposes: 390 <ul> 421 391 <li>Retrieve real-time GNSS data streams available through Ntrip transport protocol;</li> 422 392 <li>Retrieve real-time GNSS data streams via TCP directly from an IP address without using the Ntrip transport protocol;</li> … … 427 397 <li>Convert RINEX Version 2 to RINEX Version 3 and vice versa;</li> 428 398 <li>Compare SP3 files containing satellite orbit and clock data;</li> 429 <li>Generate orbit and clock corrections to Broadcast Ephemeris through an IP port to<ul> 399 <li>Generate orbit and clock corrections to Broadcast Ephemeris through an IP port to</li> 400 <ul> 430 401 <li>support real-time Precise Point Positioning on GNSS rovers;</li> 431 402 <li>support the (outside) combination of such streams as coming simultaneously from various correction providers;</li> 432 403 </ul> 433 </li>434 404 <li>Generate ephemeris and synchronized or unsynchronized observations epoch by epoch through an IP port to support real-time GNSS network engines;</li> 435 405 <li>Feed a stream into a GNSS receiver via serial communication link;</li> … … 440 410 <li>Plot positions derived via PPP from RTCM streams or RINEX files on maps from Google Map or OpenStreetMap;</li> 441 411 <li>Simultaneously process several Broadcast Correction streams to produce, encode and upload combined Broadcast Corrections;</li> 412 442 413 <li>Estimate real-time tropospheric zenith path delays and save them in SINEX troposphere file format;</li> 443 <li>Read GNSS orbits and clocks in a plain ASCII format from an IP port. They can be produced by a real-time GNSS engine such as RTNET and should be referenced to the IGS Earth-Centered-Earth-Fixed (ECEF) reference system. BNC will then<ul> 414 415 <li>Read GNSS orbits and clocks in a plain ASCII format from an IP port. They can be produced by a real-time GNSS engine such as RTNET and should be referenced to the IGS Earth-Centered-Earth-Fixed (ECEF) reference system. BNC will then</li> 416 <ul> 444 417 <li>Convert the IGS Earth-Centered-Earth-Fixed orbits and clocks into Broadcast Corrections with radial, along-track and out-of-plane components;</li> 445 418 <li>Upload Broadcast Corrections as an RTCM Version 3 stream to an Ntrip Broadcaster;</li> … … 447 420 <li>Log the Broadcast Corrections as Clock RINEX files for further processing using other tools than BNC;</li> 448 421 <li>Log the Broadcast Corrections as SP3 files for further processing using other tools than BNC;</li> 422 </ul> 449 423 <li>Upload a Broadcast Ephemeris stream in RTCM Version 3 format;</li> 450 424 </ul> 451 </li> 452 </ul> 453 <p>BNC supports the following GNSS stream formats and message types:</p> 454 <ul class="simple"> 455 <li>RTCM Version 2 message types;</li> 456 <li>RTCM Version 3 ‘conventional’ message types;</li> 425 </p> 426 427 <p> 428 BNC supports the following GNSS stream formats and message types: 429 </p> 430 <p> 431 <ul> 432 <li>RTCM Version 2 message types; </li> 433 <li>RTCM Version 3 'conventional' message types;</li> 457 434 <li>RTCM Version 3 message types for Broadcast Ephemeris;</li> 458 <li>RTCM Version 3 ‘State Space Representation’ (SSR) messages;</li> 459 <li>RTCM Version 3 ‘Multiple Signal Messages’ (MSM) and ‘High Precision Multiple Signal Messages’ (HP MSM);</li> 460 <li>RTNET, a plain ASCII format defined within BNC to receive orbits and clocks from a serving GNSS engine.</li> 461 </ul> 462 <p>BNC supports the following GNSS file formats:</p> 463 <ul class="simple"> 464 <li>RINEX Version 2.11 & 3.03, Receiver Independent Exchange format for observations, navigation and meteorological data;</li> 435 <li>RTCM Version 3 'State Space Representation' (SSR) messages;</li> 436 <li>RTCM Version 3 'Multiple Signal Messages' (MSM) and 'High Precision Multiple Signal Messages' (HP MSM);</li> 437 <li>RTNET, a plain ASCII format defined within BNC to receive orbits and clocks from a serving GNSS engine. 438 </ul> 439 </p> 440 441 <p> 442 BNC supports the following GNSS file formats: 443 </p> 444 <p> 445 <ul> 446 <li>RINEX Version 2.11 & 3.03, Receiver Independent Exchange format for observations, navigation and meteorological data;</li> 465 447 <li>SINEX Version 2.10, Solution Independent Exchange format for station position and velocity solutions;</li> 466 448 <li>SINEX TRO Draft Version 2.00, Troposphere Solution Independent Exchange format for zenith path delay products;</li> … … 470 452 <li>NMEA Version 0813, National Marine Electronics Association format for satellite navigation data;</li> 471 453 </ul> 472 <p>Note that BNC allows to by-pass decoding and conversion algorithms for incoming streams, leaves whatever is received untouched to save it in files or output it through local TCP/IP port.</p> 473 </div> 474 <div class="section" id="authors"> 475 <h3>Authors<a class="headerlink" href="#authors" title="Permalink to this headline">¶</a></h3> 476 <p>The BKG Ntrip Client (BNC) with a Qt Graphical User Interface (GUI) and a Command Line Interface (CLI) has been developed for</p> 477 <blockquote> 478 <div><div class="line-block"> 479 <div class="line">Federal Agency for Cartography and Geodesy (BKG)</div> 480 <div class="line">Department of Geodesy, Section Satellite Navigation</div> 481 <div class="line">Frankfurt am Main, Germany</div> 482 </div> 483 </div></blockquote> 484 <p>The software has been written by</p> 485 <blockquote> 486 <div><div class="line-block"> 487 <div class="line">Prof. Dr. Leos Mervart</div> 488 <div class="line">Czech Technical University (CTU)</div> 489 <div class="line">Department of Geomatics</div> 490 <div class="line">Prague, Czech Republic</div> 491 </div> 492 </div></blockquote> 493 <p>Prof. Mervart started working on BNC in 2005. His sole responsibility for writing the program code ended February 2015. In March 2015, Dipl.-Ing. Andrea Stürze took over the responsibility for maintaining and further developing BNC’s source code.</p> 494 </div> 495 <div class="section" id="documentation"> 496 <h3>Documentation<a class="headerlink" href="#documentation" title="Permalink to this headline">¶</a></h3> 497 <p>BNC provides context-sensitive help ( <em>What’s This</em> ) related to specific objects. It furthermore comes with the here presented documentation, available as part of the software and as a PDF file. Responsible for offline documentation as well as online documentation at <a class="reference external" href="http://software.rtcm-ntrip.org/export/HEAD/ntrip/trunk/BNC/src/bnchelp.html">http://software.rtcm-ntrip.org/export/HEAD/ntrip/trunk/BNC/src/bnchelp.html</a> and example configurations is Dr. Georg Weber.</p> 498 <p>Note that some figures presented in this documentation may show screen shots from earlier versions of BNC. If so, there is either no relevant change compared to the current appearance of the program or no change at all.</p> 499 </div> 500 <div class="section" id="contact"> 501 <h3>Contact<a class="headerlink" href="#contact" title="Permalink to this headline">¶</a></h3> 502 <p>Feel free to send us comments, suggestions or bug reports. Any contribution would be appreciated.</p> 503 <div class="line-block"> 504 <div class="line">Federal Agency for Cartography and Geodesy (BKG)</div> 505 <div class="line">Department of Geodesy, Section Satellite Navigation</div> 506 <div class="line">Richard-Strauss-Allee 11</div> 507 <div class="line">60598 Frankfurt am Main, Germany</div> 508 <div class="line">Email: <a class="reference external" href="mailto:igs-ip%40bkg.bund.de">igs-ip<span>@</span>bkg<span>.</span>bund<span>.</span>de</a></div> 509 </div> 510 </div> 511 <div class="section" id="acknowledgements"> 512 <h3>Acknowledgements<a class="headerlink" href="#acknowledgements" title="Permalink to this headline">¶</a></h3> 513 <ul class="simple"> 514 <li>Oliver Montenbruck, German Space Operations Center, DLR, Oberpfaffenhofen, Germany published a RTCM Version 2 decoder unter GNU GPL which has been integrated in BNC.</li> 515 <li>Thomas Yan, Australian NSW Land and Property Information, proofread earlier versions of BNC’s Help Contents. Up to Version 2.11 he also provides builds of BNC for Mac OS X systems.</li> 516 <li>Scott Glazier, OmniSTAR Australia, has been helpful in finding BNC bugs in version 1.5.</li> 517 <li>James Perlt, BKG, helped fixing bugs and redesigned BNC’s main window in version 1.5.</li> 518 <li>André Hauschild, German Space Operations Center, DLR, revised the RTCM Version 2 decoder.</li> 519 <li>Zdenek Lukes, Czech Technical University Prague, Department of Geodesy, extended the RTCM Version 2 decoder to handle message types 3, 20, 21, and 22 and added the loss of lock indicator.</li> 520 <li>Jan Dousa, Geodetic Observatory Pecny, Czech Republic, helped with fixing bugs in version 2.5.</li> 521 <li>Denis Laurichesse, Centre National d’‘Etudes Spatiales (CNES), suggested synchronizing observations and clock corrections to reduce high frequency noise in PPP solutions.</li> 522 <li>Lennard Huisman, Kadaster Netherlands, and Rolf Dach, Astronomical Institute University of Bern, assisted in handling satellite clocks in transformations from ITRF to regional reference frames.</li> 523 </ul> 524 </div> 525 <div class="section" id="looking-back"> 526 <h3>Looking Back<a class="headerlink" href="#looking-back" title="Permalink to this headline">¶</a></h3> 527 <p>A basic function of BNC is streaming GNSS data over the open Internet using the Ntrip transport protocol. Employing IP streaming for satellite positioning goes back to the beginning of our century. Wolfgang Rupprecht has been the first person who developed TCP/IP server software under the acronym of DGPS-IP <a class="reference internal" href="bnchelp.html#rupprecht2000a" id="id1">[1]</a> and published it under GNU General Public License (GPL). While connecting marine beacon receivers to PCs with permanent access to the Internet he transmitted DGPS corrections in an RTCM format to support Differential GPS positioning over North America. With approximately 200 bits/sec the bandwidth requirement for disseminating beacon data was comparatively small. Each stream was transmitted over a unique combination of IP address and port. Websites informed about existing streams and corresponding receiver positions.</p> 528 <p>To cope with an increasing number of transmitting GNSS reference stations, the Federal Agency for Cartography and Geodesy (BKG) together with the Informatik Centrum Dortmund (ICD) in Germany developed a streaming protocol for satellite navigation data called ‘Networked Transport of RTCM via Internet Protocol’ (Ntrip). The protocol was built on top of the HTTP standard and included the provision of meta data describing the stream content. Any stream could now be globally transmitted over just one IP port: HTTP port 80. Stream availability and content details became part of the transport protocol. The concept was first published in 2003 <a class="reference internal" href="bnchelp.html#weber2004a" id="id2">[2]</a>, <a class="reference internal" href="bnchelp.html#weber2005a" id="id3">[3]</a> and was based on three software components, namely an NtripServer pushing data from a reference station to an NtripCaster and an NtripClient pulling data from the stream splitting caster to support a rover receiver. (Note that from a socket-programmers perspective NtripServer and NtripClient both act as clients; only the NtripCaster operates as socket-server.) Ntrip could essentially benefit from Internet Radio developments. It was the ICECAST multimedia server, which provided the bases for BKG’s ‘Professional Ntrip Broadcaster’ with software published first in 2003 and of course again as Open Source under GPL.</p> 529 <p>For BKG as a governmental agency, making Ntrip an Open Industry Standard has been an objective from the very beginning. The ‘Radio Technical Commission for Maritime Services’ (RTCM) accepted ‘Ntrip Version 1’ in 2004 as ‘RTCM Recommended Standard’ <a class="reference internal" href="bnchelp.html#weber2005b" id="id4">[4]</a>. Nowadays there is almost no geodetic GNSS receiver which does not come with integrated NtripClient and NtripServer functionality as part of the firmware. Hundreds of NtripCaster implementations are operated world-wide for highly accurate satellite navigation through RTK networks. Thousands of reference stations upload observations via NtripServer to central computing facilities for any kind of NtripClient application. In 2011 ‘Ntrip Version 2’ was released <a class="reference internal" href="bnchelp.html#rtcm-sc104-2011a" id="id5">[5]</a> which cleared and fixed some design problems and HTTP protocol violations. It also supports TCP/IP via SSL and adds optional communication over RTSP/RTP and UDP.</p> 530 <p>With the advent of Ntrip as an open streaming standard, BKG’s interest turned towards taking advantage from free real-time access to GNSS observations. International Associations such as the IAG Reference Frame Sub Commissions for Africa (AFREF), Asia & Pacific (APREF), Europe (EUREF), North America (NAREF) Latin America & Caribbean (SIRGAS), and the International GNSS Service (IGS) maintain continental or even global GNSS networks with the majority of modern receivers supporting Ntrip stream upload. Through operating BKG’s NtripCaster software, these networks became extremely valuable sources of real-time GNSS information. In 2005, this was the starting point for developing the ‘BKG Ntrip Client’ (BNC) as a multi-stream Open Source NtripClient that allows pulling hundreds of streams simultaneously from any number of NtripCaster installations world-wide. Decoding incoming RTCM streams and output observations epoch by epoch via IP port to feed a real-time GNSS network engine became BNC’s first and foremost ability <a class="reference internal" href="bnchelp.html#weber2009a" id="id6">[6]</a>. Converting decoded streams to short high-rate RINEX files to assist near real-time applications became a welcome by-product right from the start of this development.</p> 531 <p>Adding real-time Precise Point Positioning (PPP) support to BNC began in 2010 as an important completion in view of developing an Open RTCM Standard for that. According to the State Space Representation (SSR) model, new Version 3 messages are proposed to provide e.g. satellite orbit and clock corrections and ionospheric corrections as well as biases for code and phase data. The ultimate goal for SSR standardization is to reach centimeter level accuracy within seconds as an alternative to Network RTK methods such as VRS, FKP, and MAC. Because of interoperability aspects, an Open Standard in this area is of particular interest for clients. Regarding stand-alone PPP in BNC, it is worth mentioning that the program is not and can never be in competition with a receiver manufacturer’s proprietary solution. Only software or services that are part of a receiver firmware could have the potential of becoming a thread for commercial interests. However, implementing or not implementing an Open PPP approach in a firmware is and will always remain a manufacturer’s decision.</p> 532 <p>Implementing some post processing capability is essential for debugging real-time software in case of problems. So certain real-time options in BNC were complemented to work offline through reading data from files. Moreover, beginning in 2012, the software was extended to support Galileo, BeiDou, and QZSS besides GPS and GLONASS. With that, the Open Source tool BNC could be used for RINEX Version 3 file editing, concatenation and quality checks, a post processing functionality demanded by the IGS Multi-GNSS Experiment and not really covered at that time by UNAVCO’s famous TEQC program with its limitation on GPS.</p> 533 <p>Over the years, the BNC Subversion (SVN) software archive received over seven thousand commits made by 11 contributors representing about one hundred thirty thousand lines of code. The well-established, mature codebase is mostly written in C++ language. Its publication under GNU GPL is thought to be well-suited for test, validation and demonstration of new approaches in precise real-time satellite navigation when IP streaming is involved. Commissioned by a German governmental agency, the overall intention has been to push the development of RTCM Recommended Standards to the benefit of IAG institutions and services such as IGS and the interested public in general.</p> 534 <p>In February 2014 the overall responsibility at BKG for the concept and realization of BNC was handed over from Georg Weber to Axel R{“u}lke. He is in charge now for guiding the application and further evolution of the software in view of appearing new satellite navigation systems and services.</p> 535 </div> 536 </div> 537 <span id="document-chapter2"></span><div class="section" id="bnc-overview"> 538 <span id="index-0"></span><h2>BNC Overview<a class="headerlink" href="#bnc-overview" title="Permalink to this headline">¶</a></h2> 539 <div class="section" id="supported-gnss-and-applications"> 540 <span id="index-1"></span><h3>Supported GNSS and applications<a class="headerlink" href="#supported-gnss-and-applications" title="Permalink to this headline">¶</a></h3> 541 <p>BNC is permanently completed to finally support all existing GNSS systems throughout all features of the program. <a class="reference internal" href="#tab-bnc-rtcm"><span class="std std-numref">Table 1</span></a> shows in detail which GNSS systems are supported so far by particular applications when using the latest BNC version. Application areas named here are:</p> 542 <ul class="simple"> 543 <li>Decoding of RTCM or RTNET <a class="footnote-reference" href="#f-rtnet" id="id1">[1]</a> streams</li> 454 </p> 455 456 <p> 457 Note that BNC allows to by-pass decoding and conversion algorithms for incoming streams, leaves whatever is received untouched to save it in files or output it through local TCP/IP port. 458 </p> 459 460 <p><h4>1.2 <a name="introSystem">Supported GNSS</h4></p> 461 <p> 462 BNC is permanently completed to finally support all existing GNSS systems throughout all features of the program. The table below shows in detail which GNSS systems are supported so far by particular applications when using the latest BNC version. Application areas named here are: 463 <ul> 464 <li>Decoding of RTCM or RTNET streams</li> 544 465 <li>RINEX and SP3 file input and output</li> 545 466 <li>Encoding of SSR and ephemeris messages</li> … … 548 469 <li>Combining/merging SSR or ephemeris messages from various real-time sources</li> 549 470 </ul> 550 <p>It is indicated when a message implementation in BNC could so far only be based on a ‘RTCM Proposal’.</p> 551 <table border="1" class="docutils" id="id2"> 552 <span id="tab-bnc-rtcm"></span><caption><span class="caption-number">Table 1 </span><span class="caption-text">Status of RTCM Version 3 message implementations in BNC supporting various GNSS systems.</span><a class="headerlink" href="#id2" title="Permalink to this table">¶</a></caption> 553 <colgroup> 554 <col width="11%" /> 555 <col width="17%" /> 556 <col width="10%" /> 557 <col width="9%" /> 558 <col width="9%" /> 559 <col width="10%" /> 560 <col width="9%" /> 561 <col width="9%" /> 562 <col width="9%" /> 563 <col width="9%" /> 564 </colgroup> 565 <thead valign="bottom"> 566 <tr class="row-odd"><th class="head"><strong>Message #</strong></th> 567 <th class="head"><strong>Description</strong></th> 568 <th class="head"><strong>GNSS</strong></th> 569 <th class="head"><strong>RTCM</strong> 570 <strong>Proposal</strong></th> 571 <th class="head"><strong>Decoding</strong></th> 572 <th class="head"><strong>RINEX/SP3</strong></th> 573 <th class="head"><strong>Encoding</strong></th> 574 <th class="head"><strong>Upload</strong></th> 575 <th class="head"><strong>PPP</strong></th> 576 <th class="head"><strong>Combin.</strong></th> 577 </tr> 578 </thead> 579 <tbody valign="top"> 580 <tr class="row-even"><td colspan="10"><strong>General</strong></td> 581 </tr> 582 <tr class="row-odd"><td>1005,1006</td> 583 <td>Station</td> 584 <td> </td> 585 <td> </td> 586 <td>x</td> 587 <td> </td> 588 <td> </td> 589 <td> </td> 590 <td> </td> 591 <td> </td> 592 </tr> 593 <tr class="row-even"><td>1007,1008</td> 594 <td>Antenna</td> 595 <td> </td> 596 <td> </td> 597 <td>x</td> 598 <td> </td> 599 <td> </td> 600 <td> </td> 601 <td> </td> 602 <td> </td> 603 </tr> 604 <tr class="row-odd"><td>1033</td> 605 <td>Receiver, Antenna</td> 606 <td> </td> 607 <td> </td> 608 <td>x</td> 609 <td> </td> 610 <td> </td> 611 <td> </td> 612 <td> </td> 613 <td> </td> 614 </tr> 615 <tr class="row-even"><td>1013</td> 616 <td>System Parameters</td> 617 <td> </td> 618 <td> </td> 619 <td>x</td> 620 <td> </td> 621 <td> </td> 622 <td> </td> 623 <td> </td> 624 <td> </td> 625 </tr> 626 <tr class="row-odd"><td colspan="10"><strong>Navigation</strong></td> 627 </tr> 628 <tr class="row-even"><td>1019</td> 629 <td>Ephemeris</td> 630 <td>GPS</td> 631 <td> </td> 632 <td>x</td> 633 <td>x</td> 634 <td>x</td> 635 <td>x</td> 636 <td>x</td> 637 <td>x</td> 638 </tr> 639 <tr class="row-odd"><td>1020</td> 640 <td>Ephemeris</td> 641 <td>GLONASS</td> 642 <td> </td> 643 <td>x</td> 644 <td>x</td> 645 <td>x</td> 646 <td>x</td> 647 <td>x</td> 648 <td>x</td> 649 </tr> 650 <tr class="row-even"><td>1045</td> 651 <td>Ephemeris</td> 652 <td>Galileo F/Nav</td> 653 <td> </td> 654 <td>x</td> 655 <td>x</td> 656 <td>x</td> 657 <td>x</td> 658 <td> </td> 659 <td> </td> 660 </tr> 661 <tr class="row-odd"><td>1046</td> 662 <td>Ephemeris</td> 663 <td>Galileo I/Nav</td> 664 <td> </td> 665 <td>x</td> 666 <td>x</td> 667 <td>x</td> 668 <td>x</td> 669 <td>x</td> 670 <td> </td> 671 </tr> 672 <tr class="row-even"><td>1043</td> 673 <td>Ephemeris</td> 674 <td>SBAS</td> 675 <td>x</td> 676 <td>x</td> 677 <td>x</td> 678 <td>x</td> 679 <td>x</td> 680 <td> </td> 681 <td> </td> 682 </tr> 683 <tr class="row-odd"><td>1044</td> 684 <td>Ephemeris</td> 685 <td>QZSS</td> 686 <td> </td> 687 <td>x</td> 688 <td>x</td> 689 <td>x</td> 690 <td>x</td> 691 <td> </td> 692 <td> </td> 693 </tr> 694 <tr class="row-even"><td>63</td> 695 <td>Ephemeris</td> 696 <td>BDS</td> 697 <td>x</td> 698 <td>x</td> 699 <td>x</td> 700 <td>x</td> 701 <td>x</td> 702 <td>x</td> 703 <td> </td> 704 </tr> 705 <tr class="row-odd"><td colspan="10"><strong>Observation</strong></td> 706 </tr> 707 <tr class="row-even"><td>1001-4</td> 708 <td>Conventional Messages</td> 709 <td>GPS</td> 710 <td> </td> 711 <td>x</td> 712 <td>x</td> 713 <td> </td> 714 <td> </td> 715 <td>x</td> 716 <td> </td> 717 </tr> 718 <tr class="row-odd"><td>1009-12</td> 719 <td>Conventional Messages</td> 720 <td>GLONASS</td> 721 <td> </td> 722 <td>x</td> 723 <td>x</td> 724 <td> </td> 725 <td> </td> 726 <td>x</td> 727 <td> </td> 728 </tr> 729 <tr class="row-even"><td colspan="10"><strong>Observation</strong></td> 730 </tr> 731 <tr class="row-odd"><td>1071-77</td> 732 <td>Multiple Signal Message</td> 733 <td>GPS</td> 734 <td> </td> 735 <td>x</td> 736 <td>x</td> 737 <td> </td> 738 <td> </td> 739 <td>x</td> 740 <td> </td> 741 </tr> 742 <tr class="row-even"><td>1081-87</td> 743 <td>Multiple Signal Message</td> 744 <td>GLONASS</td> 745 <td> </td> 746 <td>x</td> 747 <td>x</td> 748 <td> </td> 749 <td> </td> 750 <td>x</td> 751 <td> </td> 752 </tr> 753 <tr class="row-odd"><td>1091-97</td> 754 <td>Multiple Signal Message</td> 755 <td>Galileo</td> 756 <td> </td> 757 <td>x</td> 758 <td>x</td> 759 <td> </td> 760 <td> </td> 761 <td>x</td> 762 <td> </td> 763 </tr> 764 <tr class="row-even"><td>1101-07</td> 765 <td>Multiple Signal Message</td> 766 <td>SBAS</td> 767 <td>x</td> 768 <td>x</td> 769 <td>x</td> 770 <td> </td> 771 <td> </td> 772 <td> </td> 773 <td> </td> 774 </tr> 775 <tr class="row-odd"><td>1111-17</td> 776 <td>Multiple Signal Message</td> 777 <td>QZSS</td> 778 <td> </td> 779 <td>x</td> 780 <td>x</td> 781 <td> </td> 782 <td> </td> 783 <td> </td> 784 <td> </td> 785 </tr> 786 <tr class="row-even"><td>1121-27</td> 787 <td>Multiple Signal Message</td> 788 <td>BDS</td> 789 <td> </td> 790 <td>x</td> 791 <td>x</td> 792 <td> </td> 793 <td> </td> 794 <td>x</td> 795 <td> </td> 796 </tr> 797 <tr class="row-odd"><td colspan="10"><strong>SSR I</strong></td> 798 </tr> 799 <tr class="row-even"><td>1057</td> 800 <td>Orbit Corrections</td> 801 <td>GPS</td> 802 <td> </td> 803 <td>x</td> 804 <td>x</td> 805 <td>x</td> 806 <td>x</td> 807 <td>x</td> 808 <td>x</td> 809 </tr> 810 <tr class="row-odd"><td>1063</td> 811 <td>Orbit Corrections</td> 812 <td>GLONASS</td> 813 <td> </td> 814 <td>x</td> 815 <td>x</td> 816 <td>x</td> 817 <td>x</td> 818 <td>x</td> 819 <td>x</td> 820 </tr> 821 <tr class="row-even"><td>1240</td> 822 <td>Orbit Corrections</td> 823 <td>Galileo</td> 824 <td>x</td> 825 <td>x</td> 826 <td>x</td> 827 <td>x</td> 828 <td>x</td> 829 <td>x</td> 830 <td> </td> 831 </tr> 832 <tr class="row-odd"><td>1246</td> 833 <td>Orbit Corrections</td> 834 <td>SBAS</td> 835 <td>x</td> 836 <td>x</td> 837 <td>x</td> 838 <td>x</td> 839 <td>x</td> 840 <td> </td> 841 <td> </td> 842 </tr> 843 <tr class="row-even"><td>1252</td> 844 <td>Orbit Corrections</td> 845 <td>QZSS</td> 846 <td>x</td> 847 <td>x</td> 848 <td>x</td> 849 <td>x</td> 850 <td>x</td> 851 <td> </td> 852 <td> </td> 853 </tr> 854 <tr class="row-odd"><td>1258</td> 855 <td>Orbit Corrections</td> 856 <td>BDS</td> 857 <td>x</td> 858 <td>x</td> 859 <td>x</td> 860 <td>x</td> 861 <td>x</td> 862 <td>x</td> 863 <td> </td> 864 </tr> 865 <tr class="row-even"><td>1058</td> 866 <td>Clock Corrections</td> 867 <td>GPS</td> 868 <td> </td> 869 <td>x</td> 870 <td>x</td> 871 <td>x</td> 872 <td>x</td> 873 <td>x</td> 874 <td>x</td> 875 </tr> 876 <tr class="row-odd"><td>1064</td> 877 <td>Clock Corrections</td> 878 <td>GLONASS</td> 879 <td> </td> 880 <td>x</td> 881 <td>x</td> 882 <td>x</td> 883 <td>x</td> 884 <td>x</td> 885 <td>x</td> 886 </tr> 887 <tr class="row-even"><td>1241</td> 888 <td>Clock Corrections</td> 889 <td>Galileo</td> 890 <td>x</td> 891 <td>x</td> 892 <td>x</td> 893 <td>x</td> 894 <td>x</td> 895 <td>x</td> 896 <td> </td> 897 </tr> 898 <tr class="row-odd"><td>1247</td> 899 <td>Clock Corrections</td> 900 <td>SBAS</td> 901 <td>x</td> 902 <td>x</td> 903 <td>x</td> 904 <td>x</td> 905 <td>x</td> 906 <td> </td> 907 <td> </td> 908 </tr> 909 <tr class="row-even"><td>1253</td> 910 <td>Clock Corrections</td> 911 <td>QZSS</td> 912 <td>x</td> 913 <td>x</td> 914 <td>x</td> 915 <td>x</td> 916 <td>x</td> 917 <td> </td> 918 <td> </td> 919 </tr> 920 <tr class="row-odd"><td>1259</td> 921 <td>Clock Corrections</td> 922 <td>BDS</td> 923 <td>x</td> 924 <td>x</td> 925 <td>x</td> 926 <td>x</td> 927 <td>x</td> 928 <td>x</td> 929 <td> </td> 930 </tr> 931 <tr class="row-even"><td>1059</td> 932 <td>Code Biases</td> 933 <td>GPS</td> 934 <td> </td> 935 <td>x</td> 936 <td>x</td> 937 <td>x</td> 938 <td>x</td> 939 <td>x</td> 940 <td> </td> 941 </tr> 942 <tr class="row-odd"><td>1065</td> 943 <td>Code Biases</td> 944 <td>GLONASS</td> 945 <td> </td> 946 <td>x</td> 947 <td>x</td> 948 <td>x</td> 949 <td>x</td> 950 <td>x</td> 951 <td> </td> 952 </tr> 953 <tr class="row-even"><td>1242</td> 954 <td>Code Biases</td> 955 <td>Galileo</td> 956 <td>x</td> 957 <td>x</td> 958 <td>x</td> 959 <td>x</td> 960 <td>x</td> 961 <td>x</td> 962 <td> </td> 963 </tr> 964 <tr class="row-odd"><td>1248</td> 965 <td>Code Biases</td> 966 <td>SBAS</td> 967 <td>x</td> 968 <td>x</td> 969 <td>x</td> 970 <td>x</td> 971 <td>x</td> 972 <td> </td> 973 <td> </td> 974 </tr> 975 <tr class="row-even"><td>1254</td> 976 <td>Code Biases</td> 977 <td>QZSS</td> 978 <td>x</td> 979 <td>x</td> 980 <td>x</td> 981 <td>x</td> 982 <td>x</td> 983 <td> </td> 984 <td> </td> 985 </tr> 986 <tr class="row-odd"><td>1260</td> 987 <td>Code Biases</td> 988 <td>BDS</td> 989 <td>x</td> 990 <td>x</td> 991 <td>x</td> 992 <td>x</td> 993 <td>x</td> 994 <td>x</td> 995 <td> </td> 996 </tr> 997 <tr class="row-even"><td>1061, 1062</td> 998 <td>User Range Accuracy, HR</td> 999 <td>GPS</td> 1000 <td> </td> 1001 <td>x</td> 1002 <td> </td> 1003 <td> </td> 1004 <td> </td> 1005 <td> </td> 1006 <td> </td> 1007 </tr> 1008 <tr class="row-odd"><td>1067, 1068</td> 1009 <td>User Range Accuracy, HR</td> 1010 <td>GLONASS</td> 1011 <td> </td> 1012 <td>x</td> 1013 <td> </td> 1014 <td> </td> 1015 <td> </td> 1016 <td> </td> 1017 <td> </td> 1018 </tr> 1019 <tr class="row-even"><td>1244, 1245</td> 1020 <td>User Range Accuracy, HR</td> 1021 <td>Galileo</td> 1022 <td>x</td> 1023 <td>x</td> 1024 <td> </td> 1025 <td> </td> 1026 <td> </td> 1027 <td> </td> 1028 <td> </td> 1029 </tr> 1030 <tr class="row-odd"><td>1250, 1251</td> 1031 <td>User Range Accuracy, HR</td> 1032 <td>SBAS</td> 1033 <td>x</td> 1034 <td>x</td> 1035 <td> </td> 1036 <td> </td> 1037 <td> </td> 1038 <td> </td> 1039 <td> </td> 1040 </tr> 1041 <tr class="row-even"><td>1256, 1257</td> 1042 <td>User Range Accuracy, HR</td> 1043 <td>QZSS</td> 1044 <td>x</td> 1045 <td>x</td> 1046 <td> </td> 1047 <td> </td> 1048 <td> </td> 1049 <td> </td> 1050 <td> </td> 1051 </tr> 1052 <tr class="row-odd"><td>1262, 1263</td> 1053 <td>User Range Accuracy, HR</td> 1054 <td>BDS</td> 1055 <td>x</td> 1056 <td>x</td> 1057 <td> </td> 1058 <td> </td> 1059 <td> </td> 1060 <td> </td> 1061 <td> </td> 1062 </tr> 1063 <tr class="row-even"><td>1060</td> 1064 <td>Comb. Orbits & Clocks</td> 1065 <td>GPS</td> 1066 <td> </td> 1067 <td>x</td> 1068 <td>x</td> 1069 <td>x</td> 1070 <td>x</td> 1071 <td>x</td> 1072 <td>x</td> 1073 </tr> 1074 <tr class="row-odd"><td>1066</td> 1075 <td>Comb. Orbits & Clocks</td> 1076 <td>GLONASS</td> 1077 <td> </td> 1078 <td>x</td> 1079 <td>x</td> 1080 <td>x</td> 1081 <td>x</td> 1082 <td>x</td> 1083 <td>x</td> 1084 </tr> 1085 <tr class="row-even"><td>1243</td> 1086 <td>Comb. Orbits & Clocks</td> 1087 <td>Galileo</td> 1088 <td>x</td> 1089 <td>x</td> 1090 <td>x</td> 1091 <td>x</td> 1092 <td>x</td> 1093 <td>x</td> 1094 <td> </td> 1095 </tr> 1096 <tr class="row-odd"><td>1249</td> 1097 <td>Comb. Orbits & Clocks</td> 1098 <td>SBAS</td> 1099 <td>x</td> 1100 <td>x</td> 1101 <td>x</td> 1102 <td>x</td> 1103 <td>x</td> 1104 <td> </td> 1105 <td> </td> 1106 </tr> 1107 <tr class="row-even"><td>1255</td> 1108 <td>Comb. Orbits & Clocks</td> 1109 <td>QZSS</td> 1110 <td>x</td> 1111 <td>x</td> 1112 <td>x</td> 1113 <td>x</td> 1114 <td>x</td> 1115 <td> </td> 1116 <td> </td> 1117 </tr> 1118 <tr class="row-odd"><td>1261</td> 1119 <td>Comb. Orbits & Clocks</td> 1120 <td>BDS</td> 1121 <td>x</td> 1122 <td>x</td> 1123 <td>x</td> 1124 <td>x</td> 1125 <td>x</td> 1126 <td>x</td> 1127 <td> </td> 1128 </tr> 1129 <tr class="row-even"><td colspan="10"><strong>SSR II</strong></td> 1130 </tr> 1131 <tr class="row-odd"><td>1264</td> 1132 <td>VTEC</td> 1133 <td>GNSS</td> 1134 <td>x</td> 1135 <td>x</td> 1136 <td>x</td> 1137 <td>x</td> 1138 <td>x</td> 1139 <td> </td> 1140 <td> </td> 1141 </tr> 1142 <tr class="row-even"><td>1265</td> 1143 <td>Phase Biases</td> 1144 <td>GPS</td> 1145 <td>x</td> 1146 <td>x</td> 1147 <td>x</td> 1148 <td>x</td> 1149 <td>x</td> 1150 <td> </td> 1151 <td> </td> 1152 </tr> 1153 <tr class="row-odd"><td>1266</td> 1154 <td>Phase Biases</td> 1155 <td>GLONASS</td> 1156 <td>x</td> 1157 <td>x</td> 1158 <td>x</td> 1159 <td>x</td> 1160 <td>x</td> 1161 <td> </td> 1162 <td> </td> 1163 </tr> 1164 <tr class="row-even"><td>1267</td> 1165 <td>Phase Biases</td> 1166 <td>Galileo</td> 1167 <td>x</td> 1168 <td>x</td> 1169 <td>x</td> 1170 <td>x</td> 1171 <td>x</td> 1172 <td> </td> 1173 <td> </td> 1174 </tr> 1175 <tr class="row-odd"><td>1268</td> 1176 <td>Phase Biases</td> 1177 <td>SBAS</td> 1178 <td>x</td> 1179 <td>x</td> 1180 <td>x</td> 1181 <td>x</td> 1182 <td>x</td> 1183 <td> </td> 1184 <td> </td> 1185 </tr> 1186 <tr class="row-even"><td>1269</td> 1187 <td>Phase Biases</td> 1188 <td>QZSS</td> 1189 <td>x</td> 1190 <td>x</td> 1191 <td>x</td> 1192 <td>x</td> 1193 <td>x</td> 1194 <td> </td> 1195 <td> </td> 1196 </tr> 1197 <tr class="row-odd"><td>1270</td> 1198 <td>Phase Biases</td> 1199 <td>BDS</td> 1200 <td>x</td> 1201 <td>x</td> 1202 <td>x</td> 1203 <td>x</td> 1204 <td>x</td> 1205 <td> </td> 1206 <td> </td> 1207 </tr> 1208 </tbody> 471 The table indicates if a message implementation in BNC could so far only be based on a 'RTCM Proposal'. 472 </p> 473 <p><u>Table 1:</u> Status of RTCM Version 3 message implementations in BNC supporting various GNSS systems</p> 474 <p></p> 475 <table border="1" rules="rows" frame="box" bgcolor="#FFF5EE" style="font-size:13"> 476 477 <tr align="center"><td><b>Message<br>Type #</b></td> <td><b>Description</b></td> <td><b>GNSS<br>System</b></td> <td><b>RTCM<br>Proposal </b></td> <td><b>Decoding </b></td> <td><b> RINEX/ <br> SP3</b></td> <td><b>Encoding </b></td> <td><b>Upload </b></td> <td><b> PPP </b></td> <td><b>Combin. </b></td> </tr> 478 479 <tr align="center"> <td><b><br>General</b></td> <td></td> <td></td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 480 <tr align="center"> <td>1005,1006</td> <td>Station</td> <td> </td> <td> </td> <td>x</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 481 <tr align="center"> <td>1007,1008</td> <td>Antenna</td> <td> </td> <td> </td> <td>x</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 482 <tr align="center"> <td>1033</td> <td>Receiver, Antenna</td> <td> </td> <td> </td> <td>x</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 483 <tr align="center"> <td>1013</td> <td>System Parameters</td> <td> </td> <td> </td> <td>x</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 484 485 <tr align="center"> <td><b><br>Navigation</b></td> <td></td> <td></td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 486 <tr align="center"> <td>1019</td> <td>Ephemeris</td> <td>GPS</td> <td> </td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> </tr> 487 <tr align="center"> <td>1020</td> <td>Ephemeris</td> <td>GLONASS</td> <td> </td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> </tr> 488 <tr align="center"> <td>1045</td> <td>Ephemeris</td> <td>Galileo F/Nav</td> <td> </td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 489 <tr align="center"> <td>1046</td> <td>Ephemeris</td> <td>Galileo I/Nav</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> </tr> 490 <tr align="center"> <td>1043</td> <td>Ephemeris</td> <td>SBAS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 491 <tr align="center"> <td>1044</td> <td>Ephemeris</td> <td>QZSS</td> <td> </td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 492 <tr align="center"> <td>63</td> <td>Ephemeris</td> <td>BDS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> </tr> 493 494 <tr align="center"> <td><b><br>Observation</b></td> <td></td> <td></td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 495 <tr align="center"> <td>1001-4</td> <td>Conventional Messages</td> <td>GPS</td> <td> </td> <td>x</td> <td>x</td> <td> </td> <td> </td> <td>x</td> <td> </td> </tr> 496 <tr align="center"> <td>1009-12</td> <td>Conventional Messages</td> <td>GLONASS</td> <td> </td> <td>x</td> <td>x</td> <td> </td> <td> </td> <td>x</td> <td> </td> </tr> 497 498 <tr align="center"> <td><b><br>Observation</b></td> <td></td> <td></td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 499 <tr align="center"> <td>1071-77</td> <td>Multiple Signal Message</td> <td>GPS</td> <td> </td> <td>x</td> <td>x</td> <td> </td> <td> </td> <td>x</td> <td> </td> </tr> 500 <tr align="center"> <td>1081-87</td> <td>Multiple Signal Message</td> <td>GLONASS</td> <td> </td> <td>x</td> <td>x</td> <td> </td> <td> </td> <td>x</td> <td> </td> </tr> 501 <tr align="center"> <td>1091-97</td> <td>Multiple Signal Message</td> <td>Galileo</td> <td> </td> <td>x</td> <td>x</td> <td> </td> <td> </td> <td>x</td> <td> </td> </tr> 502 <tr align="center"> <td>1101-07</td> <td>Multiple Signal Message</td> <td>SBAS</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 503 <tr align="center"> <td>1111-17</td> <td>Multiple Signal Message</td> <td>QZSS</td> <td> </td> <td>x</td> <td>x</td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 504 <tr align="center"> <td>1121-27</td> <td>Multiple Signal Message</td> <td>BDS</td> <td> </td> <td>x</td> <td>x</td> <td> </td> <td> </td> <td>x</td> <td> </td> </tr> 505 506 <tr align="center"> <td><b><br>SSR I</b></td> <td></td> <td></td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 507 <tr align="center"> <td>1057</td> <td>Orbit Corrections</td> <td>GPS</td> <td> </td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> </tr> 508 <tr align="center"> <td>1063</td> <td>Orbit Corrections</td> <td>GLONASS</td> <td> </td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> </tr> 509 <tr align="center"> <td>1240</td> <td>Orbit Corrections</td> <td>Galileo</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> </tr> 510 <tr align="center"> <td>1246</td> <td>Orbit Corrections</td> <td>SBAS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 511 <tr align="center"> <td>1252</td> <td>Orbit Corrections</td> <td>QZSS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 512 <tr align="center"> <td>1258</td> <td>Orbit Corrections</td> <td>BDS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> </tr> 513 514 <tr align="center"> <td>1058</td> <td>Clock Corrections</td> <td>GPS</td> <td> </td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> </tr> 515 <tr align="center"> <td>1064</td> <td>Clock Corrections</td> <td>GLONASS</td> <td> </td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> </tr> 516 <tr align="center"> <td>1241</td> <td>Clock Corrections</td> <td>Galileo</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> </tr> 517 <tr align="center"> <td>1247</td> <td>Clock Corrections</td> <td>SBAS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 518 <tr align="center"> <td>1253</td> <td>Clock Corrections</td> <td>QZSS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 519 <tr align="center"> <td>1259</td> <td>Clock Corrections</td> <td>BDS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> </tr> 520 521 <tr align="center"> <td>1059</td> <td>Code Biases</td> <td>GPS</td> <td> </td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> </tr> 522 <tr align="center"> <td>1065</td> <td>Code Biases</td> <td>GLONASS</td> <td> </td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> </tr> 523 <tr align="center"> <td>1242</td> <td>Code Biases</td> <td>Galileo</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> </tr> 524 <tr align="center"> <td>1248</td> <td>Code Biases</td> <td>SBAS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 525 <tr align="center"> <td>1254</td> <td>Code Biases</td> <td>QZSS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 526 <tr align="center"> <td>1260</td> <td>Code Biases</td> <td>BDS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> </tr> 527 528 <tr align="center"> <td>1061, 1062</td> <td>User Range Accuracy, HR </td> <td>GPS</td> <td> </td> <td>x</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 529 <tr align="center"> <td>1067, 1068</td> <td>User Range Accuracy, HR </td> <td>GLONASS</td> <td> </td> <td>x</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 530 <tr align="center"> <td>1244, 1245</td> <td>User Range Accuracy, HR </td> <td>Galileo</td> <td>x</td> <td>x</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 531 <tr align="center"> <td>1250, 1251</td> <td>User Range Accuracy, HR </td> <td>SBAS</td> <td>x</td> <td>x</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 532 <tr align="center"> <td>1256, 1257</td> <td>User Range Accuracy, HR </td> <td>QZSS</td> <td>x</td> <td>x</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 533 <tr align="center"> <td>1262, 1263</td> <td>User Range Accuracy, HR </td> <td>BDS</td> <td>x</td> <td>x</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 534 535 <tr align="center"> <td>1060</td> <td>Comb. Orbits & Clocks</td> <td>GPS</td> <td> </td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> </tr> 536 <tr align="center"> <td>1066</td> <td>Comb. Orbits & Clocks</td> <td>GLONASS</td> <td> </td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> </tr> 537 <tr align="center"> <td>1243</td> <td>Comb. Orbits & Clocks</td> <td>Galileo</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> </tr> 538 <tr align="center"> <td>1249</td> <td>Comb. Orbits & Clocks</td> <td>SBAS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 539 <tr align="center"> <td>1255</td> <td>Comb. Orbits & Clocks</td> <td>QZSS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 540 <tr align="center"> <td>1261</td> <td>Comb. Orbits & Clocks</td> <td>BDS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> </tr> 541 542 <tr align="center"> <td><b><br>SSR II</b></td> <td></td> <td></td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> 543 <tr align="center"> <td>1264</td> <td>VTEC</td> <td>GNSS </td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 544 <tr align="center"> <td>1265</td> <td>Phase Biases</td> <td>GPS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 545 <tr align="center"> <td>1266</td> <td>Phase Biases</td> <td>GLONASS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 546 <tr align="center"> <td>1267</td> <td>Phase Biases</td> <td>Galileo</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 547 <tr align="center"> <td>1268</td> <td>Phase Biases</td> <td>SBAS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 548 <tr align="center"> <td>1269</td> <td>Phase Biases</td> <td>QZSS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 549 <tr align="center"> <td>1270</td> <td>Phase Biases</td> <td>BDS</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td>x</td> <td> </td> <td> </td> </tr> 550 1209 551 </table> 1210 </div> 1211 <div class="section" id="data-flow"> 1212 <span id="index-4"></span><h3>Data Flow<a class="headerlink" href="#data-flow" title="Permalink to this headline">¶</a></h3> 1213 <p>BNC can be used in different contexts with varying data flows. Typical real-time communication follows the Ntrip protocol over TCP/IP (probably via SSL), RTSP/RTP or UDP, plain TCP/IP protocol, or serial communication links. Stream content could be observations, ephemeris, satellite orbit/clock products or NMEA sentences.</p> 1214 <p><a class="reference internal" href="#fig-1"><span class="std std-numref">Fig. 1</span></a> shows a flow chart of BNC connected to a GNSS receiver providing observations via serial or TCP communication link for the purpose of Precise Point Positioning. <a class="reference internal" href="#fig-2"><span class="std std-numref">Fig. 2</span></a> shows the conversion of RTCM streams to RINEX files. <a class="reference internal" href="#fig-3"><span class="std std-numref">Fig. 3</span></a> shows a flow chart of BNC feeding a real-time GNSS engine which estimates precise orbits and clocks. BNC is used in this scenario to encode correctors to RTCM Version 3 and upload them to an Ntrip Broadcaster. <a class="reference internal" href="#fig-4"><span class="std std-numref">Fig. 4</span></a> shows BNC combining several Broadcast Correction streams to disseminate the combination product while saving results in SP3 and Clock RINEX files.</p> 1215 <div class="figure" id="id3"> 1216 <span id="fig-1"></span><a class="reference internal image-reference" href="_images/fig_1.png"><img alt="_images/fig_1.png" src="_images/fig_1.png" style="width: 649.0px; height: 318.0px;" /></a> 1217 <p class="caption"><span class="caption-number">Fig. 1 </span><span class="caption-text">Flowchart, BNC connected to a GNSS rover for Precise Point Positioning.</span></p> 1218 </div> 1219 <div class="figure" id="id4"> 1220 <span id="fig-2"></span><a class="reference internal image-reference" href="_images/fig_2.png"><img alt="_images/fig_2.png" src="_images/fig_2.png" style="width: 651.0px; height: 327.0px;" /></a> 1221 <p class="caption"><span class="caption-number">Fig. 2 </span><span class="caption-text">Flowchart, BNC converting RTCM streams to RINEX batches.</span></p> 1222 </div> 1223 <div class="figure" id="id5"> 1224 <span id="fig-3"></span><a class="reference internal image-reference" href="_images/fig_3.png"><img alt="_images/fig_3.png" src="_images/fig_3.png" style="width: 648.0px; height: 345.0px;" /></a> 1225 <p class="caption"><span class="caption-number">Fig. 3 </span><span class="caption-text">Flowchart, BNC feeding a real-time GNSS engine and uploading encoded Broadcast Corrections</span></p> 1226 </div> 1227 <div class="figure" id="id6"> 1228 <span id="fig-4"></span><a class="reference internal image-reference" href="_images/fig_4.png"><img alt="_images/fig_4.png" src="_images/fig_4.png" style="width: 650.0px; height: 318.0px;" /></a> 1229 <p class="caption"><span class="caption-number">Fig. 4 </span><span class="caption-text">Flowchart, BNC combining Broadcast Correction streams.</span></p> 1230 </div> 1231 </div> 1232 <div class="section" id="handling"> 1233 <span id="index-5"></span><h3>Handling<a class="headerlink" href="#handling" title="Permalink to this headline">¶</a></h3> 1234 <p>Although BNC is mainly a real-time tool to be operated online, it can be run offline</p> 1235 <ul class="simple"> 552 <br> 553 554 <p><h4>1.3 <a name="introFlow">Data Flow</h4></p> 555 556 <p> 557 BNC can be used in different contexts with varying data flows. Typical real-time communication follows the Ntrip protocol over TCP/IP (probably via SSL), RTSP/RTP or UDP, plain TCP/IP protocol, or serial communication links. Stream content could be observations, ephemeris, satellite orbit/clock products or NMEA sentences. 558 </p> 559 <p> 560 The first of the following figures shows a flow chart of BNC connected to a GNSS receiver providing observations via serial or TCP communication link for the purpose of Precise Point Positioning. The second figure shows the conversion of RTCM streams to RINEX files. The third figure shows a flow chart of BNC feeding a real-time GNSS engine which estimates precise orbits and clocks. BNC is used in this scenario to encode correctors to RTCM Version 3 and upload them to an Ntrip Broadcaster. The fourth figure shows BNC combining several Broadcast Correction streams to disseminate the combination product while saving results in SP3 and Clock RINEX files. 561 </p> 562 <p><img src="IMG/screenshot10.png"/></p> 563 <p><u>Figure 1:</u> Flowchart, BNC connected to a GNSS rover for Precise Point Positioning</p> 564 565 <p> 566 </p> 567 <p><img src="IMG/screenshot01.png"/></p> 568 <p><u>Figure 2:</u> Flowchart, BNC converting RTCM streams to RINEX batches</p> 569 570 <p> 571 </p> 572 <p><img src="IMG/screenshot02.png"/></p> 573 <p><u>Figure 3:</u> Flowchart, BNC feeding a real-time GNSS engine and uploading encoded Broadcast Corrections</p> 574 575 <p> 576 </p> 577 <p><img src="IMG/screenshot19.png"/></p> 578 <p><u>Figure 4:</u> Flowchart, BNC combining Broadcast Correction streams</p> 579 580 <p><h4>1.4 <a name="introHandling">Handling</h4></p> 581 <p> 582 Although BNC is mainly a real-time tool to be operated online, it can be run offline 583 <ul> 1236 584 <li>To simulate real-time observation situations for debugging purposes;</li> 1237 585 <li>For post processing purposes.</li> 1238 586 </ul> 1239 <p>Furthermore, apart from its regular window mode, BNC can be run as a batch/background job in a ‘no window’ mode, using processing options from a previously saved configuration or from command line.</p> 1240 <p>Unless it runs offline, BNC</p> 1241 <ul class="simple"> 587 Furthermore, apart from its regular window mode, BNC can be run as a batch/background job in a 'no window' mode, using processing options from a previously saved configuration or from command line. 588 </p> 589 <p> 590 Unless it runs offline, BNC 591 </p> 592 <ul> 1242 593 <li>Requires access to the Internet with a minimum of about 2 to 6 kbits/sec per stream depending on the stream format and the number of visible satellites. You need to make sure that the connection can sustain the required bandwidth;</li> 1243 594 <li>Requires the clock of the host computer to be properly synchronized;</li> 1244 595 <li>Has the capacity to retrieve hundreds of GNSS data streams simultaneously. Please be aware that such usage may incur a heavy load on the Ntrip Broadcaster side depending on the number of streams requested. We recommend limiting the number of streams where possible to avoid unnecessary workload.</li> 1245 596 </ul> 1246 <p>The main window of BNC shows a ‘Top menu bar’ section, a ‘Settings’ sections with panels to set processing options, a ‘Streams’ section, a section for ‘Log’ tabs, and a ‘Bottom menu bar’ section <a class="reference internal" href="#fig-5"><span class="std std-numref">(Fig. 5)</span></a>.</p> 1247 <div class="figure" id="id7"> 1248 <span id="fig-5"></span><a class="reference internal image-reference" href="_images/fig_5.png"><img alt="_images/fig_5.png" src="_images/fig_5.png" style="width: 969.0px; height: 644.0px;" /></a> 1249 <p class="caption"><span class="caption-number">Fig. 5 </span><span class="caption-text">Sections on BNC’s main window.</span></p> 1250 </div> 1251 <p>Running BNC in interactive mode requires graphics support. This is also required in batch mode when producing plots. Windows and Mac OS X systems always support graphics. However, when using BNC in batch mode on Linux systems for producing plots, you need to make sure that at least a virtual X-Server like ‘Xvfb’ is installed and the ‘-display’ command line option is used.</p> 1252 <p>The usual handling of BNC is that you first select a number of streams (‘Add Stream’). Any stream configured to BNC shows up on the ‘Streams’ canvas in the middle of BNC’s main window. You then go through BNC’s various configuration panels to set a combination of input, processing and output options before you start the program (‘Start’). Most configuration panels are dedicated to a certain function of BNC. If the first option field on such a configuration panel is empty, the affected functionality is deactivated.</p> 1253 <p>Records of BNC’s activities are shown in the ‘Log’ tab which is part of the ‘Log’ canvas. The bandwidth consumption per stream, the latency of incoming observations, and a PPP time series for coordinate displacements are also part of that canvas and shown in the ‘Throughput’, ‘Latency’ and ‘PPP Plot’ tabs.</p> 1254 <p>Configuration options are usually first set using BNC’s Graphical User Interface (GUI), then saved in a configuration file. For routine operations in batch mode all of BNC’s configuration options can be extracted from the configuration file and applied using the program’s Command Line Interface (CLI).</p> 1255 </div> 1256 <div class="section" id="limitations"> 1257 <span id="index-6"></span><h3>Limitations<a class="headerlink" href="#limitations" title="Permalink to this headline">¶</a></h3> 1258 <ul class="simple"> 1259 <li>In Qt-based desktop environments (like KDE) on Unix/Linux platforms it may happen that you experience a crash of BNC at startup even when running the program in the background using the ‘-nw’ option. This is a known bug most likely resulting from an incompatibility of Qt libraries in the environment and in BNC. Entering the command <code class="docutils literal"><span class="pre">unset</span> <span class="pre">SESSION\MANAGER</span></code> before running BNC may help as a work-around.</li> 1260 <li>Using RTCM Version 3 to produce RINEX files, BNC will properly handle most message types. However, when handling message types 1001, 1003, 1009 and 1011 where the ambiguity field is not set, the output will be no valid RINEX. All values will be stored modulo 299792.458 (speed of light).</li> 1261 <li>Using RTCM Version 2, BNC will only handle message types 18 and 19 or 20 and 21 together with position and the antenna offset information carried in types 3 and 22. Note that processing carrier phase corrections and pseudo-range corrections contained in message types 20 and 21 needs access to Broadcast Ephemeris. Hence, whenever dealing with message types 20 and 21, make sure that Broadcast Ephemeris become available for BNC through also retrieving at least one RTCM Version 3 stream carrying message types 1019 (GPS ephemeris) and 1020 (GLONASS ephemeris).</li> 1262 <li>BNC’s ‘Get Table’ function only shows the STR records of a source-table. You can use an Internet browser to download the full source-table content of any Ntrip Broadcaster by simply entering its URL in the form of <a class="reference external" href="http://host:port">http://host:port</a>. Data field number 8 in the NET records may provide information about where to register for an Ntrip Broadcaster account.</li> 1263 <li>EUREF as well as IGS adhere to an Open Data policy. Streams are made available through Ntrip Broadcasters at www.euref-ip.net, www.igs-ip.net, products.igs-ip.net, and mgex.igs-ip.net free of charge to anyone for any purpose. There is no indication up until now how many users will need to be supported simultaneously. The given situation may develop in such a way that it might become difficult to serve all registered users at the same times. In cases where limited resources on the Ntrip Broadcaster side (software restrictions, bandwidth limitation etc.) dictates, first priority in stream provision will be given to stream providers followed by re-broadcasting activities and real-time analysis centers while access to others might be temporarily denied.</li> 1264 <li>Once BNC has been started, many of its configuration options cannot be changed as long as it is stopped. See chapter ‘Reread Configuration’ for on-the-fly configuration exceptions.</li> 1265 <li>Drag and drop of configuration files is currently not supported on Mac OS X. On such system you have to start BNC via command line.</li> 1266 </ul> 1267 <p class="rubric">Footnotes</p> 1268 <table class="docutils footnote" frame="void" id="f-rtnet" rules="none"> 1269 <colgroup><col class="label" /><col /></colgroup> 1270 <tbody valign="top"> 1271 <tr><td class="label"><a class="fn-backref" href="#id1">[1]</a></td><td>RTNet, GPS Solutions Inc., <a class="reference external" href="http://gps-solutions.com">http://gps-solutions.com</a></td></tr> 1272 </tbody> 1273 </table> 1274 </div> 1275 </div> 1276 <span id="document-chapter3"></span><div class="section" id="installation"> 1277 <h2>Installation<a class="headerlink" href="#installation" title="Permalink to this headline">¶</a></h2> 1278 <div class="section" id="pre-compiled-builds"> 1279 <h3>Pre-compiled builds<a class="headerlink" href="#pre-compiled-builds" title="Permalink to this headline">¶</a></h3> 1280 <p>Precompiled builds of BNC are available for MS Windows, Linux, and Mac OS X systems. They can be downloaded for installation from <a class="reference external" href="http://igs.bkg.bund.de/ntrip/download">http://igs.bkg.bund.de/ntrip/download</a>. Please ensure that you always use the latest released version of the program.</p> 1281 <p class="rubric">MS Windows Build</p> 1282 <p>A dynamically compiled shared library build for Mircrosoft Windows systems is provided as Microsoft Installer (MSI) file. MSI files are used for installation, storage, and removal of programs. The BNC files are contained in a MSI package, which is used with the program’s client-side installer service, an .EXE file, to open and install the program. We used the MinGW Version 4.4.0 compiler to create BNC for Windows. After installation your <cite>bnc.exe</cite> file shows up e.g. under ‘All Programs’.</p> 1283 <p class="rubric">Linux Build</p> 1284 <p>Static library and shared library builds for BNC are provided for a selection of Linux distributions. Download the ZIP archive for a version which fits to your Linux system, unzip the archive and run the included BNC binary. A static build would be sufficient in case you do not want BNC to plot PPP results with Google Map (GM) or OpenStreetMap (OSM) maps in the background. GM/OSM usage requires BNC builds from shared libraries.</p> 1285 <p class="rubric">Mac OS X Build</p> 1286 <p>A shared library <code class="docutils literal"><span class="pre">Disk</span> <span class="pre">iMaGe</span></code> (DMG) file is provided for BNC on OS X systems; it also comes in a ZIP archive. The DMG file format is used in the Mac for distributing software. Mac install packages appear as a virtual disk drive. After download, when the DMG file icon is double clicked, the virtual drive is ‘mounted’ on the desktop. Install BNC by dragging the <code class="docutils literal"><span class="pre">bnc.app</span></code> icon to your <code class="docutils literal"><span class="pre">Applications</span></code> folder. To start BNC, double click on <code class="docutils literal"><span class="pre">Applications/bnc.app</span></code>. You could also start BNC via Command Line Interface (CLI) using command <code class="docutils literal"><span class="pre">Applications/bnc.app/Contents/MacOS/bnc</span></code>.</p> 1287 </div> 1288 <div class="section" id="compilation"> 1289 <span id="index-0"></span><h3>Compilation<a class="headerlink" href="#compilation" title="Permalink to this headline">¶</a></h3> 1290 <p>BNC has been written as Open Source and published under GNU General Public License (GPL). The latest source code can be checked out from Subversion repository <a class="reference external" href="http://software.rtcm-ntrip.org/svn/trunk/BNC">http://software.rtcm-ntrip.org/svn/trunk/BNC</a>. A ZIP archive available from <a class="reference external" href="http://igs.bkg.bund.de/ntrip/download">http://igs.bkg.bund.de/ntrip/download</a> provides the source code for BNC Version 2.12, developed using Qt Version 4.8.5.</p> 1291 <p>The following describes how you can produce your own builds of BNC on MS Windows, Linux, and Mac systems. It is likely that BNC can also be compiled on other systems where a GNU compiler and Qt Version 4.8.5 or any later version is installed.</p> 1292 <div class="section" id="static-versus-shared-libraries"> 1293 <span id="index-1"></span><h4>Static versus Shared Libraries<a class="headerlink" href="#static-versus-shared-libraries" title="Permalink to this headline">¶</a></h4> 1294 <p>You can produce static or shared library builds of BNC. Static builds are sufficient in case you do not want BNC to produce track maps on top of Google Map (GM) or OpenStreetMap (OSM). GM/OSM usage would require the QtWebKit library which can only be part of BNC builds from shared Qt libraries. Hence, having a shared library Qt installation available is a precondition for producing a shared library build of BNC.</p> 1295 </div> 1296 <div class="section" id="ms-windows-systems-shared-library"> 1297 <span id="index-2"></span><h4>MS Windows Systems, Shared Library<a class="headerlink" href="#ms-windows-systems-shared-library" title="Permalink to this headline">¶</a></h4> 1298 <p>This explains how to install a shared Qt 4.8.5 library on MS Windows systems to then create your own shared build of BNC.</p> 1299 <p>Supposing that ‘Secure Socket Layer (SSL)’ is not available on you system, you should install OpenSSL libraries in <code class="docutils literal"><span class="pre">C:\OpenSSL-Win32</span></code>. They are available e.g. from <a class="reference external" href="http://igs.bkg.bund.de/root_ftp/NTRIP/software/Win32OpenSSL-1_0_1e.exe">http://igs.bkg.bund.de/root_ftp/NTRIP/software/Win32OpenSSL-1_0_1e.exe</a>. See <a class="reference external" href="http://slproweb.com/products/Win32OpenSSL.html">http://slproweb.com/products/Win32OpenSSL.html</a> for other SSL resources. Ignore possibly occurring comments about missing components during installation.</p> 1300 <ol class="arabic simple"> 1301 <li>Download MinGW compiler Version 4.4.0 e.g. from <a class="reference external" href="http://igs.bkg.bund.de/root_ftp/NTRIP/software/MinGW-gcc440_1.zip">http://igs.bkg.bund.de/root_ftp/NTRIP/software/MinGW-gcc440_1.zip</a>.</li> 1302 <li>Unzip the ZIP archive and move its contents to a directory <code class="docutils literal"><span class="pre">C:\MinGW</span></code>. Now you can do either (4) or (5, 6, 8, 9, 10). Following (4) is suggested.</li> 1303 <li>Download file <code class="docutils literal"><span class="pre">qt-win-opensource-4.8.5-mingw.exe</span></code> (317 MB) e.g. from <a class="reference external" href="https://download.qt.io/archive/qt/4.8/4.8.5/">https://download.qt.io/archive/qt/4.8/4.8.5/</a>.</li> 1304 <li>Execute this file to install a pre-compiled shared Qt library.</li> 1305 <li>Download file <code class="docutils literal"><span class="pre">qt-everywhere-opensource-src-4.8.5.zip</span></code> (269 MB) e.g. from <a class="reference external" href="https://download.qt.io/archive/qt/4.8/4.8.5/">https://download.qt.io/archive/qt/4.8/4.8.5/</a>.</li> 1306 <li>Unzip the ZIP archive and move the contents of the contained directory into a directory <code class="docutils literal"><span class="pre">C:\Qt\4.8.5</span></code>.</li> 1307 <li>Create somewhere a file <code class="docutils literal"><span class="pre">QtEnv.bat</span></code> with the following content</li> 597 </p> 598 599 <p> 600 The main window of BNC shows a 'Top menu bar' section, a 'Settings' sections with panels to set processing options, a 'Streams' section, a section for 'Log' tabs, and a 'Bottom menu bar' section, see figure below. 601 </p> 602 <p><img src="IMG/screenshot09.png"/></p> 603 <p><u>Figure 5:</u> Sections on BNC's main window</p> 604 605 <p> 606 Running BNC in interactive mode requires graphics support. This is also 607 required in batch mode when producing plots. Windows and Mac OS X systems always 608 support graphics. However, when using BNC in batch mode on Linux systems for 609 producing plots, you need to make sure that at least a virtual X-Server like 610 'Xvfb' is installed and the '-display' command line option is used. 611 </p> 612 613 <p> 614 The usual handling of BNC is that you first select a number of streams ('Add Stream'). Any stream configured to BNC shows up on the 'Streams' canvas in the middle of BNC's main window. You then go through BNC's various configuration panels to set a combination of input, processing and output options before you start the program ('Start'). Most configuration panels are dedicated to a certain function of BNC. If the first option field on such a configuration panel is empty, the affected functionality is deactivated. 615 </p> 616 617 <p> 618 Records of BNC's activities are shown in the 'Log' tab which is part of the 'Log' canvas. The bandwidth consumption per stream, the latency of incoming observations, and a PPP time series for coordinate displacements are also part of that canvas and shown in the 'Throughput', 'Latency' and 'PPP Plot' tabs. 619 </p> 620 621 <p> 622 Configuration options are usually first set using BNC's Graphical User Interface (GUI), then saved in a configuration file. For routine operations in batch mode all of BNC's configuration options can be extracted from the configuration file and applied using the program's Command Line Interface (CLI). 623 </p> 624 625 <p><h4>1.5 <a name="introInst">Installation</h4></p> 626 <p> 627 Precompiled builds of BNC are available for MS Windows, Linux, and Mac OS X systems. They can be downloaded for installation from <u>http://igs.bkg.bund.de/ntrip/download</u>. Please ensure that you always use the latest released version of the program. 628 </p> 629 <p> 630 <u>MS Windows Build:</u> A dynamically compiled shared library build for Mircrosoft Windows systems is provided as Microsoft Installer (MSI) file. MSI files are used for installation, storage, and removal of programs. The BNC files are contained in a MSI package, which is used with the program's client-side installer service, an .EXE file, to open and install the program. We used the MinGW Version 4.4.0 compiler to create BNC for Windows. After installation your 'bnc.exe' file shows up e.g. under 'All Programs'. 631 </p> 632 633 <p> 634 <u>Linux Build:</u> Static library and shared library builds for BNC are provided for a selection of Linux distributions. Download the ZIP archive for a version which fits to your Linux system, unzip the archive and run the included BNC binary. A static build would be sufficient in case you <u>do not want</u> BNC to plot PPP results with Google Map (GM) or OpenStreetMap (OSM) maps in the background. GM/OSM usage requires BNC builds from shared libraries. 635 </p> 636 637 <p> 638 <u>Mac OS X Build:</u> 639 A shared library 'Disk iMaGe' (DMG) file is provided for BNC on OS X systems; it also comes in a ZIP archive. The DMG file format is used in the Mac for distributing software. Mac install packages appear as a virtual disk drive. After download, when the DMG file icon is double clicked, the virtual drive is 'mounted' on the desktop. Install BNC by dragging the 'bnc.app' icon to your '/Applications' folder. To start BNC, double click on '/Applications/bnc.app'. You could also start BNC via Command Line Interface (CLI) using command '/Applications/bnc.app/Contents/MacOS/bnc'. 640 </p> 641 642 <p><h4>1.5.1 <a name="introCompile">Compilation</h4></p> 643 644 <p> 645 BNC has been written as Open Source and published under GNU General Public License (GPL). The latest source code can be checked out from Subversion repository <u>http://software.rtcm-ntrip.org/svn/trunk/BNC</u>. A ZIP archive available from <u>http://igs.bkg.bund.de/ntrip/download</u> provides the source code for BNC Version 2.12.0, developed using Qt Version 4.8.5. 646 </p> 647 <p>The following describes how you can produce your own builds of BNC on MS Windows, Linux, and Mac systems. It is likely that BNC can also be compiled on other systems where a GNU compiler and Qt Version 4.8.5 or any later version is installed. 648 </p> 649 650 <p><b>Static versus Shared Libraries</b><br> 651 You can produce static or shared library builds of BNC. <u>Static</u> builds are sufficient in case you do not want BNC to produce track maps on top of Google Map (GM) or OpenStreetMap (OSM). GM/OSM usage would require the QtWebKit library which can only be part of BNC builds from <u>shared</u> Qt libraries. Hence, having a shared library Qt installation available is a precondition for producing a shared library build of BNC. 652 </p> 653 654 <p><b>MS Windows Systems, Shared Library</b><br> 655 This explains how to install a shared Qt 4.8.5 library on MS Windows systems to then create your own shared build of BNC. 656 </p> 657 658 <ol type=f> 659 <li>Supposing that 'Secure Socket Layer (SSL)' is not available on you system, you should install OpenSSL libraries in C:\OpenSSL-Win32. They are available e.g. from <u>http://igs.bkg.bund.de/root_ftp/NTRIP/software/Win32OpenSSL-1_0_1e.exe</u>. See <u>http://slproweb.com/products/Win32OpenSSL.html</u> for other SSL resources. Ignore possibly occurring comments about missing components during installation.</li> 660 661 <li>Download MinGW compiler Version 4.4.0 e.g. from <u>http://igs.bkg.bund.de/root_ftp/NTRIP/software/MinGW-gcc440_1.zip</u></li> 662 663 <li>Unzip the ZIP archive and move its contents to a directory C:\MinGW. Now you can do either (4) or (5, 6, 8, 9, 10). Following (4) is suggested.</li> 664 665 <li>Download file 'qt-win-opensource-4.8.5-mingw.exe' (317 MB) e.g. from <u>https://download.qt.io/archive/qt/4.8/4.8.5/</u>. Execute this file to install a pre-compiled shared Qt library.</li> 666 667 <li>Download file 'qt-everywhere-opensource-src-4.8.5.zip' (269 MB) e.g. from <u>https://download.qt.io/archive/qt/4.8/4.8.5/</u></li> 668 669 <li>Unzip the ZIP archive and move the contents of the contained directory into a directory C:\Qt\4.8.5.</li> 670 671 <li>Create somewhere a file QtEnv.bat with the following content: 672 <pre> 673 set QTDIR=C:\Qt\4.8.5 674 set PATH=%PATH%;C:\MinGW\bin;C:\Qt\4.8.5\bin 675 set QMAKESPEC=C:\Qt\4.8.5\mkspecs\win32-g++ 676 </pre></li> 677 678 <li>Open a command line window and execute file QtEnv.bat</li> 679 680 <li>Go to directory C:\Qt\4.8.5 and configure Qt using command 681 <pre> 682 configure -fast -webkit -release -nomake examples -nomake tutorial 683 -openssl -I C:\OpenSSL-Win32\include 684 </pre></li> 685 686 <li>Compile Qt using command 687 <pre> 688 mingw32-make 689 </pre> 690 This may take quite a long time. Don't worry if the compilation process runs into a problem after some time. It is likely that the libraries you require are already generated at that time.<br> 691 Should you want to reconfiguring Qt following steps (8)-(10) you first need to clean the previous configuration using command 'mingw32-make confclean'. Run command 'mingw32-make clean' to delete previously compiled source code.</li> 692 693 <li>Download latest BNC from SVN repository <u>http://software.rtcm-ntrip.org/svn/trunk/BNC.</u></li> 694 695 <li>Open command line window and execute file QtEnv.bat, see (7)</li> 696 697 <li>Go to directory BNC and enter command 698 <pre> 699 qmake bnc.pro 700 </pre></li> 701 702 <li>Enter command 703 <pre> 704 mingw32-make 705 </pre></li> 706 707 <li>Find binary file bnc.exe in directory named src.</li> 708 709 <li>Extend the Windows environment variable PATH by C:\Qt\4.8.5\bin.</li> 1308 710 </ol> 1309 <div class="highlight-console"><div class="highlight"><pre><span class="go">set QTDIR=C:\Qt\4.8.5</span> 1310 <span class="go">set PATH=%PATH%;C:\MinGW\bin;C:\Qt\4.8.5\bin</span> 1311 <span class="go">set QMAKESPEC=C:\Qt\4.8.5\mkspecs\win32-g++</span> 1312 </pre></div> 1313 </div> 1314 <ol class="arabic simple" start="8"> 1315 <li>Open a command line window and execute file <code class="docutils literal"><span class="pre">QtEnv.bat</span></code>.</li> 1316 <li>Go to directory Qt directory and configure Qt using command</li> 1317 </ol> 1318 <div class="highlight-console"><div class="highlight"><pre><span class="go">cd Qt\4.8.5</span> 1319 <span class="go">configure -fast -webkit -release -nomake examples -nomake tutorial</span> 1320 <span class="go"> -openssl -I C:\OpenSSL-Win32\include</span> 1321 </pre></div> 1322 </div> 1323 <ol class="arabic simple" start="10"> 1324 <li>Compile Qt using command <code class="docutils literal"><span class="pre">mingw32-make</span></code>. This may take quite a long time. Don’t worry if the compilation process runs into a problem after some time. It is likely that the libraries you require are already generated at that time. Should you want to reconfiguring Qt following steps (8)-(10) you first need to clean the previous configuration using command <code class="docutils literal"><span class="pre">mingw32-make</span> <span class="pre">confclean</span></code>. Run command <code class="docutils literal"><span class="pre">mingw32-make</span> <span class="pre">clean</span></code> to delete previously compiled source code.</li> 1325 <li>Download latest BNC from SVN repository <a class="reference external" href="http://software.rtcm-ntrip.org/svn/trunk/BNC">http://software.rtcm-ntrip.org/svn/trunk/BNC</a>.</li> 1326 <li>Open command line window and execute file <code class="docutils literal"><span class="pre">QtEnv.bat</span></code>, see (7).</li> 1327 <li>Go to directory BNC and enter command <code class="docutils literal"><span class="pre">qmake</span> <span class="pre">bnc.pro</span></code>.</li> 1328 <li>Enter command <code class="docutils literal"><span class="pre">mingw32-make</span></code>.</li> 1329 <li>Find binary file <code class="docutils literal"><span class="pre">bnc.exe</span></code> in directory named <code class="docutils literal"><span class="pre">src</span></code>.</li> 1330 <li>Extend the Windows environment variable PATH by <code class="docutils literal"><span class="pre">C:\Qt\4.8.5\bin</span></code>.</li> 1331 </ol> 1332 <p>Steps (11)-(15) can be repeated whenever a BNC update becomes available. Running <code class="docutils literal"><span class="pre">bnc.exe</span></code> on a windows system requires (1) when using the NTRIP Version 2s option for stream transfer over TLS/SSL.</p> 1333 </div> 1334 <div class="section" id="linux-systems"> 1335 <span id="index-3"></span><h4>Linux Systems<a class="headerlink" href="#linux-systems" title="Permalink to this headline">¶</a></h4> 1336 <p>On Linux systems you may use the following procedure to install a shared Qt version 4.8.5 library:</p> 1337 <p>Download file <code class="docutils literal"><span class="pre">qt-everywhere-opensource-src-4.8.5.tar.gz</span></code> (230 MB) available from <a class="reference external" href="https://download.qt.io/archive/qt/4.8/4.8.5/">https://download.qt.io/archive/qt/4.8/4.8.5/</a>. Unzip file, extract tar archive and change to directory <code class="docutils literal"><span class="pre">qt-everywhere-opensource-src-4.8.5</span></code>. Run commands</p> 1338 <div class="highlight-console"><div class="highlight"><pre><span class="go">./configure -fast -webkit -nomake examples -nomake tutorial</span> 1339 <span class="go"> -prefix /usr/local/Trolltech/Qt-4.8.5</span> 1340 <span class="go">gmake</span> 1341 <span class="go">gmake install</span> 1342 </pre></div> 1343 </div> 1344 <p>Qt will be installed into directory <code class="docutils literal"><span class="pre">/usr/local/Trolltech/Qt-4.8.5</span></code>. To reconfigure, run <code class="docutils literal"><span class="pre">gmake</span> <span class="pre">confclean</span></code> and <code class="docutils literal"><span class="pre">configure</span></code>. Note that the <code class="docutils literal"><span class="pre">-prefix</span></code> option allows you to specify a directory for saving the Qt libraries. This ensures that you do not run into conflicts with other Qt installations on your host. Note further that the following two lines</p> 1345 <div class="highlight-console"><div class="highlight"><pre><span class="go">export QTDIR="/usr/local/Trolltech/Qt-4.8.5"</span> 1346 <span class="go">export PATH="$QTDIR/bin:$PATH"</span> 1347 </pre></div> 1348 </div> 1349 <p>need to be added either to <code class="docutils literal"><span class="pre">$HOME/.bash/profile</span></code> or <code class="docutils literal"><span class="pre">$HOME/.bashrc</span></code>. Once that is done, logout/login and start using Qt 4.8.5.</p> 1350 <p>To compile the BNC program, you first download the source code from SVN repository <a class="reference external" href="http://software.rtcm-ntrip.org/svn/trunk/BNC">http://software.rtcm-ntrip.org/svn/trunk/BNC</a>. Go to directory BNC and run the following commands:</p> 1351 <div class="highlight-console"><div class="highlight"><pre><span class="go">qmake bnc.pro</span> 1352 <span class="go">make</span> 1353 </pre></div> 1354 </div> 1355 <p>You will find a build of BNC in directory BNC.</p> 1356 </div> 1357 <div class="section" id="mac-os-x-systems"> 1358 <span id="index-4"></span><h4>Mac OS X Systems<a class="headerlink" href="#mac-os-x-systems" title="Permalink to this headline">¶</a></h4> 1359 <div class="section" id="xcode-and-qt-installation"> 1360 <h5>Xcode and Qt installation<a class="headerlink" href="#xcode-and-qt-installation" title="Permalink to this headline">¶</a></h5> 1361 <p>Xcode and Qt are required to compile BNC on OS X. Both tools are freely available. Xcode can be downloaded from the App Store or the Apple Developer Connection website. Once installed, run Xcode, go to ‘Preferences->Downloads’ and install the Command Line Tools component. Qt can be downloaded from the Qt Project website. We suggest installing version 4.8.4 or higher. The Qt libraries for Mac can be downloaded from <a class="reference external" href="http://www.qt.io/download">http://www.qt.io/download</a>. Once downloaded, mount the disk image, run the Qt.mpkg package and follow instructions from the installation wizard.</p> 1362 </div> 1363 <div class="section" id="compilation-of-bnc"> 1364 <h5>Compilation of bnc<a class="headerlink" href="#compilation-of-bnc" title="Permalink to this headline">¶</a></h5> 1365 <p>The version of qmake supplied in the Qt binary package is configured to use the macx-xcode specification. This can be overridden with the <code class="docutils literal"><span class="pre">-spec</span> <span class="pre">macx-g++</span></code> option which makes it possible to use <code class="docutils literal"><span class="pre">qmake</span></code> to create a <code class="docutils literal"><span class="pre">Makefile</span></code> to be used by <code class="docutils literal"><span class="pre">make</span></code>.</p> 1366 <p>From the directory where bnc.pro is located, run <code class="docutils literal"><span class="pre">qmake</span></code> to create the <code class="docutils literal"><span class="pre">Makefile</span></code> and then <code class="docutils literal"><span class="pre">make</span></code> to compile the binary:</p> 1367 <div class="highlight-console"><div class="highlight"><pre><span class="go">qmake -spec macx-g++ bnc.pro</span> 1368 <span class="go">make</span> 1369 </pre></div> 1370 </div> 1371 <p>Refer to the following webpage for further information: <a class="reference external" href="http://doc.qt.io/qt-4.8/qmake-platform-notes.html">http://doc.qt.io/qt-4.8/qmake-platform-notes.html</a>.</p> 1372 </div> 1373 <div class="section" id="bundle-deployment"> 1374 <h5>Bundle Deployment<a class="headerlink" href="#bundle-deployment" title="Permalink to this headline">¶</a></h5> 1375 <p>When distributing BNC it is necessary to bundle in all related Qt resources in the package. The Mac Deployment Tool has been designed to automate the process of creating a deployable application bundle that contains the Qt libraries as private frameworks. To use it, issue the following commands where <code class="docutils literal"><span class="pre">bnc.app</span></code> is located.</p> 1376 <div class="highlight-console"><div class="highlight"><pre><span class="go">macdeployqt bnc.app -dmg</span> 1377 </pre></div> 1378 </div> 1379 <p>Refer to the following webpage for further information: <a class="reference external" href="http://doc.qt.io/qt-4.8/deployment-mac.html">http://doc.qt.io/qt-4.8/deployment-mac.html</a>.</p> 1380 <p>Once a DMG file for BNC is created, you can double click it and install BNC by dragging the <code class="docutils literal"><span class="pre">bnc.app</span></code> icon to your <code class="docutils literal"><span class="pre">Applications</span></code> folder. To start BNC, double click on <code class="docutils literal"><span class="pre">Applications/bnc.app</span></code>.</p> 1381 </div> 1382 </div> 1383 </div> 1384 </div> 1385 <span id="document-chapter4"></span><div class="section" id="configuration"> 1386 <h2>Configuration<a class="headerlink" href="#configuration" title="Permalink to this headline">¶</a></h2> 1387 <div class="section" id="general-procedure"> 1388 <h3>General procedure<a class="headerlink" href="#general-procedure" title="Permalink to this headline">¶</a></h3> 1389 <p>As a default, configuration files for running BNC on Unix/Linux/Mac OS X systems are saved in directory <code class="docutils literal"><span class="pre">$HOME/.config/BKG</span></code>. On Windows systems, they are typically saved in directory <code class="docutils literal"><span class="pre">C:/Documents</span> <span class="pre">and</span> <span class="pre">Settings/Username/.config/BKG</span></code>. The default configuration filename is <code class="docutils literal"><span class="pre">BNC.bnc</span></code>.</p> 1390 <p>The default filename <code class="docutils literal"><span class="pre">BNC.bnc</span></code> can be changed and the file content can easily be edited. On Graphical User Interfaces (GUI) it is possible to Drag & Drop a configuration file icon to start BNC (not on Mac OS X systems). It is also possible to start and configure BNC via command line. Some configuration options can be changed on-the-fly. See annexed Command Line Help for a complete set of configuration options.</p> 1391 <p>BNC maintains configuration options at three different levels:</p> 1392 <ol class="arabic simple"> 711 712 <p> 713 Steps (11)-(15) can be repeated whenever a BNC update becomes available. Running bnc.exe on a windows system requires (1) when using the NTRIP Version 2s option for stream transfer over TLS/SSL. 714 </p> 715 716 <p> 717 <b>Linux Systems</b><br> 718 On Linux systems you may use the following procedure to install a shared Qt version 4.8.5 library: 719 </p> 720 721 <p> 722 Download file 'qt-everywhere-opensource-src-4.8.5.tar.gz' (230 MB) available from <u>https://download.qt.io/archive/qt/4.8/4.8.5/</u>. Unzip file, extract tar archive and change to directory 'qt-everywhere-opensource-src-4.8.5'. Run commands 723 <pre> 724 ./configure -fast -webkit -nomake examples -nomake tutorial 725 -prefix /usr/local/Trolltech/Qt-4.8.5 726 gmake 727 gmake install 728 </pre> 729 </p> 730 731 <p> 732 Qt will be installed into directory /usr/local/Trolltech/Qt-4.8.5. To reconfigure, run 'gmake confclean' and 'configure'. Note that the '-prefix' option allows you to specify a directory for saving the Qt libraries. This ensures that you do not run into conflicts with other 733 Qt installations on your host. Note further that the following two lines<pre> 734 export QTDIR="/usr/local/Trolltech/Qt-4.8.5" 735 export PATH="$QTDIR/bin:$PATH"</pre> 736 737 need to be added either to $HOME/.bash_profile or $HOME/.bashrc. Once that is done, logout/login and start using Qt 4.8.5. 738 </p> 739 <p> 740 To compile the BNC program, you first download the source code from SVN repository <u>http://software.rtcm-ntrip.org/svn/trunk/BNC</u>. Go to directory BNC and run the following commands: <pre> 741 qmake bnc.pro 742 make 743 </pre> 744 You will find a build of BNC in directory BNC. 745 </p> 746 <p> 747 <b>Mac OS X Systems</b><br> 748 749 <u>Xcode and Qt Installation</u><br> 750 Xcode and Qt are required to compile BNC on OS X. Both tools are freely available. Xcode can be downloaded from the App Store or the Apple Developer Connection website. Once installed, run Xcode, go to 'Preferences->Downloads' and install the Command Line Tools component. Qt can be downloaded from the Qt Project website. We suggest installing version 4.8.4 or higher. The Qt libraries for Mac can be downloaded from <u>http://www.qt.io/download</u>. Once downloaded, mount the disk image, run the Qt.mpkg package and follow instructions from the installation wizard. 751 </p> 752 753 <p> 754 <u>Compiling BNC</u><br> 755 The version of qmake supplied in the Qt binary package is configured to use the macx-xcode specification. This can be overridden with the '-spec macx-g++' option which makes it possible to use qmake to create a Makefile to be used by 'make'. 756 </p> 757 <p> 758 From the directory where bnc.pro is located, run 'qmake' to create the Makefile and then 'make' to compile the binary. 759 <pre> 760 qmake -spec macx-g++ bnc.pro 761 make 762 </pre> 763 Refer to the following webpage for further information: <u>http://doc.qt.io/qt-4.8/qmake-platform-notes.html</u>. 764 </p> 765 766 <p> 767 <u>Bundle Deployment</u><br> 768 When distributing BNC it is necessary to bundle in all related Qt resources in the package. The Mac Deployment Tool has been designed to automate the process of creating a deployable application bundle that contains the Qt libraries as private frameworks. To use it, issue the following commands where bnc.app is located. 769 <pre> 770 macdeployqt bnc.app -dmg 771 </pre> 772 Refer to the following webpage for further information: <u>http://doc.qt.io/qt-4.8/deployment-mac.html</u>. 773 </p> 774 <p> 775 Once a DMG file for BNC is created, you can double click it and install BNC by dragging the 'bnc.app' icon to your 'Applications' folder. To start BNC, double click on '/Aplications/bnc.app'. 776 </p> 777 778 <p><h4>1.6 <a name="introConf">Configuration</h4></p> 779 <p> 780 As a default, configuration files for running BNC on Unix/Linux/Mac OS X systems are saved in directory '${HOME}/.config/BKG'. On Windows systems, they are typically saved in directory 'C:/Documents and Settings/Username/.config/BKG'. The default configuration filename is 'BNC.bnc'.</p> 781 <p> 782 The default filename 'BNC.bnc' can be changed and the file content can easily be edited. On graphical user interfaces it is possible to Drag & Drop a configuration file icon to start BNC (not on Mac OS X systems). It is also possible to start and configure BNC via command line. Some configuration options can be changed on-the-fly. See annexed 'Command Line Help' for a complete set of configuration options. 783 </p> 784 785 <p> 786 BNC maintains configuration options at three different levels: 787 </p> 788 789 <ol type=b> 1393 790 <li>GUI, input fields level</li> 1394 791 <li>Active configuration level</li> 1395 792 <li>Configuration file, disk level</li> 1396 793 </ol> 1397 <div class="figure" id="fig-6"> 1398 <a class="reference internal image-reference" href="_images/fig_6.png"><img alt="_images/fig_6.png" src="_images/fig_6.png" style="width: 859.0px; height: 313.0px;" /></a> 1399 </div> 1400 <table border="1" class="docutils"> 1401 <colgroup> 1402 <col width="5%" /> 1403 <col width="95%" /> 1404 </colgroup> 1405 <tbody valign="top"> 1406 <tr class="row-odd"><td>Left</td> 1407 <td>BNC in graphics mode; active configuration options are introduced through GUI input fields and finally saved on disk</td> 1408 </tr> 1409 <tr class="row-even"><td>Middle</td> 1410 <td>BNC in ‘no window’ mode; active configuration options are read from disk</td> 1411 </tr> 1412 <tr class="row-odd"><td>Right</td> 1413 <td>BNC in ‘no window’ mode without configuration file; default configuration options can be overwritten via command line options</td> 1414 </tr> 1415 </tbody> 794 795 <p><img src="IMG/screenshot31.png"/></p> 796 <p><u>Figure 6:</u> Management of configuration options in BNC:<br> 797 <table> 798 <tr><td> </td><td>Left:</td><td>BNC in graphics mode; active configuration options are introduced through GUI input fields and finally saved on disk</td></tr> 799 <tr><td> </td><td>Middle:</td><td>BNC in 'no window' mode; active configuration options are read from disk</td></tr> 800 <tr><td> </td><td>Right:</td><td>BNC in 'no window' mode without configuration file; default configuration options can be overwritten via command line options</td></tr> 1416 801 </table> 1417 <blockquote> 1418 < div>Management of configuration options in BNC.</div></blockquote>1419 <p>Configuration options are usually specified using GUI input fields 1 after launching BNC. When hitting the ‘Start’ button, configuration options are transferred one level down to become BNC’s active configuration 2, allowing the program to begin its operation. Pushing the ‘Stop’ button ends data processing so that the user can finally terminate BNC through ‘File’->’Quit’->’Save Options’ which saves processing options in a configuration file to disk 3. It is important to understand that:</p> 1420 <ul class="simple">802 803 <p> 804 Configuration options are usually specified using GUI input fields (1) after launching BNC. When hitting the 'Start' button, configuration options are transferred one level down to become BNC's active configuration (2), allowing the program to begin its operation. Pushing the 'Stop' button ends data processing so that the user can finally terminate BNC through 'File'->'Quit'->'Save Options' which saves processing options in a configuration file to disk (3). It is important to understand that: 805 <ul> 1421 806 <li>Active configuration options (2) are independent from GUI input fields and configuration file content.</li> 1422 807 <li>Hence changing configuration options at GUI level (1) while BNC is already processing data does not influence a running job.</li> 1423 <li>Editing configuration options at disk level (3) while BNC is already processing data does also not influence a running job. However, there are two exceptions which force BNC to update certain active options on-the-fly:<ul> 1424 <li>Pushing the ‘Reread & Save Configuration’ button lets BNC immediately reread its configuration from GUI input fields to make them active configuration options. Then BNC saves them on disk.</li> 1425 <li>Specifying the ‘Reread configuration’ option lets BNC reread its configuration from disk at pre-defined intervals.</li> 1426 </ul> 808 <li>Editing configuration options at disk level (3) while BNC is already processing data does also not influence a running job. However, there are two exceptions which force BNC to update certain active options on-the-fly:</li> 809 <ul> 810 <li>Pushing the 'Reread & Save Configuration' button lets BNC immediately reread its configuration from GUI input fields to make them active configuration options. Then BNC saves them on disk.</li> 811 <li>Specifying the 'Reread configuration' option lets BNC reread its configuration from disk at pre-defined intervals.</li> 812 </ul> 813 <li>A specific BNC configuration can be started in 'no window' mode from scratch without a configuration file if options for the active configuration level (2) are provided via command line.</li> 814 </ul> 815 </p> 816 817 <p><h4>1.6.1 <a name="introExamples">Examples</h4></p> 818 819 <p> 820 BNC comes with a number of configuration examples which can be used on all operating systems. Copy the complete directory 'Example_Configs' which comes with the software to your disc. It includes sub-directories 'Input' and 'Output'. There are several ways to start BNC using one of the example configurations: 821 </p> 822 <ul> 823 <li> 824 On graphical systems (except for Mac systems), you may use the computer mouse to 'drag' a configuration file icon and 'drop' it on top of BNC's program icon. 1427 825 </li> 1428 <li>A specific BNC configuration can be started in ‘no window’ mode from scratch without a configuration file if options for the active configuration level (2) are provided via command line.</li> 1429 </ul> 1430 </div> 1431 <div class="section" id="examples-configuration-files"> 1432 <h3>Examples configuration files<a class="headerlink" href="#examples-configuration-files" title="Permalink to this headline">¶</a></h3> 1433 <p>BNC comes with a number of configuration examples which can be used on all operating systems. Copy the complete directory <code class="docutils literal"><span class="pre">Example_Configs</span></code> which comes with the software to your disc. It includes sub-directories <code class="docutils literal"><span class="pre">Input</span></code> and <code class="docutils literal"><span class="pre">Output</span></code>. There are several ways to start BNC using one of the example configurations:</p> 1434 <ul class="simple"> 1435 <li>On graphical systems (except for Mac systems), you may use the computer mouse to ‘drag’ a configuration file icon and ‘drop’ it on top of BNC’s program icon.</li> 1436 <li>You could also start BNC using a command line for naming a specific configuration file (suggested e.g. for Mac systems): <code class="docutils literal"><span class="pre">/Applications/bnc.app/Contents/MacOS/bnc</span> <span class="pre">--conf</span> <span class="pre"><configFileName></span></code></li> 1437 <li>On non-graphical systems or when running BNC in batch mode in the background you may start the program using a command line with a configuration file option in ‘no window’ mode (example for Windows systems): <code class="docutils literal"><span class="pre">bnc.exe</span> <span class="pre">--conf</span> <span class="pre"><configFileName></span> <span class="pre">--nw</span></code></li> 1438 </ul> 1439 <p>Although it’s not a must, we suggest that you always create BNC configuration files with filename extension <code class="docutils literal"><span class="pre">.bnc</span></code>.</p> 1440 <p>We furthermore suggest for convenience reasons that you configure your system to automatically start BNC when you double-click a file with the filename extension <code class="docutils literal"><span class="pre">.bnc</span></code>. The following describes what to do on MS Windows systems to associate the BNC program to such configuration files:</p> 1441 <ol class="arabic simple"> 1442 <li>Right-click a file that has the extension <code class="docutils literal"><span class="pre">.bnc</span></code> and then click ‘Open’. If the ‘Open’ command is not available, click ‘Open With’ or double-click the file.</li> 826 <li> 827 You could also start BNC using a command line for naming a specific configuration file (suggested e.g. for Mac systems):<br> 828 /Applications/bnc.app/Contents/MacOS/bnc --conf <configFileName> 829 </li> 830 <li> 831 On non-graphical systems or when running BNC in batch mode in the background you may start the program using a command line with a configuration file option in '<u>n</u>o <u>w</u>indow' mode (example for Windows systems):<br> 832 bnc.exe --conf <configFileName> --nw 833 </li> 834 </ul> 835 <p> 836 Although it's not a must, we suggest that you always create BNC configuration files with filename extension '.bnc'. 837 </p> 838 839 <p> 840 We furthermore suggest for convenience reasons that you configure your system to automatically start BNC when you double-click a file with the filename extension '.bnc'. The following describes what to do on MS Windows systems to associate the BNC program to such configuration files: 841 </p> 842 843 <ol type=b> 844 <li>Right-click a file that has the extension '.bnc' and then click 'Open'. If the 'Open' command is not available, click 'Open With' or double-click the file.</li> 1443 845 <li>Windows displays a dialog box that says that the system cannot open this file. The dialog box offers several options for selecting a program.</li> 1444 <li>Click ‘Select the program from a list’, and then click ‘OK’.</li>1445 <li>The ‘Open With’ dialog box is displayed. Click ‘Browse’, locate and then click the BNC program, and then click ‘Open’.</li>1446 <li>Click to select the ‘Always use the selected program to open this kind of file’check box.</li>1447 <li>Click ‘OK’.</li>846 <li>Click 'Select the program from a list', and then click 'OK'.</li> 847 <li>The 'Open With' dialog box is displayed. Click 'Browse', locate and then click the BNC program, and then click 'Open'.</li> 848 <li>Click to select the 'Always use the selected program to open this kind of file' check box.</li> 849 <li>Click 'OK'.</li> 1448 850 </ol> 1449 <p>Some of the presented example configurations contain a user ID ‘Example’ with a password ‘Configs’ for accessing a few GNSS streams from public Ntrip Broadcasters. This free generic account is arranged for convenience reasons only. Please be so kind as to replace the generic account details as well as the place holder’s ‘User’ and ‘Pass’ by the personal user ID and password you receive following an online registration through <a class="reference external" href="http://register.rtcm-ntrip.org">http://register.rtcm-ntrip.org</a>.</p> 1450 <p>Note that the account for an Ntrip Broadcaster is usually limited to pulling a specified maximum number of streams at the same time. As running some of the example configurations requires pulling several streams, it is suggested to make sure that you do not exceed your account’s limits.</p> 1451 <p>Make also sure that sub-directories ‘Input’ and ‘Output’ which are part of the example configurations exist on your system or adjust the affected example configuration options according to your needs.</p> 1452 <p>Some BNC options require Antenna Phase Center variations as made available from IGS through so-called ANTEX files at <a class="reference external" href="ftp://igs.org/pub/station/general">ftp://igs.org/pub/station/general</a>. An example ANTEX file <code class="docutils literal"><span class="pre">igs08.atx</span></code> is part of the BNC package for convenience.</p> 1453 <p>The example configurations assume that no proxy protects your BNC host. Should a proxy be operated in front of BNC then you need to introduce its name or IP and port number in the ‘Network’ panel.</p> 1454 </div> 1455 <div class="section" id="list-of-example-configuration-files"> 1456 <h3>List of example configuration files<a class="headerlink" href="#list-of-example-configuration-files" title="Permalink to this headline">¶</a></h3> 1457 <p>You should be able to run all configuration file examples without changing contained options. However, configuration ‘Upload.bnc’ is an exception because it requires an input stream from a connected network engine.</p> 1458 <ol class="arabic simple"> 1459 <li>Configuration File <code class="docutils literal"><span class="pre">RinexObs.bnc</span></code></li> 851 852 <p> 853 Some of the presented example configurations contain a user ID 'Example' with a password 'Configs' for accessing a few GNSS streams from public Ntrip Broadcasters. This free generic account is arranged for convenience reasons only. Please be so kind as to replace the generic account details as well as the place holder's 'User' and 'Pass' by the personal user ID and password you receive following an online registration through <u>http://register.rtcm-ntrip.org</u>. 854 </p> 855 856 <p> 857 Note that the account for an Ntrip Broadcaster is usually limited to pulling a specified maximum number of streams at the same time. As running some of the example configurations requires pulling several streams, it is suggested to make sure that you do not exceed your account's limits. 858 </p> 859 860 <p> 861 Make also sure that sub-directories 'Input' and 'Output' which are part of the example configurations exist on your system or adjust the affected example configuration options according to your needs. 862 </p> 863 864 <p> 865 Some BNC options require Antenna Phase Center variations as made available from IGS through so-called ANTEX files at <u>ftp://igs.org/pub/station/general</u>. An example ANTEX file 'igs08.atx' is part of the BNC package for convenience. 866 </p> 867 868 <p> 869 The example configurations assume that no proxy protects your BNC host. Should a proxy be operated in front of BNC then you need to introduce its name or IP and port number in the 'Network' panel. 870 </p> 871 872 <p> 873 <b>(A) Working with Configuration Files</b><br><br> 874 You should be able to run all configuration file examples without changing contained options. However, configuration 'Upload.bnc' is an exception because it requires an input stream from a connected network engine. 875 </p> 876 <ol type=b> 877 878 <li>Configuration File 'RinexObs.bnc'<br> 879 Purpose: Convert RTCM streams to 880 RINEX Observation files. The configuration pulls streams from Ntrip 881 Broadcasters using Ntrip Version 1 to generate 15min 1Hz RINEX Version 3 882 Observation files. See <u>http://igs.bkg.bund.de/ntrip/observations</u> for observation 883 stream resources. 884 </li><br> 885 886 <li>Configuration File 'RinexEph.bnc'<br> 887 Purpose: Convert a RTCM stream 888 with navigation messages to RINEX Navigation files. The configuration 889 pulls a RTCM Version 3 stream with Broadcast Ephemeris coming from the 890 real-time EUREF and IGS networks and saves hourly RINEX Version 3 Navigation 891 files. See <u>http://igs.bkg.bund.de/ntrip/ephemeris</u> for further real-time 892 Broadcast Ephemeris resources. 893 </li><br> 894 895 <li>Configuration File 'BrdcCorr.bnc'<br> 896 Purpose: Save Broadcast Corrections from RTCM 897 SSR messages in hourly plain ASCII files. See 898 <u>http://igs.bkg.bund.de/ntrip/orbits</u> for various real-time IGS or EUREF 899 orbit/clock correction products. 900 </li><br> 901 902 <li>Configuration File 'RinexConcat.bnc'<br> 903 Purpose: Concatenate several RINEX Version 3 files to 904 produce one compiled file and edit the marker name in the file header. The 905 sampling interval is set to 30 seconds. See section 'RINEX Editing & QC' in the 906 documentation for examples on how to call BNC from command line in 'no window' 907 mode for RINEX file editing, concatenation and quality check. 908 </li><br> 909 910 <li>Configuration File 'RinexQC.bnc'<br> 911 Purpose: Check the quality of a RINEX Version 3 912 file by means of a multipath analysis. Results are saved on disk in terms of a 913 plot in PNG format. See section 'RINEX Editing & QC' in the documentation for 914 examples on how to call BNC from command line in 'no window' mode for RINEX 915 file editing, concatenation and quality check. 916 </li><br> 917 918 <li>Configuration File 'RTK.bnc'<br> 919 Purpose: Feed a serially connected receiver with 920 observations from a nearby reference station for conventional RTK. The stream is 921 scanned for RTCM messages. Message type numbers and latencies of incoming 922 observations are reported in BNC's logfile. 923 </li><br> 924 925 <li>Configuration File 'FeedEngine.bnc'<br> 926 Purpose: Feed a real-time GNSS engine with 927 observations from remote reference stations. The configuration pulls a single 928 stream from an Ntrip Broadcaster. You could also pull 929 several streams from different casters. Incoming observations are decoded, 930 synchronized, output through a local IP port and also saved into a file. Failure 931 and recovery thresholds are specified to inform about outages. 932 </li><br> 933 934 <li>Configuration File 'PPP.bnc'<br> 935 Purpose: Precise Point Positioning from 936 observations of a rover receiver. The configuration reads RTCM Version 3 937 observations, a Broadcast Ephemeris stream and a stream with Broadcast 938 Corrections. Positions are saved in the logfile. 939 </li><br> 940 941 <li>Configuration File 'PPPNet.bnc'<br> 942 Purpose: Precise 943 Point Positioning for several rovers or receivers from an entire network of 944 reference stations in one BNC job. The possible maximum number of PPP solutions 945 per job depends on the processing power of the hosting computer. This example 946 configuration reads two RTCM Version 3 observation streams, a Broadcast 947 Ephemeris stream and a stream with Broadcast Corrections. PPP Results for the 948 two stations are saved in PPP logfiles. 949 </li><br> 950 951 <li>Configuration File 'PPPQuickStart.bnc'<br> 952 Purpose: Precise Point Positioning in Quick-Start 953 mode from observations of a static receiver with precisely known position. The 954 configuration reads RTCM Version 3 observations, Broadcast Corrections and a 955 Broadcast Ephemeris stream. Positions are saved in NMEA format on disc. 956 They are also output through IP port for real-time visualization with tools 957 like RTKPLOT. Positions are saved in the logfile. 958 </li><br> 959 960 <li>Configuration File 'PPPPostProc.bnc'<br> 961 Purpose: Precise Point Positioning in post 962 processing mode. BNC reads RINEX Version 3 Observation and Navigation files 963 and a Broadcast Correction file. PPP processing options are set to support 964 the Quick-Start mode. The output is saved in a specific post processing 965 logfile and contains coordinates derived over time following the 966 implemented PPP filter algorithm. 967 </li><br> 968 969 <li>Configuration File 'PPPGoogleMaps.bnc'<br> 970 Purpose: Track BNC's point positioning 971 solutions using Google Maps or OpenStreetMap as background. BNC reads a 972 RINEX Observation file and a RINEX Navigation file to carry out a 973 'Standard Point Positioning' solution in post processing mode. Although 974 this is not a real-time application, it requires the BNC host to be connected 975 to the Internet. Specify a computation speed, then hit button 'Open Map' 976 to open the track map, then hit 'Start' to visualize receiver positions 977 on top of GM/OSM maps. 978 </li><br> 979 980 <li>Configuration File 'SPPQuickStartGal.bnc'<br> 981 Purpose: Single Point Positioning in Quick-Start mode from observations of a static 982 receiver with quite precisely known position. 983 The configuration uses GPS, GLONASS and Galileo observations and a Broadcast 984 Ephemeris stream. 985 </li><br> 986 987 <li>Configuration File 'SaveSp3.bnc'<br> 988 Purpose: Produces SP3 files from a Broadcast 989 Ephemeris stream and a Broadcast Correction stream. The Broadcast Correction 990 stream is formally introduced in BNC's 'Combine Corrections' table. Note that 991 producing SP3 requires an ANTEX file because SP3 file content should be 992 referred to CoM. 993 </li><br> 994 995 <li>Configuration File 'Sp3ETRF2000PPP.bnc'<br> 996 Purpose: Produce SP3 files from a Broadcast 997 Ephemeris stream and a stream carrying ETRF2000 Broadcast Corrections. The 998 Broadcast Correction stream is formally introduced in BNC's 'Combine 999 Corrections' table. The configuration leads to a SP3 file containing orbits also referred 1000 to ETRF2000. Pulling in addition observations from a reference station at 1001 precisely known ETRF2000 position allows comparing an 'INTERNAL' PPP solution 1002 with a known ETRF2000 reference coordinate. 1003 </li><br> 1004 1005 <li>Configuration File 'Upload.bnc'<br> 1006 Purpose: Upload orbits and clocks from a 1007 real-time GNSS engine to an Ntrip Broadcaster. For that the configuration reads 1008 precise orbits and clocks in RTNET format. It also reads a stream carrying 1009 Broadcast Ephemeris. BNC converts the orbits and clocks into Broadcast 1010 Corrections and encodes them to RTCM Version 3 SSR messages to finally upload them to 1011 an Ntrip Broadcaster. The Broadcast Correction stream is referred to satellite 1012 Antenna Phase Center (APC) and reference system IGS08. Orbits are saved on disk 1013 in SP3 format and clocks are saved in Clock RINEX format. 1014 </li><br> 1015 1016 <li>Configuration File 'Combi.bnc'<br> 1017 Purpose: Pull several streams carrying Broadcast 1018 Corrections and a Broadcast Ephemeris stream from an Ntrip Broadcaster to 1019 produce a combined Broadcast Correction stream. BNC encodes the combination 1020 product in RTCM Version 3 SSR messages and uploads that to an Ntrip 1021 Broadcaster. The Broadcast Correction stream is referred to satellite Antenna Phase Center (APC) and not to satellite 1022 Center of Mass (CoM). Its reference system is IGS08. Orbits are saved in SP3 1023 format (referred to CoM) and clocks in Clock RINEX format. 1024 </li><br> 1025 1026 <li>Configuration File 'CombiPPP.bnc'<br> 1027 Purpose: This configuration equals the 'Combi.bnc' configuration. However, the combined 1028 Broadcast Corrections are in addition used for an 'INTERNAL' PPP solution 1029 based on observations from a static reference station with known precise 1030 coordinates. This allows a continuous quality check of the combination product 1031 through observing coordinate displacements. 1032 </li><br> 1033 1034 <li>Configuration File 'UploadEph.bnc'<br> 1035 Purpose: Pull a number of streams from reference 1036 stations to get hold of contained Broadcast Ephemeris messages. They are 1037 encoded to RTCM Version 3 format and uploaded for the purpose of providing 1038 a Broadcast Ephemeris stream with an update rate of 5 seconds. 1039 </li><br> 1040 1041 <li>Configuration File 'CompareSp3.bnc'<br> 1042 Purpose: Compare two SP3 files to calculate 1043 RMS values for orbit and clock differences. GPS satellite G05 and GLONASS 1044 satellite R18 are excluded from this comparison. Comparison results are saved 1045 in a logfile. 1046 </li><br> 1047 1048 <li>Configuration File 'Empty.bnc'<br> 1049 Purpose: Provide an empty example configuration file for 1050 BNC which only contains default settings. 1051 </li> 1052 1460 1053 </ol> 1461 <blockquote> 1462 <div>Purpose: Convert RTCM streams to RINEX Observation files. The configuration pulls streams from Ntrip Broadcasters using Ntrip Version 1 to generate 15min 1Hz RINEX Version 3 Observation files. See <a class="reference external" href="http://igs.bkg.bund.de/ntrip/observations">http://igs.bkg.bund.de/ntrip/observations</a> for observation stream resources.</div></blockquote> 1463 <ol class="arabic simple" start="2"> 1464 <li>Configuration File <code class="docutils literal"><span class="pre">RinexEph.bnc</span></code></li> 1054 <b>(B) Working with Command Line configuration options</b><br><br> 1055 The following configuration examples make use of BNC's 'Command Line Interface' (CLI). Configuration options are exclusively specified via command line. No configuration file is used. Examples are provided as shell scripts for a Linux system. They call BNC in 'no window' batch mode (command line option -nw). The scripts expect 'Example_Configs' to be the current working directory. 1056 1057 <ol start="22"> 1058 <li>Shell Script 'RinexQC.sh'<br> 1059 Purpose: Equals configuration file example 'RinexQC.bnc', checks the quality of 1060 a RINEX Version 3 file by means of a multipath analysis. Virtual X-Server 1061 'Xvfb' is operated while producing plot files in PNG format. BNC is offline. All 1062 results are saved on disk. 1063 </li><br> 1064 1065 <li>Shell Script 'RinexConcat.sh'<br> 1066 Purpose: Equals configuration file example 'RinexConcat.bnc', concatenates 1067 several RINEX Version 3 files to produce one compiled file and edit the marker 1068 name in the file header. The sampling interval is set to 30 seconds. 1069 </li><br> 1070 1071 <li>Shell Script 'RinexEph.sh'<br> 1072 Purpose: Equals configuration file example 'RinexEph.bnc', converts a RTCM 1073 stream with navigation messages to RINEX Navigation files. The configuration 1074 pulls a RTCM Version 3 stream with Broadcast Ephemeris coming from the 1075 real-time EUREF and IGS networks and saves hourly RINEX Version 3 Navigation 1076 files. BNC runs online until it's terminated after 10 seconds. See 1077 <u>http://igs.bkg.bund.de/ntrip/ephemeris</u> for further real-time Broadcast 1078 Ephemeris resources. 1079 </li><br> 1080 1081 <li>Shell Script 'ScanLate.sh'<br> 1082 Purpose: Scan an observation stream for contained RTCM message types, print 1083 observation latencies. The output is saved in a logfile. Latencies are 1084 reported every 10 seconds. BNC runs online until it's terminated after 20 1085 seconds. 1086 </li><br> 1087 1088 <li>Shell Script 'RinexObs.sh'<br> 1089 Purpose: Equals configuration file example 'RinexObs.bnc', converts RTCM 1090 streams to RINEX Observation files. The configuration pulls streams from two 1091 Ntrip Broadcasters using Ntrip Version 1 to generate 15min 1Hz RINEX Version 3 1092 Observation files. See <u>http://igs.bkg.bund.de/ntrip/observations</u> for 1093 observation stream resources. BNC runs online until it's terminated after 30 1094 seconds. 1095 </li> 1465 1096 </ol> 1466 <blockquote> 1467 <div>Purpose: Convert a RTCM stream with navigation messages to RINEX Navigation files. The configuration pulls a RTCM Version 3 stream with Broadcast Ephemeris coming from the real-time EUREF and IGS networks and saves hourly RINEX Version 3 Navigation files. See <a class="reference external" href="http://igs.bkg.bund.de/ntrip/ephemeris">http://igs.bkg.bund.de/ntrip/ephemeris</a> for further real-time Broadcast Ephemeris resources.</div></blockquote> 1468 <ol class="arabic simple" start="3"> 1469 <li>Configuration File <code class="docutils literal"><span class="pre">BrdcCorr.bnc</span></code></li> 1097 1098 <b>(C) Command Line configuration options overwriting Configuration File options</b><br><br> 1099 For specific applications you may like to use your own set of standard configuration options from a configuration file and update some of its content via command line. When using a configuration file together with command line configuration options in one BNC call, the command line configuration options will always overrule options contained in the configuration file. 1100 1101 <ol start="27"> 1102 <li>Shell Script 'CompareSp3.sh'<br> 1103 Purpose: Equals configuration file example 'CompareSp3.bnc', compares two SP3 files to calculate RMS values for orbit and clock differences. However, instead of excluding GPS satellite G05 and GLONASS satellite R18 from the comparison as specified in 'CompareSp3.bnc', GPS satellite G06 and all GLONASS satellites are excluded via command line option. BNC runs offline. Comparison results are saved in a logfile. 1104 </li> 1470 1105 </ol> 1471 <blockquote> 1472 <div>Purpose: Save Broadcast Corrections from RTCM SSR messages in hourly plain ASCII files. See <a class="reference external" href="http://igs.bkg.bund.de/ntrip/orbits">http://igs.bkg.bund.de/ntrip/orbits</a> for various real-time IGS or EUREF orbit/clock correction products.</div></blockquote> 1473 <ol class="arabic simple" start="4"> 1474 <li>Configuration File <code class="docutils literal"><span class="pre">RinexConcat.bnc</span></code></li> 1106 1107 </p> 1108 1109 <p><h4>1.7 <a name="introLimit">Limitations</h4></p> 1110 <ul> 1111 <li> 1112 In Qt-based desktop environments (like KDE) on Unix/Linux platforms it may happen that you experience a crash of BNC at startup even when running the program in the background using the '-nw' option. This is a known bug most likely resulting from an incompatibility of Qt libraries in the environment and in BNC. Entering the command 'unset SESSION_MANAGER' before running BNC may help as a work-around. 1113 </li> 1114 1115 <li> 1116 Using RTCM Version 3 to produce RINEX files, BNC will properly handle most message types. However, when handling message types 1001, 1003, 1009 and 1011 where the ambiguity field is not set, the output will be no valid RINEX. All values will be stored modulo 299792.458 (speed of light). 1117 </li> 1118 <li> 1119 Using RTCM Version 2, BNC will only handle message types 18 and 19 or 20 and 21 together with position and the antenna offset information carried in types 3 and 22. Note that processing carrier phase corrections and pseudo-range corrections contained in message types 20 and 21 needs access to Broadcast Ephemeris. Hence, whenever dealing with message types 20 and 21, make sure that Broadcast Ephemeris become available for BNC through also retrieving at least one RTCM Version 3 stream carrying message types 1019 (GPS ephemeris) and 1020 (GLONASS ephemeris). 1120 </li> 1121 <li> 1122 BNC's 'Get Table' function only shows the STR records of a source-table. You can use an Internet browser to download the full source-table content of any Ntrip Broadcaster by simply entering its URL in the form of <u>http://host:port</u>. Data field number 8 in the NET records may provide information about where to register for an Ntrip Broadcaster account. 1123 </li> 1124 <li> 1125 EUREF as well as IGS adhere to an open data policy. Streams are made available through Ntrip Broadcasters at <u>www.euref-ip.net</u>, <u>www.igs-ip.net</u>, <u>products.igs-ip.net</u>, and <u>mgex.igs-ip.net</u> free of charge to anyone for any purpose. There is no indication up until now how many users will need to be supported simultaneously. The given situation may develop in such a way that it might become difficult to serve all registered users at the same times. In cases where limited resources on the Ntrip Broadcaster side (software restrictions, bandwidth limitation etc.) dictates, first priority in stream provision will be given to stream providers followed by re-broadcasting activities and real-time analysis centers while access to others might be temporarily denied. 1126 </li> 1127 <li> 1128 Once BNC has been started, many of its configuration options cannot be changed as long as it is stopped. See chapter 'Reread Configuration' for on-the-fly configuration exceptions. 1129 </li> 1130 <li> 1131 Drag and drop of configuration files is currently not supported on Mac OS X. On such system you have to start BNC via command line. 1132 </li> 1133 </ul> 1134 1135 <p><h4>1.8 <a name="introLBack">Looking Back</h4></p> 1136 <p> 1137 A basic function of BNC is streaming GNSS data over the open Internet using the Ntrip transport protocol. Employing IP streaming for satellite positioning goes back to the beginning of our century. Wolfgang Rupprecht has been the first person who developed TCP/IP server software under the acronym of DGPS-IP (Rupprecht 2000) and published it under GNU General Public License (GPL). While connecting marine beacon receivers to PCs with permanent access to the Internet he transmitted DGPS corrections in an RTCM format to support Differential GPS positioning over North America. With approximately 200 bits/sec the bandwidth requirement for disseminating beacon data was comparatively small. Each stream was transmitted over a unique combination of IP address and port. Websites informed about existing streams and corresponding receiver positions. 1138 </p> 1139 <p> 1140 To cope with an increasing number of transmitting GNSS reference stations, the Federal Agency for Cartography and Geodesy (BKG) together with the Informatik Centrum Dortmund (ICD) in Germany developed a streaming protocol for satellite navigation data called 'Networked Transport of RTCM via Internet Protocol' (Ntrip). The protocol was built on top of the HTTP standard and included the provision of meta data describing the stream content. Any stream could now be globally transmitted over just one IP port: HTTP port 80. Stream availability and content details became part of the transport protocol. The concept was first published in 2003 (Weber and Honkala 2004, Weber et al. 2005a) and was based on three software components, namely an NtripServer pushing data from a reference station to an NtripCaster and an NtripClient pulling data from the stream splitting caster to support a rover receiver. (Note that from a socket-programmers perspective NtripServer and NtripClient both act as clients; only the NtripCaster operates as socket-server.) Ntrip could essentially benefit from Internet Radio developments. It was the ICECAST multimedia server, which provided the bases for BKG's 'Professional Ntrip Broadcaster' with software published first in 2003 and of course again as Open Source under GPL. 1141 </p> 1142 <p> 1143 For BKG as a governmental agency, making Ntrip an Open Industry Standard has been an objective from the very beginning. The 'Radio Technical Commission for Maritime Services' (RTCM) accepted 'Ntrip Version 1' in 2004 as 'RTCM Recommended Standard' (Weber et al. 2005b). Nowadays there is almost no geodetic GNSS receiver which does not come with integrated NtripClient and NtripServer functionality as part of the firmware. Hundreds of NtripCaster implementations are operated world-wide for highly accurate satellite navigation through RTK networks. Thousands of reference stations upload observations via NtripServer to central computing facilities for any kind of NtripClient application. In 2011 'Ntrip Version 2' was released (RTCM SC-104 2011) which cleared and fixed some design problems and HTTP protocol violations. It also supports TCP/IP via SSL and adds optional communication over RTSP/RTP and UDP. 1144 </p> 1145 <p> 1146 With the advent of Ntrip as an open streaming standard, BKG's interest turned towards taking advantage from free real-time access to GNSS observations. International Associations such as the IAG Reference Frame Sub Commissions for Africa (AFREF), Asia & Pacific (APREF), Europe (EUREF), North America (NAREF) Latin America & Caribbean (SIRGAS), and the International GNSS Service (IGS) maintain continental or even global GNSS networks with the majority of modern receivers supporting Ntrip stream upload. Through operating BKG's NtripCaster software, these networks became extremely valuable sources of real-time GNSS information. In 2005, this was the starting point for developing the 'BKG Ntrip Client' (BNC) as a multi-stream Open Source NtripClient that allows pulling hundreds of streams simultaneously from any number of NtripCaster installations world-wide. Decoding incoming RTCM streams and output observations epoch by epoch via IP port to feed a real-time GNSS network engine became BNC's first and foremost ability (Weber and Mervart 2009). Converting decoded streams to short high-rate RINEX files to assist near real-time applications became a welcome by-product right from the start of this development. 1147 </p> 1148 <p> 1149 Adding real-time Precise Point Positioning (PPP) support to BNC began in 2010 as an important completion in view of developing an Open RTCM Standard for that. According to the State Space Representation (SSR) model, new Version 3 messages are proposed to provide e.g. satellite orbit and clock corrections and ionospheric corrections as well as biases for code and phase data. The ultimate goal for SSR standardization is to reach centimeter level accuracy within seconds as an alternative to Network RTK methods such as VRS, FKP, and MAC. Because of interoperability aspects, an Open Standard in this area is of particular interest for clients. Regarding stand-alone PPP in BNC, it is worth mentioning that the program is not and can never be in competition with a receiver manufacturer's proprietary solution. Only software or services that are part of a receiver firmware could have the potential of becoming a thread for commercial interests. However, implementing or not implementing an Open PPP approach in a firmware is and will always remain a manufacturer's decision. 1150 </p> 1151 <p> 1152 Implementing some post processing capability is essential for debugging real-time software in case of problems. So certain real-time options in BNC were complemented to work offline through reading data from files. Moreover, beginning in 2012, the software was extended to support Galileo, BeiDou, and QZSS besides GPS and GLONASS. With that, the Open Source tool BNC could be used for RINEX Version 3 file editing, concatenation and quality checks, a post processing functionality demanded by the IGS Multi-GNSS Experiment and not really covered at that time by UNAVCO's famous TEQC program with its limitation on GPS. 1153 </p> 1154 1155 <p> 1156 Over the years, the BNC Subversion (SVN) software archive received over seven thousand commits made by 11 contributors representing about one hundred thirty thousand lines of code. The well-established, mature codebase is mostly written in C++ language. Its publication under GNU GPL is thought to be well-suited for test, validation and demonstration of new approaches in precise real-time satellite navigation when IP streaming is involved. Commissioned by a German governmental agency, the overall intention has been to push the development of RTCM Recommended Standards to the benefit of IAG institutions and services such as IGS and the interested public in general. 1157 </p> 1158 <p> 1159 In February 2014 the overall responsibility at BKG for the concept and realization of BNC was handed over from Georg Weber to Axel Rülke. He is in charge now for guiding the application and further evolution of the software in view of appearing new satellite navigation systems and services. 1160 </p> 1161 1162 <p><h3>2. <a name="optsettings">Settings Details</h3></p> 1163 <p> 1164 The general documentation approach is to create a separate chapter for each processing option in a sequence which follows the layout of BNC's Graphical User Interface (GUI). The advantage is that searching for help by means of the document's Table of Contents (TOC) is quite convenient. A rather comprehensive number of TOC entries is the accepted downside of this approach. 1165 </p> 1166 <p> 1167 The following chapters describe how to set BNC program options. They explain the 'Top Menu Bar', the 'Settings Canvas' with the processing options, the content of the 'Streams Canvas' and 'Logging Canvas', and the 'Bottom Menu Bar'. 1168 </p> 1169 1170 <p><h4>2.1 <a name="topmenu">Top Menu Bar</h4></p> 1171 <p> 1172 The top menu bar allows selecting a font for the BNC windows, save configured options, or quit the program execution. It also provides access to the program's documentation. 1173 </p> 1174 1175 <p><h4>2.1.1 <a name="file">File</h4></p> 1176 1177 <p> 1178 The 'File' button lets you 1179 <ul> 1180 <li> Select an appropriate font.<br> 1181 Use smaller font size if the BNC main window exceeds the size of your screen. 1182 </li> 1183 <li> Reread and save selected options in configuration file.<br> 1184 When using 'Reread & Save Configuration' while BNC is already processing data, some configuration options become immediately effective on-the-fly without interrupting uninvolved threads while all of them are saved on disk. See section 'Reread Configuration' for a list of on-the-fly changeable configuration options. 1185 </li> 1186 <li> Quit the BNC program. 1187 </li> 1188 </ul> 1189 </p> 1190 1191 <p><h4>2.1.2 <a name="help">Help</h4></p> 1192 1193 <p> 1194 The 'Help' button provides access to 1195 <ul> 1196 <li> 1197 Help contents.<br> 1198 You may keep the 'Help Contents' window open while configuring BNC. 1199 </li> 1200 <li> 1201 A 'Flow Chart' showing BNC linked to a real-time GNSS network engine such as RTNET. 1202 </li> 1203 <li> 1204 General information about BNC.<br> 1205 Close the 'About BNC' window to continue working with BNC. 1206 </li> 1207 </ul> 1208 </p> 1209 1210 <p><h4>2.2 <a name="network">Network</h4></p> 1211 <p> 1212 You may need to specify a proxy when running BNC in a protected network. You may also like to use the Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL) cryptographic protocols for secure Ntrip communication over the Internet. 1213 </p> 1214 <p><h4>2.2.1 <a name="proxy">Proxy - Usage in a protected LAN</h4></p> 1215 <p> 1216 If you are running BNC within a protected Local Area Network (LAN), you might need to use a proxy server to access the Internet. Enter your proxy server IP and port number in case one is operated in front of BNC. If you do not know the IP and port of your proxy server, check the proxy server settings in your Internet browser or ask your network administrator.</p> 1217 <p> 1218 Note that IP streaming is often not allowed in a LAN. In this case you need to ask your network administrator for an appropriate modification of the local security policy or for the installation of a TCP relay to the Ntrip Broadcaster you need to access. If this is not possible, you might need to run BNC outside your LAN on a host that has unobstructed connection to the Internet. 1219 </p> 1220 1221 <p><h4>2.2.2 <a name="ssl">SSL - Transport Layer Security</h4></p> 1222 <p>Communication with an Ntrip Broadcaster over Secure Sockets Layer (SSL) as well as the download of RINEX skeleton files when available from HTTPS websites requires the exchange of client and/or server certificates. Specify the path to a directory where you save certificates on your system. You may like to check out <u>http://software.rtcm-ntrip.org/wiki/Certificates</u> for a list of known Ntrip Server certificates. You may also just try communication via SSL to check out whether this is supported by the involved Ntrip Broadcaster. </p> 1223 <p>SSL communication may involve queries coming from the Ntrip Broadcaster or from a HTTPS website hosting RINEX skeletons. Such a query could show up under BNC's 'Log' tab especially when self-signed SSL certificates are used. Example: 1224 <pre> 1225 SSL Error 1226 Server Certificate Issued by: 1227 GNSS Data Center 1228 BKG (Bundesamt für Geodäsie und Kartographie) 1229 Cannot be verified 1230 1231 The issuer certificate of a locally looked up certificate could not be found 1232 The root CA certificate is not trusted for this purpose 1233 No certificates could be verified 1234 </pre> 1235 Queries should not be received by a client when a server uses official SSL certificates. 1236 </p> 1237 <p> 1238 Tick 'Ignore SSL authorization errors' if you generally trust the server and do not want to be bothered with this. Note that SSL communication is usually done over port 443. 1239 </p> 1240 1241 <p><img src="IMG/screenshot40.png"/></p> 1242 <p><u>Figure 7:</u> BNC's 'Network' panel configured to ignore eventually occurring SSL error messages</p> 1243 1244 <p><h4>2.3 <a name="general">General</h4></p> 1245 <p> 1246 The following defines general settings for BNC's logfile, file handling, reconfiguration on-the-fly, and auto-start. 1247 </p> 1248 1249 <p><h4>2.3.1 <a name="genlog">Logfile - optional</h4></p> 1250 <p> 1251 Records of BNC's activities are shown in the 'Log' tab on the bottom of the main window. These logs can be saved into a file when a valid path is specified in the 'Logfile (full path)' field. The logfile name will automatically be extended by a string '_YYMMDD' for the current date. This leads to series of daily logfiles when running BNC continuously. Message logs cover the communication status between BNC and the Ntrip Broadcaster as well as problems that may occur in the communication link, stream availability, stream delay, stream conversion etc. All times are given in UTC. The default value for 'Logfile (full path)' is an empty option field, meaning that BNC logs will not be saved into a file. 1252 </p> 1253 <p> 1254 The following is an example for the content of a logfile written by BNC when operated in Single Point Positioning (SPP) mode: 1255 </p> 1256 <pre> 1257 15-06-30 11:40:17 ========== Start BNC v2.12 (MAC) ========== 1258 15-06-30 11:40:17 Panel 'PPP' active 1259 15-06-30 11:40:17 CUT07: Get data in RTCM 3.x format 1260 15-06-30 11:40:17 RTCM3EPH: Get data in RTCM 3.x format 1261 15-06-30 11:40:17 Configuration read: PPP.conf, 2 stream(s) 1262 1263 15-06-30 11:40:21 2015-06-30_11:40:19.000 CUT07 X = -2364337.6814 Y = 4870283.8110 Z = -3360808.3085 NEU: -0.0000 -0.0000 -0.0000 TRP: +2.4026 -0.0001 1264 15-06-30 11:40:22 2015-06-30_11:40:20.000 CUT07 X = -2364337.6853 Y = 4870283.8130 Z = -3360808.3082 NEU: +1.1639 +0.6988 -2.1178 TRP: +2.4018 +0.0003 1265 15-06-30 11:40:23 2015-06-30_11:40:21.000 CUT07 X = -2364337.6862 Y = 4870283.8155 Z = -3360808.3107 NEU: +0.1317 -0.4655 -4.4614 TRP: +2.4009 +0.0009 1266 15-06-30 11:40:24 2015-06-30_11:40:22.000 CUT07 X = -2364337.6864 Y = 4870283.8106 Z = -3360808.3099 NEU: +0.1543 +0.2121 -1.0190 TRP: +2.4022 +0.0009 1267 15-06-30 11:40:25 2015-06-30_11:40:23.000 CUT07 X = -2364337.6861 Y = 4870283.8111 Z = -3360808.3105 NEU: -0.9782 +0.0916 -2.3544 TRP: +2.4017 +0.0013 1268 15-06-30 11:40:26 2015-06-30_11:40:24.000 CUT07 X = -2364337.6884 Y = 4870283.8123 Z = -3360808.3103 NEU: -0.5606 -0.0938 -1.9498 TRP: +2.4018 +0.0016 1269 15-06-30 11:40:27 2015-06-30_11:40:25.000 CUT07 X = -2364337.6913 Y = 4870283.8133 Z = -3360808.3122 NEU: -0.1799 -0.1525 -4.8142 TRP: +2.4007 +0.0025 1270 15-06-30 11:40:28 2015-06-30_11:40:26.000 CUT07 X = -2364337.6919 Y = 4870283.8171 Z = -3360808.3184 NEU: +0.7497 +0.7994 -2.0363 TRP: +2.4018 +0.0032 1271 15-06-30 11:40:29 2015-06-30_11:40:27.000 CUT07 X = -2364337.6923 Y = 4870283.8196 Z = -3360808.3230 NEU: +0.8099 +0.5592 -2.8552 TRP: +2.4015 +0.0039 1272 15-06-30 11:40:30 2015-06-30_11:40:28.000 CUT07 X = -2364337.6960 Y = 4870283.8219 Z = -3360808.3222 NEU: -0.2952 +1.9737 -4.5565 TRP: +2.4008 +0.0047 1273 15-06-30 11:40:31 2015-06-30_11:40:29.000 CUT07 X = -2364337.6982 Y = 4870283.8209 Z = -3360808.3209 NEU: +0.3563 +2.1067 -5.5327 TRP: +2.4005 +0.0057 1274 ... 1275 </pre> 1276 1277 <p><h4>2.3.2 <a name="genapp">Append Files - optional</h4></p> 1278 <p> 1279 When BNC is started, new files are created by default and existing files with the same name will be overwritten. However, users might want to append existing files following a restart of BNC, a system crash or a BNC crash. Tick 'Append files' to continue with existing files and keep what has been recorded so far. Note that option 'Append files' affects all types of files created by BNC. 1280 </p> 1281 1282 <p><h4>2.3.3 <a name="genconf">Reread Configuration - optional</h4></p> 1283 <p> 1284 When operating BNC online in 'no window' mode (command line option -nw), some configuration options can nevertheless be changed on-the-fly without interrupting the running process. For that, you force the program to reread parts of its configuration in pre-defined intervals from disk. Select '1 min', '1 hour', or '1 day' to let BNC reread on-the-fly changeable configuration options every full minute, hour, or day. This lets in-between edited options become effective without interrupting uninvolved threads. 1285 </p> 1286 1287 <p> 1288 Note that following configuration options saved on disk can be changed/edited on-the-fly while BNC is already processing data: 1289 </p> 1290 <p> 1291 <ul> 1292 <li>'mountPoints' to change the selection of streams to be processed, see section 'Streams';</li> 1293 <li>'outWait' to change the 'Wait for full obs epoch' option, see section 'Feed Engine';</li> 1294 <li>'outSampl' to change the 'Sampling' option, see section 'Feed Engine';</li> 1295 <li>'outFile' to change the 'File' name where synchronized observations are saved in plain ASCII format.</li> 1296 </ul> 1297 </p> 1298 <p> 1299 </p> 1300 1301 <p><h4>2.3.4 <a name="genstart">Auto Start - optional</h4></p> 1302 <p> 1303 You may like to auto-start BNC at startup time in window mode with pre-assigned configuration options. This may be required e.g. immediately after booting your system. Tick 'Auto start' to supersede the usage of the 'Start' button. Make sure that you maintain a link to BNC for that in your Autostart directory (Windows systems) or call BNC in a script below directory /etc/init.d (Unix/Linux/Mac OS X systems). 1304 </p> 1305 <p> 1306 See BNC's command line option '-nw' for an auto-start of BNC in 'no window' mode. 1307 </p> 1308 1309 <p><h4>2.3.5 <a name="rawout">Raw Output File - optional</h4></p> 1310 <p> 1311 BNC can save all data coming in through various streams in one daily file. The information is recorded in the specified 'Raw output file' in the received order and format. This feature allows a BNC user to run the PPP option offline with observations, Broadcast Corrections, and Broadcast Ephemeris being read from a previously saved file. It supports the offline repetition of a real-time situation for debugging purposes (Record & Replay functionality) and is not meant for post processing. 1312 </p> 1313 <p> 1314 Data will be saved in blocks in the received format separated by ASCII time stamps like (example): 1315 <pre> 1316 2010-08-03T18:05:28 RTCM3EPH RTCM_3 67 1317 </pre> 1318 </p> 1319 <p> 1320 This example block header tells you that 67 bytes were saved in the data block following this time stamp. The information in this block is encoded in RTCM Version 3 format, comes from mountpoint RTCM3EPH and was received at 18:05:28 UTC on 2010-08-03. BNC adds its own time stamps in order to allow the reconstruction of a recorded real-time situation. 1321 </p> 1322 <p> 1323 The default value for 'Raw output file' is an empty option field, meaning that BNC will not save all raw data into one single daily file. 1324 </p> 1325 1326 <p><h4>2.4 <a name="rinex">RINEX Observations</h4></p> 1327 <p> 1328 Observations will be converted to RINEX if they come in either RTCM Version 2 or RTCM Version 3 format. Depending on the RINEX version and incoming RTCM message types, files generated by BNC may contain data from GPS, GLONASS, Galileo, SBAS, QZSS, and/or BDS (BeiDou). In case an observation type is listed in the RINEX header but the corresponding observation is unavailable, its value is set to zero '0.000' or left blank. Note that the 'RINEX TYPE' field in the RINEX Version 3 Observation file header is always set to 'M(MIXED)' or 'Mixed' even if the file only contains data from one system. 1329 </p> 1330 <p> 1331 It is important to understand that converting RTCM streams to RINEX files requires a priori information on observation types for specifying a complete RINEX header. Regarding the RINEX Version 2 file header, BNC simply introduces all observation types defined in the Version 2 standard and later reports "0.000" for observations which are not received. However, following this approach is not possible for RINEX Version 3 files from RTCM Version 3 MSM streams because of the huge number of observation types, which might in principle show up. The solution implemented in BNC is to start with RINEX Version 3 observation type records from skeleton files (see section 'Skeleton Extension' and 'Skeleton Mandatory') and switch to a default selection of observation types when such file is not available or does not contain the required information. The following is the default selection of observation types specified for a RINEX Version 3 file: 1332 </p> 1333 <pre> 1334 C 9 C2I L2I S2I C6I L6I S6I C7I L7I S7I SYS / # / OBS TYPES 1335 E 12 C1X L1X SX1 C5X L5X SX5 C7X L7X SX7 C8X L8X SX8 SYS / # / OBS TYPES 1336 G 15 C1C L1C S1C C1W L1W S1W C2X L2X S2X C2W L2W S2W C5X SYS / # / OBS TYPES 1337 L5X S5X SYS / # / OBS TYPES 1338 J 24 C1C L1C S1C C1S L1S S1S C1L L1L S1L C1X L1X S1X C2S SYS / # / OBS TYPES 1339 L2S S2S C2L L2L S2L C2X L2X S2X C5X L5X S5X SYS / # / OBS TYPES 1340 R 12 C1C L1C S1C C1P L1P S1P C2C L2C S2C C2P L2P S2P SYS / # / OBS TYPES 1341 S 9 C1C L1C S1C C5I L5I S5I C5Q L5Q S5Q SYS / # / OBS TYPES 1342 </pre> 1343 1344 <p> 1345 Please note that RTCM Version 3 messages 1084 for GLONASS observations do not contain the GLONASS channel numbers. These observation messages can only be converted to RINEX when you add messages which include the channel numbers. This could be done by means of an additional stream carrying 1087 GLONASS observation messages or an additional stream carrying 1020 GLONASS ephemeris messages. You could also consider setting up a stream which contains both, the 1084 and the 1020 messages. 1346 </p> 1347 <p> 1348 The screenshot below shows an example setup of BNC when converting streams to RINEX. Streams are coming from various Ntrip Broadcasters as well as from a serial communication link. Specifying a decoder string 'ZERO' would mean to not convert the affected stream but save its content as received. The 'SSL Error' recorded in the 'Log' tab is caused by the fact that observation stream downloads from IGS and MGEX Broadcasters initiate the download of RINEX skeleton files from a HTTPS (TLS/SSL) website and BNC has been configured in this example to ignore SSL errors as shown in the preceding 'Network' panel screenshot. 1349 </p> 1350 1351 <p><img src="IMG/screenshot16.png"/></p> 1352 <p><u>Figure 8:</u> BNC translating incoming observation streams to 15 min RINEX Version 3 Observation files</p> 1353 1354 <p><h4>2.4.1 <a name="rnxname">RINEX Filenames</h4></p> 1355 <p> 1356 The default for RINEX filenames in BNC follows the convention of RINEX Version 2. However, the software provides options to alternatively follow the filename convention of RINEX Version 3. RINEX Version 2 filenames are derived by BNC from the first 4 characters of the corresponding stream's mountpoint (4-Char Station ID). For example, data from mountpoints FRANKFURT and WETTZELL will have hourly RINEX Observation files named</p> 1357 1358 <pre> 1359 FRAN{ddd}{h}.{yy}O 1360 WETT{ddd}{h}.{yy}O 1361 </pre> 1362 <p> 1363 where 'ddd' is the day of year, 'h' is a letter which corresponds to an hour long UTC time block and 'yy' is the year. 1364 </p> 1365 <p> 1366 If there is more than one stream with identical 4-Char Station ID (same first 4 characters for their mountpoints), the mountpoint strings are split into two sub-strings and both become part of the RINEX filename. For example, when simultaneously retrieving data from mountpoints FRANKFURT and FRANCE, their hourly RINEX Version 2 Observation files are named as</p> 1367 <pre> 1368 FRAN{ddd}{h}_KFURT.{yy}O 1369 FRAN{ddd}{h}_CE.{yy}O 1370 </pre> 1371 <p> 1372 If several streams show up with exactly the same mountpoint name (example: BRUS0 from <u>www.euref-ip.net</u> and BRUS0 from <u>www.igs-ip.net</u>), BNC adds an integer number to the filename, leading e.g. to hourly RINEX Version 2 Observation files like</p> 1373 <pre> 1374 BRUS{ddd}{h}_0.{yy}O 1375 BRUS{ddd}{h}_1.{yy}O 1376 </pre> 1377 <p> 1378 Note that RINEX Version 2 filenames for all intervals less than 1 hour follow the filename convention for 15 minutes RINEX Version 2 Observation files e.g.</p> 1379 <pre> 1380 FRAN{ddd}{h}{mm}.{yy}O 1381 </pre> 1382 <p> 1383 where 'mm' is the starting minute within the hour. 1384 </p> 1385 1386 <p> 1387 In case of RINEX Version 3 filenames, the following convention holds: 1388 1389 <p> 1390 <table> 1391 <tr><td><b>Filename Parameter </b></td><td><b> # Char.</b></td><td><b> Meaning</b></td></tr> 1392 <tr><td>Name</td><td> 9</td><td> Site, station and country code</td></tr> 1393 <tr><td>S</td><td> 1</td><td> Data source</td></tr> 1394 <tr><td>Start Time</td><td> 11</td><td> YYYYDDDHHMM</td></tr> 1395 <tr><td>Period</td><td> 3</td><td> File period</td></tr> 1396 <tr><td>Obs. Freq.</td><td> 3</td><td> Observation frequency</td></tr> 1397 <tr><td>Content</td><td> 2</td><td> Content type</td></tr> 1398 <tr><td>Format</td><td> 3</td><td> File format</td></tr> 1399 <tr><td>Compression</td><td> 2-3</td><td> Compression method (optional)</td></tr> 1400 </table> 1401 </p> 1402 <p> 1403 Example for Mixed RINEX Version 3 GNSS observation filename, file containing 1 hour of data, one observation every second, 'MO' standing for 'Mixed Observations': 1404 <pre> 1405 ALGO00CAN_R_20121601000_01H_01S_MO.rnx 1406 </pre> 1407 </p> 1408 <p> 1409 Note that filename details are produced from the stream's mountpoint as well as corresponding BNC settings and meta data from the Ntrip Broadcaster source-table. 1410 </p> 1411 1412 <p><h4>2.4.2 <a name="rnxdir">Directory - optional</h4></p> 1413 <p> 1414 Here you can specify the path to where the RINEX Observation files will be stored. If the specified directory does not exist, BNC will not create RINEX Observation files. Default value for 'Directory' is an empty option field, meaning that no RINEX Observation files will be written. 1415 </p> 1416 1417 <p><h4>2.4.3 <a name="rnxinterval">File Interval - mandatory if 'Directory' is set</h4></p> 1418 <p> 1419 Select the length of the RINEX Observation file to be generated. The default value is 15 minutes. 1420 </p> 1421 1422 <p><h4>2.4.4 <a name="rnxsample">Sampling - mandatory if 'Directory' is set </h4></p> 1423 <p> 1424 Select the RINEX Observation sampling interval in seconds. A value of zero '0' tells BNC to store all received epochs into RINEX. This is the default value. 1425 </p> 1426 1427 <p><h4>2.4.5 <a name="rnxskl">Skeleton Extension - optional</h4></p> 1428 <p> 1429 Whenever BNC starts to generate RINEX Observation files (and then once every day at midnight), it first tries to retrieve information needed for RINEX headers from so-called public RINEX header skeleton files which are derived from sitelogs. An HTTP or HTTPS link to a directory containing these skeleton files may be available through data field number 7 of the affected NET record in the source-table. See <u>http://www.epncb.oma.be:80/stations/log/skl/brus.skl</u> for an example of a public RINEX header skeleton file for EPN station Brussels. Note that the download of RINEX skeleton files from HTTPS websites requires the exchange of client and/or server certificates. Clarify 'SSL' options offered through panel 'Network' for details. 1430 </p> 1431 <p> 1432 Sometimes public RINEX header skeleton files are not available, their content is not up to date, or you need to put additional/optional records in the RINEX header. For that, BNC allows using personal skeleton files that contain the header records you would like to include. You can derive a personal RINEX header skeleton file from the information given in an up to date sitelog. A file in the RINEX Observations 'Directory' with a 'Skeleton extension' suffix is interpreted by BNC as a personal RINEX header skeleton file for the corresponding stream. 1433 </p> 1434 <p> 1435 When producing RINEX Observation files from mountpoints (examples) 'BRUS0', 'FRANKFURT', and 'WETTZELL', the following skeleton filenames would be accepted 1436 </p> 1437 <pre> 1438 BRUS.skl 1439 FRAN.skl 1440 WETT.skl 1441 </pre> 1442 <p> 1443 if 'Skeleton extension' is set to 'skl'. 1444 </p> 1445 <p> 1446 Note the following regulations regarding personal RINEX header skeleton files: 1447 <ul> 1448 <li>If such a file exists in the 'RINEX directory', the corresponding public RINEX header skeleton file is ignored. The RINEX header is generated solely from the content of the personal skeleton.</li> 1449 <li>Personal skeletons should contain a complete first header record of type 1450 <br>- RINEX VERSION / TYPE<br></li> 1451 <li>They should then contain an empty header record of type 1452 <br>- PGM / RUN BY / DATE<br> 1453 BNC will complete this line and include it in the RINEX file header.</li> 1454 <li>They should further contain complete header records of type 1455 <br>- MARKER NAME 1456 <br>- OBSERVER / AGENCY 1457 <br>- REC # / TYPE / VERS 1458 <br>- ANT # / TYPE 1459 <br>- APPROX POSITION XYZ 1460 <br>- ANTENNA: DELTA H/E/N 1461 <br>- WAVELENGTH FACT L1/2 (RINEX Version 2) 1462 <br>- SYS / # / OBS TYPES (for RINEX Version 3 files, will be ignored in Version 2 files)</li> 1463 <li>They may contain any other optional complete header record as defined in the RINEX documentation.</li> 1464 <li>They should also contain an empty header record of type 1465 <br>- # / TYPES OF OBSERV (only RINEX Version 2, will be ignored when in Version 3 files) 1466 <br>BNC will include these lines in the final RINEX file header together with an additional 1467 <br>- COMMENT 1468 <br>line describing the source of the stream.</li> 1469 <li>They should finally contain an empty last header record of type 1470 <br>- END OF HEADER</li> 1471 1472 <li>They must not contain a header record of type 1473 <br>- TIME OF FIRST OBS</li> 1474 1475 </ul> 1476 <p> 1477 If neither a public nor a personal RINEX header skeleton file is available for BNC, a default header will be used. 1478 </p> 1479 <p> 1480 The following is a skeleton example for a RINEX file: 1481 </p> 1482 <p> 1483 <pre> 1484 OBSERVATION DATA M (MIXED) RINEX VERSION / TYPE 1485 PGM / RUN BY / DATE 1486 CUT0 MARKER NAME 1487 59945M001 MARKER NUMBER 1488 5023K67889 TRIMBLE NETR9 5.01 REC # / TYPE / VERS 1489 4928353386 TRM59800.00 SCIS ANT # / TYPE 1490 -2364337.2699 4870285.5624 -3360809.8398 APPROX POSITION XYZ 1491 0.0000 0.0000 0.0000 ANTENNA: DELTA H/E/N 1492 gnss@curtin.edu.au CUT OBSERVER / AGENCY 1493 C 10 C1I L1I D1I S1I C6I L6I S6I C7I L7I S7I SYS / # / OBS TYPES 1494 E 13 C1X L1X D1X S1X C5X L5X S5X C7X L7X S7X C8X L8X S8X SYS / # / OBS TYPES 1495 G 13 C1C L1C D1C S1C C2W L2W S2W C2X L2X S2X C5X L5X S5X SYS / # / OBS TYPES 1496 J 19 C1C L1C D1C S1C C1X L1X S1X C1Z L1Z S1Z C2X L2X S2X SYS / # / OBS TYPES 1497 C5X L5X S5X C6L L6L S6L SYS / # / OBS TYPES 1498 R 13 C1C L1C D1C S1C C1P L1P S1P C2C L2C S2C C2P L2P S2P SYS / # / OBS TYPES 1499 S 7 C1C L1C D1C S1C C5I L5I S5I SYS / # / OBS TYPES 1500 PORTIONS OF THIS HEADER GENERATED BY THE IGS CB FROM COMMENT 1501 SITELOG cut0_20150507.log COMMENT 1502 END OF HEADER 1503 </pre> 1504 <p> 1505 1506 <p><h4>2.4.6 <a name="sklMandat">Skeleton Mandatory - optional</h4></p> 1507 <p> 1508 Tick check box 'Skeleton mandatory' in case you want that RINEX files are only produced when skeleton files are available for BNC. If no skeleton file is available for a particular source, then no RINEX observation file will be produced from the affected stream. 1509 </p> 1510 <p>Note that a skeleton file contains RINEX header information such as receiver and antenna types. In case of stream conversion to RINEX Version 3, a skeleton file should also contain information on potentially available observation types. A missing skeleton file will force BNC to only save a default set of RINEX 3 observation types. 1511 </p> 1512 1513 <p><h4>2.4.7 <a name="rnxscript">Script - optional</h4></p> 1514 <p> 1515 Whenever a RINEX Observation file is saved, you might want to compress, copy or upload it immediately via FTP. BNC allows you to execute a script/batch file to carry out these operations. To do that, specify the full path to such script/batch file. BNC will pass the RINEX Observation file path to the script as a command line parameter (%1 on Windows systems, $1 on Unix/Linux/Mac OS X systems). 1516 </p> 1517 <p> 1518 The triggering event for calling the script or batch file is the end of a RINEX Observation file 'Interval'. If that is overridden by a stream outage, the triggering event is the stream reconnection. 1519 </p> 1520 <p> 1521 As an alternative to initiating file uploads through BNC, you may like to call an upload script or batch file through your crontable or Task Scheduler (independent from BNC) once every one or two minutes after the end of each RINEX file 'Interval'. 1522 </p> 1523 1524 <p><h4>2.4.8 <a name="rnxvers2">Version 2 - optional</h4></p> 1525 <p> 1526 GNSS observation data are generally hold available within BNC according to attributes as defined in RINEX Version 3. These attributes describe the tracking mode or channel when generating the observation signals. Capital letters specifying signal generation attributes are A, B, C, D, I, L, M, N, P, Q, S, W, X, Y, and Z, see RINEX Version 3 documentation. Although RINEX Version 3 with its signal generation attributes is the internal default processing format for BNC, there are two applications where the program is explicitly required to produce data files in RINEX Version 2 format: 1527 <ol type=1> 1528 <li>When saving the content of incoming observation streams in RINEX Version 2 files as described in this section.</li> 1529 <li>When editing or concatenating RINEX 3 files to save them in Version 2 format, see section on 'RINEX Editing & QC'.</li> 1475 1530 </ol> 1476 <blockquote> 1477 <div>Purpose: Concatenate several RINEX Version 3 files to produce one compiled file and edit the marker name in the file header. The sampling interval is set to 30 seconds. See section ‘RINEX Editing & QC’ in the documentation for examples on how to call BNC from command line in ‘no window’ mode for RINEX file editing, concatenation and quality check.</div></blockquote> 1478 <ol class="arabic simple" start="5"> 1479 <li>Configuration File <code class="docutils literal"><span class="pre">RinexQC.bnc</span></code></li> 1480 </ol> 1481 <blockquote> 1482 <div>Purpose: Check the quality of a RINEX Version 3 file by means of a multipath analysis. Results are saved on disk in terms of a plot in PNG format. See section ‘RINEX Editing & QC’ in the documentation for examples on how to call BNC from command line in ‘no window’ mode for RINEX file editing, concatenation and quality check.</div></blockquote> 1483 <ol class="arabic simple" start="6"> 1484 <li>Configuration File <code class="docutils literal"><span class="pre">RTK.bnc</span></code></li> 1485 </ol> 1486 <blockquote> 1487 <div>Purpose: Feed a serially connected receiver with observations from a nearby reference station for conventional RTK. The stream is scanned for RTCM messages. Message type numbers and latencies of incoming observations are reported in BNC’s logfile.</div></blockquote> 1488 <ol class="arabic simple" start="7"> 1489 <li>Configuration File <code class="docutils literal"><span class="pre">FeedEngine.bnc</span></code></li> 1490 </ol> 1491 <blockquote> 1492 <div>Purpose: Feed a real-time GNSS engine with observations from remote reference stations. The configuration pulls a single stream from an Ntrip Broadcaster. You could also pull several streams from different casters. Incoming observations are decoded, synchronized, output through a local IP port and also saved into a file. Failure and recovery thresholds are specified to inform about outages.</div></blockquote> 1493 <ol class="arabic simple" start="8"> 1494 <li>Configuration File <code class="docutils literal"><span class="pre">PPP.bnc</span></code></li> 1495 </ol> 1496 <blockquote> 1497 <div>Purpose: Precise Point Positioning from observations of a rover receiver. The configuration reads RTCM Version 3 observations, a Broadcast Ephemeris stream and a stream with Broadcast Corrections. Positions are saved in the logfile.</div></blockquote> 1498 <ol class="arabic simple" start="9"> 1499 <li>Configuration File <code class="docutils literal"><span class="pre">PPPNet.bnc</span></code></li> 1500 </ol> 1501 <blockquote> 1502 <div>Purpose: Precise Point Positioning for several rovers or receivers from an entire network of reference stations in one BNC job. The possible maximum number of PPP solutions per job depends on the processing power of the hosting computer. This example configuration reads two RTCM Version 3 observation streams, a Broadcast Ephemeris stream and a stream with Broadcast Corrections. PPP Results for the two stations are saved in PPP logfiles.</div></blockquote> 1503 <ol class="arabic simple" start="10"> 1504 <li>Configuration File <code class="docutils literal"><span class="pre">PPPQuickStart.bnc</span></code></li> 1505 </ol> 1506 <blockquote> 1507 <div>Purpose: Precise Point Positioning in Quick-Start mode from observations of a static receiver with precisely known position. The configuration reads RTCM Version 3 observations, Broadcast Corrections and a Broadcast Ephemeris stream. Positions are saved in NMEA format on disc. They are also output through IP port for real-time visualization with tools like RTKPLOT. Positions are saved in the logfile.</div></blockquote> 1508 <ol class="arabic simple" start="11"> 1509 <li>Configuration File <code class="docutils literal"><span class="pre">PPPPostProc.bnc</span></code></li> 1510 </ol> 1511 <blockquote> 1512 <div>Purpose: Precise Point Positioning in post processing mode. BNC reads RINEX Version 3 Observation and Navigation files and a Broadcast Correction file. PPP processing options are set to support the Quick-Start mode. The output is saved in a specific post processing logfile and contains coordinates derived over time following the implemented PPP filter algorithm.</div></blockquote> 1513 <ol class="arabic simple" start="12"> 1514 <li>Configuration File <code class="docutils literal"><span class="pre">PPPGoogleMaps.bnc</span></code></li> 1515 </ol> 1516 <blockquote> 1517 <div>Purpose: Track BNC’s point positioning solutions using Google Maps or OpenStreetMap as background. BNC reads a RINEX Observation file and a RINEX Navigation file to carry out a ‘Standard Point Positioning’ solution in post processing mode. Although this is not a real-time application, it requires the BNC host to be connected to the Internet. Specify a computation speed, then hit button ‘Open Map’ to open the track map, then hit ‘Start’ to visualize receiver positions on top of GM/OSM maps.</div></blockquote> 1518 <ol class="arabic simple" start="13"> 1519 <li>Configuration File <code class="docutils literal"><span class="pre">SPPQuickStartGal.bnc</span></code></li> 1520 </ol> 1521 <blockquote> 1522 <div>Purpose: Single Point Positioning in Quick-Start mode from observations of a static receiver with quite precisely known position. The configuration uses GPS, GLONASS and Galileo observations and a Broadcast Ephemeris stream.</div></blockquote> 1523 <ol class="arabic simple" start="14"> 1524 <li>Configuration File <code class="docutils literal"><span class="pre">SaveSp3.bnc</span></code></li> 1525 </ol> 1526 <blockquote> 1527 <div>Purpose: Produces SP3 files from a Broadcast Ephemeris stream and a Broadcast Correction stream. The Broadcast Correction stream is formally introduced in BNC’s ‘Combine Corrections’ table. Note that producing SP3 requires an ANTEX file because SP3 file content should be referred to CoM.</div></blockquote> 1528 <ol class="arabic simple" start="15"> 1529 <li>Configuration File <code class="docutils literal"><span class="pre">Sp3ETRF2000PPP.bnc</span></code></li> 1530 </ol> 1531 <blockquote> 1532 <div>Purpose: Produce SP3 files from a Broadcast Ephemeris stream and a stream carrying ETRF2000 Broadcast Corrections. The Broadcast Correction stream is formally introduced in BNC’s ‘Combine Corrections’ table. The configuration leads to a SP3 file containing orbits also referred to ETRF2000. Pulling in addition observations from a reference station at precisely known ETRF2000 position allows comparing an ‘INTERNAL’ PPP solution with a known ETRF2000 reference coordinate.</div></blockquote> 1533 <ol class="arabic simple" start="16"> 1534 <li>Configuration File <code class="docutils literal"><span class="pre">Upload.bnc</span></code></li> 1535 </ol> 1536 <blockquote> 1537 <div>Purpose: Upload orbits and clocks from a real-time GNSS engine to an Ntrip Broadcaster. For that the configuration reads precise orbits and clocks in RTNET format. It also reads a stream carrying Broadcast Ephemeris. BNC converts the orbits and clocks into Broadcast Corrections and encodes them to RTCM Version 3 SSR messages to finally upload them to an Ntrip Broadcaster. The Broadcast Correction stream is referred to satellite Antenna Phase Center (APC) and reference system IGS08. Orbits are saved on disk in SP3 format and clocks are saved in Clock RINEX format.</div></blockquote> 1538 <ol class="arabic simple" start="17"> 1539 <li>Configuration File <code class="docutils literal"><span class="pre">Combi.bnc</span></code></li> 1540 </ol> 1541 <blockquote> 1542 <div>Purpose: Pull several streams carrying Broadcast Corrections and a Broadcast Ephemeris stream from an Ntrip Broadcaster to produce a combined Broadcast Correction stream. BNC encodes the combination product in RTCM Version 3 SSR messages and uploads that to an Ntrip Broadcaster. The Broadcast Correction stream is referred to satellite Antenna Phase Center (APC) and not to satellite Center of Mass (CoM). Its reference system is IGS08. Orbits are saved in SP3 format (referred to CoM) and clocks in Clock RINEX format.</div></blockquote> 1543 <ol class="arabic simple" start="18"> 1544 <li>Configuration File <code class="docutils literal"><span class="pre">CombiPPP.bnc</span></code></li> 1545 </ol> 1546 <blockquote> 1547 <div>Purpose: This configuration equals the ‘Combi.bnc’ configuration. However, the combined Broadcast Corrections are in addition used for an ‘INTERNAL’ PPP solution based on observations from a static reference station with known precise coordinates. This allows a continuous quality check of the combination product through observing coordinate displacements.</div></blockquote> 1548 <ol class="arabic simple" start="19"> 1549 <li>Configuration File <code class="docutils literal"><span class="pre">UploadEph.bnc</span></code></li> 1550 </ol> 1551 <blockquote> 1552 <div>Purpose: Pull a number of streams from reference stations to get hold of contained Broadcast Ephemeris messages. They are encoded to RTCM Version 3 format and uploaded for the purpose of providing a Broadcast Ephemeris stream with an update rate of 5 seconds.</div></blockquote> 1553 <ol class="arabic simple" start="20"> 1554 <li>Configuration File <code class="docutils literal"><span class="pre">CompareSp3.bnc</span></code></li> 1555 </ol> 1556 <blockquote> 1557 <div>Purpose: Compare two SP3 files to calculate RMS values for orbit and clock differences. GPS satellite G05 and GLONASS satellite R18 are excluded from this comparison. Comparison results are saved in a logfile.</div></blockquote> 1558 <ol class="arabic simple" start="21"> 1559 <li>Configuration File <code class="docutils literal"><span class="pre">Empty.bnc</span></code></li> 1560 </ol> 1561 <blockquote> 1562 <div>Purpose: Provide an empty example configuration file for BNC which only contains default settings.</div></blockquote> 1563 </div> 1564 <div class="section" id="command-line-configuration-options"> 1565 <h3>Command Line configuration options<a class="headerlink" href="#command-line-configuration-options" title="Permalink to this headline">¶</a></h3> 1566 <p>The following configuration examples make use of BNC’s ‘Command Line Interface’ (CLI). Configuration options are exclusively specified via command line. No configuration file is used. Examples are provided as shell scripts for a Linux system. They call BNC in ‘no window’ batch mode (command line option <code class="docutils literal"><span class="pre">-nw</span></code>). The scripts expect ‘Example_Configs’ to be the current working directory.</p> 1567 <ol class="arabic simple"> 1568 <li>Shell Script <code class="docutils literal"><span class="pre">RinexQC.sh</span></code></li> 1569 </ol> 1570 <blockquote> 1571 <div>Purpose: Equals configuration file example <code class="docutils literal"><span class="pre">RinexQC.bnc</span></code>, checks the quality of a RINEX Version 3 file by means of a multipath analysis. Virtual X-Server ‘Xvfb’ is operated while producing plot files in PNG format. BNC is offline. All results are saved on disk.</div></blockquote> 1572 <ol class="arabic simple" start="2"> 1573 <li>Shell Script <code class="docutils literal"><span class="pre">RinexConcat.sh</span></code></li> 1574 </ol> 1575 <blockquote> 1576 <div>Purpose: Equals configuration file example <code class="docutils literal"><span class="pre">RinexConcat.bnc</span></code>, concatenates several RINEX Version 3 files to produce one compiled file and edit the marker name in the file header. The sampling interval is set to 30 seconds.</div></blockquote> 1577 <ol class="arabic simple" start="3"> 1578 <li>Shell Script <code class="docutils literal"><span class="pre">RinexEph.sh</span></code></li> 1579 </ol> 1580 <blockquote> 1581 <div>Purpose: Equals configuration file example <code class="docutils literal"><span class="pre">RinexEph.bnc</span></code>, converts a RTCM stream with navigation messages to RINEX Navigation files. The configuration pulls a RTCM Version 3 stream with Broadcast Ephemeris coming from the real-time EUREF and IGS networks and saves hourly RINEX Version 3 Navigation files. BNC runs online until it’s terminated after 10 seconds. See <a class="reference external" href="http://igs.bkg.bund.de/ntrip/ephemeris">http://igs.bkg.bund.de/ntrip/ephemeris</a> for further real-time Broadcast Ephemeris resources.</div></blockquote> 1582 <ol class="arabic simple" start="4"> 1583 <li>Shell Script <code class="docutils literal"><span class="pre">ScanLate.sh</span></code></li> 1584 </ol> 1585 <blockquote> 1586 <div>Purpose: Scan an observation stream for contained RTCM message types, print observation latencies. The output is saved in a logfile. Latencies are reported every 10 seconds. BNC runs online until it’s terminated after 20 seconds.</div></blockquote> 1587 <ol class="arabic simple" start="5"> 1588 <li>Shell Script <code class="docutils literal"><span class="pre">RinexObs.sh</span></code></li> 1589 </ol> 1590 <blockquote> 1591 <div>Purpose: Equals configuration file example <code class="docutils literal"><span class="pre">RinexObs.bnc</span></code>, converts RTCM streams to RINEX Observation files. The configuration pulls streams from two Ntrip Broadcasters using Ntrip Version 1 to generate 15min 1Hz RINEX Version 3 Observation files. See <a class="reference external" href="http://igs.bkg.bund.de/ntrip/observations">http://igs.bkg.bund.de/ntrip/observations</a> for observation stream resources. BNC runs online until it’s terminated after 30 seconds.</div></blockquote> 1592 </div> 1593 <div class="section" id="command-line-configuration-options-overwriting-configuration-file-options"> 1594 <h3>Command Line configuration options overwriting Configuration File options<a class="headerlink" href="#command-line-configuration-options-overwriting-configuration-file-options" title="Permalink to this headline">¶</a></h3> 1595 <p>For specific applications you may like to use your own set of standard configuration options from a configuration file and update some of its content via command line. When using a configuration file together with command line configuration options in one BNC call, the command line configuration options will always overrule options contained in the configuration file:</p> 1596 <p>Shell script <code class="docutils literal"><span class="pre">CompareSp3.sh</span></code>.</p> 1597 <p>Purpose: Equals configuration file example <code class="docutils literal"><span class="pre">CompareSp3.bnc</span></code>, compares two SP3 files to calculate RMS values for orbit and clock differences. However, instead of excluding GPS satellite G05 and GLONASS satellite R18 from the comparison as specified in <code class="docutils literal"><span class="pre">CompareSp3.bnc</span></code>, GPS satellite G06 and all GLONASS satellites are excluded via command line option. BNC runs offline. Comparison results are saved in a logfile.</p> 1598 </div> 1599 </div> 1600 <span id="document-chapter5"></span><span class="target" id="index-0"></span><div class="section" id="bnc-software-settings"> 1601 <h2>BNC software settings<a class="headerlink" href="#bnc-software-settings" title="Permalink to this headline">¶</a></h2> 1602 <p>The general documentation approach is to create a separate chapter for each processing option in a sequence which follows the layout of BNC’s Graphical User Interface (GUI). The advantage is that searching for help by means of the document’s Table of Contents (TOC) is quite convenient.</p> 1603 <p>The following chapters describe how to set BNC program options. They explain the ‘Top Menu Bar’, the ‘Settings Canvas’ with the processing options, the content of the ‘Streams Canvas’ and ‘Logging Canvas’, and the ‘Bottom Menu Bar’.</p> 1604 <div class="section" id="top-menu-bar"> 1605 <span id="index-1"></span><h3>Top Menu Bar<a class="headerlink" href="#top-menu-bar" title="Permalink to this headline">¶</a></h3> 1606 <p>The top menu bar allows selecting a font for the BNC windows, save configured options, or quit the program execution. It also provides access to the program’s documentation.</p> 1607 <div class="section" id="file"> 1608 <h4>File<a class="headerlink" href="#file" title="Permalink to this headline">¶</a></h4> 1609 <p>The ‘File’ button lets you</p> 1610 <ul class="simple"> 1611 <li>Select an appropriate font. Use smaller font size if the BNC main window exceeds the size of your screen.</li> 1612 <li>Reread and save selected options in configuration file. When using ‘Reread & Save Configuration’ while BNC is already processing data, some configuration options become immediately effective on-the-fly without interrupting uninvolved threads while all of them are saved on disk. See section ‘Reread Configuration’ for a list of on-the-fly changeable configuration options.</li> 1613 <li>Quit the BNC program.</li> 1614 </ul> 1615 </div> 1616 <div class="section" id="help"> 1617 <h4>Help<a class="headerlink" href="#help" title="Permalink to this headline">¶</a></h4> 1618 <p>The ‘Help’ button provides access to</p> 1619 <ul class="simple"> 1620 <li>Help contents. You may keep the ‘Help Contents’ window open while configuring BNC.</li> 1621 <li>A ‘Flow Chart’ showing BNC linked to a real-time GNSS network engine such as RTNET.</li> 1622 <li>General information about BNC. Close the ‘About BNC’ window to continue working with BNC.</li> 1623 </ul> 1624 </div> 1625 </div> 1626 <div class="section" id="network"> 1627 <span id="index-2"></span><h3>Network<a class="headerlink" href="#network" title="Permalink to this headline">¶</a></h3> 1628 <p>You may need to specify a proxy when running BNC in a protected network. You may also like to use the Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL) cryptographic protocols for secure Ntrip communication over the Internet.</p> 1629 <div class="section" id="proxy-usage-in-a-protected-lan"> 1630 <span id="index-3"></span><h4>Proxy - Usage in a protected LAN<a class="headerlink" href="#proxy-usage-in-a-protected-lan" title="Permalink to this headline">¶</a></h4> 1631 <p>If you are running BNC within a protected Local Area Network (LAN), you might need to use a proxy server to access the Internet. Enter your proxy server IP and port number in case one is operated in front of BNC. If you do not know the IP and port of your proxy server, check the proxy server settings in your Internet browser or ask your network administrator.</p> 1632 <p>Note that IP streaming is often not allowed in a LAN. In this case you need to ask your network administrator for an appropriate modification of the local security policy or for the installation of a TCP relay to the Ntrip Broadcaster you need to access. If this is not possible, you might need to run BNC outside your LAN on a host that has unobstructed connection to the Internet.</p> 1633 </div> 1634 <div class="section" id="ssl-transport-layer-security"> 1635 <span id="index-4"></span><h4>SSL - Transport Layer Security<a class="headerlink" href="#ssl-transport-layer-security" title="Permalink to this headline">¶</a></h4> 1636 <p>Communication with an Ntrip Broadcaster over Secure Sockets Layer (SSL) as well as the download of RINEX skeleton files when available from HTTPS websites requires the exchange of client and/or server certificates. Specify the path to a directory where you save certificates on your system. You may like to check out <a class="reference external" href="http://software.rtcm-ntrip.org/wiki/Certificates">http://software.rtcm-ntrip.org/wiki/Certificates</a> for a list of known Ntrip Server certificates. You may also just try communication via SSL to check out whether this is supported by the involved Ntrip Broadcaster.</p> 1637 <p>SSL communication may involve queries coming from the Ntrip Broadcaster or from a HTTPS website hosting RINEX skeletons. Such a query could show up under BNC’s ‘Log’ tab especially when self-signed SSL certificates are used. Example:</p> 1638 <div class="highlight-default"><div class="highlight"><pre><span class="n">SSL</span> <span class="n">Error</span> 1639 <span class="n">Server</span> <span class="n">Certificate</span> <span class="n">Issued</span> <span class="n">by</span><span class="p">:</span> 1640 <span class="n">GNSS</span> <span class="n">Data</span> <span class="n">Center</span> 1641 <span class="n">BKG</span> <span class="p">(</span><span class="n">Bundesamt</span> <span class="n">für</span> <span class="n">Geodäsie</span> <span class="n">und</span> <span class="n">Kartographie</span><span class="p">)</span> 1642 <span class="n">Cannot</span> <span class="n">be</span> <span class="n">verified</span> 1643 1644 <span class="n">The</span> <span class="n">issuer</span> <span class="n">certificate</span> <span class="n">of</span> <span class="n">a</span> <span class="n">locally</span> <span class="n">looked</span> <span class="n">up</span> <span class="n">certificate</span> <span class="n">could</span> <span class="ow">not</span> <span class="n">be</span> <span class="n">found</span> 1645 <span class="n">The</span> <span class="n">root</span> <span class="n">CA</span> <span class="n">certificate</span> <span class="ow">is</span> <span class="ow">not</span> <span class="n">trusted</span> <span class="k">for</span> <span class="n">this</span> <span class="n">purpose</span> 1646 <span class="n">No</span> <span class="n">certificates</span> <span class="n">could</span> <span class="n">be</span> <span class="n">verified</span> 1647 1648 <span class="n">Queries</span> <span class="n">should</span> <span class="ow">not</span> <span class="n">be</span> <span class="n">received</span> <span class="n">by</span> <span class="n">a</span> <span class="n">client</span> <span class="n">when</span> <span class="n">a</span> <span class="n">server</span> <span class="n">uses</span> <span class="n">official</span> <span class="n">SSL</span> <span class="n">certificates</span><span class="o">.</span> 1649 </pre></div> 1650 </div> 1651 <p>Tick ‘Ignore SSL authorization errors’ if you generally trust the server and do not want to be bothered with this. Note that SSL communication is usually done over port 443 <a class="reference internal" href="#fig-7"><span class="std std-numref">(Fig. 7)</span></a>.</p> 1652 <div class="figure" id="id22"> 1653 <span id="fig-7"></span><a class="reference internal image-reference" href="_images/fig_7.png"><img alt="_images/fig_7.png" src="_images/fig_7.png" style="width: 768.0px; height: 287.0px;" /></a> 1654 <p class="caption"><span class="caption-number">Fig. 7 </span><span class="caption-text">BNC’s ‘Network’ panel configured to ignore eventually occurring SSL error messages.</span></p> 1655 </div> 1656 </div> 1657 </div> 1658 <div class="section" id="general"> 1659 <span id="index-5"></span><h3>General<a class="headerlink" href="#general" title="Permalink to this headline">¶</a></h3> 1660 <p>The following defines general settings for BNC’s logfile, file handling, reconfiguration on-the-fly, and auto-start <a class="reference internal" href="#fig-7b"><span class="std std-numref">(Fig. 8)</span></a>.</p> 1661 <div class="figure" id="id23"> 1662 <span id="fig-7b"></span><a class="reference internal image-reference" href="_images/fig_7b.png"><img alt="_images/fig_7b.png" src="_images/fig_7b.png" style="width: 1018.0px; height: 745.0px;" /></a> 1663 <p class="caption"><span class="caption-number">Fig. 8 </span><span class="caption-text">General BNC options</span></p> 1664 </div> 1665 <div class="section" id="logfile-optional"> 1666 <span id="index-6"></span><h4>Logfile - optional<a class="headerlink" href="#logfile-optional" title="Permalink to this headline">¶</a></h4> 1667 <p>Records of BNC’s activities are shown in the ‘Log’ tab on the bottom of the main window. These logs can be saved into a file when a valid path is specified in the ‘Logfile (full path)’ field. The logfile name will automatically be extended by a string ‘_YYMMDD’ for the current date. This leads to series of daily logfiles when running BNC continuously. Message logs cover the communication status between BNC and the Ntrip Broadcaster as well as problems that may occur in the communication link, stream availability, stream delay, stream conversion etc. All times are given in UTC. The default value for ‘Logfile (full path)’ is an empty option field, meaning that BNC logs will not be saved into a file.</p> 1668 <p>The following is an example for the content of a logfile written by BNC when operated in Single Point Positioning (SPP) mode:</p> 1669 <div class="highlight-console"><div class="highlight"><pre><span class="go">15-06-30 11:40:17 ========== Start BNC v2.12 (MAC) ==========</span> 1670 <span class="go">15-06-30 11:40:17 Panel 'PPP' active</span> 1671 <span class="go">15-06-30 11:40:17 CUT07: Get data in RTCM 3.x format</span> 1672 <span class="go">15-06-30 11:40:17 RTCM3EPH: Get data in RTCM 3.x format</span> 1673 <span class="go">15-06-30 11:40:17 Configuration read: PPP.conf, 2 stream(s)</span> 1674 1675 <span class="go">15-06-30 11:40:21 2015-06-30_11:40:19.000 CUT07 X = -2364337.6814 Y = 4870283.8110 Z = -3360808.3085 NEU: -0.0000 -0.0000 -0.0000 TRP: +2.4026 -0.0001</span> 1676 <span class="go">15-06-30 11:40:22 2015-06-30_11:40:20.000 CUT07 X = -2364337.6853 Y = 4870283.8130 Z = -3360808.3082 NEU: +1.1639 +0.6988 -2.1178 TRP: +2.4018 +0.0003</span> 1677 <span class="go">15-06-30 11:40:23 2015-06-30_11:40:21.000 CUT07 X = -2364337.6862 Y = 4870283.8155 Z = -3360808.3107 NEU: +0.1317 -0.4655 -4.4614 TRP: +2.4009 +0.0009</span> 1678 <span class="go">15-06-30 11:40:24 2015-06-30_11:40:22.000 CUT07 X = -2364337.6864 Y = 4870283.8106 Z = -3360808.3099 NEU: +0.1543 +0.2121 -1.0190 TRP: +2.4022 +0.0009</span> 1679 <span class="go">15-06-30 11:40:25 2015-06-30_11:40:23.000 CUT07 X = -2364337.6861 Y = 4870283.8111 Z = -3360808.3105 NEU: -0.9782 +0.0916 -2.3544 TRP: +2.4017 +0.0013</span> 1680 <span class="go">15-06-30 11:40:26 2015-06-30_11:40:24.000 CUT07 X = -2364337.6884 Y = 4870283.8123 Z = -3360808.3103 NEU: -0.5606 -0.0938 -1.9498 TRP: +2.4018 +0.0016</span> 1681 <span class="go">15-06-30 11:40:27 2015-06-30_11:40:25.000 CUT07 X = -2364337.6913 Y = 4870283.8133 Z = -3360808.3122 NEU: -0.1799 -0.1525 -4.8142 TRP: +2.4007 +0.0025</span> 1682 <span class="go">15-06-30 11:40:28 2015-06-30_11:40:26.000 CUT07 X = -2364337.6919 Y = 4870283.8171 Z = -3360808.3184 NEU: +0.7497 +0.7994 -2.0363 TRP: +2.4018 +0.0032</span> 1683 <span class="go">15-06-30 11:40:29 2015-06-30_11:40:27.000 CUT07 X = -2364337.6923 Y = 4870283.8196 Z = -3360808.3230 NEU: +0.8099 +0.5592 -2.8552 TRP: +2.4015 +0.0039</span> 1684 <span class="go">15-06-30 11:40:30 2015-06-30_11:40:28.000 CUT07 X = -2364337.6960 Y = 4870283.8219 Z = -3360808.3222 NEU: -0.2952 +1.9737 -4.5565 TRP: +2.4008 +0.0047</span> 1685 <span class="go">15-06-30 11:40:31 2015-06-30_11:40:29.000 CUT07 X = -2364337.6982 Y = 4870283.8209 Z = -3360808.3209 NEU: +0.3563 +2.1067 -5.5327 TRP: +2.4005 +0.0057</span> 1686 <span class="go">...</span> 1687 </pre></div> 1688 </div> 1689 </div> 1690 <div class="section" id="append-files-optional"> 1691 <h4>Append Files - optional<a class="headerlink" href="#append-files-optional" title="Permalink to this headline">¶</a></h4> 1692 <p>When BNC is started, new files are created by default and existing files with the same name will be overwritten. However, users might want to append existing files following a restart of BNC, a system crash or a BNC crash. Tick ‘Append files’ to continue with existing files and keep what has been recorded so far. Note that option ‘Append files’ affects all types of files created by BNC.</p> 1693 </div> 1694 <div class="section" id="reread-configuration-optional"> 1695 <h4>Reread Configuration - optional<a class="headerlink" href="#reread-configuration-optional" title="Permalink to this headline">¶</a></h4> 1696 <p>When operating BNC online in ‘no window’ mode (command line option <code class="docutils literal"><span class="pre">-nw</span></code>), some configuration options can nevertheless be changed on-the-fly without interrupting the running process. For that, you force the program to reread parts of its configuration in pre-defined intervals from disk. Select ‘1 min’, ‘1 hour’, or ‘1 day’ to let BNC reread on-the-fly changeable configuration options every full minute, hour, or day. This lets in-between edited options become effective without interrupting uninvolved threads.</p> 1697 <p>Note that following configuration options saved on disk can be changed/edited on-the-fly while BNC is already processing data:</p> 1698 <ul class="simple"> 1699 <li>‘mountPoints’ to change the selection of streams to be processed, see section ‘Streams Canvas’;</li> 1700 <li>‘outWait’ to change the ‘Wait for full obs epoch’ option, see section ‘Feed Engine’;</li> 1701 <li>‘outSampl’ to change the ‘Sampling’ option, see section ‘Feed Engine’;</li> 1702 <li>‘outFile’ to change the ‘File’ name where synchronized observations are saved in plain ASCII format, see section ‘Feed Engine’.</li> 1703 </ul> 1704 </div> 1705 <div class="section" id="auto-start-optional"> 1706 <span id="index-7"></span><h4>Auto Start - optional<a class="headerlink" href="#auto-start-optional" title="Permalink to this headline">¶</a></h4> 1707 <p>You may like to auto-start BNC at startup time in window mode with pre-assigned configuration options. This may be required e.g. immediately after booting your system. Tick ‘Auto start’ to supersede the usage of the ‘Start’ button. Make sure that you maintain a link to BNC for that in your Autostart directory (Windows systems) or call BNC in a script below directory <code class="docutils literal"><span class="pre">/etc/init.d</span></code> (Unix/Linux/Mac OS X systems).</p> 1708 <p>See BNC’s command line option <code class="docutils literal"><span class="pre">-nw</span></code> for an auto-start of BNC in ‘no window’ mode.</p> 1709 </div> 1710 <div class="section" id="raw-output-file-optional"> 1711 <span id="index-8"></span><h4>Raw Output File - optional<a class="headerlink" href="#raw-output-file-optional" title="Permalink to this headline">¶</a></h4> 1712 <p>BNC can save all data coming in through various streams in one daily file. The information is recorded in the specified ‘Raw output file’ in the received order and format. This feature allows a BNC user to run the PPP option offline with observations, Broadcast Corrections, and Broadcast Ephemeris being read from a previously saved file. It supports the offline repetition of a real-time situation for debugging purposes (Record & Replay functionality) and is not meant for post processing.</p> 1713 <p>Data will be saved in blocks in the received format separated by ASCII time stamps like (example):</p> 1714 <div class="highlight-console"><div class="highlight"><pre><span class="go">2010-08-03T18:05:28 RTCM3EPH RTCM_3 67</span> 1715 </pre></div> 1716 </div> 1717 <p>This example block header tells you that 67 bytes were saved in the data block following this time stamp. The information in this block is encoded in RTCM Version 3 format, comes from mountpoint RTCM3EPH and was received at 18:05:28 UTC on 2010-08-03. BNC adds its own time stamps in order to allow the reconstruction of a recorded real-time situation.</p> 1718 <p>The default value for ‘Raw output file’ is an empty option field, meaning that BNC will not save all raw data into one single daily file.</p> 1719 </div> 1720 </div> 1721 <div class="section" id="rinex-observations"> 1722 <span id="index-9"></span><h3>RINEX Observations<a class="headerlink" href="#rinex-observations" title="Permalink to this headline">¶</a></h3> 1723 <p>Observations will be converted to RINEX if they come in either RTCM Version 2 or RTCM Version 3 format. Depending on the RINEX version and incoming RTCM message types, files generated by BNC may contain data from GPS, GLONASS, Galileo, SBAS, QZSS, and/or BDS (BeiDou). In case an observation type is listed in the RINEX header but the corresponding observation is unavailable, its value is set to zero ‘0.000’ or left blank. Note that the ‘RINEX TYPE’ field in the RINEX Version 3 Observation file header is always set to ‘M(MIXED)’ or ‘Mixed’ even if the file only contains data from one system.</p> 1724 <p>It is important to understand that converting RTCM streams to RINEX files requires a priori information on observation types for specifying a complete RINEX header. Regarding the RINEX Version 2 file header, BNC simply introduces all observation types defined in the Version 2 standard and later reports ‘0.000’ for observations which are not received. However, following this approach is not possible for RINEX Version 3 files from RTCM Version 3 MSM streams because of the huge number of observation types, which might in principle show up. The solution implemented in BNC is to start with RINEX Version 3 observation type records from skeleton files (see section ‘Skeleton Extension’ and ‘Skeleton Mandatory’) and switch to a default selection of observation types when such file is not available or does not contain the required information. The following is the default selection of observation types specified for a RINEX Version 3 file:</p> 1725 <div class="highlight-console"><div class="highlight"><pre><span class="go">C 9 C2I L2I S2I C6I L6I S6I C7I L7I S7I SYS / # / OBS TYPES</span> 1726 <span class="go">E 12 C1X L1X SX1 C5X L5X SX5 C7X L7X SX7 C8X L8X SX8 SYS / # / OBS TYPES</span> 1727 <span class="go">G 15 C1C L1C S1C C1W L1W S1W C2X L2X S2X C2W L2W S2W C5X SYS / # / OBS TYPES</span> 1728 <span class="go"> L5X S5X SYS / # / OBS TYPES</span> 1729 <span class="go">J 24 C1C L1C S1C C1S L1S S1S C1L L1L S1L C1X L1X S1X C2S SYS / # / OBS TYPES</span> 1730 <span class="go"> L2S S2S C2L L2L S2L C2X L2X S2X C5X L5X S5X SYS / # / OBS TYPES</span> 1731 <span class="go">R 12 C1C L1C S1C C1P L1P S1P C2C L2C S2C C2P L2P S2P SYS / # / OBS TYPES</span> 1732 <span class="go">S 9 C1C L1C S1C C5I L5I S5I C5Q L5Q S5Q SYS / # / OBS TYPES</span> 1733 </pre></div> 1734 </div> 1735 <p>Please note that RTCM Version 3 messages 1084 for GLONASS observations do not contain the GLONASS channel numbers. These observation messages can only be converted to RINEX when you add messages which include the channel numbers. This could be done by means of an additional stream carrying 1087 GLONASS observation messages or an additional stream carrying 1020 GLONASS ephemeris messages. You could also consider setting up a stream which contains both, the 1084 and the 1020 messages.</p> 1736 <p>The screenshot below shows an example setup of BNC when converting streams to RINEX. Streams are coming from various Ntrip Broadcasters as well as from a serial communication link. Specifying a decoder string ‘ZERO’ would mean to not convert the affected stream but save its content as received. The ‘SSL Error’ recorded in the ‘Log’ tab is caused by the fact that observation stream downloads from IGS and MGEX Broadcasters initiate the download of RINEX skeleton files from a HTTPS (TLS/SSL) website and BNC has been configured in this example to ignore SSL errors as shown in the preceding ‘Network’ panel screenshot <a class="reference internal" href="#fig-8"><span class="std std-numref">(Fig. 9)</span></a>.</p> 1737 <div class="figure" id="id24"> 1738 <span id="fig-8"></span><a class="reference internal image-reference" href="_images/fig_8.png"><img alt="_images/fig_8.png" src="_images/fig_8.png" style="width: 900.0px; height: 729.0px;" /></a> 1739 <p class="caption"><span class="caption-number">Fig. 9 </span><span class="caption-text">BNC translating incoming observation streams to 15 min RINEX Version 3 Observation files.</span></p> 1740 </div> 1741 <div class="section" id="rinex-filenames"> 1742 <span id="index-10"></span><h4>RINEX Filenames<a class="headerlink" href="#rinex-filenames" title="Permalink to this headline">¶</a></h4> 1743 <p>The default for RINEX filenames in BNC follows the convention of RINEX Version 2. However, the software provides options to alternatively follow the filename convention of RINEX Version 3. RINEX Version 2 filenames are derived by BNC from the first 4 characters of the corresponding stream’s mountpoint (4-character Station ID). For example, data from mountpoints FRANKFURT and WETTZELL will have hourly RINEX Observation files named:</p> 1744 <div class="highlight-default"><div class="highlight"><pre><span class="n">FRAN</span><span class="p">{</span><span class="n">ddd</span><span class="p">}{</span><span class="n">h</span><span class="p">}</span><span class="o">.</span><span class="p">{</span><span class="n">yy</span><span class="p">}</span><span class="n">O</span> 1745 <span class="n">WETT</span><span class="p">{</span><span class="n">ddd</span><span class="p">}{</span><span class="n">h</span><span class="p">}</span><span class="o">.</span><span class="p">{</span><span class="n">yy</span><span class="p">}</span><span class="n">O</span> 1746 </pre></div> 1747 </div> 1748 <p>where ‘ddd’ is the day of year, ‘h’ is a letter which corresponds to an hour long UTC time block and ‘yy’ is the year.</p> 1749 <p>If there is more than one stream with identical 4-character Station ID (same first 4 characters for their mountpoints), the mountpoint strings are split into two sub-strings and both become part of the RINEX filename. For example, when simultaneously retrieving data from mountpoints FRANKFURT and FRANCE, their hourly RINEX Version 2 Observation files are named as:</p> 1750 <div class="highlight-default"><div class="highlight"><pre><span class="n">FRAN</span><span class="p">{</span><span class="n">ddd</span><span class="p">}{</span><span class="n">h</span><span class="p">}</span><span class="n">_KFURT</span><span class="o">.</span><span class="p">{</span><span class="n">yy</span><span class="p">}</span><span class="n">O</span> 1751 <span class="n">FRAN</span><span class="p">{</span><span class="n">ddd</span><span class="p">}{</span><span class="n">h</span><span class="p">}</span><span class="n">_CE</span><span class="o">.</span><span class="p">{</span><span class="n">yy</span><span class="p">}</span><span class="n">O</span> 1752 </pre></div> 1753 </div> 1754 <p>If several streams show up with exactly the same mountpoint name (example: BRUS0 from www.euref-ip.net and BRUS0 from www.igs-ip.net), BNC adds an integer number to the filename, leading e.g. to hourly RINEX Version 2 Observation files like:</p> 1755 <div class="highlight-default"><div class="highlight"><pre><span class="n">BRUS</span><span class="p">{</span><span class="n">ddd</span><span class="p">}{</span><span class="n">h</span><span class="p">}</span><span class="n">_0</span><span class="o">.</span><span class="p">{</span><span class="n">yy</span><span class="p">}</span><span class="n">O</span> 1756 <span class="n">BRUS</span><span class="p">{</span><span class="n">ddd</span><span class="p">}{</span><span class="n">h</span><span class="p">}</span><span class="n">_1</span><span class="o">.</span><span class="p">{</span><span class="n">yy</span><span class="p">}</span><span class="n">O</span> 1757 </pre></div> 1758 </div> 1759 <p>Note that RINEX Version 2 filenames for all intervals less than 1 hour follow the filename convention for 15 minutes RINEX Version 2 Observation files e.g.:</p> 1760 <div class="highlight-default"><div class="highlight"><pre><span class="n">FRAN</span><span class="p">{</span><span class="n">ddd</span><span class="p">}{</span><span class="n">h</span><span class="p">}{</span><span class="n">mm</span><span class="p">}</span><span class="o">.</span><span class="p">{</span><span class="n">yy</span><span class="p">}</span><span class="n">O</span> 1761 </pre></div> 1762 </div> 1763 <p>where ‘mm’ is the starting minute within the hour.</p> 1764 <p>In case of RINEX Version 3 filenames, the conventions are summarized in <a class="reference internal" href="#tab-rinex-fn-conv"><span class="std std-numref">Table 2</span></a>.</p> 1765 <table border="1" class="docutils" id="id25"> 1766 <span id="tab-rinex-fn-conv"></span><caption><span class="caption-number">Table 2 </span><span class="caption-text">Conventions of RINEX 3 file names.</span><a class="headerlink" href="#id25" title="Permalink to this table">¶</a></caption> 1767 <colgroup> 1768 <col width="32%" /> 1769 <col width="23%" /> 1770 <col width="45%" /> 1771 </colgroup> 1772 <thead valign="bottom"> 1773 <tr class="row-odd"><th class="head"><strong>Filename Parameter</strong></th> 1774 <th class="head"><strong># Characters</strong></th> 1775 <th class="head"><strong>Meaning</strong></th> 1776 </tr> 1777 </thead> 1778 <tbody valign="top"> 1779 <tr class="row-even"><td>Name</td> 1780 <td>9</td> 1781 <td>Site, station and country code</td> 1782 </tr> 1783 <tr class="row-odd"><td>S</td> 1784 <td>1</td> 1785 <td>Data source</td> 1786 </tr> 1787 <tr class="row-even"><td>Start Time</td> 1788 <td>11</td> 1789 <td>YYYYDDDHHMM</td> 1790 </tr> 1791 <tr class="row-odd"><td>Period</td> 1792 <td>3</td> 1793 <td>File period</td> 1794 </tr> 1795 <tr class="row-even"><td>Obs. Freq.</td> 1796 <td>3</td> 1797 <td>Observation frequency</td> 1798 </tr> 1799 <tr class="row-odd"><td>Content</td> 1800 <td>2</td> 1801 <td>Content type</td> 1802 </tr> 1803 <tr class="row-even"><td>Format</td> 1804 <td>3</td> 1805 <td>File format</td> 1806 </tr> 1807 <tr class="row-odd"><td>Compression</td> 1808 <td>2-3</td> 1809 <td>Compression method (optional)</td> 1810 </tr> 1811 </tbody> 1812 </table> 1813 <p>Example for Mixed RINEX Version 3 GNSS observation filename, file containing 1 hour of data, one observation every second, ‘MO’ standing for ‘Mixed Observations’:</p> 1814 <div class="highlight-default"><div class="highlight"><pre><span class="n">ALGO00CAN_R_20121601000_01H_01S_MO</span><span class="o">.</span><span class="n">rnx</span> 1815 </pre></div> 1816 </div> 1817 <p>Note that filename details are produced from the stream’s mountpoint as well as corresponding BNC settings and meta data from the Ntrip Broadcaster source-table.</p> 1818 </div> 1819 <div class="section" id="directory-optional"> 1820 <span id="index-11"></span><h4>Directory - optional<a class="headerlink" href="#directory-optional" title="Permalink to this headline">¶</a></h4> 1821 <p>Here you can specify the path to where the RINEX Observation files will be stored. If the specified directory does not exist, BNC will not create RINEX Observation files. Default value for ‘Directory’ is an empty option field, meaning that no RINEX Observation files will be written.</p> 1822 </div> 1823 <div class="section" id="file-interval-mandatory-if-directory-is-set"> 1824 <span id="index-12"></span><h4>File Interval - mandatory if ‘Directory’ is set<a class="headerlink" href="#file-interval-mandatory-if-directory-is-set" title="Permalink to this headline">¶</a></h4> 1825 <p>Select the length of the RINEX Observation file to be generated. The default value is 15 minutes.</p> 1826 </div> 1827 <div class="section" id="sampling-mandatory-if-directory-is-set"> 1828 <span id="index-13"></span><h4>Sampling - mandatory if ‘Directory’ is set<a class="headerlink" href="#sampling-mandatory-if-directory-is-set" title="Permalink to this headline">¶</a></h4> 1829 <p>Select the RINEX Observation sampling interval in seconds. A value of zero ‘0’ tells BNC to store all received epochs into RINEX. This is the default value.</p> 1830 </div> 1831 <div class="section" id="skeleton-extension-optional"> 1832 <span id="index-14"></span><h4>Skeleton Extension - optional<a class="headerlink" href="#skeleton-extension-optional" title="Permalink to this headline">¶</a></h4> 1833 <p>Whenever BNC starts to generate RINEX Observation files (and then once every day at midnight), it first tries to retrieve information needed for RINEX headers from so-called fully machine-readable public RINEX header skeleton files which are derived from sitelogs. An HTTP or HTTPS link to a directory containing these skeleton files may be available through data field number 7 of the affected NET record in the source-table. See <a class="reference external" href="http://www.epncb.oma.be:80/stations/log/skl/brus.skl">http://www.epncb.oma.be:80/stations/log/skl/brus.skl</a> for an example of a public RINEX header skeleton file for EPN station Brussels. Note that the download of RINEX skeleton files from HTTPS websites requires the exchange of client and/or server certificates. Clarify ‘SSL’ options offered through panel ‘Network’ for details.</p> 1834 <p>Sometimes public RINEX header skeleton files are not available, their content is not up to date, or you need to put additional/optional records in the RINEX header. For that, BNC allows using personal skeleton files that contain the header records you would like to include. You can derive a personal RINEX header skeleton file from the information given in an up to date sitelog. A file in the RINEX Observations ‘Directory’ with a ‘Skeleton extension’ suffix is interpreted by BNC as a personal RINEX header skeleton file for the corresponding stream.</p> 1835 <p>When producing RINEX Observation files from mountpoints (examples) ‘BRUS0’, ‘FRANKFURT’, and ‘WETTZELL’, the following skeleton filenames would be accepted:</p> 1836 <div class="highlight-console"><div class="highlight"><pre><span class="go">brus.skl</span> 1837 <span class="go">fran.skl</span> 1838 <span class="go">wett.skl</span> 1839 </pre></div> 1840 </div> 1841 <p>if ‘Skeleton extension’ is set to ‘skl’.</p> 1842 <p>Note the following regulations regarding personal RINEX header skeleton files:</p> 1843 <ul class="simple"> 1844 <li>If such a file exists in the ‘RINEX directory’, the corresponding public RINEX header skeleton file is ignored. The RINEX header is generated solely from the content of the personal skeleton.</li> 1845 <li>Personal skeletons should contain a complete first header record of type:</li> 1846 </ul> 1847 <div class="highlight-console"><div class="highlight"><pre><span class="go">RINEX VERSION / TYPE</span> 1848 </pre></div> 1849 </div> 1850 <p>They should then contain an empty header record of type:</p> 1851 <div class="highlight-console"><div class="highlight"><pre><span class="go">PGM / RUN BY / DATE</span> 1852 </pre></div> 1853 </div> 1854 <p>BNC will complete this line and include it in the RINEX file header.</p> 1855 <ul class="simple"> 1856 <li>They should further contain complete header records of type:</li> 1857 </ul> 1858 <div class="highlight-console"><div class="highlight"><pre><span class="go">MARKER NAME</span> 1859 <span class="go">OBSERVER / AGENCY</span> 1860 <span class="go">REC # / TYPE / VERS</span> 1861 <span class="go">ANT # / TYPE</span> 1862 <span class="go">APPROX POSITION XYZ</span> 1863 <span class="go">ANTENNA: DELTA H/E/N</span> 1864 <span class="go">WAVELENGTH FACT L1/2 (RINEX Version 2)</span> 1865 <span class="go">SYS / # / OBS TYPES (for RINEX Version 3 files, will be ignored in Version 2 files)</span> 1866 </pre></div> 1867 </div> 1868 <ul> 1869 <li><p class="first">They may contain any other optional complete header record as defined in the RINEX documentation.</p> 1870 </li> 1871 <li><p class="first">They should also contain an empty header record of type:</p> 1872 <div class="highlight-none"><div class="highlight"><pre>#/ TYPES OF OBSERV (only RINEX Version 2, will be ignored when in Version 3 files) 1873 </pre></div> 1874 </div> 1875 </li> 1876 <li><p class="first">BNC will include these lines in the final RINEX file header together with an additional</p> 1877 <div class="highlight-console"><div class="highlight"><pre><span class="go">COMMENT</span> 1878 </pre></div> 1879 </div> 1880 <p>line describing the source of the stream.</p> 1881 </li> 1882 <li><p class="first">They should finally contain an empty last header record of type:</p> 1883 <div class="highlight-console"><div class="highlight"><pre><span class="go">END OF HEADER</span> 1884 </pre></div> 1885 </div> 1886 </li> 1887 <li><p class="first">They must not contain a header record of type:</p> 1888 <div class="highlight-console"><div class="highlight"><pre><span class="go">TIME OF FIRST OBS</span> 1889 </pre></div> 1890 </div> 1891 </li> 1892 </ul> 1893 <p>If neither a public nor a personal RINEX header skeleton file is available for BNC, a default header will be used. The following is a skeleton example for a RINEX file:</p> 1894 <div class="highlight-console"><div class="highlight"><pre><span class="go"> OBSERVATION DATA M (MIXED) RINEX VERSION / TYPE</span> 1895 <span class="go"> PGM / RUN BY / DATE</span> 1896 <span class="go">CUT0 MARKER NAME</span> 1897 <span class="go">59945M001 MARKER NUMBER</span> 1898 <span class="go">5023K67889 TRIMBLE NETR9 5.01 REC # / TYPE / VERS</span> 1899 <span class="go">4928353386 TRM59800.00 SCIS ANT # / TYPE</span> 1900 <span class="go"> -2364337.2699 4870285.5624 -3360809.8398 APPROX POSITION XYZ</span> 1901 <span class="go"> 0.0000 0.0000 0.0000 ANTENNA: DELTA H/E/N</span> 1902 <span class="go">gnss@curtin.edu.au CUT OBSERVER / AGENCY</span> 1903 <span class="go">C 10 C1I L1I D1I S1I C6I L6I S6I C7I L7I S7I SYS / # / OBS TYPES</span> 1904 <span class="go">E 13 C1X L1X D1X S1X C5X L5X S5X C7X L7X S7X C8X L8X S8X SYS / # / OBS TYPES</span> 1905 <span class="go">G 13 C1C L1C D1C S1C C2W L2W S2W C2X L2X S2X C5X L5X S5X SYS / # / OBS TYPES</span> 1906 <span class="go">J 19 C1C L1C D1C S1C C1X L1X S1X C1Z L1Z S1Z C2X L2X S2X SYS / # / OBS TYPES</span> 1907 <span class="go"> C5X L5X S5X C6L L6L S6L SYS / # / OBS TYPES</span> 1908 <span class="go">R 13 C1C L1C D1C S1C C1P L1P S1P C2C L2C S2C C2P L2P S2P SYS / # / OBS TYPES</span> 1909 <span class="go">S 7 C1C L1C D1C S1C C5I L5I S5I SYS / # / OBS TYPES</span> 1910 <span class="go">PORTIONS OF THIS HEADER GENERATED BY THE IGS CB FROM COMMENT</span> 1911 <span class="go">SITELOG cut0_20150507.log COMMENT</span> 1912 <span class="go"> END OF HEADER</span> 1913 </pre></div> 1914 </div> 1915 </div> 1916 <div class="section" id="skeleton-mandatory-optional"> 1917 <span id="index-15"></span><h4>Skeleton Mandatory - optional<a class="headerlink" href="#skeleton-mandatory-optional" title="Permalink to this headline">¶</a></h4> 1918 <p>Tick check box ‘Skeleton mandatory’ in case you want that RINEX files are only produced when skeleton files are available for BNC. If no skeleton file is available for a particular source, then no RINEX observation file will be produced from the affected stream.</p> 1919 <p>Note that a skeleton file contains RINEX header information such as receiver and antenna types. In case of stream conversion to RINEX Version 3, a skeleton file should also contain information on potentially available observation types. A missing skeleton file will force BNC to only save a default set of RINEX 3 observation types.</p> 1920 </div> 1921 <div class="section" id="script-optional"> 1922 <h4>Script - optional<a class="headerlink" href="#script-optional" title="Permalink to this headline">¶</a></h4> 1923 <p>Whenever a RINEX Observation file is saved, you might want to compress, copy or upload it immediately via FTP. BNC allows you to execute a script/batch file to carry out these operations. To do that, specify the full path to such script/batch file. BNC will pass the RINEX Observation file path to the script as a command line parameter (%1 on Windows systems, $1 on Unix/Linux/Mac OS X systems).</p> 1924 <p>The triggering event for calling the script or batch file is the end of a RINEX Observation file ‘Interval’. If that is overridden by a stream outage, the triggering event is the stream reconnection.</p> 1925 <p>As an alternative to initiating file uploads through BNC, you may like to call an upload script or batch file through your crontable or Task Scheduler (independent from BNC) once every one or two minutes after the end of each RINEX file ‘Interval’.</p> 1926 </div> 1927 <div class="section" id="version-2-optional"> 1928 <h4>Version 2 - optional<a class="headerlink" href="#version-2-optional" title="Permalink to this headline">¶</a></h4> 1929 <p>GNSS observation data are generally hold available within BNC according to attributes as defined in RINEX Version 3. These attributes describe the tracking mode or channel when generating the observation signals. Capital letters specifying signal generation attributes are A, B, C, D, I, L, M, N, P, Q, S, W, X, Y, and Z, see RINEX Version 3 documentation. Although RINEX Version 3 with its signal generation attributes is the internal default processing format for BNC, there are two applications where the program is explicitly required to produce data files in RINEX Version 2 format:</p> 1930 <ol class="arabic simple"> 1931 <li>When saving the content of incoming observation streams in RINEX Version 2 files as described in this section.</li> 1932 <li>When editing or concatenating RINEX 3 files to save them in Version 2 format, see section on ‘RINEX Editing & QC’.</li> 1933 </ol> 1934 <p>As the Version 2 format ignores signal generation attributes, BNC is forced to somehow map RINEX Version 3 to RINEX Version 2 although this cannot be done in one-to-one correspondence. Hence we introduce a ‘Signal priority’ list of attributes (characters, forming a string) for mapping Version 3 to Version 2.</p> 1935 <p>Signal priorities can be specified as equal for all systems, as system specific or as system and frequency specific. For example:</p> 1936 <ul class="simple"> 1937 <li>‘<a href="#id72"><span class="problematic" id="id73">CWPX_</span></a>?’ (General signal priorities valid for all GNSS)</li> 1938 <li>‘C:IQX I:ABCX’ (System specific signal priorities for BDS and IRNSS)</li> 1939 <li>‘G:12&PWCSLXYN G:5&IQX R:12&PC R:3&IQX’ (System and frequency specific signal priorities)</li> 1940 </ul> 1941 <p>The default ‘Signal priority’ list is defined as follows: ‘G:12&PWCSLXYN G:5&IQX R:12&PC R:3&IQX E:16&BCX E:578&IQX J:1&SLXCZ J:26&SLX J:5&IQX C:IQX I:ABCX S:1&C S:5&IQX’</p> 1942 <p>As an example the ‘Signal priority’ of ‘<a href="#id74"><span class="problematic" id="id75">CWPX_</span></a>?’ is explained in more detail:</p> 1943 <ul class="simple"> 1944 <li>Signals with attribute ‘C’ enjoy the highest priority. If such a Version 3 observation becomes available, it is presented as RINEX Version 2 observation if that is the format you wish to see. Observations with other attributes are being ignored.</li> 1945 <li>If no signal with ‘C’ attribute is available but we have an observation with ‘W’ attribute, BNC presents that one as RINEX Version 2 observation and ignores all observations with other attributes. The same applies mutatis mutandis to observations with P and X attributes.</li> 1946 <li>If no signal with ‘C’, ‘W’, ‘P’, or ‘X’ attribute is available but a signal with undefined generation attribute (underscore character, ‘_’) exists, BNC presents that one as RINEX Version 2 observation. Note that observation attributes should actually always be available in RINEX Version 3. Hence the underscore character makes only sense in a few very special cases.</li> 1947 <li>If no signal with ‘C’, ‘W’, ‘P’, ‘X’, or ‘_’ generation attribute exists then the question mark ‘?’ tells BNC to present the first of any other appearing signal as RINEX Version 2 observation.</li> 1948 </ul> 1949 <p>You may like to specify your own ‘Signal priority’ string(s) for producing RINEX Version 2 files. If you neither convert observation streams to RINEX Version 2 nor concatenate RINEX Version 3 to Version 2 files, then the ‘Version 2’ option is meaningless.</p> 1950 </div> 1951 <div class="section" id="version-3-optional"> 1952 <h4>Version 3 - optional<a class="headerlink" href="#version-3-optional" title="Permalink to this headline">¶</a></h4> 1953 <p>The default format for RINEX Observation files is RINEX Version 2.11. Select RINEX ‘Version 3’ if you would like to save RTCM Version 3 observation streams in RINEX Version 3.03 format. Note that it is possible to force an RTCM Version 2 stream to be saved in RINEX Version 3 file format. However, this is not recommended because such stream cannot be precisely mapped to RINEX Version 3 as the required information on tracking modes (observation attributes) is not part of RTCM Version 2.</p> 1954 </div> 1955 <div class="section" id="version-3-filenames-optional"> 1956 <h4>Version 3 Filenames - optional<a class="headerlink" href="#version-3-filenames-optional" title="Permalink to this headline">¶</a></h4> 1957 <p>Tick check box ‘Version 3 filenames’ to let BNC create so-called extended filenames following the RINEX Version 3 standard. Default is an empty check box, meaning to still use filenames following the RINEX Version 2 standard although the file content is saved in RINEX Version 3 format.</p> 1958 </div> 1959 </div> 1960 <div class="section" id="rinex-ephemeris"> 1961 <span id="index-16"></span><h3>RINEX Ephemeris<a class="headerlink" href="#rinex-ephemeris" title="Permalink to this headline">¶</a></h3> 1962 <p>Broadcast Ephemeris can be saved in RINEX Navigation files when received e.g. via RTCM Version 3 message types 1019 (GPS) or 1020 (GLONASS) or 1044 (QZSS) or 1043 (SBAS) or 1045 and 1046 (Galileo) or 63 (BDS/BeiDou, tentative message number). The filename convention follows the details given in section ‘RINEX Filenames’ except that the first four characters are ‘BRDC’. For RINEX Version 2 Navigation files the last character is ‘N’ or ‘G’ for GPS or GLONASS ephemeris in two separate files. Regarding RINEX Version 3 you will find all ephemeris data for GPS, GLONASS, Galileo, SBAS, QZSS, and BDS gathered in one Navigation file.</p> 1963 <p>The following is an example for a RINEX Version 3 Navigation filename. The file contains one day’s data. ‘MN’ stands for ‘Multi Constellation Navigation’ data.</p> 1964 <div class="highlight-console"><div class="highlight"><pre><span class="go">BRDC00DEU_S_20121600000_01D_MN.rnx</span> 1965 </pre></div> 1966 </div> 1967 <p>Note that streams dedicated to carry Broadcast Ephemeris messages in RTCM Version 3 format in high repetition rates are listed on <a class="reference external" href="http://igs.bkg.bund.de/ntrip/ephemeris">http://igs.bkg.bund.de/ntrip/ephemeris</a>. Note further that BNC will ignore incorrect or outdated Broadcast Ephemeris data when necessary, leaving a note ‘WRONG EPHEMERIS’ or ‘OUTDATED EPHEMERIS’ in the logfile.</p> 1968 <div class="section" id="id1"> 1969 <h4>Directory - optional<a class="headerlink" href="#id1" title="Permalink to this headline">¶</a></h4> 1970 <p>Specify a path for saving Broadcast Ephemeris data in RINEX Navigation files. If the specified directory does not exist, BNC will not create RINEX Navigation files. Default value for Ephemeris ‘Directory’ is an empty option field, meaning that no RINEX Navigation files will be created.</p> 1971 </div> 1972 <div class="section" id="interval-mandatory-if-directory-is-set"> 1973 <h4>Interval - mandatory if ‘Directory’ is set<a class="headerlink" href="#interval-mandatory-if-directory-is-set" title="Permalink to this headline">¶</a></h4> 1974 <p>Select the length of RINEX Navigation files. The default value is ‘1 day’.</p> 1975 </div> 1976 <div class="section" id="port-optional"> 1977 <h4>Port - optional<a class="headerlink" href="#port-optional" title="Permalink to this headline">¶</a></h4> 1978 <p>BNC can output Broadcast Ephemeris in RINEX Version 3 format on your local host (IP 127.0.0.1) through an IP ‘Port’. Specify an IP port number to activate this function. The default is an empty option field, meaning that no ASCII ephemeris output via IP port is generated.</p> 1979 <p>The source code for BNC comes with an example Perl script <code class="docutils literal"><span class="pre">test_tcpip_client.pl</span></code> that allows you to read BNC’s ephemeris ASCII output from the IP port.</p> 1980 </div> 1981 <div class="section" id="version-optional"> 1982 <h4>Version - optional<a class="headerlink" href="#version-optional" title="Permalink to this headline">¶</a></h4> 1983 <p>Default format for RINEX Navigation files containing Broadcast Ephemeris is RINEX Version 2.11. Select ‘Version 3’ if you want to save the ephemeris data in RINEX Version 3.03 format. Note that this does not concern the Broadcast Ephemeris output through IP port, which is always in RINEX Version 3.03 format.</p> 1984 </div> 1985 <div class="section" id="id2"> 1986 <h4>Version 3 Filenames - optional<a class="headerlink" href="#id2" title="Permalink to this headline">¶</a></h4> 1987 <p>Tick check box ‘Version 3 filenames’ to let BNC create so-called extended filenames following the RINEX Version 3 standard. Default is an empty check box, meaning to still use filenames following the RINEX Version 2 standard although the file content is saved in RINEX Version 3 format <a class="reference internal" href="#fig-9"><span class="std std-numref">(Fig. 10)</span></a>.</p> 1988 <div class="figure" id="id26"> 1989 <span id="fig-9"></span><a class="reference internal image-reference" href="_images/fig_9.png"><img alt="_images/fig_9.png" src="_images/fig_9.png" style="width: 859.0px; height: 510.0px;" /></a> 1990 <p class="caption"><span class="caption-number">Fig. 10 </span><span class="caption-text">BNC converting Broadcast Ephemeris stream to RINEX Version 3 Navigation files</span></p> 1991 </div> 1992 </div> 1993 </div> 1994 <div class="section" id="rinex-editing-qc"> 1995 <span id="index-17"></span><h3>RINEX Editing & QC<a class="headerlink" href="#rinex-editing-qc" title="Permalink to this headline">¶</a></h3> 1996 <p>Besides stream conversion from RTCM to RINEX, BNC allows editing RINEX files or concatenate their content. RINEX Observation and Navigation files can be handled. BNC can also carry out a RINEX file Quality Check. In summary and besides Stream <strong>T</strong>ranslation, this functionality in BNC covers</p> 1997 <ul class="simple"> 1998 <li>File <strong>E</strong>diting and concatenation</li> 1999 <li>File <strong>Q</strong>uality <strong>C</strong>heck<ul> 1531 As the Version 2 format ignores signal generation attributes, BNC is forced to somehow map RINEX Version 3 to RINEX Version 2 although this cannot be done in one-to-one correspondence. Hence we introduce a 'Signal priority' list of attributes (characters, forming a string) for mapping Version 3 to Version 2. 1532 </p> 1533 <p> 1534 Signal priorities can be specified as equal for all systems, as system specific or as system and frequency specific. For example:</li> 1535 <ul> 1536 <li>'CWPX_?' (General signal priorities valid for all GNSS)</li> 1537 <li>'C:IQX I:ABCX' (System specific signal priorities for BDS and IRNSS)</li> 1538 <li>'G:12&PWCSLXYN G:5&IQX R:12&PC R:3&IQX' (System and frequency specific signal priorities)</li> 1539 </ul> 1540 </p> 1541 <p> 1542 The default 'Signal priority' list is defined as follows: 1543 <ul> 1544 <li>'G:12&PWCSLXYN G:5&IQX R:12&PC R:3&IQX E:16&BCX E:578&IQX J:1&SLXCZ J:26&SLX J:5&IQX C:IQX I:ABCX S:1&C S:5&IQX'</li> 1545 </ul> 1546 1547 As an example the 'Signal priority' of 'CWPX_?' is explained in more detail: 1548 <ul> 1549 <li>Signals with attribute 'C' enjoy the highest priority. If such a Version 3 observation becomes available, it is presented as RINEX Version 2 observation if that is the format you wish to see. Observations with other attributes are being ignored.</li> 1550 <li>If no signal with 'C' attribute is available but we have an observation with 'W' attribute, BNC presents that one as RINEX Version 2 observation and ignores all observations with other attributes. The same applies mutatis mutandis to observations with P and X attributes.</li> 1551 <li>If no signal with 'C', 'W', 'P', or 'X' attribute is available but a signal with undefined generation attribute (underscore character, '_') exists, BNC presents that one as RINEX Version 2 observation. Note that observation attributes should actually always be available in RINEX Version 3. Hence the underscore character makes only sense in a few very special cases.</li> 1552 <li>If no signal with 'C', 'W', 'P', 'X', or '_' generation attribute exists then the question mark '?' tells BNC to present the first of any other appearing signal as RINEX Version 2 observation.</li> 1553 </ul> 1554 </p> 1555 1556 <p> 1557 You may like to specify your own 'Signal priority' string(s) for producing RINEX Version 2 files. If you neither convert observation streams to RINEX Version 2 nor concatenate RINEX Version 3 to Version 2 files, then the 'Version 2' option is meaningless. 1558 </p> 1559 1560 <p><h4>2.4.9 <a name="rnxvers3">Version 3 - optional</h4></p> 1561 <p> 1562 The default format for RINEX Observation files is RINEX Version 2.11. Select RINEX 'Version 3' if you would like to save RTCM Version 3 observation streams in RINEX Version 3.03 format. 1563 </p> 1564 1565 <p> 1566 Note that it is possible to force an RTCM Version 2 stream to be saved in RINEX Version 3 file format. However, this is not recommended because such stream cannot be precisely mapped to RINEX Version 3 as the required information on tracking modes (observation attributes) is not part of RTCM Version 2. 1567 </p> 1568 1569 <p><h4>2.4.10 <a name="rnxvers3File">Version 3 Filenames - optional</h4></p> 1570 <p> 1571 Tick check box 'Version 3 filenames' to let BNC create so-called extended filenames following the RINEX Version 3 standard. 1572 </p> 1573 <p>Default is an empty check box, meaning to still use filenames following the RINEX Version 2 standard although the file content is saved in RINEX Version 3 format. 1574 </p> 1575 1576 <p><h4>2.5 <a name="ephemeris">RINEX Ephemeris</h4></p> 1577 <p> 1578 Broadcast Ephemeris can be saved in RINEX Navigation files when received e.g. via RTCM Version 3 message types 1019 (GPS) or 1020 (GLONASS) or 1044 (QZSS) or 1043 (SBAS) or 1045 and 1046 (Galileo) or 63 (BDS/BeiDou, tentative message number). The filename convention follows the details given in section 'RINEX Filenames' except that the first four characters are 'BRDC'. 1579 </p> 1580 <p> 1581 For RINEX Version 2 Navigation files the last character is 'N' or 'G' for GPS or GLONASS ephemeris in two separate files. 1582 </p> 1583 <p> 1584 Regarding RINEX Version 3 you will find all ephemeris data for GPS, GLONASS, Galileo, SBAS, QZSS, and BDS gathered in one Navigation file. 1585 </p> 1586 <p> 1587 The following is an example for a RINEX Version 3 Navigation filename. The file contains one day's data. 'MN' stands for 'Multi Constellation Navigation' data. 1588 <pre> 1589 BRDC00DEU_S_20121600000_01D_MN.rnx 1590 </pre> 1591 </p> 1592 1593 <p> 1594 Note that streams dedicated to carry Broadcast Ephemeris messages in RTCM Version 3 format in high repetition rates are listed on <u>http://igs.bkg.bund.de/ntrip/ephemeris</u>. 1595 </p> 1596 1597 <p> 1598 Note further that BNC will ignore incorrect or outdated Broadcast Ephemeris data when necessary, leaving a note 'WRONG EPHEMERIS' or 'OUTDATED EPHEMERIS' in the logfile. 1599 </p> 1600 1601 <p><h4>2.5.1 <a name="ephdir">Directory - optional</h4></p> 1602 <p> 1603 Specify a path for saving Broadcast Ephemeris data in RINEX Navigation files. If the specified directory does not exist, BNC will not create RINEX Navigation files. Default value for Ephemeris 'Directory' is an empty option field, meaning that no RINEX Navigation files will be created. 1604 </p> 1605 1606 <p><h4>2.5.2 <a name="ephint">Interval - mandatory if 'Directory' is set</h4></p> 1607 <p> 1608 Select the length of RINEX Navigation files. The default value is '1 day'. 1609 </p> 1610 1611 <p><h4>2.5.3 <a name="ephport">Port - optional</h4></p> 1612 <p> 1613 BNC can output Broadcast Ephemeris in RINEX Version 3 format on your local host (IP 127.0.0.1) through an IP 'Port'. Specify an IP port number to activate this function. The default is an empty option field, meaning that no ASCII ephemeris output via IP port is generated. 1614 </p> 1615 <p> 1616 The source code for BNC comes with an example Perl script 'test_tcpip_client.pl' that allows you to read BNC's ephemeris ASCII output from the IP port. 1617 </p> 1618 1619 <p><h4>2.5.4 <a name="ephvers">Version - optional</h4></p> 1620 <p> 1621 Default format for RINEX Navigation files containing Broadcast Ephemeris is RINEX Version 2.11. Select 'Version 3' if you want to save the ephemeris data in RINEX Version 3.03 format. 1622 </p> 1623 <p> 1624 Note that this does not concern the Broadcast Ephemeris output through IP port, which is always in RINEX Version 3.03 format. 1625 </p> 1626 1627 <p><h4>2.5.5 <a name="ephversFile">Version 3 Filenames - optional</h4></p> 1628 <p> 1629 Tick check box 'Version 3 filenames' to let BNC create so-called extended filenames following the RINEX Version 3 standard. 1630 </p> 1631 <p>Default is an empty check box, meaning to still use filenames following the RINEX Version 2 standard although the file content is saved in RINEX Version 3 format. 1632 </p> 1633 1634 <p><img src="IMG/screenshot42.png"/></p> 1635 <p><u>Figure 9:</u> BNC converting Broadcast Ephemeris stream to RINEX Version 3 Navigation files</p> 1636 1637 <p><h4>2.6 <a name="reqc">RINEX Editing & QC</h4></p> 1638 <p> 1639 Besides stream conversion from RTCM to RINEX, BNC allows editing RINEX files or concatenate their content. RINEX Observation and Navigation files can be handled. BNC can also carry out a RINEX file Quality Check. In summary and besides Stream <u><b>T</b></u>ranslation, this functionality in BNC covers 1640 <ul> 1641 <li>File <u><b>E</b></u>diting and concatenation</li> 1642 <li>File <u><b>Q</b></u>uality <u><b>C</b></u>heck</li> 1643 <ul> 2000 1644 <li>Multipath analysis sky plots</li> 2001 1645 <li>Signal-to-noise ratio sky plots</li> … … 2004 1648 <li>PDOP plots</li> 2005 1649 </ul> 2006 </li> 2007 </ul> 2008 <p>and hence follows UNAVCO’s famous teqc program (see <a class="reference internal" href="bnchelp.html#estey1999a" id="id3">[7]</a>). The remarkable thing about BNC in this context is that it supports RINEX Version 3 under GNU General Public License with full GUI support and graphics output.</p> 2009 <div class="section" id="action-optional"> 2010 <h4>Action - optional<a class="headerlink" href="#action-optional" title="Permalink to this headline">¶</a></h4> 2011 <p>Select an action. Options are ‘Edit/Concatenate’ and ‘Analyze’.</p> 2012 <ul class="simple"> 2013 <li>Select ‘Edit/Concatenate’ if you want to edit RINEX file content according to options specified under ‘Set Edit Options’ or if you want to concatenate several RINEX files.</li> 2014 <li>Select ‘Analyze’ if you are interested in a quality check of your RINEX file content.</li> 2015 </ul> 2016 </div> 2017 <div class="section" id="input-files-mandatory"> 2018 <h4>Input Files - mandatory<a class="headerlink" href="#input-files-mandatory" title="Permalink to this headline">¶</a></h4> 2019 <p>Specify full path to input RINEX Observation file(s), and specify full path to input RINEX Navigation file(s). When specifying several input files, BNC will concatenate their contents. In case of RINEX Observation input files with different observation type header records, BNC will output only one set of adjusted observation type records in the RINEX header which fits to the whole file content. Note that you may specify several RINEX Version 2 Navigation files for GPS and GLONASS.</p> 2020 </div> 2021 <div class="section" id="output-files-optional-if-action-is-set-to-edit-concatenate"> 2022 <h4>Output Files - optional if ‘Action’ is set to ‘Edit/Concatenate’<a class="headerlink" href="#output-files-optional-if-action-is-set-to-edit-concatenate" title="Permalink to this headline">¶</a></h4> 2023 <p>If ‘Edit/Concatenate’ is selected, specifying the full path to output RINEX Observation file(s) and specifying the full path to output RINEX Navigation file(s) is optional. Default are empty option fields, meaning that no RINEX files will be saved on disk.</p> 2024 </div> 2025 <div class="section" id="id4"> 2026 <h4>Logfile - optional<a class="headerlink" href="#id4" title="Permalink to this headline">¶</a></h4> 2027 <p>Specify the name of a logfile to save information on RINEX file Editing/Concatenation or Analysis. Default is an empty option field, meaning that no logfile will be saved. Note that logfiles from analyzing RINEX files may become quite large. Hence, BNC provides an option ‘Summary only’ to limit logfile content to some essential information in case ‘Action’ is set to ‘Analyze’. The following is an example for a RINEX quality check analysis logfile:</p> 2028 <div class="highlight-console"><div class="highlight"><pre><span class="go">QC Format Version : 1.1</span> 2029 2030 <span class="go">Navigation File(s) : BRDC2520.15P</span> 2031 <span class="go">Ephemeris : 2985 OK 0 BAD</span> 2032 2033 <span class="go">Observation File : CUT02520.15O</span> 2034 <span class="go">RINEX Version : 3.03</span> 2035 <span class="go">Marker Name : CUT0</span> 2036 <span class="go">Marker Number : 59945M001</span> 2037 <span class="go">Receiver : TRIMBLE NETR9</span> 2038 <span class="go">Antenna : TRM59800.00 SCIS</span> 2039 <span class="go">Position XYZ : -2364337.2699 4870285.5624 -3360809.8398</span> 2040 <span class="go">Antenna dH/dE/dN : 0.0000 0.0000 0.0000</span> 2041 <span class="go">Start Time : 2015-09-09 13.04.50.0</span> 2042 <span class="go">End Time : 2015-09-09 23.59.58.0</span> 2043 <span class="go">Interval : 1</span> 2044 <span class="go">Navigation Systems : 6 C E G J R S</span> 2045 <span class="go">Observation Types C: C2I L2I D2I S2I C6I L6I S6I C7I L7I S7I</span> 2046 <span class="go">Observation Types E: C1X L1X D1X S1X C5X L5X S5X C7X L7X S7X C8X L8X S8X</span> 2047 <span class="go">Observation Types G: C1C L1C D1C S1C C2W L2W S2W C2X L2X S2X C5X L5X S5X</span> 2048 <span class="go">Observation Types J: C1C L1C D1C S1C C1X L1X S1X C1Z L1Z S1Z C2X L2X S2X C5X L5X S5X C6L L6L S6L</span> 2049 <span class="go">Observation Types R: C1C L1C D1C S1C C1P L1P S1P C2C L2C S2C C2P L2P S2P</span> 2050 <span class="go">Observation Types S: C1C L1C D1C S1C C5I L5I S5I</span> 2051 2052 <span class="go"> C: Satellites: 13</span> 2053 <span class="go"> C: Signals : 3 2I 6I 7I</span> 2054 2055 <span class="go"> C: 2I: Observations : 396567 ( 511017) 77.60 %</span> 2056 <span class="go"> C: 2I: Slips (file+found): 0 + 0</span> 2057 <span class="go"> C: 2I: Gaps : 8676</span> 2058 <span class="go"> C: 2I: Mean SNR : 41.7</span> 2059 <span class="go"> C: 2I: Mean Multipath : 0.42</span> 2060 2061 <span class="go"> C: 6I: Observations : 396233 ( 511017) 77.54 %</span> 2062 <span class="go"> C: 6I: Slips (file+found): 0 + 0</span> 2063 <span class="go"> C: 6I: Gaps : 8761</span> 2064 <span class="go"> C: 6I: Mean SNR : 44.4</span> 2065 <span class="go"> C: 6I: Mean Multipath : 0.00</span> 2066 2067 <span class="go"> C: 7I: Observations : 396233 ( 511017) 77.54 %</span> 2068 <span class="go"> C: 7I: Slips (file+found): 0 + 0</span> 2069 <span class="go"> C: 7I: Gaps : 8761</span> 2070 <span class="go"> C: 7I: Mean SNR : 43.6</span> 2071 <span class="go"> C: 7I: Mean Multipath : 0.30</span> 2072 2073 <span class="go"> E: Satellites: 5</span> 2074 <span class="go"> E: Signals : 4 1X 5X 7X 8X</span> 2075 2076 <span class="go"> E: 1X: Observations : 74468 ( 196545) 37.89 %</span> 2077 <span class="go"> E: 1X: Slips (file+found): 0 + 2</span> 2078 <span class="go"> E: 1X: Gaps : 2758</span> 2079 <span class="go"> E: 1X: Mean SNR : 45.1</span> 2080 <span class="go"> E: 1X: Mean Multipath : 0.37</span> 2081 2082 <span class="go"> E: 5X: Observations : 74422 ( 196545) 37.87 %</span> 2083 <span class="go"> E: 5X: Slips (file+found): 0 + 2</span> 2084 <span class="go"> E: 5X: Gaps : 2785</span> 2085 <span class="go"> E: 5X: Mean SNR : 45.2</span> 2086 <span class="go"> E: 5X: Mean Multipath : 0.32</span> 2087 2088 <span class="go"> E: 7X: Observations : 74422 ( 196545) 37.87 %</span> 2089 <span class="go"> E: 7X: Slips (file+found): 0 + 0</span> 2090 <span class="go"> E: 7X: Gaps : 2785</span> 2091 <span class="go"> E: 7X: Mean SNR : 44.2</span> 2092 <span class="go"> E: 7X: Mean Multipath : 0.00</span> 2093 2094 <span class="go"> E: 8X: Observations : 74429 ( 196545) 37.87 %</span> 2095 <span class="go"> E: 8X: Slips (file+found): 0 + 0</span> 2096 <span class="go"> E: 8X: Gaps : 2784</span> 2097 <span class="go"> E: 8X: Mean SNR : 49.9</span> 2098 <span class="go"> E: 8X: Mean Multipath : 0.00</span> 2099 2100 <span class="go"> G: Satellites: 28</span> 2101 <span class="go"> G: Signals : 4 1C 2W 2X 5X</span> 2102 2103 <span class="go"> G: 1C: Observations : 439952 ( 1100652) 39.97 %</span> 2104 <span class="go"> G: 1C: Slips (file+found): 0 + 21</span> 2105 <span class="go"> G: 1C: Gaps : 10901</span> 2106 <span class="go"> G: 1C: Mean SNR : 44.0</span> 2107 <span class="go"> G: 1C: Mean Multipath : 0.63</span> 2108 2109 <span class="go"> G: 2W: Observations : 422560 ( 1100652) 38.39 %</span> 2110 <span class="go"> G: 2W: Slips (file+found): 0 + 19</span> 2111 <span class="go"> G: 2W: Gaps : 11133</span> 2112 <span class="go"> G: 2W: Mean SNR : 31.1</span> 2113 <span class="go"> G: 2W: Mean Multipath : 0.42</span> 2114 2115 <span class="go"> G: 2X: Observations : 205305 ( 1100652) 18.65 %</span> 2116 <span class="go"> G: 2X: Slips (file+found): 0 + 10</span> 2117 <span class="go"> G: 2X: Gaps : 7269</span> 2118 <span class="go"> G: 2X: Mean SNR : 43.3</span> 2119 <span class="go"> G: 2X: Mean Multipath : 0.47</span> 2120 2121 <span class="go"> G: 5X: Observations : 120638 ( 1100652) 10.96 %</span> 2122 <span class="go"> G: 5X: Slips (file+found): 0 + 0</span> 2123 <span class="go"> G: 5X: Gaps : 3330</span> 2124 <span class="go"> G: 5X: Mean SNR : 49.9</span> 2125 <span class="go"> G: 5X: Mean Multipath : 0.00</span> 2126 2127 <span class="go"> J: Satellites: 1</span> 2128 <span class="go"> J: Signals : 6 1C 1X 1Z 2X 5X 6L</span> 2129 2130 <span class="go"> J: 1C: Observations : 38040 ( 39309) 96.77 %</span> 2131 <span class="go"> J: 1C: Slips (file+found): 0 + 0</span> 2132 <span class="go"> J: 1C: Gaps : 1003</span> 2133 <span class="go"> J: 1C: Mean SNR : 49.0</span> 2134 <span class="go"> J: 1C: Mean Multipath : 0.33</span> 2135 2136 <span class="go"> J: 1X: Observations : 38040 ( 39309) 96.77 %</span> 2137 <span class="go"> J: 1X: Slips (file+found): 0 + 0</span> 2138 <span class="go"> J: 1X: Gaps : 1003</span> 2139 <span class="go"> J: 1X: Mean SNR : 51.5</span> 2140 <span class="go"> J: 1X: Mean Multipath : 0.32</span> 2141 2142 <span class="go"> J: 1Z: Observations : 38040 ( 39309) 96.77 %</span> 2143 <span class="go"> J: 1Z: Slips (file+found): 0 + 0</span> 2144 <span class="go"> J: 1Z: Gaps : 1003</span> 2145 <span class="go"> J: 1Z: Mean SNR : 48.4</span> 2146 <span class="go"> J: 1Z: Mean Multipath : 0.40</span> 2147 2148 <span class="go"> J: 2X: Observations : 38040 ( 39309) 96.77 %</span> 2149 <span class="go"> J: 2X: Slips (file+found): 0 + 0</span> 2150 <span class="go"> J: 2X: Gaps : 1003</span> 2151 <span class="go"> J: 2X: Mean SNR : 48.7</span> 2152 <span class="go"> J: 2X: Mean Multipath : 0.31</span> 2153 2154 <span class="go"> J: 5X: Observations : 38040 ( 39309) 96.77 %</span> 2155 <span class="go"> J: 5X: Slips (file+found): 0 + 0</span> 2156 <span class="go"> J: 5X: Gaps : 1003</span> 2157 <span class="go"> J: 5X: Mean SNR : 53.0</span> 2158 <span class="go"> J: 5X: Mean Multipath : 0.00</span> 2159 2160 <span class="go"> J: 6L: Observations : 38040 ( 39309) 96.77 %</span> 2161 <span class="go"> J: 6L: Slips (file+found): 0 + 0</span> 2162 <span class="go"> J: 6L: Gaps : 1003</span> 2163 <span class="go"> J: 6L: Mean SNR : 50.6</span> 2164 <span class="go"> J: 6L: Mean Multipath : 0.00</span> 2165 2166 <span class="go"> R: Satellites: 23</span> 2167 <span class="go"> R: Signals : 4 1C 1P 2C 2P</span> 2168 2169 <span class="go"> R: 1C: Observations : 323918 ( 904107) 35.83 %</span> 2170 <span class="go"> R: 1C: Slips (file+found): 0 + 44</span> 2171 <span class="go"> R: 1C: Gaps : 7295</span> 2172 <span class="go"> R: 1C: Mean SNR : 44.9</span> 2173 <span class="go"> R: 1C: Mean Multipath : 0.77</span> 2174 2175 <span class="go"> R: 1P: Observations : 323761 ( 904107) 35.81 %</span> 2176 <span class="go"> R: 1P: Slips (file+found): 0 + 44</span> 2177 <span class="go"> R: 1P: Gaps : 7305</span> 2178 <span class="go"> R: 1P: Mean SNR : 43.4</span> 2179 <span class="go"> R: 1P: Mean Multipath : 0.58</span> 2180 2181 <span class="go"> R: 2C: Observations : 323521 ( 904107) 35.78 %</span> 2182 <span class="go"> R: 2C: Slips (file+found): 0 + 44</span> 2183 <span class="go"> R: 2C: Gaps : 7305</span> 2184 <span class="go"> R: 2C: Mean SNR : 40.8</span> 2185 <span class="go"> R: 2C: Mean Multipath : 0.56</span> 2186 2187 <span class="go"> R: 2P: Observations : 321751 ( 904107) 35.59 %</span> 2188 <span class="go"> R: 2P: Slips (file+found): 0 + 37</span> 2189 <span class="go"> R: 2P: Gaps : 7317</span> 2190 <span class="go"> R: 2P: Mean SNR : 40.3</span> 2191 <span class="go"> R: 2P: Mean Multipath : 0.49</span> 2192 2193 <span class="go"> S: Satellites: 4</span> 2194 <span class="go"> S: Signals : 2 1C 5I</span> 2195 2196 <span class="go"> S: 1C: Observations : 152158 ( 157236) 96.77 %</span> 2197 <span class="go"> S: 1C: Slips (file+found): 0 + 1</span> 2198 <span class="go"> S: 1C: Gaps : 4013</span> 2199 <span class="go"> S: 1C: Mean SNR : 40.4</span> 2200 <span class="go"> S: 1C: Mean Multipath : 0.75</span> 2201 2202 <span class="go"> S: 5I: Observations : 76078 ( 157236) 48.38 %</span> 2203 <span class="go"> S: 5I: Slips (file+found): 0 + 1</span> 2204 <span class="go"> S: 5I: Gaps : 2007</span> 2205 <span class="go"> S: 5I: Mean SNR : 44.1</span> 2206 <span class="go"> S: 5I: Mean Multipath : 0.47</span> 2207 2208 <span class="gp">></span> <span class="m">2015</span> <span class="m">09</span> <span class="m">09</span> <span class="m">13</span> <span class="m">04</span> 50.0000000 <span class="m">23</span> 1.2 2209 <span class="go">R09 1.46 36.90 8 L1C s. 34.3 C1C . 0.00 L1P s. 33.2 C1P . 0.00 L2C s. 26.4 C2C . 0.00 L2P s. 22.1 C2P . 0.00</span> 2210 <span class="go">R10 49.67 46.84 8 L1C .. 52.3 C1C . 0.62 L1P .. 51.2 C1P . 0.52 L2C .. 42.9 C2C . 0.51 L2P .. 42.4 C2P . 0.40</span> 2211 <span class="go">R11 68.25 -168.71 8 L1C .. 52.1 C1C . 0.32 L1P .. 50.2 C1P . 0.38 L2C .. 44.6 C2C . 0.40 L2P .. 43.4 C2P . 0.36</span> 2212 <span class="go">R12 15.62 -148.75 8 L1C .. 40.6 C1C . 0.94 L1P .. 38.9 C1P . 0.51 L2C .. 41.1 C2C . 0.61 L2P .. 40.7 C2P . 0.45</span> 2213 <span class="go">R20 26.26 150.44 8 L1C .. 40.2 C1C . 0.90 L1P .. 38.8 C1P . 0.63 L2C .. 44.8 C2C . 0.57 L2P .. 44.4 C2P . 0.46</span> 2214 <span class="go">R21 71.53 -163.80 8 L1C .. 53.3 C1C . 0.32 L1P .. 51.6 C1P . 0.40 L2C .. 50.3 C2C . 0.43 L2P .. 49.3 C2P . 0.39</span> 2215 <span class="go">R22 40.38 -54.63 8 L1C .. 50.0 C1C . 0.44 L1P .. 48.7 C1P . 0.46 L2C .. 47.1 C2C . 0.49 L2P .. 46.7 C2P . 0.44</span> 2216 <span class="go">E11 68.80 -54.74 8 L1X .. 49.9 C1X . 0.22 L5X .. 49.8 C5X . 0.19 L7X .. 49.1 C7X . 0.00 L8X .. 55.3 C8X . 0.00</span> 2217 <span class="go">E12 58.84 141.76 8 L1X .. 50.0 C1X . 0.14 L5X .. 49.4 C5X . 0.21 L7X .. 48.2 C7X . 0.00 L8X .. 55.1 C8X . 0.00</span> 2218 <span class="go">E18 0.00 0.00 8 L1X .. 53.5 C1X . 0.11 L5X .. 51.0 C5X . 0.15 L7X .. 50.1 C7X . 0.00 L8X .. 56.5 C8X . 0.00</span> 2219 <span class="go">J01 21.34 23.40 12 L1C .. 41.2 C1C . 0.59 L1X .. 43.2 C1X . 0.38 L1Z .. 41.3 C1Z . 0.58 L2X .. 40.0 C2X . 0.47 L5X .. 44.7 C5X . 0.00 L6L .. 41.6 C6L . 0.00</span> 2220 <span class="go">S27 16.04 -73.53 4 L1C .. 37.8 C1C . 0.81 L5I .. 39.9 C5I . 0.41</span> 2221 <span class="go">S28 38.63 -50.63 4 L1C .. 45.5 C1C . 0.49 L5I .. 47.4 C5I . 0.48</span> 2222 <span class="go">S29 41.28 46.44 2 L1C .. 43.2 C1C . 0.00</span> 2223 <span class="go">S37 41.28 46.44 2 L1C .. 42.1 C1C . 0.00</span> 2224 <span class="go">C01 45.38 41.07 6 L2I .. 42.1 C2I . 0.20 L6I .. 45.1 C6I . 0.00 L7I .. 46.0 C7I . 0.22</span> 2225 <span class="go">C02 36.53 -53.83 6 L2I .. 37.1 C2I . 0.31 L6I .. 42.6 C6I . 0.00 L7I .. 41.3 C7I . 0.24</span> 2226 <span class="go">C03 53.80 -10.40 6 L2I .. 42.8 C2I . 0.19 L6I .. 47.3 C6I . 0.00 L7I .. 46.0 C7I . 0.21</span> 2227 <span class="go">C04 30.52 62.20 6 L2I .. 37.3 C2I . 0.33 L6I .. 42.4 C6I . 0.00 L7I .. 41.3 C7I . 0.25</span> 2228 <span class="go">C05 19.48 -71.66 6 L2I .. 36.6 C2I . 0.40 L6I .. 40.0 C6I . 0.00 L7I .. 38.5 C7I . 0.37</span> 2229 <span class="go">C07 63.30 26.64 6 L2I .. 48.5 C2I . 0.41 L6I .. 49.3 C6I . 0.00 L7I .. 48.1 C7I . 0.25</span> 2230 <span class="go">C08 76.83 -113.07 6 L2I .. 48.9 C2I . 0.22 L6I .. 50.5 C6I . 0.00 L7I .. 48.7 C7I . 0.24</span> 2231 <span class="go">C10 83.00 -66.65 6 L2I .. 48.8 C2I . 0.20 L6I .. 50.0 C6I . 0.00 L7I .. 48.1 C7I . 0.23</span> 2232 <span class="gp">></span> <span class="m">2015</span> <span class="m">09</span> <span class="m">09</span> <span class="m">13</span> <span class="m">04</span> 52.0000000 <span class="m">33</span> 0.9 2233 <span class="go">...</span> 2234 </pre></div> 2235 </div> 2236 <p>Note that in addition to cycle slips recorded in the RINEX ‘file’, cycle slips identified by BNC are reported as ‘found’.</p> 2237 </div> 2238 <div class="section" id="plots-for-signals-mandatory-if-action-is-set-to-analyze"> 2239 <h4>Plots for Signals - mandatory if ‘Action’ is set to ‘Analyze’<a class="headerlink" href="#plots-for-signals-mandatory-if-action-is-set-to-analyze" title="Permalink to this headline">¶</a></h4> 2240 <p>Multipath and signal-to-noise sky plots as well as plots for satellite availability, elevation and PDOP are produced <a class="reference internal" href="#fig-13"><span class="std std-numref">(Fig. 11</span></a>, <a class="reference internal" href="#fig-14"><span class="std std-numref">12</span></a>, <a class="reference internal" href="#fig-15"><span class="std std-numref">13)</span></a> per GNSS system and frequency with the multipath analysis based on CnC observation types (n = band / frequency). The ‘Plots for signals’ option lets you exactly specify the observation signals to be used for that and also enables the plot production. You can specify the navigation system (C = BDS, E = Galileo, G = GPS, J = QZSS, R = GLONASS, S = SBAS), the frequency, and the tracking mode or channel as defined in RINEX Version 3. Specifications for frequency and tracking mode or channel must be separated by ampersand character ‘&’. Specifications for each navigation systems must be separated by blank character ‘ ‘. The following string is an example for option field ‘Plots of signals’:</p> 2241 <div class="highlight-console"><div class="highlight"><pre><span class="go">C:2&7 E:1&5 G:1&2 J:1&2 R:1&2 S:1&5</span> 2242 </pre></div> 2243 </div> 2244 <p>This default configuration will present:</p> 2245 <ul class="simple"> 1650 </ul> 1651 and hence follows UNAVCO's famous TEQC program (see Estey and Meertens 1999). The remarkable thing about BNC in this context is that it supports RINEX Version 3 under GNU General Public License with full GUI support and graphics output. 1652 </p> 1653 1654 <p><h4>2.6.1 <a name="reqcact">Action - optional</h4></p> 1655 <p>Select an action. Options are 'Edit/Concatenate' and 'Analyze'. 1656 <ul> 1657 <li>Select 'Edit/Concatenate' if you want to edit RINEX file content according to options specified under 'Set Edit Options' or if you want to concatenate several RINEX files.</li> 1658 <li>Select 'Analyze' if you are interested in a quality check of your RINEX file content.</li> 1659 </ul> 1660 </p> 1661 1662 <p><h4>2.6.2 <a name="reqcinp">Input Files - mandatory</h4></p> 1663 <p> 1664 Specify full path to input RINEX Observation file(s), and<br> 1665 specify full path to input RINEX Navigation file(s). 1666 </p> 1667 <p> 1668 When specifying several input files, BNC will concatenate their contents. In case of RINEX Observation input files with different observation type header records, BNC will output only one set of adjusted observation type records in the RINEX header which fits to the whole file content. 1669 </p> 1670 <p> 1671 Note that you may specify several RINEX Version 2 Navigation files for GPS and GLONASS. 1672 </p> 1673 1674 <p><h4>2.6.3 <a name="reqcout">Output Files - optional if 'Action' is set to 'Edit/Concatenate'</h4></p> 1675 <p> 1676 If 'Edit/Concatenate' is selected, specifying the full path to output RINEX Observation file(s) and specifying the full path to output RINEX Navigation file(s) is optional. Default are empty option fields, meaning that no RINEX files will be saved on disk. 1677 </p> 1678 1679 <p><h4>2.6.4 <a name="reqclog">Logfile - optional</h4></p> 1680 <p> 1681 Specify the name of a logfile to save information on RINEX file Editing/Concatenation or Analysis. Default is an empty option field, meaning that no logfile will be saved. 1682 </p> 1683 1684 <p> 1685 Note that logfiles from analyzing RINEX files may become quite large. Hence, BNC provides an option 'Summary only' to limit logfile content to some essential information in case 'Action' is set to 'Analyze'. The following is an example for a RINEX quality check analysis logfile: 1686 <pre> 1687 QC Format Version : 1.1 1688 1689 Navigation File(s) : BRDC2520.15P 1690 Ephemeris : 2985 OK 0 BAD 1691 1692 Observation File : CUT02520.15O 1693 RINEX Version : 3.03 1694 Marker Name : CUT0 1695 Marker Number : 59945M001 1696 Receiver : TRIMBLE NETR9 1697 Antenna : TRM59800.00 SCIS 1698 Position XYZ : -2364337.2699 4870285.5624 -3360809.8398 1699 Antenna dH/dE/dN : 0.0000 0.0000 0.0000 1700 Start Time : 2015-09-09 13.04.50.0 1701 End Time : 2015-09-09 23.59.58.0 1702 Interval : 1 1703 Navigation Systems : 6 C E G J R S 1704 Observation Types C: C2I L2I D2I S2I C6I L6I S6I C7I L7I S7I 1705 Observation Types E: C1X L1X D1X S1X C5X L5X S5X C7X L7X S7X C8X L8X S8X 1706 Observation Types G: C1C L1C D1C S1C C2W L2W S2W C2X L2X S2X C5X L5X S5X 1707 Observation Types J: C1C L1C D1C S1C C1X L1X S1X C1Z L1Z S1Z C2X L2X S2X C5X L5X S5X C6L L6L S6L 1708 Observation Types R: C1C L1C D1C S1C C1P L1P S1P C2C L2C S2C C2P L2P S2P 1709 Observation Types S: C1C L1C D1C S1C C5I L5I S5I 1710 1711 C: Satellites: 13 1712 C: Signals : 3 2I 6I 7I 1713 1714 C: 2I: Observations : 396567 ( 511017) 77.60 % 1715 C: 2I: Slips (file+found): 0 + 0 1716 C: 2I: Gaps : 8676 1717 C: 2I: Mean SNR : 41.7 1718 C: 2I: Mean Multipath : 0.42 1719 1720 C: 6I: Observations : 396233 ( 511017) 77.54 % 1721 C: 6I: Slips (file+found): 0 + 0 1722 C: 6I: Gaps : 8761 1723 C: 6I: Mean SNR : 44.4 1724 C: 6I: Mean Multipath : 0.00 1725 1726 C: 7I: Observations : 396233 ( 511017) 77.54 % 1727 C: 7I: Slips (file+found): 0 + 0 1728 C: 7I: Gaps : 8761 1729 C: 7I: Mean SNR : 43.6 1730 C: 7I: Mean Multipath : 0.30 1731 1732 E: Satellites: 5 1733 E: Signals : 4 1X 5X 7X 8X 1734 1735 E: 1X: Observations : 74468 ( 196545) 37.89 % 1736 E: 1X: Slips (file+found): 0 + 2 1737 E: 1X: Gaps : 2758 1738 E: 1X: Mean SNR : 45.1 1739 E: 1X: Mean Multipath : 0.37 1740 1741 E: 5X: Observations : 74422 ( 196545) 37.87 % 1742 E: 5X: Slips (file+found): 0 + 2 1743 E: 5X: Gaps : 2785 1744 E: 5X: Mean SNR : 45.2 1745 E: 5X: Mean Multipath : 0.32 1746 1747 E: 7X: Observations : 74422 ( 196545) 37.87 % 1748 E: 7X: Slips (file+found): 0 + 0 1749 E: 7X: Gaps : 2785 1750 E: 7X: Mean SNR : 44.2 1751 E: 7X: Mean Multipath : 0.00 1752 1753 E: 8X: Observations : 74429 ( 196545) 37.87 % 1754 E: 8X: Slips (file+found): 0 + 0 1755 E: 8X: Gaps : 2784 1756 E: 8X: Mean SNR : 49.9 1757 E: 8X: Mean Multipath : 0.00 1758 1759 G: Satellites: 28 1760 G: Signals : 4 1C 2W 2X 5X 1761 1762 G: 1C: Observations : 439952 ( 1100652) 39.97 % 1763 G: 1C: Slips (file+found): 0 + 21 1764 G: 1C: Gaps : 10901 1765 G: 1C: Mean SNR : 44.0 1766 G: 1C: Mean Multipath : 0.63 1767 1768 G: 2W: Observations : 422560 ( 1100652) 38.39 % 1769 G: 2W: Slips (file+found): 0 + 19 1770 G: 2W: Gaps : 11133 1771 G: 2W: Mean SNR : 31.1 1772 G: 2W: Mean Multipath : 0.42 1773 1774 G: 2X: Observations : 205305 ( 1100652) 18.65 % 1775 G: 2X: Slips (file+found): 0 + 10 1776 G: 2X: Gaps : 7269 1777 G: 2X: Mean SNR : 43.3 1778 G: 2X: Mean Multipath : 0.47 1779 1780 G: 5X: Observations : 120638 ( 1100652) 10.96 % 1781 G: 5X: Slips (file+found): 0 + 0 1782 G: 5X: Gaps : 3330 1783 G: 5X: Mean SNR : 49.9 1784 G: 5X: Mean Multipath : 0.00 1785 1786 J: Satellites: 1 1787 J: Signals : 6 1C 1X 1Z 2X 5X 6L 1788 1789 J: 1C: Observations : 38040 ( 39309) 96.77 % 1790 J: 1C: Slips (file+found): 0 + 0 1791 J: 1C: Gaps : 1003 1792 J: 1C: Mean SNR : 49.0 1793 J: 1C: Mean Multipath : 0.33 1794 1795 J: 1X: Observations : 38040 ( 39309) 96.77 % 1796 J: 1X: Slips (file+found): 0 + 0 1797 J: 1X: Gaps : 1003 1798 J: 1X: Mean SNR : 51.5 1799 J: 1X: Mean Multipath : 0.32 1800 1801 J: 1Z: Observations : 38040 ( 39309) 96.77 % 1802 J: 1Z: Slips (file+found): 0 + 0 1803 J: 1Z: Gaps : 1003 1804 J: 1Z: Mean SNR : 48.4 1805 J: 1Z: Mean Multipath : 0.40 1806 1807 J: 2X: Observations : 38040 ( 39309) 96.77 % 1808 J: 2X: Slips (file+found): 0 + 0 1809 J: 2X: Gaps : 1003 1810 J: 2X: Mean SNR : 48.7 1811 J: 2X: Mean Multipath : 0.31 1812 1813 J: 5X: Observations : 38040 ( 39309) 96.77 % 1814 J: 5X: Slips (file+found): 0 + 0 1815 J: 5X: Gaps : 1003 1816 J: 5X: Mean SNR : 53.0 1817 J: 5X: Mean Multipath : 0.00 1818 1819 J: 6L: Observations : 38040 ( 39309) 96.77 % 1820 J: 6L: Slips (file+found): 0 + 0 1821 J: 6L: Gaps : 1003 1822 J: 6L: Mean SNR : 50.6 1823 J: 6L: Mean Multipath : 0.00 1824 1825 R: Satellites: 23 1826 R: Signals : 4 1C 1P 2C 2P 1827 1828 R: 1C: Observations : 323918 ( 904107) 35.83 % 1829 R: 1C: Slips (file+found): 0 + 44 1830 R: 1C: Gaps : 7295 1831 R: 1C: Mean SNR : 44.9 1832 R: 1C: Mean Multipath : 0.77 1833 1834 R: 1P: Observations : 323761 ( 904107) 35.81 % 1835 R: 1P: Slips (file+found): 0 + 44 1836 R: 1P: Gaps : 7305 1837 R: 1P: Mean SNR : 43.4 1838 R: 1P: Mean Multipath : 0.58 1839 1840 R: 2C: Observations : 323521 ( 904107) 35.78 % 1841 R: 2C: Slips (file+found): 0 + 44 1842 R: 2C: Gaps : 7305 1843 R: 2C: Mean SNR : 40.8 1844 R: 2C: Mean Multipath : 0.56 1845 1846 R: 2P: Observations : 321751 ( 904107) 35.59 % 1847 R: 2P: Slips (file+found): 0 + 37 1848 R: 2P: Gaps : 7317 1849 R: 2P: Mean SNR : 40.3 1850 R: 2P: Mean Multipath : 0.49 1851 1852 S: Satellites: 4 1853 S: Signals : 2 1C 5I 1854 1855 S: 1C: Observations : 152158 ( 157236) 96.77 % 1856 S: 1C: Slips (file+found): 0 + 1 1857 S: 1C: Gaps : 4013 1858 S: 1C: Mean SNR : 40.4 1859 S: 1C: Mean Multipath : 0.75 1860 1861 S: 5I: Observations : 76078 ( 157236) 48.38 % 1862 S: 5I: Slips (file+found): 0 + 1 1863 S: 5I: Gaps : 2007 1864 S: 5I: Mean SNR : 44.1 1865 S: 5I: Mean Multipath : 0.47 1866 1867 > 2015 09 09 13 04 50.0000000 23 1.2 1868 R09 1.46 36.90 8 L1C s. 34.3 C1C . 0.00 L1P s. 33.2 C1P . 0.00 L2C s. 26.4 C2C . 0.00 L2P s. 22.1 C2P . 0.00 1869 R10 49.67 46.84 8 L1C .. 52.3 C1C . 0.62 L1P .. 51.2 C1P . 0.52 L2C .. 42.9 C2C . 0.51 L2P .. 42.4 C2P . 0.40 1870 R11 68.25 -168.71 8 L1C .. 52.1 C1C . 0.32 L1P .. 50.2 C1P . 0.38 L2C .. 44.6 C2C . 0.40 L2P .. 43.4 C2P . 0.36 1871 R12 15.62 -148.75 8 L1C .. 40.6 C1C . 0.94 L1P .. 38.9 C1P . 0.51 L2C .. 41.1 C2C . 0.61 L2P .. 40.7 C2P . 0.45 1872 R20 26.26 150.44 8 L1C .. 40.2 C1C . 0.90 L1P .. 38.8 C1P . 0.63 L2C .. 44.8 C2C . 0.57 L2P .. 44.4 C2P . 0.46 1873 R21 71.53 -163.80 8 L1C .. 53.3 C1C . 0.32 L1P .. 51.6 C1P . 0.40 L2C .. 50.3 C2C . 0.43 L2P .. 49.3 C2P . 0.39 1874 R22 40.38 -54.63 8 L1C .. 50.0 C1C . 0.44 L1P .. 48.7 C1P . 0.46 L2C .. 47.1 C2C . 0.49 L2P .. 46.7 C2P . 0.44 1875 E11 68.80 -54.74 8 L1X .. 49.9 C1X . 0.22 L5X .. 49.8 C5X . 0.19 L7X .. 49.1 C7X . 0.00 L8X .. 55.3 C8X . 0.00 1876 E12 58.84 141.76 8 L1X .. 50.0 C1X . 0.14 L5X .. 49.4 C5X . 0.21 L7X .. 48.2 C7X . 0.00 L8X .. 55.1 C8X . 0.00 1877 E18 0.00 0.00 8 L1X .. 53.5 C1X . 0.11 L5X .. 51.0 C5X . 0.15 L7X .. 50.1 C7X . 0.00 L8X .. 56.5 C8X . 0.00 1878 J01 21.34 23.40 12 L1C .. 41.2 C1C . 0.59 L1X .. 43.2 C1X . 0.38 L1Z .. 41.3 C1Z . 0.58 L2X .. 40.0 C2X . 0.47 L5X .. 44.7 C5X . 0.00 L6L .. 41.6 C6L . 0.00 1879 S27 16.04 -73.53 4 L1C .. 37.8 C1C . 0.81 L5I .. 39.9 C5I . 0.41 1880 S28 38.63 -50.63 4 L1C .. 45.5 C1C . 0.49 L5I .. 47.4 C5I . 0.48 1881 S29 41.28 46.44 2 L1C .. 43.2 C1C . 0.00 1882 S37 41.28 46.44 2 L1C .. 42.1 C1C . 0.00 1883 C01 45.38 41.07 6 L2I .. 42.1 C2I . 0.20 L6I .. 45.1 C6I . 0.00 L7I .. 46.0 C7I . 0.22 1884 C02 36.53 -53.83 6 L2I .. 37.1 C2I . 0.31 L6I .. 42.6 C6I . 0.00 L7I .. 41.3 C7I . 0.24 1885 C03 53.80 -10.40 6 L2I .. 42.8 C2I . 0.19 L6I .. 47.3 C6I . 0.00 L7I .. 46.0 C7I . 0.21 1886 C04 30.52 62.20 6 L2I .. 37.3 C2I . 0.33 L6I .. 42.4 C6I . 0.00 L7I .. 41.3 C7I . 0.25 1887 C05 19.48 -71.66 6 L2I .. 36.6 C2I . 0.40 L6I .. 40.0 C6I . 0.00 L7I .. 38.5 C7I . 0.37 1888 C07 63.30 26.64 6 L2I .. 48.5 C2I . 0.41 L6I .. 49.3 C6I . 0.00 L7I .. 48.1 C7I . 0.25 1889 C08 76.83 -113.07 6 L2I .. 48.9 C2I . 0.22 L6I .. 50.5 C6I . 0.00 L7I .. 48.7 C7I . 0.24 1890 C10 83.00 -66.65 6 L2I .. 48.8 C2I . 0.20 L6I .. 50.0 C6I . 0.00 L7I .. 48.1 C7I . 0.23 1891 > 2015 09 09 13 04 52.0000000 33 0.9 1892 ... 1893 </pre> 1894 </p> 1895 <p> 1896 Note that in addition to cycle slips recorded in the RINEX 'file', cycle slips identified by BNC are reported as 'found'. 1897 </p> 1898 1899 <p><h4>2.6.5 <a name="reqcplots">Plots for Signals - mandatory if 'Action' is set to 'Analyze'</h4></p> 1900 <p> 1901 Multipath and signal-to-noise sky plots as well as plots for satellite availability, elevation and PDOP are produced per GNSS system and frequency with the multipath analysis based on CnC observation types (n = band / frequency). The 'Plots for signals' option lets you exactly specify the observation signals to be used for that and also enables the plot production. You can specify the navigation system (C = BDS, E = Galileo, G = GPS, J = QZSS, R = GLONASS, S = SBAS), the frequency, and the tracking mode or channel as defined in RINEX Version 3. Specifications for frequency and tracking mode or channel must be separated by ampersand character '&'. Specifications for each navigation systems must be separated by blank character ' '. The following string is an example for option field 'Plots of signals': 1902 <br> 1903 <pre> 1904 C:2&7 E:1&5 G:1&2 J:1&2 R:1&2 S:1&5 1905 </pre> 1906 This default configuration will present: 1907 <ul> 2246 1908 <li>BDS plots for L2 and L7,</li> 2247 1909 <li>Galileo plots for L1 and L5,</li> … … 2251 1913 <li>SBAS plots for L1 and L5.</li> 2252 1914 </ul> 2253 </div> 2254 <div class="section" id="directory-for-plots-optional-if-action-is-set-to-analyze"> 2255 <h4>Directory for Plots - optional if ‘Action’ is set to ‘Analyze’<a class="headerlink" href="#directory-for-plots-optional-if-action-is-set-to-analyze" title="Permalink to this headline">¶</a></h4> 2256 <p>If ‘Analyze’ <a class="reference internal" href="#fig-12"><span class="std std-numref">(see Fig. 16)</span></a> is selected, specifying the path to a directory where plot files will be saved is optional. Filenames will be composed from the RINEX input filename(s) plus suffix ‘PNG’ to indicate the plot file format in use. Default is an empty option field, meaning that plots will not be saved on disk.</p> 2257 </div> 2258 <div class="section" id="set-edit-options-mandatory-if-action-is-set-to-edit-concatenate"> 2259 <h4>Set Edit Options - mandatory if ‘Action’ is set to ‘Edit/Concatenate’<a class="headerlink" href="#set-edit-options-mandatory-if-action-is-set-to-edit-concatenate" title="Permalink to this headline">¶</a></h4> 2260 <p>Once the ‘Edit/Concatenate’ action is selected, you have to ‘Set Edit Options’ <a class="reference internal" href="#fig-10"><span class="std std-numref">(see Fig. 14)</span></a>. BNC lets you specify the RINEX version, a signal priority list when mapping RINEX Version 3 to Version 2, the sampling interval, begin and end of file, operator, observation types, comment lines, and marker, antenna, receiver details. Note that some of the specifications for editing and concatenation <a class="reference internal" href="#fig-11"><span class="std std-numref">(see Fig. 15)</span></a> are only meaningful for RINEX Observation files but not for RINEX Navigation files.</p> 2261 <p>A note on converting RINEX Version 3 to RINEX Version 2 and vice versa:</p> 2262 <ul> 2263 <li><p class="first">The RINEX Version 2 format ignores signal generation attributes. Therefore, when converting RINEX Version 3 to Version 2 Observation files, BNC is forced to somehow map signals with attributes to signals without attributes although this cannot be done in one-to-one correspondence. Hence we introduce a ‘Version 2 Signal Priority’ list of attributes (characters, forming a string) for mapping Version 3 to Version 2, see details in section ‘RINEX Observations/Version 2’. Signal priorities can be specified as equal for all systems, as system specific or as system and frequency specific. For example:</p> 2264 <ul class="simple"> 2265 <li>‘<a href="#id76"><span class="problematic" id="id77">CWPX_</span></a>?’ (General signal priorities valid for all GNSS)</li> 2266 <li>‘C:IQX I:ABCX’ (System specific signal priorities for BDS and IRNSS)</li> 2267 <li>‘G:12&PWCSLXYN G:5&IQX R:12&PC R:3&IQX’ (System and frequency specific signal priorities)</li> 2268 </ul> 2269 <p>The default ‘Signal priority’ list is defined as follows: ‘G:12&PWCSLXYN G:5&IQX R:12&PC R:3&IQX E:16&BCX E:578&IQX J:1&SLXCZ J:26&SLX J:5&IQX C:IQX I:ABCX S:1&C S:5&IQX’</p> 2270 </li> 2271 <li><p class="first">When converting RINEX Version 2 to Version 3 Observation files, the tracking mode or channel information in the (last character out of the 3-character) observation code is left blank if unknown. This is a compromise, knowing that it is not in accordance with the RINEX Version 3 documentation.</p> 2272 </li> 2273 </ul> 2274 <p>Optionally you may specify a ‘RUN BY’ string to be included in the emerging new RINEX file header. Default is an empty option field, meaning the operator’s ID is automatically used as ‘RUN BY’ string.</p> 2275 <p>You can specify a list of observation codes in field ‘Use Obs. Types’ to limit the output file content to specific observation codes. GNSS system characters in that list are followed by a colon and a 2- or 3-character observation code. A 2-character observation code would mean that all available tracking modes of the affected observation type and frequency will be accepted as part of the RINEX output file. Observation codes are separated by a blank character. Default is an empty option field, meaning that any input observation code will become part of the RINEX output file.</p> 2276 <p>Specifying comment line text to be added to the emerging new RINEX file header is another option. Any introduction of a newline through ‘\n’ in this enforces the beginning of a further comment line. Comment lines will be added to the header immediately after the ‘PGM / RUN BY / DATE’ record. Default is an empty option field, meaning that no additional comment line will be added to the RINEX header.</p> 2277 <p>If you specify a ‘New’ but no ‘Old’ marker/antenna/receiver name, the corresponding data field in the emerging new RINEX Observation file will be filled accordingly. If you in addition specify an ‘Old’ marker/antenna/receiver name, the corresponding data field in the emerging new RINEX Observation file will only be filled accordingly where ‘Old’ specifications match existing file content.</p> 2278 <div class="figure" id="id27"> 2279 <span id="fig-13"></span><a class="reference internal image-reference" href="_images/fig_13.png"><img alt="_images/fig_13.png" src="_images/fig_13.png" style="width: 961.2px; height: 629.1px;" /></a> 2280 <p class="caption"><span class="caption-number">Fig. 11 </span><span class="caption-text">Example for satellite availability, elevation and PDOP plots as a result of a RINEX Quality Check analysis with BNC</span></p> 2281 </div> 2282 <div class="figure" id="id28"> 2283 <span id="fig-14"></span><a class="reference internal image-reference" href="_images/fig_14.png"><img alt="_images/fig_14.png" src="_images/fig_14.png" style="width: 920.7px; height: 593.1px;" /></a> 2284 <p class="caption"><span class="caption-number">Fig. 12 </span><span class="caption-text">Sky plot examples for multipath, part of RINEX quality check analysis with BNC</span></p> 2285 </div> 2286 <div class="figure" id="id29"> 2287 <span id="fig-15"></span><a class="reference internal image-reference" href="_images/fig_15.png"><img alt="_images/fig_15.png" src="_images/fig_15.png" style="width: 918.0px; height: 589.5px;" /></a> 2288 <p class="caption"><span class="caption-number">Fig. 13 </span><span class="caption-text">Sky plot examples for signal-to-noise ratio, part of RINEX quality check analysis with BNC</span></p> 2289 </div> 2290 <div class="figure" id="id30"> 2291 <span id="fig-10"></span><a class="reference internal image-reference" href="_images/fig_10.png"><img alt="_images/fig_10.png" src="_images/fig_10.png" style="width: 680.4px; height: 522.0px;" /></a> 2292 <p class="caption"><span class="caption-number">Fig. 14 </span><span class="caption-text">Example for BNC’s ‘RINEX Editing Options’ window</span></p> 2293 </div> 2294 <div class="figure" id="id31"> 2295 <span id="fig-11"></span><a class="reference internal image-reference" href="_images/fig_11.png"><img alt="_images/fig_11.png" src="_images/fig_11.png" style="width: 900.9px; height: 648.9px;" /></a> 2296 <p class="caption"><span class="caption-number">Fig. 15 </span><span class="caption-text">Example for RINEX file concatenation with BNC</span></p> 2297 </div> 2298 <div class="figure" id="id32"> 2299 <span id="fig-12"></span><a class="reference internal image-reference" href="_images/fig_12.png"><img alt="_images/fig_12.png" src="_images/fig_12.png" style="width: 900.0px; height: 649.8000000000001px;" /></a> 2300 <p class="caption"><span class="caption-number">Fig. 16 </span><span class="caption-text">Example for creating RINEX quality check analysis graphics output with BNC</span></p> 2301 </div> 2302 </div> 2303 <div class="section" id="command-line-no-window-optional"> 2304 <span id="index-18"></span><h4>Command Line, No Window - optional<a class="headerlink" href="#command-line-no-window-optional" title="Permalink to this headline">¶</a></h4> 2305 <p>BNC applies options from the configuration file but allows updating every one of them on the command line while the content of the configuration file remains unchanged, see section on ‘Command Line Options’. Note the following syntax for Command Line Interface (CLI) options:</p> 2306 <div class="highlight-console"><div class="highlight"><pre><span class="go">--key <keyName> <keyValue></span> 2307 </pre></div> 2308 </div> 2309 <p>Parameter <keyName> stands for the name of an option contained in the configuration file and <keyValue> stands for the value you want to assign to it. This functionality may be helpful in the ‘RINEX Editing & QC’ context when running BNC on a routine basis for maintaining a RINEX file archive. The following example for a Linux platform calls BNC in ‘no window’ mode with a local configuration file ‘rnx.conf’ for concatenating four 15min RINEX files from station TLSE residing in the working directory to produce an hourly RINEX Version 3 file with 30 seconds sampling interval:</p> 2310 <div class="highlight-console"><div class="highlight"><pre><span class="go">./bnc --nw --conf rnx.conf --key reqcAction Edit/Concatenate --key reqcObsFile "tlse119b00.12o,tlse119b15.12o,tlse119b30.12o,tlse119b45.12o" --key reqcOutObsFile tlse119b.12o --key reqcRnxVersion 3 --key reqcSampling 30</span> 2311 </pre></div> 2312 </div> 2313 <p>You may use asterisk ‘*’ and/or question mark ‘?’ wildcard characters as shown with the following globbing command line option to specify a selection of files in the working directory:</p> 2314 <div class="highlight-console"><div class="highlight"><pre><span class="go">--key reqcObsFile "tlse*"</span> 2315 </pre></div> 2316 </div> 2317 <p>or</p> 2318 <div class="highlight-console"><div class="highlight"><pre><span class="go">--key reqcObsFile tlse\*</span> 2319 </pre></div> 2320 </div> 2321 <p>The following Linux command line produces RINEX QC plots (see Estey and Meertens 1999) offline in ‘no window’ mode and saves them in directory <code class="docutils literal"><span class="pre">/home/user</span></code>. Introducing a dummy configuration file <code class="docutils literal"><span class="pre">/dev/null</span></code> makes sure that no configuration options previously saved on disc are used:</p> 2322 <div class="highlight-console"><div class="highlight"><pre><span class="go">/home/user/bnc --conf /dev/null --key reqcAction Analyze --key reqcObsFile CUT02070.12O --key reqcNavFile BRDC2070.12P --key reqcOutLogFile CUT0.txt --key reqcPlotDir /home/user --nw</span> 2323 </pre></div> 2324 </div> 2325 <p>The following Linux command line produces the same RINEX QC plots in interactive autoStart mode:</p> 2326 <div class="highlight-console"><div class="highlight"><pre><span class="go">/home/user/bnc --conf /dev/null --key reqcAction Analyze --key reqcObsFile CUT02070.12O --key reqcNavFile BRDC2070.12P --key reqcOutLogFile CUT0.txt --key startTab 4 --key autoStart 2</span> 2327 </pre></div> 2328 </div> 2329 <p><a class="reference internal" href="#tab-rinex-ed-qc-opt"><span class="std std-numref">Table 3</span></a> gives a list of available key names for ‘RINEX Editing & QC’ (short: REQC, pronounced ‘rek’) options and their meaning, cf. section ‘Configuration Examples’.</p> 2330 <table border="1" class="docutils" id="id33"> 2331 <span id="tab-rinex-ed-qc-opt"></span><caption><span class="caption-number">Table 3 </span><span class="caption-text">Key names for ‘RINEX Editing & QC’ options and their meaning.</span><a class="headerlink" href="#id33" title="Permalink to this table">¶</a></caption> 2332 <colgroup> 2333 <col width="32%" /> 2334 <col width="68%" /> 2335 </colgroup> 2336 <thead valign="bottom"> 2337 <tr class="row-odd"><th class="head"><strong>Keyname</strong></th> 2338 <th class="head"><strong>Meaning</strong></th> 2339 </tr> 2340 </thead> 2341 <tbody valign="top"> 2342 <tr class="row-even"><td>reqcAction</td> 2343 <td>RINEX Editing & QC action</td> 2344 </tr> 2345 <tr class="row-odd"><td>reqcObsFile</td> 2346 <td>RINEX Observation input file(s)</td> 2347 </tr> 2348 <tr class="row-even"><td>reqcNavFile</td> 2349 <td>RINEX Navigation input files(s)</td> 2350 </tr> 2351 <tr class="row-odd"><td>reqcOutObsFile</td> 2352 <td>RINEX Observation output file</td> 2353 </tr> 2354 <tr class="row-even"><td>reqcOutNavFile</td> 2355 <td>RINEX Navigation output file</td> 2356 </tr> 2357 <tr class="row-odd"><td>reqcOutLogFile</td> 2358 <td>Logfile</td> 2359 </tr> 2360 <tr class="row-even"><td>reqcLogSummaryOnly</td> 2361 <td>Summary of Logfile</td> 2362 </tr> 2363 <tr class="row-odd"><td>reqcSkyPlotSignals</td> 2364 <td>Plots for signals</td> 2365 </tr> 2366 <tr class="row-even"><td>reqcPlotDir</td> 2367 <td>RINEX QC plot directory</td> 2368 </tr> 2369 <tr class="row-odd"><td>reqcRnxVersion</td> 2370 <td>RINEX version of emerging new file</td> 2371 </tr> 2372 <tr class="row-even"><td>reqcSampling</td> 2373 <td>Sampling interval of emerging new RINEX file</td> 2374 </tr> 2375 <tr class="row-odd"><td>reqcV2Priority</td> 2376 <td>Version 2 Signal Priority</td> 2377 </tr> 2378 <tr class="row-even"><td>reqcStartDateTime</td> 2379 <td>Begin of emerging new RINEX file</td> 2380 </tr> 2381 <tr class="row-odd"><td>reqcEndDateTime</td> 2382 <td>End of emerging new RINEX file</td> 2383 </tr> 2384 <tr class="row-even"><td>reqcRunBy</td> 2385 <td>Operator name</td> 2386 </tr> 2387 <tr class="row-odd"><td>reqcUseObsTypes</td> 2388 <td>GNSS systems and observation types</td> 2389 </tr> 2390 <tr class="row-even"><td>reqcComment</td> 2391 <td>Additional comment lines</td> 2392 </tr> 2393 <tr class="row-odd"><td>reqcOldMarkerName</td> 2394 <td>Old marker name</td> 2395 </tr> 2396 <tr class="row-even"><td>reqcNewMarkerName</td> 2397 <td>New marker name</td> 2398 </tr> 2399 <tr class="row-odd"><td>reqcOldAntennaName</td> 2400 <td>Old antenna name</td> 2401 </tr> 2402 <tr class="row-even"><td>reqcNewAntennaName</td> 2403 <td>New antenna name</td> 2404 </tr> 2405 <tr class="row-odd"><td>reqcOldAntennaNumber</td> 2406 <td>Old antenna number</td> 2407 </tr> 2408 <tr class="row-even"><td>reqcNewAntennaNumber</td> 2409 <td>New antenna number</td> 2410 </tr> 2411 <tr class="row-odd"><td>reqcOldAntennadN</td> 2412 <td>Old component of north eccentricity</td> 2413 </tr> 2414 <tr class="row-even"><td>reqcOldAntennadE</td> 2415 <td>Old component of east eccentricity</td> 2416 </tr> 2417 <tr class="row-odd"><td>reqcOldAntennadU</td> 2418 <td>Old component of up eccentricity</td> 2419 </tr> 2420 <tr class="row-even"><td>reqcNewAntennadN</td> 2421 <td>New component of north eccentricity</td> 2422 </tr> 2423 <tr class="row-odd"><td>reqcNewAntennadE</td> 2424 <td>New component of east eccentricity</td> 2425 </tr> 2426 <tr class="row-even"><td>reqcNewAntennadU</td> 2427 <td>New component of up eccentricity</td> 2428 </tr> 2429 <tr class="row-odd"><td>reqcOldReceiverName</td> 2430 <td>Old receiver name</td> 2431 </tr> 2432 <tr class="row-even"><td>reqcNewReceiverName</td> 2433 <td>New receiver name</td> 2434 </tr> 2435 <tr class="row-odd"><td>reqcOldReceiverNumber</td> 2436 <td>Old receiver number</td> 2437 </tr> 2438 <tr class="row-even"><td>reqcNewReceiverNumber</td> 2439 <td>New receiver number</td> 2440 </tr> 2441 </tbody> 1915 </p> 1916 1917 <p><h4>2.6.6 <a name="reqcdir">Directory for Plots - optional if 'Action' is set to 'Analyze'</h4></p> 1918 <p> 1919 If 'Analyze' is selected, specifying the path to a directory where plot files will be saved is optional. Filenames will be composed from the RINEX input filename(s) plus suffix 'PNG' to indicate the plot file format in use. Default is an empty option field, meaning that plots will not be saved on disk. 1920 </p> 1921 1922 <p><h4>2.6.7 <a name="reqcedit">Set Edit Options - mandatory if 'Action' is set to 'Edit/Concatenate'</h4></p> 1923 <p>Once the 'Edit/Concatenate' action is selected, you have to 'Set Edit Options'. BNC lets you specify the RINEX version, a signal priority list when mapping RINEX Version 3 to Version 2, the sampling interval, begin and end of file, operator, observation types, comment lines, and marker, antenna, receiver details. Note that some of the specifications for editing and concatenation are only meaningful for RINEX Observation files but not for RINEX Navigation files. 1924 </p> 1925 1926 <p> 1927 A note on converting RINEX Version 3 to RINEX Version 2 and vice versa: 1928 </p> 1929 1930 <p> 1931 <ul> 1932 <li>The RINEX Version 2 format ignores signal generation attributes. Therefore, when converting <u>RINEX Version 3 to Version 2</u> Observation files, BNC is forced to somehow map signals with attributes to signals without attributes although this cannot be done in one-to-one correspondence. Hence we introduce a 'Version 2 Signal Priority' list of attributes (characters, forming a string) for mapping Version 3 to Version 2, see details in section 'RINEX Observations/Version 2'. Signal priorities can be specified as equal for all systems, as system specific or as system and frequency specific. For example:</li> 1933 <ul> 1934 <li>'CWPX_?' (General signal priorities valid for all GNSS)</li> 1935 <li>'C:IQX I:ABCX' (System specific signal priorities for BDS and IRNSS)</li> 1936 <li>'G:12&PWCSLXYN G:5&IQX R:12&PC R:3&IQX' (System and frequency specific signal priorities)</li> 1937 </ul> 1938 </p> 1939 <p> 1940 The default 'Signal priority' list is defined as follows: 1941 <ul> 1942 <li>'G:12&PWCSLXYN G:5&IQX R:12&PC R:3&IQX E:16&BCX E:578&IQX J:1&SLXCZ J:26&SLX J:5&IQX C:IQX I:ABCX S:1&C S:5&IQX'</li> 1943 </ul> 1944 </p> 1945 <p> 1946 <li>When converting <u>RINEX Version 2 to Version 3</u> Observation files, the tracking mode or channel information in the (last character out of the 3-character) observation code is left blank if unknown. This is a compromise, knowing that it is not in accordance with the RINEX Version 3 documentation.</li> 1947 </ul> 1948 </p> 1949 1950 <p> 1951 Optionally you may specify a 'RUN BY' string to be included in the emerging new RINEX file header. Default is an empty option field, meaning the operator's ID is automatically used as 'RUN BY' string. 1952 </p> 1953 1954 <p> 1955 You can specify a list of observation codes in field 'Use Obs. Types' to limit the output file content to specific observation codes. GNSS system characters in that list are followed by a colon and a 2- or 3-Character observation code. A 2-Character observation code would mean that all available tracking modes of the affected observation type and frequency will be accepted as part of the RINEX output file. Observation codes are separated by a blank character. Default is an empty option field, meaning that any input observation code will become part of the RINEX output file. 1956 </p> 1957 1958 <p> 1959 Specifying comment line text to be added to the emerging new RINEX file header is another option. Any introduction of a newline through '\n' in this enforces the beginning of a further comment line. Comment lines will be added to the header immediately after the 'PGM / RUN BY / DATE' record. Default is an empty option field, meaning that no additional comment line will be added to the RINEX header. 1960 </p> 1961 1962 <p> 1963 If you specify a 'New' but no 'Old' marker/antenna/receiver name, the corresponding data field in the emerging new RINEX Observation file will be filled accordingly. If you in addition specify an 'Old' marker/antenna/receiver name, the corresponding data field in the emerging new RINEX Observation file will only be filled accordingly where 'Old' specifications match existing file content. 1964 </p> 1965 1966 <p><img src="IMG/screenshot27.png"/></p> 1967 <p><u>Figure 10:</u> Example for BNC's 'RINEX Editing Options' window</p> 1968 1969 <p><img src="IMG/screenshot25.png"/></p> 1970 <p><u>Figure 11:</u> Example for RINEX file concatenation with BNC</p> 1971 1972 <p><img src="IMG/screenshot29.png"/></p> 1973 <p><u>Figure 12:</u> Example for creating RINEX quality check analysis graphics output with BNC</p> 1974 1975 <p><img src="IMG/screenshot30.png"/></p> 1976 <p><u>Figure 13:</u> Example for satellite availability, elevation and PDOP plots as a result of a RINEX quality check analysis with BNC</p> 1977 1978 <p><img src="IMG/screenshot33.png"/></p> 1979 <p><u>Figure 14:</u> Sky plot examples for multipath, part of RINEX quality check analysis with BNC</p> 1980 1981 <p><img src="IMG/screenshot34.png"/></p> 1982 <p><u>Figure 15:</u> Sky plot examples for signal-to-noise ratio, part of RINEX quality check analysis with BNC</p> 1983 1984 <p><h4>2.6.8 <a name="reqccommand">Command Line, No Window - optional</h4></p> 1985 <p> 1986 BNC applies options from the configuration file but allows updating every one of them on the command line while the content of the configuration file remains unchanged, see section on 'Command Line Options'. Note the following syntax for Command Line Interface (CLI) options: 1987 </p> 1988 <pre> 1989 --key <keyName> <keyValue> 1990 </pre> 1991 <p> 1992 Parameter <keyName> stands for the name of an option contained in the configuration file and <keyValue> stands for the value you want to assign to it. This functionality may be helpful in the 'RINEX Editing & QC' context when running BNC on a routine basis for maintaining a RINEX file archive. 1993 </p> 1994 The following example for a Linux platform calls BNC in 'no window' mode with a local configuration file 'rnx.conf' for concatenating four 15min RINEX files from station TLSE residing in the working directory to produce an hourly RINEX Version 3 file with 30 seconds sampling interval: 1995 </p> 1996 <pre> 1997 ./bnc --nw --conf rnx.conf --key reqcAction Edit/Concatenate --key reqcObsFile 1998 "tlse119b00.12o,tlse119b15.12o,tlse119b30.12o,tlse119b45.12o" --key 1999 reqcOutObsFile tlse119b.12o --key reqcRnxVersion 3 --key reqcSampling 30 2000 </pre> 2001 <p> 2002 You may use asterisk '*' and/or question mark '?' wildcard characters as shown with the following globbing command line option to specify a selection of files in the working directory: 2003 <pre> 2004 --key reqcObsFile "tlse*" 2005 or: 2006 --key reqcObsFile tlse\* 2007 </pre> 2008 </p> 2009 2010 <p>The following Linux command line produces RINEX QC plots (see Estey and Meertens 1999) offline in 'no window' mode and saves them in directory '/home/user'. Introducing a dummy configuration file /dev/null makes sure that no configuration options previously saved on disc are used:</p> 2011 <pre> 2012 /home/user/bnc --conf /dev/null --key reqcAction Analyze --key reqcObsFile 2013 CUT02070.12O --key reqcNavFile BRDC2070.12P --key reqcOutLogFile CUT0.txt --key 2014 reqcPlotDir /home/user --nw 2015 </pre> 2016 </p> 2017 <p>The following Linux command line produces the same RINEX QC plots in interactive autoStart mode: 2018 </p> 2019 <pre> 2020 /home/user/bnc --conf /dev/null --key reqcAction Analyze --key reqcObsFile 2021 CUT02070.12O --key reqcNavFile BRDC2070.12P --key reqcOutLogFile CUT0.txt --key 2022 --key startTab 4 --key autoStart 2 2023 </pre> 2024 </p> 2025 2026 <p> 2027 The following is a list of available key names for '<u>R</u>INEX <u>E</u>diting & <u>QC</u>' (short: REQC, pronounced 'rek') options and their meaning, cf. section 'Configuration Examples': 2028 </p> 2029 <table> 2030 <tr></tr> 2031 <tr><td><b>Keyname</b></td><td><b>Meaning</b></td></tr> 2032 <tr><td>reqcAction</td><td>RINEX Editing & QC action</td></tr> 2033 <tr><td>reqcObsFile</td><td>RINEX Observation input file(s)</td></tr> 2034 <tr><td>reqcNavFile</td><td>RINEX Navigation input files(s)</td></tr> 2035 <tr><td>reqcOutObsFile</td><td>RINEX Observation output file</td></tr> 2036 <tr><td>reqcOutNavFile</td><td>RINEX Navigation output file</td></tr> 2037 <tr><td>reqcOutLogFile</td><td>Logfile</td></tr> 2038 <tr><td>reqcLogSummaryOnly</td><td>Summary of Logfile</td></tr> 2039 <tr><td>reqcSkyPlotSignals</td><td>Plots for signals</td></tr> 2040 <tr><td>reqcPlotDir</td><td>RINEX QC plot directory</td></tr> 2041 <tr><td>reqcRnxVersion</td><td>RINEX version of emerging new file</td></tr> 2042 <tr><td>reqcSampling</td><td>Sampling interval of emerging new RINEX file</td></tr> 2043 <tr><td>reqcV2Priority</td><td>Version 2 Signal Priority</td></tr> 2044 <tr><td>reqcStartDateTime</td><td>Begin of emerging new RINEX file</td></tr> 2045 <tr><td>reqcEndDateTime</td><td>End of emerging new RINEX file</td></tr> 2046 <tr><td>reqcRunBy</td><td>Operator name</td></tr> 2047 <tr><td>reqcUseObsTypes</td><td>GNSS systems and observation types</td></tr> 2048 <tr><td>reqcComment</td><td>Additional comment lines</td></tr> 2049 <tr><td>reqcOldMarkerName</td><td>Old marker name</td></tr> 2050 <tr><td>reqcNewMarkerName</td><td>New marker name</td></tr> 2051 <tr><td>reqcOldAntennaName</td><td>Old antenna name</td></tr> 2052 <tr><td>reqcNewAntennaName</td><td>New antenna name</td></tr> 2053 <tr><td>reqcOldAntennaNumber</td><td>Old antenna number</td></tr> 2054 <tr><td>reqcNewAntennaNumber</td><td>New antenna number</td></tr> 2055 <tr><td>reqcOldAntennadN</td><td>Old component of north eccentricity</td></tr> 2056 <tr><td>reqcOldAntennadE</td><td>Old component of east eccentricity</td></tr> 2057 <tr><td>reqcOldAntennadU</td><td>Old component of up eccentricity</td></tr> 2058 <tr><td>reqcNewAntennadN</td><td>New component of north eccentricity</td></tr> 2059 <tr><td>reqcNewAntennadE</td><td>New component of east eccentricity</td></tr> 2060 <tr><td>reqcNewAntennadU</td><td>New component of up eccentricity</td></tr> 2061 <tr><td>reqcOldReceiverName</td><td>Old receiver name</td></tr> 2062 <tr><td>reqcNewReceiverName</td><td>New receiver name</td></tr> 2063 <tr><td>reqcOldReceiverNumber</td><td>Old receiver number</td></tr> 2064 <tr><td>reqcNewReceiverNumber</td><td>New receiver number</td></tr> 2442 2065 </table> 2443 </div> 2444 < /div>2445 < div class="section" id="sp3-comparison">2446 <h3>SP3 Comparison<a class="headerlink" href="#sp3-comparison" title="Permalink to this headline">¶</a></h3> 2447 < p>BNC allows to compare the contents of two files with GNSS orbit and clock data in SP3 format <a class="reference internal" href="#fig-16"><span class="std std-numref">(Fig. 17)</span></a>. SP3 ASCII files basically contain a list of records over a certain period of time. Each record carries a time tag, the XYZ position of the satellite’s Center of Mass at that time and the corresponding satellite clock value. Both SP3 files may contain some records for different epochs. If so, then BNC only compares records for identical epochs. BNC accepts that a specific GNSS system or a specific satellite is only available from one of the SP3 files. Note that BNC does not interpolate orbits when comparing SP3 files.</p>2448 < div class="figure" id="id34">2449 <span id="fig-16"></span><a class="reference internal image-reference" href="_images/fig_16.png"><img alt="_images/fig_16.png" src="_images/fig_16.png" style="width: 883.0px; height: 316.0px;" /></a> 2450 < p class="caption"><span class="caption-number">Fig. 17 </span><span class="caption-text">Example for comparing two SP3 files with satellite orbit and clock data using BNC</span></p>2451 </div> 2452 <p> To compare satellite clocks provided by the two files, BNC first converts coordinate differences dX,dY,dZ into along track, out-of-plane, and radial components. It then corrects the clock differences for the radial components of coordinate differences. RMS values of clock differences are finally calculated after introducing at first one offset ‘per epoch for all satellites’ and secondly one offset ‘per satellite for all epochs’.</p>2453 < div class="section" id="input-sp3-files-optional">2454 <h4>Input SP3 Files - optional<a class="headerlink" href="#input-sp3-files-optional" title="Permalink to this headline">¶</a></h4> 2455 < p>Specify the full paths of two SP3 files, separate them by comma.</p>2456 </div> 2457 < div class="section" id="exclude-satellites-optional">2458 < h4>Exclude Satellites - optional<a class="headerlink" href="#exclude-satellites-optional" title="Permalink to this headline">¶</a></h4>2459 <p>You may want to exclude one or more satellites in your SP3 files from the comparison. Or you may like to exclude all satellites of a specific GNSS system from the comparison. The following are example strings to be entered for excluding satellites from the comparison:</p> 2460 <ul class="simple">2066 2067 <p><h4>2.7 <a name="sp3comp">SP3 Comparison</h4></p> 2068 <p> 2069 BNC allows to compare the contents of two files with GNSS orbit and clock data in SP3 format. SP3 ASCII files basically contain a list of records over a certain period of time. Each record carries a time tag, the XYZ position of the satellite's Center of Mass at that time and the corresponding satellite clock value. Both SP3 files may contain some records for different epochs. If so, then BNC only compares records for identical epochs. BNC accepts that a specific GNSS system or a specific satellite is only available from one of the SP3 files. Note that BNC does not interpolate orbits when comparing SP3 files. 2070 </p> 2071 <p> 2072 To compare satellite clocks provided by the two files, BNC first converts coordinate differences dX,dY,dZ into along track, out-of-plane, and radial components. It then corrects the clock differences for the radial components of coordinate differences. RMS values of clock differences are finally calculated after introducing at first one offset 'per epoch for all satellites' and secondly one offset 'per satellite for all epochs'. 2073 </p> 2074 2075 <p><h4>2.7.1 <a name="sp3input">Input SP3 Files - optional</h4></p> 2076 <p> 2077 Specify the full paths of two SP3 files, separate them by comma. 2078 </p> 2079 2080 <p><h4>2.7.2 <a name="sp3exclude">Exclude Satellites - optional</h4></p> 2081 <p> 2082 You may want to exclude one or more satellites in your SP3 files from the comparison. Or you may like to exclude all satellites of a specific GNSS system from the comparison. The following are example strings to be entered for excluding satellites from the comparison. 2083 <ul> 2461 2084 <li>G05,G31 (excluding GPS satellites with PRN 5 and 31)</li> 2462 2085 <li>G (excluding all GPS satellites)</li> … … 2465 2088 <li>G04,G31,R (excluding GPS satellites with PRN 4 and 31 as well as all GLONASS satellites)</li> 2466 2089 </ul> 2467 <p>Default is an empty option field, meaning that no satellite will be excluded from the comparison.</p> 2468 </div> 2469 <div class="section" id="logfile-mandatory-if-input-sp3-files-is-set"> 2470 <h4>Logfile - mandatory if ‘Input SP3 Files’ is set<a class="headerlink" href="#logfile-mandatory-if-input-sp3-files-is-set" title="Permalink to this headline">¶</a></h4> 2471 <p>Specify a logfile name to save results of the SP3 file comparison.</p> 2472 <p>The following is an example for a SP3 Comparison logfile:</p> 2473 <div class="highlight-console"><div class="highlight"><pre><span class="go">! SP3 File 1: esr18283.sp3</span> 2474 <span class="go">! SP3 File 2: rt218283.sp3</span> 2475 <span class="go">!</span> 2476 <span class="go">! MJD PRN radial along out clk clkRed iPRN</span> 2477 <span class="go">! ----------------------------------------------------------------</span> 2478 <span class="go">57043.000000 G01 -0.0001 -0.0318 -0.0354 0.0266 0.0267 1</span> 2479 <span class="go">57043.000000 G02 -0.0062 -0.0198 0.0111 0.0082 0.0143 2</span> 2480 <span class="go">57043.000000 G03 0.0052 0.0060 0.0032 0.0386 0.0334 3</span> 2481 <span class="go">57043.000000 G04 -0.0049 -0.0193 -0.0071 -0.1696 -0.1648 4</span> 2482 <span class="go">57043.000000 G05 0.0027 0.0154 0.0275 0.0345 0.0318 5</span> 2483 <span class="go">57043.000000 G06 0.0247 -0.0398 -0.0111 0.0483 0.0236 6</span> 2484 <span class="go">57043.000000 G07 -0.0052 0.2854 -0.0975 -0.0940 -0.0888 7</span> 2485 <span class="go">57043.000000 G08 -0.0247 0.0937 -0.0184 -0.1563 -0.1316 8</span> 2486 <span class="go">57043.000000 G09 0.0152 0.0583 0.0086 -0.0144 -0.0296 9</span> 2487 <span class="go">...</span> 2488 <span class="go">...</span> 2489 <span class="go">...</span> 2490 <span class="go">!</span> 2491 <span class="go">! RMS[m]</span> 2492 <span class="go">!</span> 2493 <span class="go">! PRN radial along out nOrb clk clkRed nClk Offset</span> 2494 <span class="go">! ---------------------------------------------------------------------</span> 2495 <span class="go">! G01 0.0151 0.0377 0.0196 96 0.0157 0.0154 96 0.0152</span> 2496 <span class="go">! G02 0.0083 0.0278 0.0228 96 0.0097 0.0124 96 -0.0626</span> 2497 <span class="go">! G03 0.0105 0.0311 0.0307 96 0.0352 0.0309 96 0.0898</span> 2498 <span class="go">! G04 0.0113 0.0334 0.0154 94 0.0725 0.0707 94 -0.5087</span> 2499 <span class="go">! G05 0.0103 0.0319 0.0299 96 0.0417 0.0403 96 0.1185</span> 2500 <span class="go">! G06 0.0182 0.0509 0.0302 96 0.0218 0.0166 96 0.0040</span> 2501 <span class="go">! G07 0.0337 0.1632 0.0463 96 0.0483 0.0435 96 0.3031</span> 2502 <span class="go">! G08 0.0228 0.0741 0.0321 88 0.0616 0.0561 88 -0.2232</span> 2503 <span class="go">...</span> 2504 <span class="go">...</span> 2505 <span class="go">...</span> 2506 <span class="go">! R20 0.0637 0.2115 0.1131 96 0.1580 0.1345 96 0.7371</span> 2507 <span class="go">! R21 0.0475 0.1657 0.0880 96 0.1123 0.0840 96 -0.4133</span> 2508 <span class="go">! R22 0.0125 0.1249 0.0646 96 0.0414 0.0444 96 -0.7375</span> 2509 <span class="go">! R23 0.0435 0.1503 0.0573 96 0.0987 0.1099 96 0.6620</span> 2510 <span class="go">! R24 0.0278 0.2026 0.1186 96 0.1446 0.1303 96 -1.1470</span> 2511 <span class="go">!</span> 2512 <span class="go">! Total 0.0262 0.0938 0.0492 5268 0.0620 0.0561 5268</span> 2513 </pre></div> 2514 </div> 2515 <p>The first part of this output uses the abbreviations in <a class="reference internal" href="#tab-log-abb-1"><span class="std std-numref">Table 4</span></a>.</p> 2516 <table border="1" class="docutils" id="id35"> 2517 <span id="tab-log-abb-1"></span><caption><span class="caption-number">Table 4 </span><span class="caption-text">Abbreviations in first part of BNC log files when comparing SP3 files</span><a class="headerlink" href="#id35" title="Permalink to this table">¶</a></caption> 2518 <colgroup> 2519 <col width="17%" /> 2520 <col width="83%" /> 2521 </colgroup> 2522 <thead valign="bottom"> 2523 <tr class="row-odd"><th class="head"><strong>Abbreviation</strong></th> 2524 <th class="head"><strong>Meaning</strong></th> 2525 </tr> 2526 </thead> 2527 <tbody valign="top"> 2528 <tr class="row-even"><td>MJD</td> 2529 <td>Modified Julian Date</td> 2530 </tr> 2531 <tr class="row-odd"><td>PRN</td> 2532 <td>Satellite specification</td> 2533 </tr> 2534 <tr class="row-even"><td>radial</td> 2535 <td>Radial component of orbit coordinate difference [m]</td> 2536 </tr> 2537 <tr class="row-odd"><td>along</td> 2538 <td>Along track component of orbit coordinate difference [m]</td> 2539 </tr> 2540 <tr class="row-even"><td>out</td> 2541 <td>Out-of-plane component of orbit coordinate difference [m]</td> 2542 </tr> 2543 <tr class="row-odd"><td>clk</td> 2544 <td>Clock difference [m]</td> 2545 </tr> 2546 <tr class="row-even"><td>clkRed</td> 2547 <td>Clock difference reduced by radial component of orbit coordinate difference [m]</td> 2548 </tr> 2549 <tr class="row-odd"><td>iPRN</td> 2550 <td>BNC internal sequence number</td> 2551 </tr> 2552 </tbody> 2090 </p> 2091 <p> 2092 Default is an empty option field, meaning that no satellite will be excluded from the comparison. 2093 </p> 2094 2095 <p><h4>2.7.3 <a name="sp3log">Logfile - mandatory if 'Input SP3 Files' is set</h4></p> 2096 <p> 2097 Specify a logfile name to save results of the SP3 file comparison. 2098 </p> 2099 <p> 2100 The following is an example for a SP3 Comparison logfile: 2101 </p> 2102 <pre> 2103 2104 ! SP3 File 1: esr18283.sp3 2105 ! SP3 File 2: rt218283.sp3 2106 ! 2107 ! MJD PRN radial along out clk clkRed iPRN 2108 ! ---------------------------------------------------------------- 2109 57043.000000 G01 -0.0001 -0.0318 -0.0354 0.0266 0.0267 1 2110 57043.000000 G02 -0.0062 -0.0198 0.0111 0.0082 0.0143 2 2111 57043.000000 G03 0.0052 0.0060 0.0032 0.0386 0.0334 3 2112 57043.000000 G04 -0.0049 -0.0193 -0.0071 -0.1696 -0.1648 4 2113 57043.000000 G05 0.0027 0.0154 0.0275 0.0345 0.0318 5 2114 57043.000000 G06 0.0247 -0.0398 -0.0111 0.0483 0.0236 6 2115 57043.000000 G07 -0.0052 0.2854 -0.0975 -0.0940 -0.0888 7 2116 57043.000000 G08 -0.0247 0.0937 -0.0184 -0.1563 -0.1316 8 2117 57043.000000 G09 0.0152 0.0583 0.0086 -0.0144 -0.0296 9 2118 ... 2119 ... 2120 ... 2121 ! 2122 ! RMS[m] 2123 ! 2124 ! PRN radial along out nOrb clk clkRed nClk Offset 2125 ! --------------------------------------------------------------------- 2126 ! G01 0.0151 0.0377 0.0196 96 0.0157 0.0154 96 0.0152 2127 ! G02 0.0083 0.0278 0.0228 96 0.0097 0.0124 96 -0.0626 2128 ! G03 0.0105 0.0311 0.0307 96 0.0352 0.0309 96 0.0898 2129 ! G04 0.0113 0.0334 0.0154 94 0.0725 0.0707 94 -0.5087 2130 ! G05 0.0103 0.0319 0.0299 96 0.0417 0.0403 96 0.1185 2131 ! G06 0.0182 0.0509 0.0302 96 0.0218 0.0166 96 0.0040 2132 ! G07 0.0337 0.1632 0.0463 96 0.0483 0.0435 96 0.3031 2133 ! G08 0.0228 0.0741 0.0321 88 0.0616 0.0561 88 -0.2232 2134 ... 2135 ... 2136 ... 2137 ! R20 0.0637 0.2115 0.1131 96 0.1580 0.1345 96 0.7371 2138 ! R21 0.0475 0.1657 0.0880 96 0.1123 0.0840 96 -0.4133 2139 ! R22 0.0125 0.1249 0.0646 96 0.0414 0.0444 96 -0.7375 2140 ! R23 0.0435 0.1503 0.0573 96 0.0987 0.1099 96 0.6620 2141 ! R24 0.0278 0.2026 0.1186 96 0.1446 0.1303 96 -1.1470 2142 ! 2143 ! Total 0.0262 0.0938 0.0492 5268 0.0620 0.0561 5268 2144 </pre> 2145 <p> 2146 The first part of this output uses the following abbreviations: 2147 </p> 2148 2149 <table> 2150 <tr><td>'MJD' </td><td>Modified Julian Date</td></tr> 2151 <tr><td>'PRN' </td><td>Satellite specification</td></tr> 2152 <tr><td>'radial' </td><td>Radial component of orbit coordinate difference [m]</td></tr> 2153 <tr><td>'along' </td><td>Along track component of orbit coordinate difference [m]</td></tr> 2154 <tr><td>'out' </td><td>Out-of-plane component of orbit coordinate difference [m]</td></tr> 2155 <tr><td>'clk' </td><td>Clock difference [m]</td></tr> 2156 <tr><td>'clkRed' </td><td>Clock difference reduced by radial component of orbit coordinate difference [m]</td></tr> 2157 <tr><td>'iPRN' </td><td>BNC internal sequence number</td></tr> 2553 2158 </table> 2554 <p>The second part following string ‘RMS’ provides a summary of the comparison using the abbreviations in <a class="reference internal" href="#tab-log-abb-2"><span class="std std-numref">Table 5</span></a>.</p> 2555 <table border="1" class="docutils" id="id36"> 2556 <span id="tab-log-abb-2"></span><caption><span class="caption-number">Table 5 </span><span class="caption-text">Abbreviations in second part of BNC log files when comparing SP3 files</span><a class="headerlink" href="#id36" title="Permalink to this table">¶</a></caption> 2557 <colgroup> 2558 <col width="17%" /> 2559 <col width="83%" /> 2560 </colgroup> 2561 <thead valign="bottom"> 2562 <tr class="row-odd"><th class="head"><strong>Abbreviation</strong></th> 2563 <th class="head"><strong>Meaning</strong></th> 2564 </tr> 2565 </thead> 2566 <tbody valign="top"> 2567 <tr class="row-even"><td>PRN</td> 2568 <td>Satellite specification</td> 2569 </tr> 2570 <tr class="row-odd"><td>radial</td> 2571 <td>RMS of radial component of orbit coordinate differences [m]</td> 2572 </tr> 2573 <tr class="row-even"><td>along</td> 2574 <td>RMS of along track component of orbit coordinate differences [m]</td> 2575 </tr> 2576 <tr class="row-odd"><td>out</td> 2577 <td>RMS of out-of-plane component of orbit coordinate differences [m]</td> 2578 </tr> 2579 <tr class="row-even"><td>nOrb</td> 2580 <td>Number of epochs used in in orbit comparison</td> 2581 </tr> 2582 <tr class="row-odd"><td>clk</td> 2583 <td>RMS of clock differences [m]</td> 2584 </tr> 2585 <tr class="row-even"><td>clkRed</td> 2586 <td>RMS of clock differences after reduction of radial orbit differences [m]</td> 2587 </tr> 2588 <tr class="row-odd"><td>nClk</td> 2589 <td>Number of epochs use in clock comparisons</td> 2590 </tr> 2591 <tr class="row-even"><td>Offset</td> 2592 <td>Clock offset [m]</td> 2593 </tr> 2594 </tbody> 2159 <p> 2160 The second part following string 'RMS' provides a summary of the comparison using the following 2161 abbreviations:<br> 2162 </p> 2163 <table> 2164 <tr><td>'PRN' </td><td>Satellite specification</td></tr> 2165 <tr><td>'radial' </td><td>RMS of radial component of orbit coordinate differences [m]</td></tr> 2166 <tr><td>'along' </td><td>RMS of along track component of orbit coordinate differences [m]</td></tr> 2167 <tr><td>'out' </td><td>RMS of out-of-plane component of orbit coordinate differences [m]</td></tr> 2168 <tr><td>'nOrb' </td><td>Number of epochs used in in orbit comparison</td></tr> 2169 <tr><td>'clk' </td><td>RMS of clock differences [m]</td></tr> 2170 <tr><td>'clkRed' </td><td>RMS of clock differences after reduction of radial orbit differences [m]</td></tr> 2171 <tr><td>'nClk' </td><td>Number of epochs use in clock comparisons</td></tr> 2172 <tr><td>'Offset' </td><td>Clock offset [m]</td></tr> 2595 2173 </table> 2596 </div> 2597 </div> 2598 <div class="section" id="broadcast-corrections"> 2599 <span id="index-19"></span><h3>Broadcast Corrections<a class="headerlink" href="#broadcast-corrections" title="Permalink to this headline">¶</a></h3> 2600 <p>Differential GNSS and RTK operation using RTCM streams is currently based on corrections and/or raw measurements from single or multiple reference stations. This approach to differential positioning uses ‘observation space’ information. The representation with the RTCM standard can be called ‘Observation Space Representation’ (OSR).</p> 2601 <p>An alternative to the observation space approach is the so-called ‘state space’ approach. The principle here is to provide information on individual error sources. It can be called ‘State Space Representation’ (SSR). For a rover position, state space information concerning precise satellite clocks, orbits, ionosphere, troposphere et cetera can be converted into observation space and used to correct the rover observables for more accurate positioning. Alternatively, the state information can be used directly in the rover’s processing or adjustment model.</p> 2602 <p>RTCM is currently developing Version 3 messages to transport SSR corrections in real-time. They refer to satellite Antenna Phase Center (APC). SSR messages adopted or recently proposed concern:</p> 2603 <p>SSR, Step I:</p> 2604 <ul class="simple"> 2174 2175 <br> 2176 2177 <p><img src="IMG/screenshot36.png"/></p> 2178 <p><u>Figure 16:</u> Example for comparing two SP3 files with satellite orbit and clock data using BNC</p> 2179 2180 <p><h4>2.8 <a name="correct">Broadcast Corrections</h4></p> 2181 <p> 2182 Differential GNSS and RTK operation using RTCM streams is currently based on corrections and/or raw measurements from single or multiple reference stations. This approach to differential positioning uses 'observation space' information. The representation with the RTCM standard can be called 'Observation Space Representation' (OSR). 2183 </p> 2184 <p> 2185 An alternative to the observation space approach is the so-called 'state space' approach. The principle here is to provide information on individual error sources. It can be called 'State Space Representation' (SSR). For a rover position, state space information concerning precise satellite clocks, orbits, ionosphere, troposphere et cetera can be converted into observation space and used to correct the rover observables for more accurate positioning. Alternatively, the state information can be used directly in the rover's processing or adjustment model. 2186 </p> 2187 <p> 2188 RTCM is currently developing Version 3 messages to transport SSR corrections in real-time. They refer to satellite Antenna Phase Center (APC). SSR messages adopted or recently proposed concern: 2189 2190 <ul> 2191 <li>SSR, Step I:</li> 2192 <ul> 2605 2193 <li>Orbit corrections to Broadcast Ephemeris</li> 2606 2194 <li>Clock corrections to Broadcast Ephemeris</li> … … 2611 2199 <li>Code biases</li> 2612 2200 </ul> 2613 < p>SSR, Step II:</p>2614 <ul class="simple">2201 <li>SSR, Step II:</li> 2202 <ul> 2615 2203 <li>Phase biases</li> 2616 2204 <li>Vertical Total Electron Content (VTEC)</li> 2617 2205 </ul> 2618 <p>RTCM Version 3 streams carrying these messages may be used e.g. to support real-time Precise Point Positioning (PPP) applications.</p> 2619 <p>When using clocks from Broadcast Ephemeris (with or without applied corrections) or clocks from SP3 files, it may be important to understand that they are not corrected for the conventional periodic relativistic effect. Chapter 10 of the IERS Conventions 2003 mentions that the conventional periodic relativistic correction to the satellite clock (to be added to the broadcast clock) is computed as</p> 2620 <div class="math"> 2621 \[dt = -2 (R * V) / c^2\]</div> 2622 <p>where <span class="math">\(R*V\)</span> is the scalar product of the satellite position and velocity and <span class="math">\(c\)</span> is the speed of light. This can also be found in the GPS Interface Specification, IS-GPS-200, Revision D, 7 March 2006.</p> 2623 <p>Orbit corrections are provided in along-track, out-of-plane and radial components. These components are defined in the Earth-Centered, Earth-Fixed reference frame of the Broadcast Ephemeris. For an observer in this frame, the along-track component is aligned in both direction and sign with the velocity vector, the out-of-plane component is perpendicular to the plane defined by the satellite position and velocity vectors, and the radial direction is perpendicular to the along track and out-of-plane ones. The three components form a right-handed orthogonal system.</p> 2624 <p>After applying corrections, the satellite position and clock is referred to the ‘ionospheric free’ phase center of the antenna which is compatible with the broadcast orbit reference.</p> 2625 <p>The orbit and clock corrections do not include local effects like Ocean Loading, Solid Earth Tides or tropospheric delays. However, accurate single frequency applications can be corrected for global ionospheric effects using so-call VTEC messages for global ionospheric state parameters.</p> 2626 <p>While we have a plain ASCII standard for saving Broadcast Ephemeris in RINEX Navigation files, we do not have an equivalent standard for corrections to Broadcast Ephemeris. Hence, BNC saves Broadcast Correction files following its own format definition. The filename convention for Broadcast Correction files follows the convention for RINEX Version 2 files except for the last character of the filename suffix which is set to ‘C’.</p> 2627 <div class="section" id="broadcast-correction-file-format"> 2628 <h4>Broadcast Correction file format<a class="headerlink" href="#broadcast-correction-file-format" title="Permalink to this headline">¶</a></h4> 2629 <p>BNC’s Broadcast Correction files contain blocks of records in plain ASCII format. Each block covers information about one specific topic and starts with an ‘Epoch Record’. The leading ‘Epoch Record’ of each block in a Broadcast Correction file contains 11 parameters. Example:</p> 2630 <div class="highlight-console"><div class="highlight"><pre><span class="gp">></span> ORBIT <span class="m">2015</span> <span class="m">06</span> <span class="m">17</span> <span class="m">11</span> <span class="m">43</span> 35.0 <span class="m">2</span> <span class="m">53</span> CLK93 2631 </pre></div> 2632 </div> 2633 <p>Their meaning is as follows:</p> 2634 <ol class="arabic simple"> 2635 <li>Special character ‘>’ is the first character in each ‘Epoch Record’ (as we have it in RINEX Version 3)</li> 2636 <li>SSR message or topic descriptor, valid descriptors are: ORBIT, CLOCK, CODE_BIAS, PHASE_BIAS, and VTEC</li> 2206 </ul> 2207 2208 <p> 2209 RTCM Version 3 streams carrying these messages may be used e.g. to support real-time Precise Point Positioning (PPP) applications. 2210 </p> 2211 <p> 2212 When using clocks from Broadcast Ephemeris (with or without applied corrections) or clocks from SP3 files, it may be important to understand that they are not corrected for the conventional periodic relativistic effect. Chapter 10 of the IERS Conventions 2003 mentions that the conventional periodic relativistic correction to the satellite clock (to be added to the broadcast clock) is computed as 2213 </p> 2214 2215 <pre> 2216 dt = -2 (R * V) / c<sup>2</sup> 2217 </pre> 2218 2219 <p> 2220 where R * V is the scalar product of the satellite position and velocity and c is the speed of light. This can also be found in the GPS Interface Specification, IS-GPS-200, Revision D, 7 March 2006. 2221 </p> 2222 2223 <p> 2224 Orbit corrections are provided in along-track, out-of-plane and radial components. These components are defined in the Earth-Centered, Earth-Fixed reference frame of the Broadcast Ephemeris. For an observer in this frame, the along-track component is aligned in both direction and sign with the velocity vector, the out-of-plane component is perpendicular to the plane defined by the satellite position and velocity vectors, and the radial direction is perpendicular to the along track and out-of-plane ones. The three components form a right-handed orthogonal system. 2225 </p> 2226 2227 <p> 2228 After applying corrections, the satellite position and clock is referred to the 'ionospheric free' phase center of the antenna which is compatible with the broadcast orbit reference. 2229 </p> 2230 2231 <p> 2232 The orbit and clock corrections do not include local effects like Ocean Loading, Solid Earth Tides or tropospheric delays. However, accurate single frequency applications can be corrected for global ionospheric effects using so-call VTEC messages for global ionospheric state parameters. 2233 </p> 2234 2235 <p> 2236 While we have a plain ASCII standard for saving Broadcast Ephemeris in RINEX Navigation files, we do not have an equivalent standard for corrections to Broadcast Ephemeris. Hence, BNC saves Broadcast Correction files following its own format definition. The filename convention for Broadcast Correction files follows the convention for RINEX Version 2 files except for the last character of the filename suffix which is set to 'C'. 2237 </p> 2238 2239 <p> 2240 BNC's Broadcast Correction files contain blocks of records in plain ASCII format. Each block covers information about one specific topic and starts with an 'Epoch Record'. 2241 </p> 2242 <p> 2243 <b>The 'Epoch Record' of a Broadcast Correction block</b> 2244 </p> 2245 2246 <p> 2247 The leading 'Epoch Record' of each block in a Broadcast Correction file contains 11 parameters. Example: 2248 </p> 2249 <pre> 2250 > ORBIT 2015 06 17 11 43 35.0 2 53 CLK93 2251 </pre> 2252 <p> 2253 Their meaning is as follows: 2254 </p> 2255 <ol type="1"> 2256 <li>Special character '>' is the first character in each 'Epoch Record' (as we have it in RINEX Version 3)</li> 2257 <li>SSR message or topic descriptor, valid descriptors are:<br>ORBIT, CLOCK, CODE_BIAS, PHASE_BIAS, or VTEC</li> 2637 2258 <li>Year, GPS time</li> 2638 2259 <li>Month, GPS time</li> … … 2641 2262 <li>Minute, GPS time</li> 2642 2263 <li>Second, GPS time</li> 2643 <li>SSR message update interval indicator:</li> 2644 </ol> 2645 <blockquote> 2646 <div><ul class="simple"> 2264 <li>SSR message update interval indicator</li> 2265 <ul> 2647 2266 <li>0 = 1 sec</li> 2648 2267 <li>1 = 2 sec</li> … … 2662 2281 <li>15 = 10800 sec</li> 2663 2282 </ul> 2664 </div></blockquote>2665 <ol class="arabic simple" start="10">2666 2283 <li>Number of following records in this block</li> 2667 2284 <li>Mountpoint, source/stream indicator</li> 2668 2285 </ol> 2669 <p>Each of the following ‘satellite records’ in such a block carries information for one specific satellite. Undefined parameters in the ‘satellite records’ could be set to zero ‘0.000’.</p> 2670 <div class="section" id="example-for-block-orbit-carrying-orbit-corrections"> 2671 <h5>Example for block ‘ORBIT’ carrying orbit corrections<a class="headerlink" href="#example-for-block-orbit-carrying-orbit-corrections" title="Permalink to this headline">¶</a></h5> 2672 <div class="highlight-console"><div class="highlight"><pre><span class="gp">></span> ORBIT <span class="m">2015</span> <span class="m">06</span> <span class="m">17</span> <span class="m">11</span> <span class="m">43</span> 35.0 <span class="m">2</span> <span class="m">53</span> CLK93 2673 <span class="go">G01 9 0.5134 0.3692 0.6784 0.0000 -0.0000 -0.0000</span> 2674 <span class="go">G02 25 57.6817 139.0492 -91.3456 0.5436 -0.6931 1.0173</span> 2675 <span class="go">G03 79 -32.1768 191.8368 -121.6540 0.2695 0.2296 0.4879</span> 2676 <span class="go">...</span> 2677 <span class="go">G32 82 1.8174 1.1704 0.2200 -0.0002 -0.0000 -0.0001</span> 2678 <span class="go">R01 59 0.7819 -0.6968 0.7388 -0.0001 0.0004 0.0004</span> 2679 <span class="go">R02 59 0.5816 -0.5800 -0.2004 0.0001 -0.0006 0.0001</span> 2680 <span class="go">R03 59 0.4635 -0.9104 -0.3832 0.0001 0.0001 0.0005</span> 2681 <span class="go">...</span> 2682 <span class="go">R24 59 0.5935 2.0732 -0.6884 -0.0000 0.0004 0.0003</span> 2683 </pre></div> 2684 </div> 2685 <p>Records in this block provide the following satellite specific information:</p> 2686 <ul class="simple"> 2286 Each of the following 'satellite records' in such a block carries information for one specific satellite. Undefined parameters in the 'satellite records' could be set to zero "0.000". 2287 2288 <p> 2289 <b>Example for block 'ORBIT' carrying orbit corrections</b> 2290 </p> 2291 <pre> 2292 > ORBIT 2015 06 17 11 43 35.0 2 53 CLK93 2293 G01 9 0.5134 0.3692 0.6784 0.0000 -0.0000 -0.0000 2294 G02 25 57.6817 139.0492 -91.3456 0.5436 -0.6931 1.0173 2295 G03 79 -32.1768 191.8368 -121.6540 0.2695 0.2296 0.4879 2296 ... 2297 G32 82 1.8174 1.1704 0.2200 -0.0002 -0.0000 -0.0001 2298 R01 59 0.7819 -0.6968 0.7388 -0.0001 0.0004 0.0004 2299 R02 59 0.5816 -0.5800 -0.2004 0.0001 -0.0006 0.0001 2300 R03 59 0.4635 -0.9104 -0.3832 0.0001 0.0001 0.0005 2301 ... 2302 R24 59 0.5935 2.0732 -0.6884 -0.0000 0.0004 0.0003 2303 </pre> 2304 <p> 2305 Records in this block provide the following satellite specific information: 2306 <ul> 2687 2307 <li>GNSS Indicator and Satellite Vehicle Pseudo Random Number</li> 2688 2308 <li>IOD referring to Broadcast Ephemeris set</li> … … 2694 2314 <li>Velocity of Out-of-plane Component of Orbit Correction to Broadcast Ephemeris [m/s]</li> 2695 2315 </ul> 2696 </div> 2697 <div class="section" id="example-for-block-clock-carrying-clock-corrections"> 2698 <h5>Example for block ‘CLOCK’ carrying clock corrections<a class="headerlink" href="#example-for-block-clock-carrying-clock-corrections" title="Permalink to this headline">¶</a></h5> 2699 <div class="highlight-console"><div class="highlight"><pre><span class="gp">></span> CLOCK <span class="m">2015</span> <span class="m">06</span> <span class="m">17</span> <span class="m">11</span> <span class="m">43</span> 35.0 <span class="m">2</span> <span class="m">53</span> CLK93 2700 <span class="go">G01 9 0.5412 0.0000 0.0000</span> 2701 <span class="go">G02 25 11.1811 0.0000 0.0000</span> 2702 <span class="go">G03 79 45.0228 0.0000 0.0000</span> 2703 <span class="go">...</span> 2704 <span class="go">G32 82 -1.5324 0.0000 0.0000</span> 2705 <span class="go">R01 59 4.2194 0.0000 0.0000</span> 2706 <span class="go">R02 59 2.0535 0.0000 0.0000</span> 2707 <span class="go">R03 59 1.8130 0.0000 0.0000</span> 2708 <span class="go">...</span> 2709 <span class="go">R24 59 2.7409 0.0000 0.0000</span> 2710 </pre></div> 2711 </div> 2712 <p>Records in this block provide the following satellite specific information:</p> 2713 <ul class="simple"> 2316 </p> 2317 2318 <p> 2319 <b>Example for block 'CLOCK' carrying clock corrections</b> 2320 </p> 2321 2322 <p> 2323 <pre> 2324 > CLOCK 2015 06 17 11 43 35.0 2 53 CLK93 2325 G01 9 0.5412 0.0000 0.0000 2326 G02 25 11.1811 0.0000 0.0000 2327 G03 79 45.0228 0.0000 0.0000 2328 ... 2329 G32 82 -1.5324 0.0000 0.0000 2330 R01 59 4.2194 0.0000 0.0000 2331 R02 59 2.0535 0.0000 0.0000 2332 R03 59 1.8130 0.0000 0.0000 2333 ... 2334 R24 59 2.7409 0.0000 0.0000 2335 </pre> 2336 <p> 2337 Records in this block provide the following satellite specific information: 2338 <ul> 2714 2339 <li>GNSS Indicator and Satellite Vehicle Pseudo Random Number</li> 2715 2340 <li>IOD referring to Broadcast Ephemeris set</li> … … 2718 2343 <li>C2 polynomial coefficient for Clock Correction to Broadcast Ephemeris [m/s**2]</li> 2719 2344 </ul> 2720 </div> 2721 <div class="section" id="example-for-block-code-bias-carrying-code-biases"> 2722 <h5>Example for block ‘CODE_BIAS’ carrying code biases<a class="headerlink" href="#example-for-block-code-bias-carrying-code-biases" title="Permalink to this headline">¶</a></h5> 2723 <div class="highlight-console"><div class="highlight"><pre><span class="gp">></span> CODE_BIAS <span class="m">2015</span> <span class="m">06</span> <span class="m">17</span> <span class="m">11</span> <span class="m">43</span> 35.0 <span class="m">2</span> <span class="m">53</span> CLK93 2724 <span class="go">G01 5 1C -3.3100 1W -3.7500 2W -6.1900 2X -5.7800 5I -5.4200</span> 2725 <span class="go">G02 5 1C 3.6000 1W 3.9300 2W 6.4800 2X 0.0000 5I 0.0000</span> 2726 <span class="go">G03 5 1C -2.1600 1W -2.6500 2W -4.3600 2X -4.4800 5I -5.3400</span> 2727 <span class="go">...</span> 2728 <span class="go">G32 5 1C -1.5800 1W -1.1000 2W -1.8200 2X 0.0000 5I 0.0000</span> 2729 <span class="go">R01 4 1C -2.4900 1P -2.4900 2C -3.1500 2P -4.1200</span> 2730 <span class="go">R02 4 1C 0.3900 1P 0.2100 2C 0.4000 2P 0.3400</span> 2731 <span class="go">R03 4 1C 2.4800 1P 2.2800 2C 3.7800 2P 3.7700</span> 2732 <span class="go">...</span> 2733 <span class="go">R24 4 1C 2.7000 1P 2.7800 2C 3.9800 2P 4.6000</span> 2734 </pre></div> 2735 </div> 2736 <p>Records in this block provide the following satellite specific information:</p> 2737 <ul class="simple"> 2345 </p> 2346 2347 <p> 2348 <b>Example for block 'CODE_BIAS' carrying code biases</b> 2349 </p> 2350 <pre> 2351 > CODE_BIAS 2015 06 17 11 43 35.0 2 53 CLK93 2352 G01 5 1C -3.3100 1W -3.7500 2W -6.1900 2X -5.7800 5I -5.4200 2353 G02 5 1C 3.6000 1W 3.9300 2W 6.4800 2X 0.0000 5I 0.0000 2354 G03 5 1C -2.1600 1W -2.6500 2W -4.3600 2X -4.4800 5I -5.3400 2355 ... 2356 G32 5 1C -1.5800 1W -1.1000 2W -1.8200 2X 0.0000 5I 0.0000 2357 R01 4 1C -2.4900 1P -2.4900 2C -3.1500 2P -4.1200 2358 R02 4 1C 0.3900 1P 0.2100 2C 0.4000 2P 0.3400 2359 R03 4 1C 2.4800 1P 2.2800 2C 3.7800 2P 3.7700 2360 ... 2361 R24 4 1C 2.7000 1P 2.7800 2C 3.9800 2P 4.6000 2362 </pre> 2363 <p> 2364 Records in this block provide the following satellite specific information: 2365 <ul> 2738 2366 <li>GNSS Indicator and Satellite Vehicle Pseudo Random Number</li> 2739 <li>Number of Code Biases, succeeded by code specific information:<ul> 2367 <li>Number of Code Biases, succeeded by code specific information:</li> 2368 <ul> 2740 2369 <li>Indicator to specify the signal and tracking mode</li> 2741 2370 <li>Code Bias [m]</li> … … 2744 2373 <li>etc.</li> 2745 2374 </ul> 2375 </ul> 2376 </p> 2377 2378 <p> 2379 <b>Example for block 'PHASE_BIAS' carrying phase biases</b> 2380 </p> 2381 <pre> 2382 > PHASE_BIAS 2015 06 17 11 43 35.0 2 31 CLK93 2383 0 1 2384 G01 245.39062500 0.00000000 3 1C 3.9518 1 2 6 2W 6.3177 1 2 6 5I 6.8059 1 2 6 2385 G02 250.31250000 0.00000000 3 1C -4.0900 1 2 5 2W -6.7044 1 2 5 5I 0.0000 1 2 5 2386 G03 281.95312500 0.00000000 3 1C 2.9327 1 2 4 2W 4.6382 1 2 4 5I 5.4120 1 2 4 2387 ... 2388 G32 290.39062500 0.00000000 3 1C 1.2520 1 2 5 2W 2.0554 1 2 5 5I 0.0000 1 2 5 2389 </pre> 2390 <p> 2391 The second record in this block provides the following consistency information: 2392 <ul> 2393 2394 <li>Dispersive bias consistency indicatory<br> 2395 0 − phase biases valid for non-dispersive signal only<br> 2396 1 − phase biases maintain consistency between non-dispersive and all original dispersive phase signals 2746 2397 </li> 2747 </ul> 2748 </div> 2749 <div class="section" id="example-for-block-phase-bias-carrying-phase-biases"> 2750 <h5>Example for block ‘PHASE_BIAS’ carrying phase biases<a class="headerlink" href="#example-for-block-phase-bias-carrying-phase-biases" title="Permalink to this headline">¶</a></h5> 2751 <div class="highlight-console"><div class="highlight"><pre><span class="gp">></span> PHASE_BIAS <span class="m">2015</span> <span class="m">06</span> <span class="m">17</span> <span class="m">11</span> <span class="m">43</span> 35.0 <span class="m">2</span> <span class="m">31</span> CLK93 2752 <span class="go"> 0 1</span> 2753 <span class="go">G01 245.39062500 0.00000000 3 1C 3.9518 1 2 6 2W 6.3177 1 2 6 5I 6.8059 1 2 6</span> 2754 <span class="go">G02 250.31250000 0.00000000 3 1C -4.0900 1 2 5 2W -6.7044 1 2 5 5I 0.0000 1 2 5</span> 2755 <span class="go">G03 281.95312500 0.00000000 3 1C 2.9327 1 2 4 2W 4.6382 1 2 4 5I 5.4120 1 2 4</span> 2756 <span class="go">...</span> 2757 <span class="go">G32 290.39062500 0.00000000 3 1C 1.2520 1 2 5 2W 2.0554 1 2 5 5I 0.0000 1 2 5</span> 2758 </pre></div> 2759 </div> 2760 <p>The second record in this block provides the following consistency information:</p> 2761 <ul class="simple"> 2762 <li>Dispersive bias consistency indicatory</li> 2763 </ul> 2764 <blockquote> 2765 <div><p>0 − phase biases valid for non-dispersive signal only</p> 2766 <p>1 − phase biases maintain consistency between non-dispersive and all original dispersive phase signals</p> 2767 </div></blockquote> 2768 <ul class="simple"> 2769 <li>MW consistency indicator</li> 2770 </ul> 2771 <blockquote> 2772 <div><p>0 − code and phase biases are independently derived</p> 2773 <p>1 − consistency between code and phase biases is maintained for the MW combinations</p> 2774 </div></blockquote> 2775 <p>Following records provide satellite specific information:</p> 2776 <ul class="simple"> 2398 2399 <li>MW consistency indicator<br> 2400 0 − code and phase biases are independently derived<br> 2401 1 − consistency between code and phase biases is maintained for the MW combinations 2402 </li> 2403 2404 </ul> 2405 Following records provide satellite specific information: 2406 <ul> 2777 2407 <li>GNSS Indicator and Satellite Vehicle Pseudo Random Number</li> 2778 <li>Yaw angle [<span class="math">\(^{\circ}\)</span>], restricted to [<span class="math">\(0^{\circ}...360^{\circ}\)</span>]</li> 2779 <li>Yaw rate [<span class="math">\(^{\circ}/s\)</span>]</li> 2780 <li>Number of phase biases in this record, succeeded by phase specific information:<ul> 2408 <li>Yaw angle [°], restricted to [0°... 360°]</li> 2409 <li>Yaw rate [°/s]</li> 2410 <li>Number of phase biases in this record, succeeded by phase specific information:</li> 2411 <ul> 2781 2412 <li>Signal and tracking mode indicator</li> 2782 2413 <li>Phase bias [m]</li> … … 2785 2416 <li>Signal discontinuity counter</li> 2786 2417 </ul> 2787 </li> 2788 </ul> 2789 </div> 2790 <div class="section" id="example-for-block-vtec-carrying-ionospheric-corrections"> 2791 <h5>Example for block ‘VTEC’ carrying ionospheric corrections<a class="headerlink" href="#example-for-block-vtec-carrying-ionospheric-corrections" title="Permalink to this headline">¶</a></h5> 2792 <div class="highlight-console"><div class="highlight"><pre><span class="gp">></span> VTEC <span class="m">2015</span> <span class="m">06</span> <span class="m">17</span> <span class="m">11</span> <span class="m">43</span> 35.0 <span class="m">6</span> <span class="m">1</span> CLK93 2793 <span class="go"> 1 6 6 450000.0</span> 2794 <span class="go"> 17.6800 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000</span> 2795 <span class="go"> 4.5200 8.8700 0.0000 0.0000 0.0000 0.0000 0.0000</span> 2796 <span class="go"> -4.6850 -0.3050 1.1700 0.0000 0.0000 0.0000 0.0000</span> 2797 <span class="go"> -2.2250 -1.3900 -1.0250 -0.1300 0.0000 0.0000 0.0000</span> 2798 <span class="go"> 0.8750 -0.3800 0.2700 -0.1300 0.0400 0.0000 0.0000</span> 2799 <span class="go"> 1.2150 0.9050 -1.0100 0.3700 -0.1450 -0.2450 0.0000</span> 2800 <span class="go"> -0.8200 0.4850 0.2300 -0.1750 0.3400 -0.0900 -0.0400</span> 2801 <span class="go"> 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000</span> 2802 <span class="go"> 0.0000 -0.0700 0.0000 0.0000 0.0000 0.0000 0.0000</span> 2803 <span class="go"> 0.0000 0.5800 -1.4150 0.0000 0.0000 0.0000 0.0000</span> 2804 <span class="go"> 0.0000 -0.6200 -0.1500 0.2600 0.0000 0.0000 0.0000</span> 2805 <span class="go"> 0.0000 0.0700 -0.0900 -0.0550 0.1700 0.0000 0.0000</span> 2806 <span class="go"> 0.0000 0.5000 0.3050 -0.5700 -0.5250 -0.2750 0.0000</span> 2807 <span class="go"> 0.0000 0.0850 -0.4700 0.0600 0.0700 0.1600 0.0400</span> 2808 </pre></div> 2809 </div> 2810 <p>The second record in this block provides four parameters:</p> 2811 <ul class="simple"> 2418 </ul> 2419 </p> 2420 2421 <p> 2422 <b>Example for block 'VTEC' carrying ionospheric corrections</b> 2423 </p> 2424 <pre> 2425 > VTEC 2015 06 17 11 43 35.0 6 1 CLK93 2426 1 6 6 450000.0 2427 17.6800 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2428 4.5200 8.8700 0.0000 0.0000 0.0000 0.0000 0.0000 2429 -4.6850 -0.3050 1.1700 0.0000 0.0000 0.0000 0.0000 2430 -2.2250 -1.3900 -1.0250 -0.1300 0.0000 0.0000 0.0000 2431 0.8750 -0.3800 0.2700 -0.1300 0.0400 0.0000 0.0000 2432 1.2150 0.9050 -1.0100 0.3700 -0.1450 -0.2450 0.0000 2433 -0.8200 0.4850 0.2300 -0.1750 0.3400 -0.0900 -0.0400 2434 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2435 0.0000 -0.0700 0.0000 0.0000 0.0000 0.0000 0.0000 2436 0.0000 0.5800 -1.4150 0.0000 0.0000 0.0000 0.0000 2437 0.0000 -0.6200 -0.1500 0.2600 0.0000 0.0000 0.0000 2438 0.0000 0.0700 -0.0900 -0.0550 0.1700 0.0000 0.0000 2439 0.0000 0.5000 0.3050 -0.5700 -0.5250 -0.2750 0.0000 2440 0.0000 0.0850 -0.4700 0.0600 0.0700 0.1600 0.0400 2441 </pre> 2442 <p> 2443 The second record in this block provides four parameters: 2444 <ul> 2812 2445 <li>Layer number</li> 2813 2446 <li>Maximum degree of spherical harmonics</li> … … 2815 2448 <li>Height of ionospheric layer [m]</li> 2816 2449 </ul> 2817 <p>Subsequent records in this block provide the following information:</p> 2818 <ul class="simple">2450 Subsequent records in this block provide the following information: 2451 <ul> 2819 2452 <li>Spherical harmonic coefficients C and S, sorted by degree and order (0 to maximum)</li> 2820 2453 </ul> 2821 </div> 2822 </div> 2823 <div class="section" id="directory-ascii-optional"> 2824 <h4>Directory, ASCII - optional<a class="headerlink" href="#directory-ascii-optional" title="Permalink to this headline">¶</a></h4> 2825 <p>Specify a directory for saving Broadcast Corrections in files. If the specified directory does not exist, BNC will not create Broadcast Correction files. Default value for Broadcast Correction ‘Directory’ is an empty option field, meaning that no Broadcast Correction files will be created.</p> 2826 </div> 2827 <div class="section" id="interval-mandatory-if-directory-ascii-is-set"> 2828 <h4>Interval - mandatory if ‘Directory, ASCII’ is set<a class="headerlink" href="#interval-mandatory-if-directory-ascii-is-set" title="Permalink to this headline">¶</a></h4> 2829 <p>Select the length of the Broadcast Correction files. The default value is ‘1 day’.</p> 2830 </div> 2831 <div class="section" id="id5"> 2832 <h4>Port - optional<a class="headerlink" href="#id5" title="Permalink to this headline">¶</a></h4> 2833 <p>BNC can output epoch by epoch synchronized Broadcast Corrections in ASCII format on your local host (IP 127.0.0.1) through an IP ‘Port’. Specify an IP port number to activate this function. The default is an empty option field, meaning that no Broadcast Correction output via IP port is generated.</p> 2834 <p>The output format is similar to the format used for saving Broadcast Corrections in a file.</p> 2835 <p>The following is an example output for the stream from mountpoint CLK93:</p> 2836 <div class="highlight-console"><div class="highlight"><pre><span class="gp">></span> ORBIT <span class="m">2015</span> <span class="m">06</span> <span class="m">19</span> <span class="m">16</span> <span class="m">41</span> 00.0 <span class="m">2</span> <span class="m">53</span> CLK93 2837 <span class="go">G01 85 0.5891 -0.5124 -0.0216 -0.0001 -0.0002 0.0000</span> 2838 <span class="go">G02 25 -150.1820 11.4676 84.5216 0.4130 -0.6932 1.0159</span> 2839 <span class="go">G03 79 15.1999 141.9932 -156.4244 0.6782 -0.8607 -0.8211</span> 2840 <span class="go">...</span> 2841 <span class="go">G32 39 1.8454 0.4888 -0.3876 -0.0001 -0.0001 0.0001</span> 2842 <span class="go">R01 79 -0.0506 1.9024 -0.0120 0.0004 0.0002 -0.0000</span> 2843 <span class="go">R02 79 0.1623 0.9012 0.3984 0.0001 0.0001 0.0002</span> 2844 <span class="go">R03 79 0.3247 -2.6704 -0.0240 0.0005 -0.0002 0.0002</span> 2845 <span class="go">...</span> 2846 <span class="go">R24 79 0.7046 -0.5088 -0.0160 -0.0000 0.0000 -0.0002</span> 2847 <span class="gp">></span> CLOCK <span class="m">2015</span> <span class="m">06</span> <span class="m">19</span> <span class="m">16</span> <span class="m">41</span> 00.0 <span class="m">2</span> <span class="m">53</span> CLK93 2848 <span class="go">G01 85 -116.9441 0.0000 0.0000</span> 2849 <span class="go">G02 25 -110.4472 0.0000 0.0000</span> 2850 <span class="go">G03 79 -96.8299 0.0000 0.0000</span> 2851 <span class="go">...</span> 2852 <span class="go">G32 39 -119.2757 0.0000 0.0000</span> 2853 <span class="go">R01 79 1.5703 0.0000 0.0000</span> 2854 <span class="go">R02 79 -1.4181 0.0000 0.0000</span> 2855 <span class="go">R03 79 0.2072 0.0000 0.0000</span> 2856 <span class="go">...</span> 2857 <span class="go">R24 79 1.1292 0.0000 0.0000</span> 2858 <span class="gp">></span> CODE_BIAS <span class="m">2015</span> <span class="m">06</span> <span class="m">19</span> <span class="m">16</span> <span class="m">41</span> 00.0 <span class="m">0</span> <span class="m">56</span> CLK93 2859 <span class="go">E11 3 1B 1.3800 5Q 2.4800 7Q 2.5000</span> 2860 <span class="go">E12 3 1B 0.3900 5Q 0.6900 7Q 0.5300</span> 2861 <span class="go">E19 3 1B -1.7800 5Q -3.1900 7Q -3.0700</span> 2862 <span class="go">G01 5 1C -3.3100 1W -3.7500 2W -6.1900 2X -5.7800 5I -5.4200</span> 2863 <span class="go">G02 5 1C 3.6000 1W 3.9300 2W 6.4800 2X 0.0000 5I 0.0000</span> 2864 <span class="go">G03 5 1C -2.1600 1W -2.6500 2W -4.3600 2X -4.4800 5I -5.3400</span> 2865 <span class="go">...</span> 2866 <span class="go">G32 5 1C -1.5800 1W -1.1000 2W -1.8200 2X 0.0000 5I 0.0000</span> 2867 <span class="go">R01 4 1C -2.4900 1P -2.4900 2C -3.1500 2P -4.1200</span> 2868 <span class="go">R02 4 1C 0.3900 1P 0.2100 2C 0.4000 2P 0.3400</span> 2869 <span class="go">R03 4 1C 2.4800 1P 2.2800 2C 3.7800 2P 3.7700</span> 2870 <span class="go">...</span> 2871 <span class="go">R24 4 1C 2.7000 1P 2.7800 2C 3.9800 2P 4.6000</span> 2872 <span class="gp">></span> PHASE_BIAS <span class="m">2015</span> <span class="m">06</span> <span class="m">19</span> <span class="m">16</span> <span class="m">41</span> 00.0 <span class="m">2</span> <span class="m">31</span> CLK93 2873 <span class="go"> 0 1</span> 2874 <span class="go">G01 309.37500000 0.00000000 3 1C 3.9922 1 2 6 2W 6.3568 1 2 6 5I 6.8726 1 2 6</span> 2875 <span class="go">G02 263.67187500 0.00000000 3 1C -4.0317 1 2 7 2W -6.6295 1 2 7 5I 0.0000 1 2 7</span> 2876 <span class="go">G03 267.89062500 0.00000000 3 1C 3.1267 1 2 4 2W 4.9126 1 2 4 5I 5.6478 1 2 4</span> 2877 <span class="go">...</span> 2878 <span class="go">G32 255.93750000 0.00000000 3 1C 1.3194 1 2 5 2W 2.1448 1 2 5 5I 0.0000 1 2 5</span> 2879 <span class="gp">></span> VTEC <span class="m">2015</span> <span class="m">06</span> <span class="m">19</span> <span class="m">16</span> <span class="m">41</span> 00.0 <span class="m">6</span> <span class="m">1</span> CLK93 2880 <span class="go"> 1 6 6 450000.0</span> 2881 <span class="go"> 16.7450 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000</span> 2882 <span class="go"> 4.9300 8.1600 0.0000 0.0000 0.0000 0.0000 0.0000</span> 2883 <span class="go"> -4.4900 0.2550 1.0950 0.0000 0.0000 0.0000 0.0000</span> 2884 <span class="go"> -2.2450 -1.9500 -0.7950 -0.4700 0.0000 0.0000 0.0000</span> 2885 <span class="go"> 1.0250 -0.9000 -0.0900 0.1050 0.1450 0.0000 0.0000</span> 2886 <span class="go"> 1.5500 0.9750 -0.8150 0.3600 0.0350 -0.0900 0.0000</span> 2887 <span class="go"> -0.4050 0.8300 0.0800 -0.0650 0.2200 0.0150 -0.1600</span> 2888 <span class="go"> 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000</span> 2889 <span class="go"> 0.0000 -0.1250 0.0000 0.0000 0.0000 0.0000 0.0000</span> 2890 <span class="go"> 0.0000 1.0050 -0.7750 0.0000 0.0000 0.0000 0.0000</span> 2891 <span class="go"> 0.0000 -0.2300 0.7150 0.7550 0.0000 0.0000 0.0000</span> 2892 <span class="go"> 0.0000 -0.4100 -0.1250 0.2400 0.2700 0.0000 0.0000</span> 2893 <span class="go"> 0.0000 0.0850 -0.3400 -0.0500 -0.2200 -0.0750 0.0000</span> 2894 <span class="go"> 0.0000 0.2000 -0.2850 -0.0150 -0.0250 0.0900 0.0650</span> 2895 </pre></div> 2896 </div> 2897 <p>The source code for BNC comes with an example Perl script ‘test_tcpip_client.pl’ that allows to read BNC’s Broadcast Corrections from the IP port for verification.</p> 2898 <div class="figure" id="id37"> 2899 <span id="fig-17"></span><a class="reference internal image-reference" href="_images/fig_17.png"><img alt="_images/fig_17.png" src="_images/fig_17.png" style="width: 1120.0px; height: 722.0px;" /></a> 2900 <p class="caption"><span class="caption-number">Fig. 18 </span><span class="caption-text">Example for pulling, saving and output of Broadcast Corrections using BNC</span></p> 2901 </div> 2902 </div> 2903 </div> 2904 <div class="section" id="feed-engine"> 2905 <span id="index-20"></span><h3>Feed Engine<a class="headerlink" href="#feed-engine" title="Permalink to this headline">¶</a></h3> 2906 <p>BNC can produce synchronized or unsynchronized observations epoch by epoch from all stations and satellites to feed a real-time GNSS network engine. Observations can be streamed out through an IP port and/or saved in a file. The output is always in the same plain ASCII format and sorted per incoming stream.</p> 2907 <p>Each epoch in the synchronized output begins with a line containing the GPS Week Number and the seconds within the GPS Week. Following lines begin with the mountpoint string of the stream which provides the observations followed by a satellite number. Specifications for satellite number, code, phase, Doppler and signal strength data follow definitions presented in the RINEX Version 3 documentation. In case of phase observations, a ‘Lock Time Indicator’ is added. The end of an epoch is indicated by an empty line.</p> 2908 <p>A valid ‘Lock Time Indicator’ is only presented for observations from RTCM Version 3 streams. The parameter provides a measure of the amount of time that has elapsed during which the receiver has maintained continuous lock on that satellite signal. If a cycle slip occurs during the previous measurement cycle, the lock indicator will be reset to Zero. In case of observations from RTCM Version 2 streams, the ‘Lock Time Indicator’ is always set to ‘-1’.</p> 2909 <p><a class="reference internal" href="#tab-feed-engine"><span class="std std-numref">Table 6</span></a> describes the format of BNC’s synchronized output of GNSS observations which consists of ‘Epoch Records’ and ‘Observation Records’. Each Epoch Record is followed by one or more Observation Records. The Observation Record is repeated for each satellite having been observed in the current epoch. The length of an Observation Record is given by the number of observation types for this satellite.</p> 2910 <table border="1" class="docutils" id="id38"> 2911 <span id="tab-feed-engine"></span><caption><span class="caption-number">Table 6 </span><span class="caption-text">Contents and format of synchronized output of observations feeding a GNSS engine</span><a class="headerlink" href="#id38" title="Permalink to this table">¶</a></caption> 2912 <colgroup> 2913 <col width="42%" /> 2914 <col width="25%" /> 2915 <col width="32%" /> 2916 </colgroup> 2917 <thead valign="bottom"> 2918 <tr class="row-odd"><th class="head"><strong>Identifier</strong></th> 2919 <th class="head"><strong>Example</strong></th> 2920 <th class="head"><strong>Format</strong></th> 2921 </tr> 2922 </thead> 2923 <tbody valign="top"> 2924 <tr class="row-even"><td><em>Epoch Record</em></td> 2925 <td> </td> 2926 <td> </td> 2927 </tr> 2928 <tr class="row-odd"><td>Record Identifier</td> 2929 <td>></td> 2930 <td>A1</td> 2931 </tr> 2932 <tr class="row-even"><td>GPS Week Number</td> 2933 <td>1850</td> 2934 <td>1X,I4</td> 2935 </tr> 2936 <tr class="row-odd"><td>GPS Seconds of Week</td> 2937 <td>120556.0000000</td> 2938 <td>1X,F14.7</td> 2939 </tr> 2940 <tr class="row-even"><td><em>Observation Record</em></td> 2941 <td> </td> 2942 <td> </td> 2943 </tr> 2944 <tr class="row-odd"><td>Mountpoint</td> 2945 <td>WTZR0</td> 2946 <td>A</td> 2947 </tr> 2948 <tr class="row-even"><td>Satellite Number</td> 2949 <td>G01</td> 2950 <td>1X,A3</td> 2951 </tr> 2952 <tr class="row-odd"><td><em>Pseudo-Range Data</em></td> 2953 <td> </td> 2954 <td> </td> 2955 </tr> 2956 <tr class="row-even"><td>Observation Code</td> 2957 <td>C1C</td> 2958 <td>1X,A3</td> 2959 </tr> 2960 <tr class="row-odd"><td>Pseudo-Range Observation</td> 2961 <td>25394034.112</td> 2962 <td>1X,F14.3</td> 2963 </tr> 2964 <tr class="row-even"><td><em>Carrier Phase Data</em></td> 2965 <td> </td> 2966 <td> </td> 2967 </tr> 2968 <tr class="row-odd"><td>Observation Code</td> 2969 <td>L1C</td> 2970 <td>1X,A3</td> 2971 </tr> 2972 <tr class="row-even"><td>Carrier Phase Observation</td> 2973 <td>133446552.870</td> 2974 <td>1X,F14.3</td> 2975 </tr> 2976 <tr class="row-odd"><td>Lock Time Indicator</td> 2977 <td>11</td> 2978 <td>1X,I4</td> 2979 </tr> 2980 <tr class="row-even"><td><em>Doppler Data</em></td> 2981 <td> </td> 2982 <td> </td> 2983 </tr> 2984 <tr class="row-odd"><td>Observation Code</td> 2985 <td>D1C</td> 2986 <td>1X,A3</td> 2987 </tr> 2988 <tr class="row-even"><td>Doppler Observation</td> 2989 <td>-87.977</td> 2990 <td>1X,F14.3</td> 2991 </tr> 2992 <tr class="row-odd"><td><em>Signal Strength</em></td> 2993 <td> </td> 2994 <td> </td> 2995 </tr> 2996 <tr class="row-even"><td>Observation Code</td> 2997 <td>S2W</td> 2998 <td>1X,A3</td> 2999 </tr> 3000 <tr class="row-odd"><td>Observed Signal Strength</td> 3001 <td>34.750</td> 3002 <td>1X,F8.3</td> 3003 </tr> 3004 </tbody> 2454 </p> 2455 2456 <p><h4>2.8.1 <a name="corrdir">Directory, ASCII - optional</h4></p> 2457 <p> 2458 Specify a directory for saving Broadcast Corrections in files. If the specified directory does not exist, BNC will not create Broadcast Correction files. Default value for Broadcast Correction 'Directory' is an empty option field, meaning that no Broadcast Correction files will be created. 2459 </p> 2460 2461 <p><h4>2.8.2 <a name="corrint">Interval - mandatory if 'Directory, ASCII' is set</h4></p> 2462 <p> 2463 Select the length of the Broadcast Correction files. The default value is '1 day'. 2464 </p> 2465 2466 <p><h4>2.8.3 <a name="corrport">Port - optional</h4></p> 2467 <p> 2468 BNC can output epoch by epoch synchronized Broadcast Corrections in ASCII format on your local host (IP 127.0.0.1) through an IP 'Port'. Specify an IP port number to activate this function. The default is an empty option field, meaning that no Broadcast Correction output via IP port is generated. 2469 </p> 2470 <p> 2471 The output format is similar to the format used for saving Broadcast Corrections in a file. 2472 </p> 2473 <p> 2474 The following is an example output for the stream from mountpoint CLK93: 2475 <pre> 2476 > ORBIT 2015 06 19 16 41 00.0 2 53 CLK93 2477 G01 85 0.5891 -0.5124 -0.0216 -0.0001 -0.0002 0.0000 2478 G02 25 -150.1820 11.4676 84.5216 0.4130 -0.6932 1.0159 2479 G03 79 15.1999 141.9932 -156.4244 0.6782 -0.8607 -0.8211 2480 ... 2481 G32 39 1.8454 0.4888 -0.3876 -0.0001 -0.0001 0.0001 2482 R01 79 -0.0506 1.9024 -0.0120 0.0004 0.0002 -0.0000 2483 R02 79 0.1623 0.9012 0.3984 0.0001 0.0001 0.0002 2484 R03 79 0.3247 -2.6704 -0.0240 0.0005 -0.0002 0.0002 2485 ... 2486 R24 79 0.7046 -0.5088 -0.0160 -0.0000 0.0000 -0.0002 2487 > CLOCK 2015 06 19 16 41 00.0 2 53 CLK93 2488 G01 85 -116.9441 0.0000 0.0000 2489 G02 25 -110.4472 0.0000 0.0000 2490 G03 79 -96.8299 0.0000 0.0000 2491 ... 2492 G32 39 -119.2757 0.0000 0.0000 2493 R01 79 1.5703 0.0000 0.0000 2494 R02 79 -1.4181 0.0000 0.0000 2495 R03 79 0.2072 0.0000 0.0000 2496 ... 2497 R24 79 1.1292 0.0000 0.0000 2498 > CODE_BIAS 2015 06 19 16 41 00.0 0 56 CLK93 2499 E11 3 1B 1.3800 5Q 2.4800 7Q 2.5000 2500 E12 3 1B 0.3900 5Q 0.6900 7Q 0.5300 2501 E19 3 1B -1.7800 5Q -3.1900 7Q -3.0700 2502 G01 5 1C -3.3100 1W -3.7500 2W -6.1900 2X -5.7800 5I -5.4200 2503 G02 5 1C 3.6000 1W 3.9300 2W 6.4800 2X 0.0000 5I 0.0000 2504 G03 5 1C -2.1600 1W -2.6500 2W -4.3600 2X -4.4800 5I -5.3400 2505 ... 2506 G32 5 1C -1.5800 1W -1.1000 2W -1.8200 2X 0.0000 5I 0.0000 2507 R01 4 1C -2.4900 1P -2.4900 2C -3.1500 2P -4.1200 2508 R02 4 1C 0.3900 1P 0.2100 2C 0.4000 2P 0.3400 2509 R03 4 1C 2.4800 1P 2.2800 2C 3.7800 2P 3.7700 2510 ... 2511 R24 4 1C 2.7000 1P 2.7800 2C 3.9800 2P 4.6000 2512 > PHASE_BIAS 2015 06 19 16 41 00.0 2 31 CLK93 2513 0 1 2514 G01 309.37500000 0.00000000 3 1C 3.9922 1 2 6 2W 6.3568 1 2 6 5I 6.8726 1 2 6 2515 G02 263.67187500 0.00000000 3 1C -4.0317 1 2 7 2W -6.6295 1 2 7 5I 0.0000 1 2 7 2516 G03 267.89062500 0.00000000 3 1C 3.1267 1 2 4 2W 4.9126 1 2 4 5I 5.6478 1 2 4 2517 ... 2518 G32 255.93750000 0.00000000 3 1C 1.3194 1 2 5 2W 2.1448 1 2 5 5I 0.0000 1 2 5 2519 > VTEC 2015 06 19 16 41 00.0 6 1 CLK93 2520 1 6 6 450000.0 2521 16.7450 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2522 4.9300 8.1600 0.0000 0.0000 0.0000 0.0000 0.0000 2523 -4.4900 0.2550 1.0950 0.0000 0.0000 0.0000 0.0000 2524 -2.2450 -1.9500 -0.7950 -0.4700 0.0000 0.0000 0.0000 2525 1.0250 -0.9000 -0.0900 0.1050 0.1450 0.0000 0.0000 2526 1.5500 0.9750 -0.8150 0.3600 0.0350 -0.0900 0.0000 2527 -0.4050 0.8300 0.0800 -0.0650 0.2200 0.0150 -0.1600 2528 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2529 0.0000 -0.1250 0.0000 0.0000 0.0000 0.0000 0.0000 2530 0.0000 1.0050 -0.7750 0.0000 0.0000 0.0000 0.0000 2531 0.0000 -0.2300 0.7150 0.7550 0.0000 0.0000 0.0000 2532 0.0000 -0.4100 -0.1250 0.2400 0.2700 0.0000 0.0000 2533 0.0000 0.0850 -0.3400 -0.0500 -0.2200 -0.0750 0.0000 2534 0.0000 0.2000 -0.2850 -0.0150 -0.0250 0.0900 0.0650 2535 </pre> 2536 </p> 2537 <p> 2538 The source code for BNC comes with an example Perl script 'test_tcpip_client.pl' that allows to read BNC's Broadcast Corrections from the IP port for verification. 2539 </p> 2540 2541 <p><img src="IMG/screenshot37.png"/></p> 2542 <p><u>Figure 17:</u> Example for pulling, saving and output of Broadcast Corrections using BNC</p> 2543 2544 <p><h4>2.9 <a name="syncout">Feed Engine</h4></p> 2545 2546 <p> 2547 BNC can produce synchronized or unsynchronized observations epoch by epoch from all stations and satellites to feed a real-time GNSS network engine. Observations can be streamed out through an IP port and/or saved in a local file. The output is always in the same plain ASCII format and sorted per incoming stream. 2548 </p> 2549 2550 <p> 2551 Each epoch in the synchronized output begins with a line containing the GPS Week Number and the seconds within the GPS Week. Following lines begin with the mountpoint string of the stream which provides the observations followed by a satellite number. Specifications for satellite number, code, phase, Doppler and signal strength data follow definitions presented in the RINEX Version 3 documentation. In case of phase observations, a 'Lock Time Indicator' is added. The end of an epoch is indicated by an empty line. 2552 </p> 2553 2554 <p> 2555 A valid 'Lock Time Indicator' is only presented for observations from RTCM Version 3 streams. The parameter provides a measure of the amount of time that has elapsed during which the receiver has maintained continuous lock on that satellite signal. If a cycle slip occurs during the previous measurement cycle, the lock indicator will be reset to Zero. In case of observations from RTCM Version 2 streams, the 'Lock Time Indicator' is always set to '-1'. 2556 </p> 2557 2558 <p> 2559 The following table describes the format of BNC's synchronized output of GNSS observations which consists of 'Epoch Records' and 'Observation Records'. Each Epoch Record is followed by one or more Observation Records. The Observation Record is repeated for each satellite having been observed in the current epoch. The length of an Observation Record is given by the number of observation types for this satellite. 2560 </p> 2561 2562 <p><u>Table 2:</u> Contents and format of synchronized output of observations feeding a GNSS engine</p> 2563 <p> 2564 <table> 2565 <tr><td></td><td><b>Example</b></td><td><b>Format</b></td></tr> 2566 2567 <tr><td><b>Epoch Record</b></td><td></td><td></td></tr> 2568 <tr><td>Record Identifier</td><td>></td><td>A1</td></tr> 2569 <tr><td>GPS Week Number</td><td>1850</td><td>1X,I4</td></tr> 2570 <tr><td>GPS Seconds of Week</td><td>120556.0000000 </td><td>1X,F14.7</td></tr> 2571 2572 <tr><td> </td><td> </td><td> </td></tr> 2573 <tr><td><b>Observation Record</b></td><td></td><td></td></tr> 2574 <tr><td>Mountpoint</td><td>WTZR0</td><td>A</td></tr> 2575 <tr><td>Satellite Number</td><td>G01</td><td>1X,A3</td></tr> 2576 2577 <tr><td> </td><td> </td><td> </td></tr> 2578 2579 <tr><td><u>Pseudo-Range Data</u></td><td></td><td></td></tr> 2580 <tr><td>Observation Code</td><td><b>C</b>1C</td><td>1X,A3</td></tr> 2581 <tr><td>Pseudo-Range Observation</td><td>25394034.112</td><td>1X,F14.3</td></tr> 2582 2583 <tr><td> </td><td> </td><td> </td></tr> 2584 2585 <tr><td><u>Carrier Phase Data</u></td><td></td><td></td></tr> 2586 <tr><td>Observation Code</td><td><b>L</b>1C</td><td>1X,A3</td></tr> 2587 <tr><td>Carrier Phase Observation</td><td>133446552.870</td><td>1X,F14.3</td></tr> 2588 <tr><td>Lock Time Indicator</td><td>11</td><td>1X,I4</td></tr> 2589 2590 <tr><td> </td><td> </td><td> </td></tr> 2591 2592 <tr><td><u>Doppler Data</u></td><td></td><td></td></tr> 2593 <tr><td>Observation Code</td><td><b>D</b>1C</td><td>1X,A3</td></tr> 2594 <tr><td>Doppler Observation</td><td>-87.977</td><td>1X,F14.3</td></tr> 2595 2596 <tr><td> </td><td> </td><td> </td></tr> 2597 2598 <tr><td><u>Signal Strength</u></td><td></td><td></td></tr> 2599 <tr><td>Observation Code</td><td><b>S</b>2W</td><td>1X,A3</td></tr> 2600 <tr><td>Observed Signal Strength </td><td>34.750</td><td>1X,F8.3</td></tr> 2601 3005 2602 </table> 3006 <p>The following is an example for synchronized file and IP port output, which presents observations from GPS, GLONASS, Galileo, BDS (BeiDou), QZSS, and SBAS satellites as collected through streams FFMJ1, WTZR0 and CUT07:</p> 3007 <div class="highlight-console"><div class="highlight"><pre><span class="gp">></span> <span class="m">1884</span> 206010.0000000 3008 <span class="go">FFMJ1 G02 C1C 23286796.846 L1C 122372909.535 127 S1C 49.000 C2W 23286793.846 L2W 95355531.583 127 S2W 36.000</span> 3009 <span class="go">...</span> 3010 <span class="go">FFMJ1 G26 C1C 24796690.856 L1C 130307533.550 127 S1C 42.000 C2W 24796697.776 L2W 101538315.510 127 S2W 25.000</span> 3011 <span class="go">FFMJ1 S20 C1C 38682850.302 L1C 203279786.777 127 S1C 42.000</span> 3012 <span class="go">FFMJ1 S36 C1C 38288096.846 L1C 201205293.221 127 S1C 47.000</span> 3013 <span class="go">FFMJ1 R03 C1C 23182737.548 L1C 124098947.838 127 S1C 48.000 C2P 23182746.288 L2P 96521352.130 127 S2P 42.000</span> 3014 <span class="go">...</span> 3015 <span class="go">FFMJ1 R21 C1C 22201343.772 L1C 118803851.388 127 S1C 52.000 C2P 22201348.892 L2P 92402993.884 127 S2P 44.000</span> 3016 <span class="go">CUT07 G01 C1C 25318977.766 L1C 133052476.488 521 D1C 2533.500 S1C 33.688 C2W 25318993.668 L2W 103677584.878 521 S2W 15.625 C2X 25318991.820 L2X 103676566.850 521 S2X 35.375 C5X 25318993.461 L5X 99357161.238 521 S5X 39.812</span> 3017 <span class="go">...</span> 3018 <span class="go">CUT07 G27 C1C 20251005.351 L1C 106420601.969 627 D1C 250.937 S1C 50.312 C2W 20251014.512 L2W 82924447.644 627 S2W 45.125 C2X 20251014.246 L2X 82924648.644 627 S2X 53.188 C5X 20251015.480 L5X 79469461.619 627 S5X 56.375</span> 3019 <span class="go">CUT07 R01 C1C 20312587.149 L1C 108583395.373 625 D1C -2456.703 S1C 52.875 C1P 20312586.192 L1P 108582844.382 625 S1P 51.000 C2C 20312593.422 L2C 84452892.610 625 S2C 43.625 C2P 20312593.836 L2P 84453114.622 625 S2P 42.312</span> 3020 <span class="go">...</span> 3021 <span class="go">CUT07 R24 C1C 19732223.242 L1C 105517564.659 630 D1C -7.477 S1C 47.375 C1P 19732222.609 L1P 105517564.669 630 S1P 46.375 C2C 19732227.660 L2C 82069550.193 630 S2C 38.125 C2P 19732227.316 L2P 82068477.204 630 S2P 37.375</span> 3022 <span class="go">CUT07 E11 C1X 28843071.547 L1X 151571208.816 405 D1X -2221.055 S1X 29.000 C7X 28843082.531 L7X 116138795.418 405 S7X 27.188 C8X 28843085.699 L8X 114662585.261 405 S8X 33.688 C5X 28843086.281 L5X 113186518.907 405 S5X 30.375</span> 3023 <span class="go">...</span> 3024 <span class="go">CUT07 E30 C1X 28096037.289 L1X 147645296.835 630 D1X -2020.613 S1X 34.688 C7X 28096054.070 L7X 113131111.635 630 S7X 36.875 C8X 28096055.684 L8X 111692702.565 630 S8X 40.375 C5X 28096058.008 L5X 110254591.278 630 S5X 36.188</span> 3025 <span class="go">CUT07 S27 C1C 40038220.843 L1C 210402303.982 616 D1C 104.688 S1C 36.125 C5I 40038226.375 L5I 157118241.003 616 S5I 40.875</span> 3026 <span class="go">...</span> 3027 <span class="go">CUT07 S37 C1C 37791754.594 L1C 198596881.251 704 D1C 106.605 S1C 37.875</span> 3028 <span class="go">CUT07 J01 C1C 33076065.781 L1C 173816471.106 674 D1C 169.765 S1C 48.375 C1Z 33076063.086 L1Z 173815528.437 674 S1Z 48.625 C6L 33076065.652 L6L 141084039.422 674 S6L 52.688 C2X 33076070.523 L2X 135440679.474 674 S2X 50.500 C5X 33076076.496 L5X 129797319.733 674 S5X 54.188 C1X 33076065.492 L1X 173815529.101 674 S1X 52.375</span> 3029 <span class="go">CUT07 C01 C2I 37725820.914 L2I 196447455.374 704 D2I 90.898 S2I 41.312 C6I 37725810.168 L6I 159630204.932 704 S6I 44.875 C7I 37725815.196 L7I 151906389.245 704 S7I 45.812</span> 3030 <span class="go">...</span> 3031 <span class="go">CUT07 C14 C2I 23351041.328 L2I 121594621.501 592 D2I 2422.203 S2I 45.688 C6I 23351032.926 L6I 98805869.415 592 S6I 48.500 C7I 23351041.996 L7I 94024977.673 592 S7I 45.688</span> 3032 <span class="go">WTZR0 G02 C1C 23641481.864 L1C 124236803.604 127 S1C 47.500 C2W 23641476.604 L2W 96807881.233 127 S2W 39.250</span> 3033 <span class="go">...</span> 3034 <span class="go">WTZR0 G26 C1C 24681555.676 L1C 129702453.534 127 S1C 43.750 C2W 24681561.256 L2W 101066873.870 127 S2W 37.750</span> 3035 <span class="go">WTZR0 R03 C1C 22982596.508 L1C 123027564.682 127 S1C 47.000 C2P 22982598.368 L2P 95688085.627 127 S2P 43.250</span> 3036 <span class="go">...</span> 3037 <span class="go">WTZR0 R21 C1C 22510252.692 L1C 120456902.811 127 S1C 47.500 C2P 22510253.132 L2P 93688698.401 127 S2P 44.000</span> 3038 3039 <span class="gp">></span> <span class="m">1884</span> 206011.0000000 3040 <span class="go">...</span> 3041 </pre></div> 3042 </div> 3043 <p>The source code for BNC comes with a Perl script named ‘test_tcpip_client.pl’ that allows to read BNC’s (synchronized or unsynchronized) ASCII observation output from the IP port and print it on standard output for verification.</p> 3044 <p>Note that any socket connection of an application to BNC’s synchronized or unsynchronized observation ports is recorded in the ‘Log’ tab on the bottom of the main window together with a connection counter, resulting in log records like ‘New client connection on sync/usync port: # 1’.</p> 3045 <p>The following figure shows the screenshot of a BNC configuration where a number of streams is pulled from different Ntrip Broadcasters to feed a GNSS engine via IP port output.</p> 3046 <div class="figure" id="id39"> 3047 <span id="fig-18"></span><a class="reference internal image-reference" href="_images/fig_18.png"><img alt="_images/fig_18.png" src="_images/fig_18.png" style="width: 1120.0px; height: 749.0px;" /></a> 3048 <p class="caption"><span class="caption-number">Fig. 19 </span><span class="caption-text">Synchronized BNC output via IP port to feed a GNSS real-time engine</span></p> 3049 </div> 3050 <div class="section" id="id6"> 3051 <h4>Port - optional<a class="headerlink" href="#id6" title="Permalink to this headline">¶</a></h4> 3052 <p>BNC can produce synchronized observations in ASCII format on your local host (IP 127.0.0.1) through an IP ‘Port’. Synchronized means that BNC collects all observation data for a specific epoch, which become available within a certain number of seconds (see ‘Wait for Full Obs Epoch’ option). It then - epoch by epoch - outputs whatever has been received. The output comes block-wise per stream following the format specified in <a class="reference internal" href="#tab-feed-engine"><span class="std std-numref">Table 6</span></a>. Enter an IP port number here to activate this function. The default is an empty option field, meaning that no synchronized output is generated.</p> 3053 </div> 3054 <div class="section" id="wait-for-full-obs-epoch-mandatory-if-port-is-set"> 3055 <h4>Wait for Full Obs Epoch - mandatory if ‘Port’ is set<a class="headerlink" href="#wait-for-full-obs-epoch-mandatory-if-port-is-set" title="Permalink to this headline">¶</a></h4> 3056 <p>When feeding a real-time GNSS network engine waiting for synchronized observations epoch by epoch, BNC drops whatever is received later than ‘Wait for full obs epoch’ seconds. A value of 3 to 5 seconds could be an appropriate choice for that, depending on the latency of the incoming streams and the delay acceptable for your real-time GNSS product. Default value for ‘Wait for full obs epoch’ is 5 seconds.</p> 3057 <p>Note that ‘Wait for full obs epoch’ does not affect the RINEX Observation file content. Observations received later than ‘Wait for full obs epoch’ seconds will still be included in the RINEX Observation files.</p> 3058 </div> 3059 <div class="section" id="sampling-mandatory-if-file-or-port-is-set"> 3060 <h4>Sampling - mandatory if ‘File’ or ‘Port’ is set<a class="headerlink" href="#sampling-mandatory-if-file-or-port-is-set" title="Permalink to this headline">¶</a></h4> 3061 <p>Select a synchronized observation output sampling interval in seconds. A value of zero ‘0’ tells BNC to send/store all received epochs. This is the default value.</p> 3062 </div> 3063 <div class="section" id="file-optional"> 3064 <h4>File - optional<a class="headerlink" href="#file-optional" title="Permalink to this headline">¶</a></h4> 3065 <p>Specify the full path to a ‘File’ where synchronized observations are saved in plain ASCII format. The default value is an empty option field, meaning that no ASCII output file is created.</p> 3066 <p>Beware that the size of this file can rapidly increase depending on the number of incoming streams. To prevent it from becoming too large, the name of the file can be changed on-the-fly. This option is primarily meant for test and evaluation.</p> 3067 </div> 3068 <div class="section" id="port-unsynchronized-optional"> 3069 <h4>Port (unsynchronized) - optional<a class="headerlink" href="#port-unsynchronized-optional" title="Permalink to this headline">¶</a></h4> 3070 <p>BNC can produce unsynchronized observations from all configured streams in ASCII format on your local host (IP 127.0.0.1) through an IP ‘Port’. Unsynchronized means that BNC immediately forwards any received observation to the port. Nevertheless, the output is produced block-wise per stream. Specify an IP port number here to activate this function. The default is an empty option field, meaning that no unsynchronized output is generated.</p> 3071 <p>The following is an example for unsynchronized IP port output which presents observations from GPS and GLONASS as collected through stream WTZR0. The format for synchronized and unsynchronized output of observations is very much the same. However, unsynchronized output does not have ‘Epoch Records’ and ‘Observation Records’. Instead each record contains the ‘GPS Week Number’ and ‘GPS Second of Week’ time tag between the mountpoint string and the satellite number, see <a class="reference internal" href="#tab-feed-engine"><span class="std std-numref">Table 6</span></a> for format details.</p> 3072 <div class="highlight-console"><div class="highlight"><pre><span class="go">WTZR0 1884 209623.0000000 G02 C1C 22259978.112 L1C 116976955.890 127 S1C 49.250 C2W 22259974.472 L2W 91150855.991 127 S2W 44.500</span> 3073 <span class="go">WTZR0 1884 209623.0000000 G03 C1C 24426736.058 L1C 128363272.624 127 S1C 43.500 C2W 24426741.838 L2W 100023289.335 127 S2W 39.000</span> 3074 <span class="go">...</span> 3075 <span class="go">WTZR0 1884 209623.0000000 G29 C1C 25275897.592 L1C 132825869.191 90 S1C 35.250 C2W 25275893.692 L2W 103500567.110 8 S2W 28.500</span> 3076 <span class="go">WTZR0 1884 209623.0000000 G30 C1C 23670676.284 L1C 124390283.441 127 S1C 46.750 C2W 23670679.784 L2W 96927531.685 127 S2W 39.500</span> 3077 <span class="go">WTZR0 1884 209623.0000000 R04 C1C 20758122.104 L1C 111158778.398 127 S1C 50.000 C2P 20758121.664 L2P 86456803.800 127 S2P 47.000</span> 3078 <span class="go">WTZR0 1884 209623.0000000 R05 C1C 19430829.552 L1C 103868912.028 127 S1C 45.750 C2P 19430829.672 L2P 80786936.849 127 S2P 46.750</span> 3079 <span class="go">...</span> 3080 </pre></div> 3081 </div> 3082 </div> 3083 </div> 3084 <div class="section" id="serial-output"> 3085 <span id="index-21"></span><h3>Serial output<a class="headerlink" href="#serial-output" title="Permalink to this headline">¶</a></h3> 3086 <p>You may use BNC to feed a serially connected device like a GNSS receiver. For that, an incoming stream can be forwarded to a serial port. Depending on the stream content, the receiver may use it for Differential GNSS, Precise Point Positioning or any other purpose supported by its firmware. Note that receiving a VRS stream requires the receiver sending NMEA sentences (option ‘NMEA’ set to ‘Manual’ or ‘Auto’) to the Ntrip Broadcaster. <a class="reference internal" href="#fig-19"><span class="std std-numref">Fig. 20</span></a> shows the data flow when pulling a VRS stream or a physical (non-VRS) stream.</p> 3087 <div class="figure" id="id40"> 3088 <span id="fig-19"></span><a class="reference internal image-reference" href="_images/fig_19.png"><img alt="_images/fig_19.png" src="_images/fig_19.png" style="width: 768.0px; height: 577.0px;" /></a> 3089 <p class="caption"><span class="caption-number">Fig. 20 </span><span class="caption-text">Flowcharts, BNC forwarding a stream to a serially connected receiver; sending NMEA sentences is mandatory for VRS streams</span></p> 3090 </div> 3091 <p><a class="reference internal" href="#fig-20"><span class="std std-numref">Fig. 21</span></a> shows the screenshot of an example situation where BNC pulls a VRS stream from an Ntrip Broadcaster to feed a serially connected RTK rover.</p> 3092 <div class="figure" id="id41"> 3093 <span id="fig-20"></span><a class="reference internal image-reference" href="_images/fig_20.png"><img alt="_images/fig_20.png" src="_images/fig_20.png" style="width: 1000.0px; height: 722.0px;" /></a> 3094 <p class="caption"><span class="caption-number">Fig. 21 </span><span class="caption-text">BNC pulling a VRS stream to feed a serially connected RTK rover</span></p> 3095 </div> 3096 <div class="section" id="mountpoint-optional"> 3097 <h4>Mountpoint - optional<a class="headerlink" href="#mountpoint-optional" title="Permalink to this headline">¶</a></h4> 3098 <p>Enter a ‘Mountpoint’ to forward its corresponding stream to a serially connected GNSS receiver. When selecting one of the serial communication options listed below, make sure that you pick those configured to the serially connected receiver.</p> 3099 </div> 3100 <div class="section" id="port-name-mandatory-if-mountpoint-is-set"> 3101 <h4>Port Name - mandatory if ‘Mountpoint’ is set<a class="headerlink" href="#port-name-mandatory-if-mountpoint-is-set" title="Permalink to this headline">¶</a></h4> 3102 <p>Enter the serial ‘Port name’ selected on your host for communication with the serially connected receiver. Valid port names are summarized in <a class="reference internal" href="#tab-port-names"><span class="std std-numref">Table 7</span></a>.</p> 3103 <table border="1" class="docutils" id="id42"> 3104 <span id="tab-port-names"></span><caption><span class="caption-number">Table 7 </span><span class="caption-text">Valid port names for serially connected receivers.</span><a class="headerlink" href="#id42" title="Permalink to this table">¶</a></caption> 3105 <colgroup> 3106 <col width="41%" /> 3107 <col width="59%" /> 3108 </colgroup> 3109 <thead valign="bottom"> 3110 <tr class="row-odd"><th class="head"><strong>OS</strong></th> 3111 <th class="head"><strong>Port Names</strong></th> 3112 </tr> 3113 </thead> 3114 <tbody valign="top"> 3115 <tr class="row-even"><td>Windows</td> 3116 <td>COM1, COM2</td> 3117 </tr> 3118 <tr class="row-odd"><td>Linux</td> 3119 <td>/dev/ttyS0, /dev/ttyS1</td> 3120 </tr> 3121 <tr class="row-even"><td>FreeBSD</td> 3122 <td>/dev/ttyd0, /dev/ttyd1</td> 3123 </tr> 3124 <tr class="row-odd"><td>Digital Unix</td> 3125 <td>/dev/tty01, /dev/tty02</td> 3126 </tr> 3127 <tr class="row-even"><td>HP-UX</td> 3128 <td>/dev/tty1p0, /dev/tty2p0</td> 3129 </tr> 3130 <tr class="row-odd"><td>SGI/IRIX</td> 3131 <td>/dev/ttyf1, /dev/ttyf2</td> 3132 </tr> 3133 <tr class="row-even"><td>SunOS/Solaris</td> 3134 <td>/dev/ttya, /dev/ttyb</td> 3135 </tr> 3136 </tbody> 3137 </table> 3138 <p>Note that you must plug a serial cable in the port defined here before you start BNC.</p> 3139 </div> 3140 <div class="section" id="baud-rate-mandatory-if-mountpoint-is-set"> 3141 <h4>Baud Rate - mandatory if ‘Mountpoint’ is set<a class="headerlink" href="#baud-rate-mandatory-if-mountpoint-is-set" title="Permalink to this headline">¶</a></h4> 3142 <p>Select a ‘Baud rate’ for the serial output link. Note that using a high baud rate is recommended.</p> 3143 </div> 3144 <div class="section" id="flow-control-mandatory-if-mountpoint-is-set"> 3145 <h4>Flow Control - mandatory if ‘Mountpoint’ is set<a class="headerlink" href="#flow-control-mandatory-if-mountpoint-is-set" title="Permalink to this headline">¶</a></h4> 3146 <p>Select a ‘Flow control’ for the serial output link. Note that your selection must equal the flow control configured to the serially connected device. Select ‘OFF’ if you do not know better.</p> 3147 </div> 3148 <div class="section" id="parity-mandatory-if-mountpoint-is-set"> 3149 <h4>Parity - mandatory if ‘Mountpoint’ is set<a class="headerlink" href="#parity-mandatory-if-mountpoint-is-set" title="Permalink to this headline">¶</a></h4> 3150 <p>Select the ‘Parity’ for the serial output link. Note that parity is often set to ‘NONE’.</p> 3151 </div> 3152 <div class="section" id="data-bits-mandatory-if-mountpoint-is-set"> 3153 <h4>Data Bits - mandatory if ‘Mountpoint’ is set<a class="headerlink" href="#data-bits-mandatory-if-mountpoint-is-set" title="Permalink to this headline">¶</a></h4> 3154 <p>Select the number of ‘Data bits’ for the serial output link. Note that often ‘8’ data bits are used.</p> 3155 </div> 3156 <div class="section" id="stop-bits-mandatory-if-mountpoint-is-set"> 3157 <h4>Stop Bits - mandatory if ‘Mountpoint’ is set<a class="headerlink" href="#stop-bits-mandatory-if-mountpoint-is-set" title="Permalink to this headline">¶</a></h4> 3158 <p>Select the number of ‘Stop bits’ for the serial output link. Note that often ‘1’ stop bit is used.</p> 3159 </div> 3160 <div class="section" id="nmea-mandatory-if-mountpoint-is-set"> 3161 <h4>NMEA - mandatory if ‘Mountpoint’ is set<a class="headerlink" href="#nmea-mandatory-if-mountpoint-is-set" title="Permalink to this headline">¶</a></h4> 3162 <p>The ‘NMEA’ option supports the so-called ‘Virtual Reference Station’ (VRS) concept which requires the receiver to send approximate position information to the Ntrip Broadcaster. Select ‘no’ if you do not want BNC to forward or upload any NMEA sentence to the Ntrip broadcaster in support of VRS.</p> 3163 <p>Select ‘Auto’ to automatically forward NMEA sentences of type GGA from your serially connected receiver to the Ntrip broadcaster and/or save them in a file.</p> 3164 <p>Select ‘Manual GPGGA’ or ‘Manual GNGGA’ if you want BNC to produce and upload GPGGA or GNGGA NMEA sentences to the Ntrip broadcaster because your serially connected receiver does not generate them. A Talker ID ‘GP’ proceeding the GGA string stands for GPS solutions while a Talker ID ‘GN’ stands for multi-constellation solutions.</p> 3165 <p>Note that selecting ‘Auto’ or ‘Manual’ works only for VRS streams which show up under the ‘Streams’ canvas on BNC’s main window with ‘nmea’ stream attribute set to ‘yes’. This attribute is either extracted from the Ntrip broadcaster’s source-table or introduced by the user through editing the BNC configuration file.</p> 3166 </div> 3167 <div class="section" id="file-optional-if-nmea-is-set-to-auto"> 3168 <h4>File - optional if ‘NMEA’ is set to ‘Auto’<a class="headerlink" href="#file-optional-if-nmea-is-set-to-auto" title="Permalink to this headline">¶</a></h4> 3169 <p>Specify the full path to a file where NMEA sentences coming from your serially connected receiver are saved. Default is an empty option field, meaning that no NMEA sentences will be saved on disk.</p> 3170 </div> 3171 <div class="section" id="height-mandatory-if-nmea-is-set-to-manual"> 3172 <h4>Height - mandatory if ‘NMEA’ is set to ‘Manual’<a class="headerlink" href="#height-mandatory-if-nmea-is-set-to-manual" title="Permalink to this headline">¶</a></h4> 3173 <p>Specify an approximate ‘Height’ above mean sea level in meters for the reference station introduced through ‘Mountpoint’. Together with the latitude and longitude from the Ntrip broadcaster source-table, the height information is used to build GGA sentences to be sent to the Ntrip broadcaster.</p> 3174 <p>For adjusting latitude and longitude values of a VRS stream given in the ‘Streams’ canvas, you can double click the latitude/longitude data fields, specify appropriate values and then hit Enter.</p> 3175 <p>This option is only relevant when option ‘NMEA’ is set to ‘Manual GPGGA’ or ‘Manual GNGGA’ respectively.</p> 3176 </div> 3177 <div class="section" id="sampling-mandatory-if-nmea-is-set-to-manual"> 3178 <h4>Sampling - mandatory if ‘NMEA’ is set to ‘Manual’<a class="headerlink" href="#sampling-mandatory-if-nmea-is-set-to-manual" title="Permalink to this headline">¶</a></h4> 3179 <p>Select a sampling interval in seconds for manual generation and upload of NMEA GGA sentences.</p> 3180 <p>A sampling rate of ‘0’ means that a GGA sentence will be sent only once to initialize the requested VRS stream. Note that some VRS systems need GGA sentences at regular intervals.</p> 3181 </div> 3182 </div> 3183 <div class="section" id="outages"> 3184 <span id="index-22"></span><h3>Outages<a class="headerlink" href="#outages" title="Permalink to this headline">¶</a></h3> 3185 <p>At any time an incoming stream might become unavailable or corrupted. In such cases, it is important that the BNC operator and/or the stream providers become aware of the situation so that measures can be taken to restore the stream. Furthermore, continuous attempts to decode a corrupted stream can generate unnecessary workload for BNC. Outages and corruptions are handled by BNC as follows:</p> 3186 <p>Stream outages: BNC considers a connection to be broken when there are no incoming data detected for more than 20 seconds. When this occurs, BNC will try to reconnect at a decreasing rate. It will first try to reconnect with 1 second delay and again in 2 seconds if the previous attempt failed. If the attempt is still unsuccessful, it will try to reconnect within 4 seconds after the previous attempt and so on. The waiting time doubles each time with a maximum of 256 seconds.</p> 3187 <p>Stream corruption: Not all chunks of bits transferred to BNC’s internal decoder may return valid observations. Sometimes several chunks might be needed before the next observation can be properly decoded. BNC buffers all outputs (both valid and invalid) from the decoder for a short time span (size derived from the expected ‘Observation rate’) to then determine whether a stream is valid or corrupted.</p> 3188 <p>Outage and corruption events are reported in the ‘Log’ tab. They can also be passed on as parameters to a shell script or batch file to generate an advisory note to BNC’s operator or affected stream providers. This functionality lets users utilize BNC as a real-time performance monitor and alarm system for a network of GNSS reference stations, see <a class="reference internal" href="#fig-20b"><span class="std std-numref">Fig. 22</span></a> for an example setup.</p> 3189 <div class="figure" id="id43"> 3190 <span id="fig-20b"></span><a class="reference internal image-reference" href="_images/fig_20b.png"><img alt="_images/fig_20b.png" src="_images/fig_20b.png" style="width: 889.0px; height: 609.0px;" /></a> 3191 <p class="caption"><span class="caption-number">Fig. 22 </span><span class="caption-text">Specifying thresholds for stream outage and recovery</span></p> 3192 </div> 3193 <div class="section" id="observation-rate-optional"> 3194 <h4>Observation Rate - optional<a class="headerlink" href="#observation-rate-optional" title="Permalink to this headline">¶</a></h4> 3195 <p>BNC can collect all returns (success or failure) coming from a decoder within a certain short time span to then decide whether a stream has an outage or its content is corrupted. This procedure needs a rough a priori estimate of the expected observation rate of the incoming streams.</p> 3196 <p>An empty option field (default) means that you do not want explicit information from BNC about stream outages and incoming streams that cannot be decoded.</p> 3197 </div> 3198 <div class="section" id="failure-threshold-mandatory-if-observation-rate-is-set"> 3199 <h4>Failure Threshold - mandatory if ‘Observation rate’ is set<a class="headerlink" href="#failure-threshold-mandatory-if-observation-rate-is-set" title="Permalink to this headline">¶</a></h4> 3200 <p>Event ‘Begin_Failure’ will be reported if no data is received continuously for longer than the ‘Failure threshold’ time. Similarly, event ‘Begin_Corrupted’ will be reported when corrupted data is detected by the decoder continuously for longer than this ‘Failure threshold’ time. The default value is set to 15 minutes and is recommended as to not inundate users with too many event reports.</p> 3201 <p>Note that specifying a value of zero ‘0’ for the ‘Failure threshold’ will force BNC to report any stream failure immediately. Note also that for using this function you need to specify the ‘Observation rate’.</p> 3202 </div> 3203 <div class="section" id="recovery-threshold-mandatory-if-observation-rate-is-set"> 3204 <h4>Recovery Threshold - mandatory if ‘Observation rate’ is set<a class="headerlink" href="#recovery-threshold-mandatory-if-observation-rate-is-set" title="Permalink to this headline">¶</a></h4> 3205 <p>Once a ‘Begin_Failure’ or ‘Begin_Corrupted’ event has been reported, BNC will check when the stream again becomes available or uncorrupted. Event ‘End_Failure’ or ‘End_Corrupted’ will be reported as soon as valid observations are detected continuously throughout the ‘Recovery threshold’ time span. The default value is set to 5 minutes and is recommended as to not inundate users with too many event reports.</p> 3206 <p>Note that specifying a value of zero ‘0’ for the ‘Recovery threshold’ will force BNC to report any stream recovery immediately. Note also that for using this function you need to specify the ‘Observation rate’.</p> 3207 </div> 3208 <div class="section" id="script-optional-if-observation-rate-is-set"> 3209 <h4>Script - optional if ‘Observation rate’ is set<a class="headerlink" href="#script-optional-if-observation-rate-is-set" title="Permalink to this headline">¶</a></h4> 3210 <p>As mentioned before, BNC can trigger a shell script or a batch file to be executed when one of the described events is reported. This script can be used to email an advisory note to network operator or stream providers. To enable this feature, specify the full path to the script or batch file in the ‘Script’ field. The affected stream’s mountpoint and type of event reported (‘Begin_Outage’, ‘End_Outage’, ‘Begin_Corrupted’ or ‘End_Corrupted’) will then be passed on to the script as command line parameters (%1 and %2 on Windows systems or $1 and $2 on Unix/Linux/Mac OS X systems) together with date and time information.</p> 3211 <p>Leave the ‘Script’ field empty if you do not wish to use this option. An invalid path will also disable this option.</p> 3212 <p>Examples for command line parameter strings passed on to the advisory ‘Script’ are:</p> 3213 <div class="highlight-console"><div class="highlight"><pre><span class="go">FFMJ0 Begin_Outage 08-02-21 09:25:59</span> 3214 <span class="go">FFMJ0 End_Outage 08-02-21 11:36:02 Begin was 08-02-21 09:25:59</span> 3215 </pre></div> 3216 </div> 3217 <p>Sample script for Unix/Linux/Mac OS X systems:</p> 3218 <div class="highlight-none"><div class="highlight"><pre>#!/bin/bash 3219 sleep $((60*RANDOM/32767)) 3220 cat > mail.txt <<EOF 3221 Advisory Note to BNC User, 3222 Please note the following advisory received from BNC. 3223 Stream: $* 3224 Regards, BNC 3225 EOF 3226 mail -s "NABU: $1" email@address < mail.txt 3227 </pre></div> 3228 </div> 3229 <p>Note the sleep command in this script, which causes the system to wait for a random period of up to 60 seconds before sending the email. This should avoid overloading your mail server in case of a simultaneous failure of many streams.</p> 3230 </div> 3231 </div> 3232 <div class="section" id="miscellaneous"> 3233 <h3>Miscellaneous<a class="headerlink" href="#miscellaneous" title="Permalink to this headline">¶</a></h3> 3234 <p>This section describes several miscellaneous options which can be applied to a single stream (mountpoint) or to all configured streams. <a class="reference internal" href="#fig-21"><span class="std std-numref">Fig. 23</span></a> shows RTCM message numbers and observation types contained in stream ‘CUT07’ and the message latencies recorded every 2 seconds.</p> 3235 <div class="figure" id="id44"> 3236 <span id="fig-21"></span><a class="reference internal image-reference" href="_images/fig_21.png"><img alt="_images/fig_21.png" src="_images/fig_21.png" style="width: 1120.0px; height: 932.0px;" /></a> 3237 <p class="caption"><span class="caption-number">Fig. 23 </span><span class="caption-text">RTCM message numbers, latencies and observation types logged by BNC</span></p> 3238 </div> 3239 <div class="section" id="id7"> 3240 <h4>Mountpoint - optional<a class="headerlink" href="#id7" title="Permalink to this headline">¶</a></h4> 3241 <p>Specify a mountpoint to apply one or several of the ‘Miscellaneous’ options to the corresponding stream. Enter ‘ALL’ if you want to apply these options to all configured streams. An empty option field (default) means that you do not want BNC to apply any of these options.</p> 3242 </div> 3243 <div class="section" id="log-latency-optional"> 3244 <h4>Log Latency - optional<a class="headerlink" href="#log-latency-optional" title="Permalink to this headline">¶</a></h4> 3245 <p>BNC can average latencies per stream over a certain period of GPS time, the ‘Log latency’ interval. Mean latencies are calculated from the individual latencies of one (first incoming) observation or Broadcast Correction per second. The mean latencies are then saved in BNC’s logfile. Note that computing correct latencies requires the clock of the host computer to be properly synchronized. Note further that visualized latencies from the ‘Latency’ tab on the bottom of the main window represent individual latencies and not the mean latencies for the logfile.</p> 3246 <div class="section" id="latency"> 3247 <span id="index-23"></span><h5>Latency<a class="headerlink" href="#latency" title="Permalink to this headline">¶</a></h5> 3248 <p>Latency is defined in BNC by</p> 3249 <div class="math"> 3250 \[l = t_{UTC} - t_{GPS} + t_{leap}\]</div> 3251 <p>with latency <span class="math">\(l\)</span>, UTC time provided by BNC’s host <span class="math">\(t_{UTC}\)</span>, GPS time of currently processed epoch <span class="math">\(t_{GPS}\)</span> and Leap seconds between UTC and GPS time <span class="math">\(t_{leap}\)</span>.</p> 3252 </div> 3253 <div class="section" id="statistics"> 3254 <span id="index-24"></span><h5>Statistics<a class="headerlink" href="#statistics" title="Permalink to this headline">¶</a></h5> 3255 <p>BNC counts the number of GPS seconds covered by at least one observation. It also estimates an observation rate (independent from the a priori specified ‘Observation rate’) from all observations received throughout the first full ‘Log latency’ interval. Based on this rate, BNC estimates the number of data gaps when appearing in subsequent intervals.</p> 3256 <p>Latencies of observations or corrections to Broadcast Ephemeris and statistical information can be recorded in the ‘Log’ tab at the end of each ‘Log latency’ interval. A typical output from a 1 hour ‘Log latency’ interval would be:</p> 3257 <div class="highlight-console"><div class="highlight"><pre><span class="go">08-03-17 15:59:47 BRUS0: Mean latency 1.47 sec, min 0.66, max 3.02, rms 0.35, 3585 epochs, 15 gaps</span> 3258 </pre></div> 3259 </div> 3260 <p>Select a ‘Log latency’ interval to activate this function or select the empty option field if you do not want BNC to log latencies and statistical information.</p> 3261 </div> 3262 </div> 3263 <div class="section" id="scan-rtcm-optional"> 3264 <h4>Scan RTCM - optional<a class="headerlink" href="#scan-rtcm-optional" title="Permalink to this headline">¶</a></h4> 3265 <p>When configuring a GNSS receiver for RTCM stream generation, the firmware’s setup interface may not provide details about RTCM message types and observation types. As reliable information concerning stream content should be available e.g. for Ntrip Broadcaster operators to maintain the broadcaster’s source-table, BNC allows to scan RTCM streams for incoming message types and printout some of the contained meta-data. Contained observation types are also printed because such information is required a priori for the conversion of RTCM Version 3 MSM streams to RINEX Version 3 files. The idea for this option arose from ‘inspectRTCM’, a comprehensive stream analyzing tool written by D. Stöcker.</p> 3266 <p>Tick ‘Scan RTCM’ to scan RTCM Version 2 or 3 streams and log all contained</p> 3267 <ul class="simple"> 2603 </p> 2604 2605 <p> 2606 The following is an example for synchronized file and IP port output, which presents observations from GPS, GLONASS, Galileo, BDS (BeiDou), QZSS, and SBAS satellites as collected through streams FFMJ1, WTZR0 and CUT07: <pre> 2607 > 1884 206010.0000000 2608 FFMJ1 G02 C1C 23286796.846 L1C 122372909.535 127 S1C 49.000 C2W 23286793.846 L2W 95355531.583 127 S2W 36.000 2609 ... 2610 FFMJ1 G26 C1C 24796690.856 L1C 130307533.550 127 S1C 42.000 C2W 24796697.776 L2W 101538315.510 127 S2W 25.000 2611 FFMJ1 S20 C1C 38682850.302 L1C 203279786.777 127 S1C 42.000 2612 FFMJ1 S36 C1C 38288096.846 L1C 201205293.221 127 S1C 47.000 2613 FFMJ1 R03 C1C 23182737.548 L1C 124098947.838 127 S1C 48.000 C2P 23182746.288 L2P 96521352.130 127 S2P 42.000 2614 ... 2615 FFMJ1 R21 C1C 22201343.772 L1C 118803851.388 127 S1C 52.000 C2P 22201348.892 L2P 92402993.884 127 S2P 44.000 2616 CUT07 G01 C1C 25318977.766 L1C 133052476.488 521 D1C 2533.500 S1C 33.688 C2W 25318993.668 L2W 103677584.878 521 S2W 15.625 C2X 25318991.820 L2X 103676566.850 521 S2X 35.375 C5X 25318993.461 L5X 99357161.238 521 S5X 39.812 2617 ... 2618 CUT07 G27 C1C 20251005.351 L1C 106420601.969 627 D1C 250.937 S1C 50.312 C2W 20251014.512 L2W 82924447.644 627 S2W 45.125 C2X 20251014.246 L2X 82924648.644 627 S2X 53.188 C5X 20251015.480 L5X 79469461.619 627 S5X 56.375 2619 CUT07 R01 C1C 20312587.149 L1C 108583395.373 625 D1C -2456.703 S1C 52.875 C1P 20312586.192 L1P 108582844.382 625 S1P 51.000 C2C 20312593.422 L2C 84452892.610 625 S2C 43.625 C2P 20312593.836 L2P 84453114.622 625 S2P 42.312 2620 ... 2621 CUT07 R24 C1C 19732223.242 L1C 105517564.659 630 D1C -7.477 S1C 47.375 C1P 19732222.609 L1P 105517564.669 630 S1P 46.375 C2C 19732227.660 L2C 82069550.193 630 S2C 38.125 C2P 19732227.316 L2P 82068477.204 630 S2P 37.375 2622 CUT07 E11 C1X 28843071.547 L1X 151571208.816 405 D1X -2221.055 S1X 29.000 C7X 28843082.531 L7X 116138795.418 405 S7X 27.188 C8X 28843085.699 L8X 114662585.261 405 S8X 33.688 C5X 28843086.281 L5X 113186518.907 405 S5X 30.375 2623 ... 2624 CUT07 E30 C1X 28096037.289 L1X 147645296.835 630 D1X -2020.613 S1X 34.688 C7X 28096054.070 L7X 113131111.635 630 S7X 36.875 C8X 28096055.684 L8X 111692702.565 630 S8X 40.375 C5X 28096058.008 L5X 110254591.278 630 S5X 36.188 2625 CUT07 S27 C1C 40038220.843 L1C 210402303.982 616 D1C 104.688 S1C 36.125 C5I 40038226.375 L5I 157118241.003 616 S5I 40.875 2626 ... 2627 CUT07 S37 C1C 37791754.594 L1C 198596881.251 704 D1C 106.605 S1C 37.875 2628 CUT07 J01 C1C 33076065.781 L1C 173816471.106 674 D1C 169.765 S1C 48.375 C1Z 33076063.086 L1Z 173815528.437 674 S1Z 48.625 C6L 33076065.652 L6L 141084039.422 674 S6L 52.688 C2X 33076070.523 L2X 135440679.474 674 S2X 50.500 C5X 33076076.496 L5X 129797319.733 674 S5X 54.188 C1X 33076065.492 L1X 173815529.101 674 S1X 52.375 2629 CUT07 C01 C2I 37725820.914 L2I 196447455.374 704 D2I 90.898 S2I 41.312 C6I 37725810.168 L6I 159630204.932 704 S6I 44.875 C7I 37725815.196 L7I 151906389.245 704 S7I 45.812 2630 ... 2631 CUT07 C14 C2I 23351041.328 L2I 121594621.501 592 D2I 2422.203 S2I 45.688 C6I 23351032.926 L6I 98805869.415 592 S6I 48.500 C7I 23351041.996 L7I 94024977.673 592 S7I 45.688 2632 WTZR0 G02 C1C 23641481.864 L1C 124236803.604 127 S1C 47.500 C2W 23641476.604 L2W 96807881.233 127 S2W 39.250 2633 ... 2634 WTZR0 G26 C1C 24681555.676 L1C 129702453.534 127 S1C 43.750 C2W 24681561.256 L2W 101066873.870 127 S2W 37.750 2635 WTZR0 R03 C1C 22982596.508 L1C 123027564.682 127 S1C 47.000 C2P 22982598.368 L2P 95688085.627 127 S2P 43.250 2636 ... 2637 WTZR0 R21 C1C 22510252.692 L1C 120456902.811 127 S1C 47.500 C2P 22510253.132 L2P 93688698.401 127 S2P 44.000 2638 2639 > 1884 206011.0000000 2640 ... 2641 </pre> 2642 <p> 2643 The source code for BNC comes with a Perl script named 'test_tcpip_client.pl' that allows to read BNC's (synchronized or unsynchronized) ASCII observation output from the IP port and print it on standard output for verification. 2644 </p> 2645 2646 <p> 2647 Note that any socket connection of an application to BNC's synchronized or unsynchronized observation ports is recorded in the 'Log' tab on the bottom of the main window together with a connection counter, resulting in log records like 'New client connection on sync/usync port: # 1'. 2648 </p> 2649 2650 <p> 2651 The following figure shows the screenshot of a BNC configuration where a number of streams is pulled from different Ntrip Broadcasters to feed a GNSS engine via IP port output. 2652 </p> 2653 <p><img src="IMG/screenshot12.png"/></p> 2654 <p><u>Figure 18:</u> Synchronized BNC output via IP port to feed a GNSS real-time engine</p> 2655 2656 <p><h4>2.9.1 <a name="syncport">Port - optional</h4></p> 2657 <p> 2658 BNC can produce synchronized observations in ASCII format on your local host (IP 127.0.0.1) through an IP 'Port'. Synchronized means that BNC collects all observation data for a specific epoch, which become available within a certain number of seconds (see 'Wait for Full Obs Epoch' option). It then - epoch by epoch - outputs whatever has been received. The output comes block-wise per stream following the format specified in Table 2. Enter an IP port number here to activate this function. The default is an empty option field, meaning that no synchronized output is generated.</p> 2659 </p> 2660 2661 <p><h4>2.9.2 <a name="syncwait">Wait for Full Obs Epoch - mandatory if 'Port' is set</h4></p> 2662 <p> 2663 When feeding a real-time GNSS network engine waiting for synchronized observations epoch by epoch, BNC drops whatever is received later than 'Wait for full obs epoch' seconds. A value of 3 to 5 seconds could be an appropriate choice for that, depending on the latency of the incoming streams and the delay acceptable for your real-time GNSS product. Default value for 'Wait for full obs epoch' is 5 seconds. 2664 </p> 2665 <p> 2666 Note that 'Wait for full obs epoch' does not affect the RINEX Observation file content. Observations received later than 'Wait for full obs epoch' seconds will still be included in the RINEX Observation files. 2667 </p> 2668 2669 <p><h4>2.9.3 <a name="syncsample">Sampling - mandatory if 'File' or 'Port' is set</h4></p> 2670 <p> 2671 Select a synchronized observation output sampling interval in seconds. A value of zero '0' tells BNC to send/store all received epochs. This is the default value. 2672 </p> 2673 2674 <p><h4>2.9.4 <a name="syncfile">File - optional</h4></p> 2675 <p> 2676 Specify the full path to a 'File' where synchronized observations are saved in plain ASCII format. The default value is an empty option field, meaning that no ASCII output file is created. 2677 </p> 2678 <p> 2679 Beware that the size of this file can rapidly increase depending on the number of incoming streams. To prevent it from becoming too large, the name of the file can be changed on-the-fly. This option is primarily meant for test and evaluation. 2680 </p> 2681 2682 <p><h4>2.9.5 <a name="syncuport">Port (unsynchronized) - optional</h4></p> 2683 <p> 2684 BNC can produce unsynchronized observations from all configured streams in ASCII format on your local host (IP 127.0.0.1) through an IP 'Port'. Unsynchronized means that BNC immediately forwards any received observation to the port. Nevertheless, the output is produced block-wise per stream. Specify an IP port number here to activate this function. The default is an empty option field, meaning that no unsynchronized output is generated. 2685 </p> 2686 <p> 2687 The following is an example for unsynchronized IP port output which presents observations from GPS and GLONASS as collected through stream WTZR0. The format for synchronized and unsynchronized output of observations is very much the same. However, unsynchronized output does not have 'Epoch Records' and 'Observation Records'. Instead each record contains the 'GPS Week Number' and 'GPS Second of Week' time tag between the mountpoint string and the satellite number, see Table 2 for format details. 2688 </p> 2689 2690 <pre> 2691 WTZR0 1884 209623.0000000 G02 C1C 22259978.112 L1C 116976955.890 127 S1C 49.250 C2W 22259974.472 L2W 91150855.991 127 S2W 44.500 2692 WTZR0 1884 209623.0000000 G03 C1C 24426736.058 L1C 128363272.624 127 S1C 43.500 C2W 24426741.838 L2W 100023289.335 127 S2W 39.000 2693 ... 2694 WTZR0 1884 209623.0000000 G29 C1C 25275897.592 L1C 132825869.191 90 S1C 35.250 C2W 25275893.692 L2W 103500567.110 8 S2W 28.500 2695 WTZR0 1884 209623.0000000 G30 C1C 23670676.284 L1C 124390283.441 127 S1C 46.750 C2W 23670679.784 L2W 96927531.685 127 S2W 39.500 2696 WTZR0 1884 209623.0000000 R04 C1C 20758122.104 L1C 111158778.398 127 S1C 50.000 C2P 20758121.664 L2P 86456803.800 127 S2P 47.000 2697 WTZR0 1884 209623.0000000 R05 C1C 19430829.552 L1C 103868912.028 127 S1C 45.750 C2P 19430829.672 L2P 80786936.849 127 S2P 46.750 2698 ... 2699 </pre> 2700 2701 <p><h4>2.10 <a name="serial">Serial Output</h4></p> 2702 <p> 2703 You may use BNC to feed a serially connected device like a GNSS receiver. For that, an incoming stream can be forwarded to a serial port. Depending on the stream content, the receiver may use it for Differential GNSS, Precise Point Positioning or any other purpose supported by its firmware. 2704 </p> 2705 <p> 2706 Note that receiving a VRS stream requires the receiver sending NMEA sentences (option 'NMEA' set to 'Manual' or 'Auto') to the Ntrip Broadcaster. The following figure shows the data flow when pulling a VRS stream or a physical (non-VRS) stream. 2707 </p> 2708 2709 <p><img src="IMG/screenshot35.png"/></p> 2710 <p><u>Figure 19:</u> Flowcharts, BNC forwarding a stream to a serially connected receiver; sending NMEA sentences is mandatory for VRS streams</p> 2711 2712 <p> 2713 The following figure shows the screenshot of an example situation where BNC pulls a VRS stream from an Ntrip Broadcaster to feed a serially connected RTK rover. 2714 </p> 2715 2716 <p><img src="IMG/screenshot11.png"/></p> 2717 <p><u>Figure 20:</u> BNC pulling a VRS stream to feed a serially connected RTK rover</p> 2718 2719 <p><h4>2.10.1 <a name="sermount">Mountpoint - optional</h4></p> 2720 <p> 2721 Enter a 'Mountpoint' to forward its corresponding stream to a serially connected GNSS receiver. 2722 </p> 2723 <p> 2724 When selecting one of the serial communication options listed below, make sure that you pick those configured to the serially connected receiver. 2725 </p> 2726 2727 <p><h4>2.10.2 <a name="serport">Port Name - mandatory if 'Mountpoint' is set</h4></p> 2728 <p> 2729 Enter the serial 'Port name' selected on your host for communication with the serially connected receiver. Valid port names are 2730 </p> 2731 <pre> 2732 Windows: COM1, COM2 2733 Linux: /dev/ttyS0, /dev/ttyS1 2734 FreeBSD: /dev/ttyd0, /dev/ttyd1 2735 Digital Unix: /dev/tty01, /dev/tty02 2736 HP-UX: /dev/tty1p0, /dev/tty2p0 2737 SGI/IRIX: /dev/ttyf1, /dev/ttyf2 2738 SunOS/Solaris: /dev/ttya, /dev/ttyb 2739 </pre> 2740 <p> 2741 Note that you must plug a serial cable in the port defined here before you start BNC. 2742 </p> 2743 2744 <p><h4>2.10.3 <a name="serbaud">Baud Rate - mandatory if 'Mountpoint' is set</h4></p> 2745 <p> 2746 Select a 'Baud rate' for the serial output link. Note that using a high baud rate is recommended. 2747 </p> 2748 2749 <p><h4>2.10.4 <a name="serflow">Flow Control - mandatory if 'Mountpoint' is set</h4></p> 2750 <p> 2751 Select a 'Flow control' for the serial output link. Note that your selection must equal the flow control configured to the serially connected device. Select 'OFF' if you do not know better. 2752 </p> 2753 2754 <p><h4>2.10.5 <a name="serparity">Parity - mandatory if 'Mountpoint' is set</h4></p> 2755 <p> 2756 Select the 'Parity' for the serial output link. Note that parity is often set to 'NONE'. 2757 </p> 2758 2759 <p><h4>2.10.6 <a name="serdata">Data Bits - mandatory if 'Mountpoint' is set</h4></p> 2760 <p> 2761 Select the number of 'Data bits' for the serial output link. Note that often '8' data bits are used. 2762 </p> 2763 2764 <p><h4>2.10.7 <a name="serstop">Stop Bits - mandatory if 'Mountpoint' is set</h4></p> 2765 <p> 2766 Select the number of 'Stop bits' for the serial output link. Note that often '1' stop bit is used. 2767 </p> 2768 2769 <p><h4>2.10.8 <a name="serauto">NMEA - mandatory if 'Mountpoint' is set</h4></p> 2770 <p>The 'NMEA' option supports the so-called 'Virtual Reference Station' (VRS) concept which requires the receiver to send approximate position information to the Ntrip Broadcaster. Select 'no' if you do not want BNC to forward or upload any NMEA sentence to the Ntrip broadcaster in support of VRS. 2771 </p> 2772 <p>Select 'Auto' to automatically forward NMEA sentences of type GGA from your serially connected receiver to the Ntrip broadcaster and/or save them in a file. 2773 </p> 2774 <p>Select 'Manual GPGGA' or 'Manual GNGGA' if you want BNC to produce and upload GPGGA or GNGGA NMEA sentences to the Ntrip broadcaster because your serially connected receiver does not generate them. A Talker ID 'GP' proceeding the GGA string stands for GPS solutions while a Talker ID 'GN' stands for multi-constellation solutions. 2775 </p> 2776 <p>Note that selecting 'Auto' or 'Manual' works only for VRS streams which show up under the 'Streams' canvas on BNC's main window with 'nmea' stream attribute set to 'yes'. This attribute is either extracted from the Ntrip broadcaster's source-table or introduced by the user through editing the BNC configuration file. 2777 </p> 2778 2779 <p><h4>2.10.9 <a name="serfile">File - optional if 'NMEA' is set to 'Auto'</h4></p> 2780 <p>Specify the full path to a file where NMEA sentences coming from your serially connected receiver are saved. Default is an empty option field, meaning that no NMEA sentences will be saved on disk. 2781 </p> 2782 <p><h4>2.10.10 <a name="serheight">Height - mandatory if 'NMEA' is set to 'Manual'</h4></p> 2783 <p> 2784 Specify an approximate 'Height' above mean sea level in meters for the reference station introduced through 'Mountpoint'. Together with the latitude and longitude from the Ntrip broadcaster source-table, the height information is used to build GGA sentences to be sent to the Ntrip broadcaster. 2785 </p> 2786 <p>For adjusting latitude and longitude values of a VRS stream given in the 'Streams' canvas, you can double click the latitude/longitude data fields, specify appropriate values and then hit Enter. 2787 </p> 2788 <p>This option is only relevant when option 'NMEA' is set to 'Manual GPGGA' or 'Manual GNGGA' respectively. 2789 </p> 2790 2791 <p><h4>2.10.11 <a name="sersampl">Sampling - mandatory if 'NMEA' is set to 'Manual'</h4></p> 2792 <p> 2793 Select a sampling interval in seconds for manual generation and upload of NMEA GGA sentences. 2794 </p> 2795 <p> 2796 A sampling rate of '0' means that a GGA sentence will be sent only once to initialize the requested VRS stream. Note that some VRS systems need GGA sentences at regular intervals. 2797 </p> 2798 2799 <p><h4>2.11 <a name="advnote">Outages</h4></p> 2800 <p> 2801 At any time an incoming stream might become unavailable or corrupted. In such cases, it is important that the BNC operator and/or the stream providers become aware of the situation so that measures can be taken to restore the stream. Furthermore, continuous attempts to decode a corrupted stream can generate unnecessary workload for BNC. Outages and corruptions are handled by BNC as follows: 2802 </p> 2803 <p> 2804 <u>Stream outages:</u> BNC considers a connection to be broken when there are no incoming data detected for more than 20 seconds. When this occurs, BNC will try to reconnect at a decreasing rate. It will first try to reconnect with 1 second delay and again in 2 seconds if the previous attempt failed. If the attempt is still unsuccessful, it will try to reconnect within 4 seconds after the previous attempt and so on. The waiting time doubles each time with a maximum of 256 seconds. 2805 </p> 2806 <p> 2807 <u>Stream corruption:</u> Not all chunks of bits transferred to BNC's internal decoder may return valid observations. Sometimes several chunks might be needed before the next observation can be properly decoded. BNC buffers all outputs (both valid and invalid) from the decoder for a short time span (size derived from the expected 'Observation rate') to then determine whether a stream is valid or corrupted. 2808 </p> 2809 <p> 2810 Outage and corruption events are reported in the 'Log' tab. They can also be passed on as parameters to a shell script or batch file to generate an advisory note to BNC's operator or affected stream providers. This functionality lets users utilize BNC as a real-time performance monitor and alarm system for a network of GNSS reference stations. 2811 </p> 2812 2813 <p><h4>2.11.1 <a name="obsrate">Observation Rate - optional</h4></p> 2814 <p> 2815 BNC can collect all returns (success or failure) coming from a decoder within a certain short time span to then decide whether a stream has an outage or its content is corrupted. This procedure needs a rough a priori estimate of the expected observation rate of the incoming streams.</p><p>An empty option field (default) means that you do not want explicit information from BNC about stream outages and incoming streams that cannot be decoded. 2816 </p> 2817 2818 <p><h4>2.11.2 <a name="advfail">Failure Threshold - mandatory if 'Observation rate' is set</h4></p> 2819 <p> 2820 Event 'Begin_Failure' will be reported if no data is received continuously for longer than the 'Failure threshold' time. Similarly, event 'Begin_Corrupted' will be reported when corrupted data is detected by the decoder continuously for longer than this 'Failure threshold' time. The default value is set to 15 minutes and is recommended as to not inundate users with too many event reports. 2821 </p> 2822 <p> 2823 Note that specifying a value of zero '0' for the 'Failure threshold' will force BNC to report any stream failure immediately. Note also that for using this function you need to specify the 'Observation rate'. 2824 </p> 2825 2826 <p><h4>2.11.3 <a name="advreco">Recovery Threshold - mandatory if 'Observation rate' is set</h4></p> 2827 <p> 2828 Once a 'Begin_Failure' or 'Begin_Corrupted' event has been reported, BNC will check when the stream again becomes available or uncorrupted. Event 'End_Failure' or 'End_Corrupted' will be reported as soon as valid observations are detected continuously throughout the 'Recovery threshold' time span. The default value is set to 5 minutes and is recommended as to not inundate users with too many event reports. 2829 </p> 2830 <p> 2831 Note that specifying a value of zero '0' for the 'Recovery threshold' will force BNC to report any stream recovery immediately. Note also that for using this function you need to specify the 'Observation rate'. 2832 </p> 2833 2834 <p><h4>2.11.4 <a name="advscript">Script - optional if 'Observation rate' is set</h4></p> 2835 <p> 2836 As mentioned before, BNC can trigger a shell script or a batch file to be executed when one of the described events is reported. This script can be used to email an advisory note to network operator or stream providers. To enable this feature, specify the full path to the script or batch file in the 'Script' field. The affected stream's mountpoint and type of event reported ('Begin_Outage', 'End_Outage', 'Begin_Corrupted' or 'End_Corrupted') will then be passed on to the script as command line parameters (%1 and %2 on Windows systems or $1 and $2 on Unix/Linux/Mac OS X systems) together with date and time information. 2837 </p> 2838 <p> 2839 Leave the 'Script' field empty if you do not wish to use this option. An invalid path will also disable this option. 2840 </p> 2841 <p> 2842 Examples for command line parameter strings passed on to the advisory 'Script' are: 2843 <pre> 2844 FFMJ0 Begin_Outage 08-02-21 09:25:59 2845 FFMJ0 End_Outage 08-02-21 11:36:02 Begin was 08-02-21 09:25:59 2846 </pre> 2847 </p> 2848 <p> 2849 Sample script for Unix/Linux/Mac OS X systems: 2850 </p> 2851 <pre> 2852 #!/bin/bash 2853 sleep $((60*RANDOM/32767)) 2854 cat > mail.txt <<EOF 2855 Advisory Note to BNC User, 2856 Please note the following advisory received from BNC. 2857 Stream: $* 2858 Regards, BNC 2859 EOF 2860 mail -s "NABU: $1" email@address < mail.txt 2861 </pre> 2862 </p> 2863 <p> 2864 Note the sleep command in this script, which causes the system to wait for a random period of up to 60 seconds before sending the email. This should avoid overloading your mail server in case of a simultaneous failure of many streams. 2865 </p> 2866 2867 <p><h4>2.12 <a name="misc">Miscellaneous</h4></p> 2868 <p> 2869 This section describes several miscellaneous options which can be applied to a single stream (mountpoint) or to all configured streams. 2870 </p> 2871 2872 <p> 2873 The following figure shows RTCM message numbers and observation types contained in stream 'CUT07' and the message latencies recorded every 2 seconds. 2874 </p> 2875 <p><img src="IMG/screenshot14.png"/></p> 2876 <p><u>Figure 21:</u> RTCM message numbers, latencies and observation types logged by BNC</p> 2877 2878 2879 <p><h4>2.12.1 <a name="miscmount">Mountpoint - optional </h4></p> 2880 <p> 2881 Specify a mountpoint to apply one or several of the 'Miscellaneous' options to the corresponding stream. Enter 'ALL' if you want to apply these options to all configured streams. An empty option field (default) means that you do not want BNC to apply any of these options. 2882 </p> 2883 2884 <p><h4>2.12.2 <a name="miscperf">Log Latency - optional </h4></p> 2885 <p> 2886 BNC can average latencies per stream over a certain period of GPS time, the 'Log latency' interval. Mean latencies are calculated from the individual latencies of one (first incoming) observation or Broadcast Correction per second. The mean latencies are then saved in BNC's logfile. Note that computing correct latencies requires the clock of the host computer to be properly synchronized. Note further that visualized latencies from the 'Latency' tab on the bottom of the main window represent individual latencies and not the mean latencies for the logfile. 2887 </p> 2888 <p> 2889 <u>Latency:</u> Latency is defined in BNC by the following equation: 2890 </p> 2891 <pre> 2892 UTC time provided by BNC's host 2893 - GPS time of currently processed epoch 2894 + Leap seconds between UTC and GPS time 2895 -------------- 2896 = Latency 2897 </pre> 2898 <p> 2899 <u>Statistics:</u> BNC counts the number of GPS seconds covered by at least one observation. It also estimates an observation rate (independent from the a priori specified 'Observation rate') from all observations received throughout the first full 'Log latency' interval. Based on this rate, BNC estimates the number of data gaps when appearing in subsequent intervals. 2900 </p> 2901 <p> 2902 Latencies of observations or corrections to Broadcast Ephemeris and statistical information can be recorded in the 'Log' tab at the end of each 'Log latency' interval. A typical output from a 1 hour 'Log latency' interval would be: 2903 </p> 2904 <pre> 2905 08-03-17 15:59:47 BRUS0: Mean latency 1.47 sec, min 0.66, max 3.02, rms 0.35, 3585 epochs, 15 gaps 2906 </pre> 2907 <p> 2908 Select a 'Log latency' interval to activate this function or select the empty option field if you do not want BNC to log latencies and statistical information. 2909 </p> 2910 2911 2912 <p><h4>2.12.3 <a name="miscscan">Scan RTCM - optional</h4></p> 2913 <p> 2914 When configuring a GNSS receiver for RTCM stream generation, the firmware's setup interface may not provide details about RTCM message types and observation types. As reliable information concerning stream content should be available e.g. for Ntrip Broadcaster operators to maintain the broadcaster's source-table, BNC allows to scan RTCM streams for incoming message types and printout some of the contained meta-data. Contained observation types are also printed because such information is required a priori for the conversion of RTCM Version 3 MSM streams to RINEX Version 3 files. The idea for this option arose from 'inspectRTCM', a comprehensive stream analyzing tool written by D. Stöcker. 2915 </p> 2916 <p> 2917 Tick 'Scan RTCM' to scan RTCM Version 2 or 3 streams and log all contained 2918 </p> 2919 <ul> 3268 2920 <li>Numbers of incoming message types</li> 3269 2921 <li>Antenna Reference Point (ARP) coordinates</li> … … 3272 2924 <li>Antenna descriptor.</li> 3273 2925 </ul> 3274 <p>In case of RTCM Version 3 streams the output includes</p> 3275 <ul class="simple">2926 In case of RTCM Version 3 streams the output includes 2927 <ul> 3276 2928 <li>RINEX Version 3 Observation types</li> 3277 2929 </ul> 3278 <p>Note that in RTCM Version 2 message types 18 and 19 carry only the observables of one frequency. Hence it needs two type 18 and 19 messages per epoch to transport observations from dual frequency receivers.</p> 3279 <p>Please note further that RTCM Version 3 message types 1084 for GLONASS do not contain GLONASS channel numbers. Observations from these messages can only be decoded when you include 1020 GLONASS ephemeris messages to your stream which contain the channels. You could also consider adding a second stream carrying 1087 GLONASS observation messages or 1020 GLONASS ephemeris messages as both contain the GLONASS channel numbers.</p> 3280 <p>Logged time stamps refer to message reception time and allow understanding repetition rates. Enter ‘ALL’ if you want to log this information from all configured streams. Beware that the size of the logfile can rapidly increase depending on the number of incoming RTCM streams.</p> 3281 <p>This option is primarily meant for test and evaluation. Use it to figure out what exactly is produced by a specific GNSS receiver’s configuration. An empty option field (default) means that you do not want BNC to print message type numbers and antenna information carried in RTCM streams.</p> 3282 </div> 3283 <div class="section" id="id8"> 3284 <h4>Port - optional<a class="headerlink" href="#id8" title="Permalink to this headline">¶</a></h4> 3285 <p>BNC can output streams related to the above specified ‘Mountpoint’ through a TCP/IP port of your local host. Enter a port number to activate this function. The stream content remains untouched. BNC does not decode or reformat the data for this output. Be careful when keyword ‘ALL’ is specified as ‘Mountpoint’ for involving all incoming streams together because the affiliation of data to certain streams gets lost in the output. An empty option field (default) means that you do not want BNC to apply the TCP/IP port output option.</p> 3286 </div> 3287 </div> 3288 <div class="section" id="ppp-client"> 3289 <span id="index-25"></span><h3>PPP Client<a class="headerlink" href="#ppp-client" title="Permalink to this headline">¶</a></h3> 3290 <p>BNC can derive coordinates for rover positions following the Precise Point Positioning (PPP) approach. It uses code or code plus phase data from one or more GNSS systems in ionosphere-free linear combinations P3, L3, or P3&L3. Besides pulling streams of observations from a dual frequency GNSS receiver, this</p> 3291 <ul class="simple"> 3292 <li>Requires pulling in addition a stream carrying satellite orbit and clock corrections to Broadcast Ephemeris in the form of RTCM Version 3 ‘State Space Representation’ (SSR) messages. Note that for BNC these Broadcast Corrections need to be referred to the satellite’s Antenna Phase Center (APC). Streams providing such messages are listed on (<a class="reference external" href="http://igs.bkg.bund.de/ntrip/orbits">http://igs.bkg.bund.de/ntrip/orbits</a>) <a class="reference internal" href="bnchelp.html#caissy2012a" id="id9">[8]</a>. Stream ‘CLK11’ on Ntrip Broadcaster ‘products.igs-ip.net:2101’ is an example.</li> 3293 <li>May require pulling a stream carrying Broadcast Ephemeris available as RTCM Version 3 message types 1019, 1020, 1043, 1044, 1045, 1046 and 63 (tentative). This becomes a must only when the stream coming from the receiver does not contain Broadcast Ephemeris or provides them only at very low repetition rate. Streams providing such messages are listed on <a class="reference external" href="http://igs.bkg.bund.de/ntrip/ephemeris">http://igs.bkg.bund.de/ntrip/ephemeris</a>. Stream ‘RTCM3EPH’ on caster ‘products.igs-ip.net:2101’ is an example.</li> 3294 </ul> 3295 <p>Note that Broadcast Ephemeris parameters pass a plausibility check in BNC which allows to ignore incorrect or outdated ephemeris data when necessary, leaving a note ‘WRONG EPHEMERIS’ or ‘OUTDATED EPHEMERIS’ in the logfile.</p> 3296 <p>When using the PPP option, it is important to understand which effects are corrected by BNC:</p> 3297 <ul class="simple"> 2930 </p> 2931 2932 <p> 2933 Note that in RTCM Version 2 message types 18 and 19 carry only the observables of one frequency. Hence it needs two type 18 and 19 messages per epoch to transport observations from dual frequency receivers. 2934 </p> 2935 2936 <p> 2937 Please note further that RTCM Version 3 message types 1084 for GLONASS do not contain GLONASS channel numbers. Observations from these messages can only be decoded when you include 1020 GLONASS ephemeris messages to your stream which contain the channels. You could also consider adding a second stream carrying 1087 GLONASS observation messages or 1020 GLONASS ephemeris messages as both contain the GLONASS channel numbers. 2938 </p> 2939 <p> 2940 2941 <p>Logged time stamps refer to message reception time and allow understanding repetition rates. Enter 'ALL' if you want to log this information from all configured streams. Beware that the size of the logfile can rapidly increase depending on the number of incoming RTCM streams. 2942 </p> 2943 <p>This option is primarily meant for test and evaluation. Use it to figure out what exactly is produced by a specific GNSS receiver's configuration. An empty option field (default) means that you do not want BNC to print message type numbers and antenna information carried in RTCM streams. 2944 </p> 2945 2946 2947 <p><h4>2.12.4 <a name="miscport">Port - optional</h4></p> 2948 <p> 2949 BNC can output streams related to the above specified 'Mountpoint' through a TCP/IP port of your local host. Enter a port number to activate this function. The stream content remains untouched. BNC does not decode or reformat the data for this output. 2950 </p> 2951 <p> 2952 Be careful when keyword 'ALL' is specified as 'Mountpoint' for involving all incoming streams together because the affiliation of data to certain streams gets lost in the output. 2953 </p> 2954 <p> 2955 An empty option field (default) means that you do not want BNC to apply the TCP/IP port output option. 2956 </p> 2957 2958 2959 <p><h4>2.13 <a name="pppclient">PPP Client</h4></p> 2960 <p> 2961 BNC can derive coordinates for rover positions following the Precise Point Positioning (PPP) approach. It uses code or code plus phase data from one or more GNSS systems in ionosphere-free linear combinations P3, L3, or P3&L3. Besides pulling streams of observations from a dual frequency GNSS receiver, this 2962 <ul> 2963 <li>Requires pulling in addition a stream carrying satellite orbit and clock corrections to Broadcast Ephemeris in the form of RTCM Version 3 'State Space Representation' (SSR) messages. Note that for BNC these Broadcast Corrections need to be referred to the satellite's Antenna Phase Center (APC). Streams providing such messages are listed on <u>http://igs.bkg.bund.de/ntrip/orbits</u> (Caissy et al. 2012). Stream 'CLK11' on Ntrip Broadcaster 'products.igs-ip.net:2101' is an example.</li> 2964 <li>May require pulling a stream carrying Broadcast Ephemeris available as RTCM Version 3 message types 1019, 1020, 1043, 1044, 1045, 1046 and 63 (tentative). This becomes a must only when the stream coming from the receiver does not contain Broadcast Ephemeris or provides them only at very low repetition rate. Streams providing such messages are listed on <u>http://igs.bkg.bund.de/ntrip/ephemeris</u>. Stream 'RTCM3EPH' on caster 'products.igs-ip.net:2101' is an example.</li> 2965 </ul> 2966 Note that Broadcast Ephemeris parameters pass a plausibility check in BNC which allows to ignore incorrect or outdated ephemeris data when necessary, leaving a note 'WRONG EPHEMERIS' or 'OUTDATED EPHEMERIS' in the logfile. 2967 </p> 2968 2969 <p>When using the PPP option, it is important to understand which effects are corrected by BNC. 2970 </p> 2971 <ul> 3298 2972 <li>BNC does correct for Solid Earth Tides and Phase Windup.</li> 3299 2973 <li>Satellite Antenna Phase Center offsets are corrected.</li> 3300 2974 <li>Satellite Antenna Phase Center variations are neglected because this is a small effect usually less than 2 centimeters.</li> 3301 <li>Observations can be corrected for a Receiver Antenna Offset and Receiver Antenna Phase Center Variation. Depending on whether or not these corrections are applied, the estimated position is either that of the receiver ’s Antenna Phase Center or that of the receiver’s Antenna Reference Point.</li>2975 <li>Observations can be corrected for a Receiver Antenna Offset and Receiver Antenna Phase Center Variation. Depending on whether or not these corrections are applied, the estimated position is either that of the receiver's Antenna Phase Center or that of the receiver's Antenna Reference Point.</li> 3302 2976 <li>Ocean and atmospheric loading is neglected. Atmospheric loading is pretty small. Ocean loading is usually also a small effect but may reach up to about 10 centimeters for coastal stations.</li> 3303 2977 <li>Rotational deformation due to polar motion (Polar Tides) is not corrected because this is a small effect usually less than 2 centimeters.</li> 3304 2978 </ul> 3305 <p>The provider of an orbit/clock correction stream may switch with his service at any time from a duty to a backup server installation. This shall be noted in the SSR stream through a change of the Issue Of Data (IOD SSR) parameter. The PPP option in BNC will immediately reset all ambiguities in such a situation.</p> 3306 <p>PPP options are specified in BNC through the following four panels:</p> 3307 <ul class="simple"> 2979 </p> 2980 2981 <p> 2982 The provider of an orbit/clock correction stream may switch with his service at any time from a duty to a backup server installation. This shall be noted in the SSR stream through a change of the Issue Of Data (IOD SSR) parameter. The PPP option in BNC will immediately reset all ambiguities in such a situation. 2983 </p> 2984 2985 <p> 2986 PPP options are specified in BNC through the following four panels. 2987 <ul> 3308 2988 <li>PPP (1): Input and output, specifying real-time or post processing mode and associated data sources</li> 3309 2989 <li>PPP (2): Processed stations, specifying sigmas and noise of a priori coordinates and NMEA stream output</li> … … 3311 2991 <li>PPP (4): Plots, specifying visualization through time series and track maps</li> 3312 2992 </ul> 3313 <div class="section" id="ppp-1-input-and-output"> 3314 <span id="index-26"></span><h4>PPP (1): Input and Output<a class="headerlink" href="#ppp-1-input-and-output" title="Permalink to this headline">¶</a></h4> 3315 <p>This panel provides options for specifying the input and output streams and files required by BNC for real-time or post processing PPP, see <a class="reference internal" href="#fig-22"><span class="std std-numref">Fig. 24</span></a> for an example screenshot.</p> 3316 <div class="figure" id="id45"> 3317 <span id="fig-22"></span><a class="reference internal image-reference" href="_images/fig_22.png"><img alt="_images/fig_22.png" src="_images/fig_22.png" style="width: 1332.0px; height: 934.0px;" /></a> 3318 <p class="caption"><span class="caption-number">Fig. 24 </span><span class="caption-text">Real-time Precise Point Positioning with BNC, PPP Panel 1</span></p> 3319 </div> 3320 <div class="section" id="data-source-optional"> 3321 <h5>Data Source - optional<a class="headerlink" href="#data-source-optional" title="Permalink to this headline">¶</a></h5> 3322 <p>Choose between input from ‘Real-time Streams’ or ‘RINEX Files’ for PPP with BNC in real-time or post processing mode.</p> 3323 <div class="section" id="real-time-streams"> 3324 <h6>Real-time Streams<a class="headerlink" href="#real-time-streams" title="Permalink to this headline">¶</a></h6> 3325 <p>When choosing ‘Real-time Streams’ BNC will do PPP solutions in real-time. This requires pulling GNSS observation streams, Broadcast Ephemeris messages and a stream containing corrections to Broadcast Ephemeris. Streams must come in RTCM Version 3 format. If you do not pull Broadcast Corrections, BNC will switch with its solution to ‘Single Point Positioning’ (SPP) mode.</p> 3326 </div> 3327 <div class="section" id="rinex-files"> 3328 <h6>RINEX Files<a class="headerlink" href="#rinex-files" title="Permalink to this headline">¶</a></h6> 3329 <p>This input mode allows to specify RINEX Observation, RINEX Navigation and Broadcast Correction files. BNC accepts RINEX Version 2 as well as RINEX Version 3 Observation or Navigation file formats. Files carrying Broadcast Corrections must have the format produced by BNC through the ‘Broadcast Corrections’ panel. Specifying only a RINEX Observation and a RINEX Navigation file and no Broadcast Correction file leads BNC to a ‘Single Point Positioning’ (SPP) solution.</p> 3330 </div> 3331 <div class="section" id="debugging"> 3332 <h6>Debugging<a class="headerlink" href="#debugging" title="Permalink to this headline">¶</a></h6> 3333 <p>Note that for debugging purposes, BNC’s real-time PPP functionality can also be used offline. Apply the ‘File Mode’ ‘Command Line’ option for that to read a file containing synchronized observations, orbit and clock correctors, and Broadcast Ephemeris. Example:</p> 3334 <div class="highlight-bat"><div class="highlight"><pre>bnc.exe --conf c:\temp\PPP.bnc --file c:\temp\RAW 3335 </pre></div> 3336 </div> 3337 <p>Such a file (here: ‘RAW’) must be saved beforehand using BNC’s ‘Raw output file’ option.</p> 3338 </div> 3339 </div> 3340 <div class="section" id="rinex-observation-file-mandatory-if-data-source-is-set-to-rinex-files"> 3341 <h5>RINEX Observation File - mandatory if ‘Data source’ is set to ‘RINEX Files’<a class="headerlink" href="#rinex-observation-file-mandatory-if-data-source-is-set-to-rinex-files" title="Permalink to this headline">¶</a></h5> 3342 <p>Specify a RINEX Observation file. The file format can be RINEX Version 2 or RINEX Version 3.</p> 3343 </div> 3344 <div class="section" id="rinex-navigation-file-mandatory-if-data-source-is-set-to-rinex-files"> 3345 <h5>RINEX Navigation File - mandatory if ‘Data source’ is set to ‘RINEX Files’<a class="headerlink" href="#rinex-navigation-file-mandatory-if-data-source-is-set-to-rinex-files" title="Permalink to this headline">¶</a></h5> 3346 <p>Specify a RINEX Navigation file. The file format can be RINEX Version 2 or RINEX Version 3.</p> 3347 </div> 3348 <div class="section" id="corrections-stream-optional-if-data-source-is-set-to-real-time-streams"> 3349 <h5>Corrections Stream - optional if ‘Data source’ is set to ‘Real-Time Streams’<a class="headerlink" href="#corrections-stream-optional-if-data-source-is-set-to-real-time-streams" title="Permalink to this headline">¶</a></h5> 3350 <p>Specify a Broadcast ‘Corrections stream’ from the list of selected ‘Streams’ you are pulling if you want BNC to correct your satellite ephemeris accordingly. Note that the stream’s orbit and clock corrections must refer to the satellite Antenna Phase Center (APC). Streams providing such corrections are made available e.g. through the International GNSS Service (IGS) and listed on <a class="reference external" href="http://igs.bkg.bund.de/ntrip/orbits">http://igs.bkg.bund.de/ntrip/orbits</a>. The stream format must be RTCM Version 3 containing so-called SSR messages. Streams ‘IGS03’ and ‘CLK11’ supporting GPS plus GLONASS are examples. If you do not specify a ‘Corrections stream’, BNC will fall back from a PPP solution to a Single Point Positioning (SPP) solution.</p> 3351 </div> 3352 <div class="section" id="corrections-file-optional-if-data-source-is-set-to-rinex-files"> 3353 <h5>Corrections File - optional if ‘Data source’ is set to ‘RINEX Files’<a class="headerlink" href="#corrections-file-optional-if-data-source-is-set-to-rinex-files" title="Permalink to this headline">¶</a></h5> 3354 <p>Specify a Broadcast ‘Corrections file’ as saved beforehand using BNC. The file content is basically the ASCII representation of a RTCM Version 3 Broadcast Correction (SSR) stream. If you do not specify a ‘Correction file’, BNC will fall back from a PPP solution to a Single Point Positioning (SPP) solution.</p> 3355 </div> 3356 <div class="section" id="antex-file-optional"> 3357 <h5>ANTEX File - optional<a class="headerlink" href="#antex-file-optional" title="Permalink to this headline">¶</a></h5> 3358 <p>IGS provides a file containing absolute phase center corrections for GNSS satellite and receiver antennas in ANTEX format. Entering the full path to such an ANTEX file is required for correcting observations in PPP for Antenna Phase Center offsets and variations. Note that for applying such corrections you need to specify the receiver’s antenna name and radome in BNC’s ‘Coordinates file’.</p> 3359 <p>Default value for ‘ANTEX file’ is an empty option field, meaning that you do not want to correct observations for Antenna Phase Center offsets and variations.</p> 3360 </div> 3361 <div class="section" id="coordinates-file-optional"> 3362 <h5>Coordinates File - optional<a class="headerlink" href="#coordinates-file-optional" title="Permalink to this headline">¶</a></h5> 3363 <p>Enter the full path to an ASCII file which specifies all observation streams or files from stationary or mobile receivers you possibly may want to process. Specifying a ‘Coordinates file’ is optional. If it exists, it should contain one record per stream or file with the following parameters separated by blank characters:</p> 3364 <ul> 3365 <li><p class="first">Input data source, to be specified either through</p> 3366 <ul class="simple"> 3367 <li>the ‘Mountpoint’ of an RTCM stream (when in real-time PPP mode), or</li> 2993 </p> 2994 2995 <p><h4>2.13.1 <a name="pppInp">PPP (1): Input and Output</h4></p> 2996 <p> 2997 This panel provides options for specifying the input and output streams and files required by BNC for real-time or post processing PPP. 2998 </p> 2999 3000 <p><img src="IMG/screenshot03.png"/></p> 3001 <p><u>Figure 22:</u> Real-time Precise Point Positioning with BNC, PPP Panel 1</p> 3002 3003 <p><h4>2.13.1.1 <a name="pppdatasource">Data Source - optional</h4></p> 3004 <p> 3005 Choose between input from 'Real-time Streams' or 'RINEX Files' for PPP with BNC in real-time or post processing mode. 3006 </p> 3007 3008 <p> 3009 <u>Real-time Streams</u><br> 3010 When choosing 'Real-time Streams' BNC will do PPP solutions in real-time. This requires pulling GNSS observation streams, Broadcast Ephemeris messages and a stream containing corrections to Broadcast Ephemeris. Streams must come in RTCM Version 2 or RTCM Version 3 format. 3011 </p> 3012 <p> 3013 If you do not pull Broadcast Corrections, BNC will switch with its solution to 'Single Point Positioning' (SPP) mode. 3014 </p> 3015 3016 <p> 3017 <u>RINEX Files</u><br> 3018 This input mode allows to specify RINEX Observation, RINEX Navigation and Broadcast Correction files. BNC accepts RINEX Version 2 as well as RINEX Version 3 Observation or Navigation file formats. Files carrying Broadcast Corrections must have the format produced by BNC through the 'Broadcast Corrections' panel. 3019 </p> 3020 <p> 3021 Specifying only a RINEX Observation and a RINEX Navigation file and no Broadcast Correction file leads BNC to a 'Single Point Positioning' (SPP) solution. 3022 <p> 3023 <u>Debugging</u><br> 3024 Note that for debugging purposes, BNC's real-time PPP functionality can also be used offline. Apply the 'File Mode' 'Command Line' option for that to read a file containing synchronized observations, orbit and clock correctors, and Broadcast Ephemeris. Example: 3025 <pre> 3026 bnc.exe --conf c:\temp\PPP.bnc --file c:\temp\RAW 3027 </pre> 3028 Such a file (here: 'RAW') must be saved beforehand using BNC's 'Raw output file' option. 3029 </li> 3030 </ul> 3031 </p> 3032 3033 <p><h4>2.13.1.2 <a name="ppprnxobs">RINEX Observation File - mandatory if 'Data source' is set to 'RINEX Files'</h4></p> 3034 <p> 3035 Specify a RINEX Observation file. The file format can be RINEX Version 2 or RINEX Version 3. 3036 </p> 3037 3038 <p><h4>2.13.1.3 <a name="ppprnxnav">RINEX Navigation File - mandatory if 'Data source' is set to 'RINEX Files'</h4></p> 3039 <p> 3040 Specify a RINEX Navigation file. The file format can be RINEX Version 2 or RINEX Version 3. 3041 </p> 3042 3043 <p><h4>2.13.1.4 <a name="pppcorrstream">Corrections Stream - optional if 'Data source' is set to 'Real-Time Streams'</h4></p> 3044 <p> 3045 Specify a Broadcast 'Corrections stream' from the list of selected 'Streams' you are pulling if you want BNC to correct your satellite ephemeris accordingly. Note that the stream's orbit and clock corrections must refer to the satellite Antenna Phase Center (APC). Streams providing such corrections are made available e.g. through the International GNSS Service (IGS) and listed on <u>http://igs.bkg.bund.de/ntrip/orbits</u>. The stream format must be RTCM Version 3 containing so-called SSR messages. Streams 'IGS03' and 'CLK11' supporting GPS plus GLONASS are examples. 3046 </p> 3047 <p> 3048 If you do not specify a 'Corrections stream', BNC will fall back from a PPP solution to a Single Point Positioning (SPP) solution. 3049 </p> 3050 3051 <p><h4>2.13.1.5 <a name="pppcorrfile">Corrections File - optional if 'Data source' is set to 'RINEX Files'</h4></p> 3052 <p> 3053 Specify a Broadcast 'Corrections file' as saved beforehand using BNC. The file content is basically the ASCII representation of a RTCM Version 3 Broadcast Correction (SSR) stream. 3054 </p> 3055 <p> 3056 If you do not specify a 'Correction file', BNC will fall back from a PPP solution to a Single Point Positioning (SPP) solution. 3057 </p> 3058 3059 <p><h4>2.13.1.6 <a name="pppantexfile">ANTEX File - optional</h4></p> 3060 <p> 3061 IGS provides a file containing absolute phase center corrections for GNSS satellite and receiver antennas in ANTEX format. Entering the full path to such an ANTEX file is required for correcting observations in PPP for Antenna Phase Center offsets and variations. Note that for applying such corrections you need to specify the receiver's antenna name and radome in BNC's 'Coordinates file'. 3062 </p> 3063 <p> 3064 Default value for 'ANTEX file' is an empty option field, meaning that you do not want to correct observations for Antenna Phase Center offsets and variations. 3065 </p> 3066 3067 <p><h4>2.13.1.7 <a name="pppmarkcoor">Coordinates File - optional </h4></p> 3068 <p> 3069 Enter the full path to an ASCII file which specifies all observation streams or files from stationary or mobile receivers you possibly may want to process. Specifying a 'Coordinates file' is optional. If it exists, it should contain one record per stream or file with the following parameters separated by blank characters: 3070 </p> 3071 <p> 3072 <ul> 3073 <li>Input data source, to be specified either through 3074 <ul> 3075 <li>the 'Mountpoint' of an RTCM stream (when in real-time PPP mode), or 3076 </li> 3368 3077 <li>the first four characters of the RINEX observations file (when in post processing PPP mode).</li> 3369 3078 </ul> 3370 <p>Having at least this first parameter in each record is mandatory.</p> 3079 Having at least this first parameter in each record is mandatory.</li><br> 3080 <li>Only for static observations from a stationary receiver:<br>Approximate a priori XYZ coordinate [m] of the station's marker; specify '0.0 0.0 0.0' if unknown or when observations come from a mobile receiver.</li><br> 3081 <li>Nort, East and Up component [m] of antenna eccentricity which is the difference between Antenna Reference Point (ARP) and a nearby marker position; when specifying the antenna eccentricity BNC will produce coordinates referring to the marker position and not referring to ARP; specify '0.0 0.0 0.0' if eccentricity is unknown or the ARP itself is understood as the marker.</li><br> 3082 <li>Receiver's antenna name as defined in your ANTEX file (see below); Observations will be corrected for the Antenna Phase Center (APC) offsets and variations, which may result in a reduction of a few centimeters at max; the specified name must consist of 20 characters; add trailing blanks if the antenna name has less than 20 characters; examples:<br><pre> 3083 'JPSREGANT_SD_E ' (no radome) 3084 'LEIAT504 NONE' (no radome) 3085 'LEIAR25.R3 LEIT' (radome is LEIT)</pre> 3086 Leave antenna name blank if you do not want to correct observations for APC offsets and variations or if you do not know the antenna name.</li><br> 3087 <li> 3088 Receiver type following the naming convention for IGS equipment as defined in <u>https://igscb.jpl.nasa.gov/igscb/station/general/rcvr_ant.tab</u>. Specifying the receiver type is only required when saving SINEX Troposphere files. In those files it becomes part of the 'SITE/RECEIVER' specifications, see section 'SNX TRO Directory'. 3371 3089 </li> 3372 <li><p class="first">Only for static observations from a stationary receiver: Approximate a priori XYZ coordinate [m] of the station’s marker; specify ‘0.0 0.0 0.0’ if unknown or when observations come from a mobile receiver.</p> 3373 </li> 3374 <li><p class="first">Nort, East and Up component [m] of antenna eccentricity which is the difference between Antenna Reference Point (ARP) and a nearby marker position; when specifying the antenna eccentricity BNC will produce coordinates referring to the marker position and not referring to ARP; specify ‘0.0 0.0 0.0’ if eccentricity is unknown or the ARP itself is understood as the marker.</p> 3375 </li> 3376 </ul> 3377 <p>Receiver’s antenna name as defined in your ANTEX file (see below); Observations will be corrected for the Antenna Phase Center (APC) offsets and variations, which may result in a reduction of a few centimeters at max; the specified name must consist of 20 characters; add trailing blanks if the antenna name has less than 20 characters; examples:</p> 3378 <div class="highlight-console"><div class="highlight"><pre><span class="go">'JPSREGANT_SD_E ' (no radome)</span> 3379 <span class="go">'LEIAT504 NONE' (no radome)</span> 3380 <span class="go">'LEIAR25.R3 LEIT' (radome is LEIT)</span> 3381 </pre></div> 3382 </div> 3383 <p>Leave antenna name blank if you do not want to correct observations for APC offsets and variations or if you do not know the antenna name. 3384 * Receiver type following the naming convention for IGS equipment as defined in <a class="reference external" href="https://igscb.jpl.nasa.gov/igscb/station/general/rcvr_ant.tab">https://igscb.jpl.nasa.gov/igscb/station/general/rcvr_ant.tab</a>. Specifying the receiver type is only required when saving SINEX Troposphere files. In those files it becomes part of the ‘SITE/RECEIVER’ specifications, see section ‘SNX TRO Directory’.</p> 3385 <p>Records in the ‘Coordinates’ file with exclamation mark ‘!’ in the first column or blank records will be understood as comment lines and ignored.</p> 3386 <p>The following is the content of an example ‘Coordinates file’. Here each record describes the mountpoint of a stream available from the global IGS real-time reference station network. A priori coordinates are followed by North/East/Up eccentricity components of the ARP followed by the antenna name, radome and the receiver name in use.</p> 3387 <div class="highlight-console"><div class="highlight"><pre><span class="go">!</span> 3388 <span class="go">! Station X[m] Y[m] Z[m] North[m] EAST[m] UP[m] Antenna Radom Receiver</span> 3389 <span class="go">! -------------------------------------------------------------------------------- -------------------</span> 3390 <span class="go">ADIS0 4913652.6612 3945922.7678 995383.4359 0.0000 0.0000 0.0010 TRM29659.00 NONE JPS LEGACY</span> 3391 <span class="go">ALIC0 -4052052.5593 4212836.0078 -2545104.8289 0.0000 0.0000 0.0015 LEIAR25.R3 NONE LEICA GRX1200GGPRO</span> 3392 <span class="go">BELF0 3685257.8823 -382908.8992 5174311.1067 0.0000 0.0000 0.0000 LEIAT504GG LEIS LEICA GRX1200GGPRO</span> 3393 <span class="go">BNDY0 -5125977.4106 2688801.2966 -2669890.4345 0.0000 0.0000 0.0000 ASH701945E_M NONE TRIMBLE NETR5</span> 3394 <span class="go">BRAZ0 4115014.0678 -4550641.6105 -1741443.8244 0.0000 0.0000 0.0080 LEIAR10 NONE LEICA GR25</span> 3395 <span class="go">CTWN0 5023564.4285 1677795.7211 -3542025.8392 0.0000 0.0000 0.0000 ASH701941.B NONE TRIMBLE NETR5</span> 3396 <span class="go">CUT07 -2364337.4408 4870285.6055 -3360809.6280 0.0000 0.0000 0.0000 TRM59800.00 SCIS TRIMBLE NETR9</span> 3397 <span class="go">GANP0 3929181.3480 1455236.9105 4793653.9880 0.0000 0.0000 0.3830 TRM55971.00 NONE TRIMBLE NETR9</span> 3398 <span class="go">HLFX0 2018905.6037 -4069070.5095 4462415.4771 0.0000 0.0000 0.1000 TPSCR.G3 NONE TPS NET-G3A</span> 3399 <span class="go">LHAZ0 -106941.9272 5549269.8041 3139215.1564 0.0000 0.0000 0.1330 ASH701941.B NONE TPS E_GGD</span> 3400 <span class="go">LMMF7 2993387.3587 -5399363.8649 1596748.0983 0.0000 0.0000 0.0000 TRM57971.00 NONE TRIMBLE NETR9</span> 3401 <span class="go">MAO07 -5466067.0979 -2404333.0198 2242123.1929 0.0000 0.0000 0.0000 LEIAR25.R3 LEIT JAVAD TRE_G3TH DELTA</span> 3402 <span class="go">NICO0 4359415.5252 2874117.1872 3650777.9614 0.0000 0.0000 0.0650 LEIAR25.R4 LEIT LEICA GR25</span> 3403 <span class="go">NKLG7 6287385.7320 1071574.7606 39133.1088 -0.0015 -0.0025 3.0430 TRM59800.00 SCIS TRIMBLE NETR9</span> 3404 <span class="go">NURK7 5516756.5103 3196624.9684 -215027.1315 0.0000 0.0000 0.1300 TPSCR3_GGD NONE JAVAD TRE_G3TH DELTA</span> 3405 <span class="go">ONSA0 3370658.3928 711877.2903 5349787.0603 0.0000 0.0000 0.9950 AOAD/M_B OSOD JAVAD TRE_G3TH DELTA</span> 3406 <span class="go">PDEL0 4551595.9072 -2186892.9495 3883410.9685 0.0000 0.0000 0.0000 LEIAT504GG NONE LEICA GRX1200GGPRO</span> 3407 <span class="go">RCMN0 5101056.6270 3829074.4206 -135016.1589 0.0000 0.0000 0.0000 LEIAT504GG LEIS LEICA GRX1200GGPRO</span> 3408 <span class="go">REUN0 3364098.9668 4907944.6121 -2293466.7379 0.0000 0.0000 0.0610 TRM55971.00 NONE TRIMBLE NETR9</span> 3409 <span class="go">REYK7 2587384.0890 -1043033.5433 5716564.1301 0.0000 0.0000 0.0570 LEIAR25.R4 LEIT LEICA GR25</span> 3410 <span class="go">RIO27 1429907.8578 -3495354.8953 -5122698.5595 0.0000 0.0000 0.0350 ASH700936C_M SNOW JAVAD TRE_G3TH DELTA</span> 3411 <span class="go">SMR50 927077.1096 -2195043.5597 -5896521.1344 0.0000 0.0000 0.0000 TRM41249.00 TZGD TRIMBLE NETR5</span> 3412 <span class="go">SUWN0 -3062023.1604 4055447.8946 3841818.1684 0.0000 0.0000 1.5700 TRM29659.00 DOME TRIMBLE NETR9</span> 3413 <span class="go">TASH7 1695944.9208 4487138.6220 4190140.7391 0.0000 0.0000 0.1206 JAV_RINGANT_G3T NONE JAVAD TRE_G3TH DELTA</span> 3414 <span class="go">UFPR0 3763751.6731 -4365113.9039 -2724404.5331 0.0000 0.0000 0.1000 TRM55971.00 NONE TRIMBLE NETR5</span> 3415 <span class="go">UNB30 1761287.9724 -4078238.5659 4561417.8448 0.0000 0.0000 0.3145 TRM57971.00 NONE TRIMBLE NETR9</span> 3416 <span class="go">WIND7 5633708.8016 1732017.9297 -2433985.5795 0.0000 0.0000 0.0460 ASH700936C_M SNOW JAVAD TRE_G3TH DELTA</span> 3417 <span class="go">WTZR0 4075580.3797 931853.9767 4801568.2360 0.0000 0.0000 0.0710 LEIAR25.R3 LEIT LEICA GR25</span> 3418 <span class="go">WUH27 -2267749.9761 5009154.5504 3221294.4429 0.0000 0.0000 0.1206 JAV_RINGANT_G3T NONE JAVAD TRE_G3TH DELTA</span> 3419 <span class="go">YELL7 -1224452.8796 -2689216.1863 5633638.2832 0.0000 0.0000 0.1000 AOAD/M_T NONE JAVAD TRE_G3TH DELTA</span> 3420 </pre></div> 3421 </div> 3422 <p>Note again that the only mandatory parameters in this file are the ‘Station’ parameters in the first column, each standing for an observation stream’s mountpoint or the 4-character station ID of a RINEX filename. The following shows further valid examples for records of a ‘Coordinates file’.</p> 3423 <div class="highlight-console"><div class="highlight"><pre><span class="go">!</span> 3424 <span class="go">! Station X[m] Y[m] Z[m] N[m] E[m] U[m] Antenna Radom Receiver</span> 3425 <span class="go">! --------------------------------------------------------------------------------- ----------------</span> 3426 <span class="go">WTZR0 4075580.3797 931853.9767 4801568.2360 0.000 0.000 0.071 LEIAR25.R3 LEIT LEICA GR25</span> 3427 <span class="go">CUT07 -2364337.4408 4870285.6055 -3360809.6280 0.000 0.000 0.000 TRM59800.00 SCIS</span> 3428 <span class="go">FFMJ1 4053455.7384 617729.8393 4869395.8214 0.000 0.000 0.045</span> 3429 <span class="go">TITZ1 3993780.4501 450206.8969 4936136.9886</span> 3430 <span class="go">WARN</span> 3431 <span class="go">SASS1 0.0 0.0 0.0 0.000 0.000 0.031 TPSCR3_GGD CONE TRIMBLE NETR5</span> 3432 </pre></div> 3433 </div> 3434 <p>In this file</p> 3435 <ul class="simple"> 3436 <li>Record ‘WTZR0’ describes a stream from a stationary receiver with known a priori marker coordinate, antenna eccentricity, antenna and radome type and receiver type.</li> 3437 <li>Record ‘CUT07’ describes a stream from a stationary receiver with known a priori marker coordinate, antenna eccentricity and antenna and radome type. The receiver type is unknown.</li> 3438 <li>Record ‘FFMJ1’ describes a stream from a stationary receiver with known a priori marker coordinate and antenna eccentricity but unknown antenna, radome and receiver type.</li> 3439 <li>Record ‘TITZ1’ describes a stream coming from a stationary receiver where an a priori marker coordinate is known but antenna eccentricity, name and radome and receiver type are unknown.</li> 3440 <li>The 4-character station ID ‘WARN’ indicates that a RINEX observations file for post processing PPP is available for station ‘WARN’ but an a priori marker coordinate as well as antenna eccentricity, name and radome are unknown.</li> 3441 <li>Record ‘SASS1’ stands for a mountpoint where the stream comes from a mobile rover receiver. Hence an a priori coordinate is unknown although antenna eccentricity, name and radome and receiver type are known.</li> 3442 </ul> 3443 </div> 3444 <div class="section" id="id10"> 3445 <h5>Version 3 Filenames - optional<a class="headerlink" href="#id10" title="Permalink to this headline">¶</a></h5> 3446 <p>Tick ‘Version 3 filenames’ to let BNC create so-called extended filenames for PPP logfiles, NMEA files and SINEX Troposphere files to follow the RINEX Version 3 standard, see section ‘RINEX Filenames’ for details. Default is an empty check box, meaning to create filenames following the RINEX Version 2 standard. The file content is not affected by this option. It only concerns the filename notation. <a class="reference internal" href="#tab-rinex2-filenames"><span class="std std-numref">Table 8</span></a> and <a class="reference internal" href="#tab-rinex3-filenames"><span class="std std-numref">Table 9</span></a> give filename examples for RINEX version 2 and 3, respectively.</p> 3447 <table border="1" class="docutils" id="id46"> 3448 <span id="tab-rinex2-filenames"></span><caption><span class="caption-number">Table 8 </span><span class="caption-text">File name examples vor RINEX version 2.</span><a class="headerlink" href="#id46" title="Permalink to this table">¶</a></caption> 3449 <colgroup> 3450 <col width="29%" /> 3451 <col width="71%" /> 3452 </colgroup> 3453 <thead valign="bottom"> 3454 <tr class="row-odd"><th class="head"><strong>Filename</strong></th> 3455 <th class="head"><strong>Description</strong></th> 3456 </tr> 3457 </thead> 3458 <tbody valign="top"> 3459 <tr class="row-even"><td>CUT018671.nmea</td> 3460 <td>NMEA filename, suffix ‘nmea’</td> 3461 </tr> 3462 <tr class="row-odd"><td>CUT018671.ppp</td> 3463 <td>PPP logfile name, suffix ‘ppp’</td> 3464 </tr> 3465 <tr class="row-even"><td>CUT018671J30.tro</td> 3466 <td>SINEX Troposphere filename, suffix ‘tro’</td> 3467 </tr> 3468 </tbody> 3090 </ul> 3091 </p> 3092 <p> 3093 Records in the 'Coordinates' file with exclamation mark '!' in the first column or blank records will be understood as comment lines and ignored. 3094 </p> 3095 <p> 3096 The following is the content of an example 'Coordinates file'. Here each record describes the mountpoint of a stream available from the global IGS real-time reference station network. A priori coordinates are followed by North/East/Up eccentricity components of the ARP 3097 followed by the antenna name and radome in use. 3098 </p> 3099 <pre> 3100 ! 3101 ! Station X[m] Y[m] Z[m] North[m] EAST[m] UP[m] Antenna--------Radom Receiver 3102 ! ----------------------------------------------------------------------------------------------------- 3103 ADIS0 4913652.6612 3945922.7678 995383.4359 0.0000 0.0000 0.0010 TRM29659.00 NONE JPS LEGACY 3104 ALIC0 -4052052.5593 4212836.0078 -2545104.8289 0.0000 0.0000 0.0015 LEIAR25.R3 NONE LEICA GRX1200GGPRO 3105 BELF0 3685257.8823 -382908.8992 5174311.1067 0.0000 0.0000 0.0000 LEIAT504GG LEIS LEICA GRX1200GGPRO 3106 BNDY0 -5125977.4106 2688801.2966 -2669890.4345 0.0000 0.0000 0.0000 ASH701945E_M NONE TRIMBLE NETR5 3107 BRAZ0 4115014.0678 -4550641.6105 -1741443.8244 0.0000 0.0000 0.0080 LEIAR10 NONE LEICA GR25 3108 CTWN0 5023564.4285 1677795.7211 -3542025.8392 0.0000 0.0000 0.0000 ASH701941.B NONE TRIMBLE NETR5 3109 CUT07 -2364337.4408 4870285.6055 -3360809.6280 0.0000 0.0000 0.0000 TRM59800.00 SCIS TRIMBLE NETR9 3110 GANP0 3929181.3480 1455236.9105 4793653.9880 0.0000 0.0000 0.3830 TRM55971.00 NONE TRIMBLE NETR9 3111 HLFX0 2018905.6037 -4069070.5095 4462415.4771 0.0000 0.0000 0.1000 TPSCR.G3 NONE TPS NET-G3A 3112 LHAZ0 -106941.9272 5549269.8041 3139215.1564 0.0000 0.0000 0.1330 ASH701941.B NONE TPS E_GGD 3113 LMMF7 2993387.3587 -5399363.8649 1596748.0983 0.0000 0.0000 0.0000 TRM57971.00 NONE TRIMBLE NETR9 3114 MAO07 -5466067.0979 -2404333.0198 2242123.1929 0.0000 0.0000 0.0000 LEIAR25.R3 LEIT JAVAD TRE_G3TH DELTA 3115 NICO0 4359415.5252 2874117.1872 3650777.9614 0.0000 0.0000 0.0650 LEIAR25.R4 LEIT LEICA GR25 3116 NKLG7 6287385.7320 1071574.7606 39133.1088 -0.0015 -0.0025 3.0430 TRM59800.00 SCIS TRIMBLE NETR9 3117 NURK7 5516756.5103 3196624.9684 -215027.1315 0.0000 0.0000 0.1300 TPSCR3_GGD NONE JAVAD TRE_G3TH DELTA 3118 ONSA0 3370658.3928 711877.2903 5349787.0603 0.0000 0.0000 0.9950 AOAD/M_B OSOD JAVAD TRE_G3TH DELTA 3119 PDEL0 4551595.9072 -2186892.9495 3883410.9685 0.0000 0.0000 0.0000 LEIAT504GG NONE LEICA GRX1200GGPRO 3120 RCMN0 5101056.6270 3829074.4206 -135016.1589 0.0000 0.0000 0.0000 LEIAT504GG LEIS LEICA GRX1200GGPRO 3121 REUN0 3364098.9668 4907944.6121 -2293466.7379 0.0000 0.0000 0.0610 TRM55971.00 NONE TRIMBLE NETR9 3122 REYK7 2587384.0890 -1043033.5433 5716564.1301 0.0000 0.0000 0.0570 LEIAR25.R4 LEIT LEICA GR25 3123 RIO27 1429907.8578 -3495354.8953 -5122698.5595 0.0000 0.0000 0.0350 ASH700936C_M SNOW JAVAD TRE_G3TH DELTA 3124 SMR50 927077.1096 -2195043.5597 -5896521.1344 0.0000 0.0000 0.0000 TRM41249.00 TZGD TRIMBLE NETR5 3125 SUWN0 -3062023.1604 4055447.8946 3841818.1684 0.0000 0.0000 1.5700 TRM29659.00 DOME TRIMBLE NETR9 3126 TASH7 1695944.9208 4487138.6220 4190140.7391 0.0000 0.0000 0.1206 JAV_RINGANT_G3T NONE JAVAD TRE_G3TH DELTA 3127 UFPR0 3763751.6731 -4365113.9039 -2724404.5331 0.0000 0.0000 0.1000 TRM55971.00 NONE TRIMBLE NETR5 3128 UNB30 1761287.9724 -4078238.5659 4561417.8448 0.0000 0.0000 0.3145 TRM57971.00 NONE TRIMBLE NETR9 3129 WIND7 5633708.8016 1732017.9297 -2433985.5795 0.0000 0.0000 0.0460 ASH700936C_M SNOW JAVAD TRE_G3TH DELTA 3130 WTZR0 4075580.3797 931853.9767 4801568.2360 0.0000 0.0000 0.0710 LEIAR25.R3 LEIT LEICA GR25 3131 WUH27 -2267749.9761 5009154.5504 3221294.4429 0.0000 0.0000 0.1206 JAV_RINGANT_G3T NONE JAVAD TRE_G3TH DELTA 3132 YELL7 -1224452.8796 -2689216.1863 5633638.2832 0.0000 0.0000 0.1000 AOAD/M_T NONE JAVAD TRE_G3TH DELTA 3133 </pre> 3134 <p> 3135 Note again that the only mandatory parameters in this file are the 'Station' parameters in the first column, each standing for an observation stream's mountpoint or the 4-character station ID of a RINEX filename. The following shows further valid examples for records of a 'Coordinates file'. 3136 </p> 3137 3138 <pre> 3139 ! 3140 ! Station X[m] Y[m] Z[m] N[m] E[m] U[m] Antenna--------Radom Receiver 3141 ! -------------------------------------------------------------------------------------------------- 3142 WTZR0 4075580.3797 931853.9767 4801568.2360 0.000 0.000 0.071 LEIAR25.R3 LEIT LEICA GR25 3143 CUT07 -2364337.4408 4870285.6055 -3360809.6280 0.000 0.000 0.000 TRM59800.00 SCIS 3144 FFMJ1 4053455.7384 617729.8393 4869395.8214 0.000 0.000 0.045 3145 TITZ1 3993780.4501 450206.8969 4936136.9886 3146 WARN 3147 SASS1 0.0 0.0 0.0 0.000 0.000 0.031 TPSCR3_GGD CONE TRIMBLE NETR5 3148 </pre> 3149 3150 <p> 3151 In this file 3152 </p> 3153 <ul> 3154 <li> Record 'WTZR0' describes a stream from a stationary receiver with known a priori marker coordinate, antenna eccentricity, antenna and radome type and receiver type.</li> 3155 <li> Record 'CUT07' describes a stream from a stationary receiver with known a priori marker coordinate, antenna eccentricity and antenna and radome type. The receiver type is unknown.</li> 3156 <li> Record 'FFMJ1' describes a stream from a stationary receiver with known a priori marker coordinate and antenna eccentricity but unknown antenna, radome and receiver type.</li> 3157 <li> Record 'TITZ1' describes a stream coming from a stationary receiver where an a priori marker coordinate is known but antenna eccentricity, name and radome and receiver type are unknown.</li> 3158 <li>The 4-character station ID 'WARN' indicates that a RINEX observations file for post processing PPP is available for station 'WARN' but an a priori marker coordinate as well as antenna eccentricity, name and radome are unknown.</li> 3159 <li>Record 'SASS1' stands for a mountpoint where the stream comes from a mobile rover receiver. Hence an a priori coordinate is unknown although antenna eccentricity, name and radome and receiver type are known.</li> 3160 </ul> 3161 </p> 3162 3163 <p><h4>2.13.1.8 <a name="pppv3filename">Version 3 Filenames - optional</h4></p> 3164 <p> 3165 Tick 'Version 3 filenames' to let BNC create so-called extended filenames for PPP logfiles, NMEA files and SINEX Troposphere files to follow the RINEX Version 3 standard, see section 'RINEX Filenames' for details. 3166 </p> 3167 <p> 3168 Default is an empty check box, meaning to create filenames following the RINEX Version 2 standard. The file content is not affected by this option. It only concerns the filename notation. 3169 </p> 3170 <p> 3171 The following are examples for Version 2 filenames: 3172 <p> 3173 </p> 3174 <table> 3175 <tr><td> CUT018671.nmea</td><td> NMEA filename, suffix 'nmea'</td></tr> 3176 <tr><td> CUT018671.ppp</td><td> PPP logfile name, suffix 'ppp'</td></tr> 3177 <tr><td> CUT018671J30.tro</td><td> SINEX Troposphere filename, suffix 'tro'</td></tr> 3469 3178 </table> 3470 <table border="1" class="docutils" id="id47"> 3471 <span id="tab-rinex3-filenames"></span><caption><span class="caption-number">Table 9 </span><span class="caption-text">File name examples vor RINEX version 3.</span><a class="headerlink" href="#id47" title="Permalink to this table">¶</a></caption> 3472 <colgroup> 3473 <col width="47%" /> 3474 <col width="53%" /> 3475 </colgroup> 3476 <thead valign="bottom"> 3477 <tr class="row-odd"><th class="head"><strong>Filename</strong></th> 3478 <th class="head"><strong>Description</strong></th> 3479 </tr> 3480 </thead> 3481 <tbody valign="top"> 3482 <tr class="row-even"><td>CUT000AUS_U_20152920000_01D_01S.nmea</td> 3483 <td>NMEA filename, suffix ‘nmea’</td> 3484 </tr> 3485 <tr class="row-odd"><td>CUT000AUS_U_20152920000_01D_01S.ppp</td> 3486 <td>PPP logfile name, suffix ‘ppp’</td> 3487 </tr> 3488 <tr class="row-even"><td>CUT000AUS_U_20152920945_15M_01S.tra</td> 3489 <td>SINEX Troposphere filename, suffix ‘tra’</td> 3490 </tr> 3491 </tbody> 3179 </p> 3180 <p> 3181 The following are examples for Version 3 filenames:<br> 3182 </p> 3183 <table> 3184 <tr><td> CUT000AUS_U_20152920000_01D_01S.nmea</td><td> NMEA filename, suffix 'nmea'</td></tr> 3185 <tr><td> CUT000AUS_U_20152920000_01D_01S.ppp</td><td> PPP logfile name, suffix 'ppp'</td></tr> 3186 <tr><td> CUT000AUS_U_20152920945_15M_01S.tra</td><td> SINEX Troposphere filename, suffix 'tra'</td></tr> 3492 3187 </table> 3493 </div> 3494 <div class="section" id="logfile-directory-optional"> 3495 <span id="index-27"></span><h5>Logfile Directory - optional<a class="headerlink" href="#logfile-directory-optional" title="Permalink to this headline">¶</a></h5> 3496 <p>Essential PPP results are shown in the ‘Log’ tab on the bottom of BNC’s main window. Depending on the processing options, the following values are presented about once per second (example):</p> 3497 <div class="highlight-console"><div class="highlight"><pre><span class="go">...</span> 3498 <span class="go">15-10-21 13:23:38 2015-10-21_13:23:38.000 CUT07 X = -2364337.4505 Y = 4870285.6269 Z = -3360809.6481 NEU: -0.0046 -0.0006 +0.0306 TRP: +2.4018 +0.1006</span> 3499 <span class="go">15-10-21 13:23:39 2015-10-21_13:23:39.000 CUT07 X = -2364337.4468 Y = 4870285.6244 Z = -3360809.6453 NEU: -0.0043 -0.0029 +0.0258 TRP: +2.4018 +0.0993</span> 3500 <span class="go">15-10-21 13:23:40 2015-10-21_13:23:40.000 CUT07 X = -2364337.4455 Y = 4870285.6215 Z = -3360809.6466 NEU: -0.0070 -0.0027 +0.0238 TRP: +2.4018 +0.0978</span> 3501 <span class="go">15-10-21 13:23:41 2015-10-21_13:23:41.000 CUT07 X = -2364337.4447 Y = 4870285.6248 Z = -3360809.6445 NEU: -0.0039 -0.0049 +0.0249 TRP: +2.4018 +0.0962</span> 3502 <span class="go">15-10-21 13:23:42 2015-10-21_13:23:42.000 CUT07 X = -2364337.4426 Y = 4870285.6238 Z = -3360809.6424 NEU: -0.0031 -0.0063 +0.0223 TRP: +2.4018 +0.0950</span> 3503 <span class="go">15-10-21 13:23:43 2015-10-21_13:23:43.000 CUT07 X = -2364337.4453 Y = 4870285.6386 Z = -3360809.6518 NEU: -0.0033 -0.0104 +0.0395 TRP: +2.4018 +0.0927</span> 3504 <span class="go">15-10-21 13:23:44 2015-10-21_13:23:44.000 CUT07 X = -2364337.4435 Y = 4870285.6354 Z = -3360809.6487 NEU: -0.0027 -0.0106 +0.0348 TRP: +2.4018 +0.0908</span> 3505 <span class="go">15-10-21 13:23:45 2015-10-21_13:23:45.000 CUT07 X = -2364337.4445 Y = 4870285.6381 Z = -3360809.6532 NEU: -0.0049 -0.0109 +0.0396 TRP: +2.4018 +0.0884</span> 3506 <span class="go">15-10-21 13:23:46 2015-10-21_13:23:46.000 CUT07 X = -2364337.4437 Y = 4870285.6365 Z = -3360809.6548 NEU: -0.0073 -0.0109 +0.0389 TRP: +2.4018 +0.0855</span> 3507 <span class="go">15-10-21 13:23:47 2015-10-21_13:23:47.000 CUT07 X = -2364337.4498 Y = 4870285.6317 Z = -3360809.6395 NEU: +0.0049 -0.0033 +0.0294 TRP: +2.4018 +0.0833</span> 3508 <span class="go">...</span> 3509 </pre></div> 3510 </div> 3511 <p>Each row reports the PPP result of one epoch. It begins with a UTC time stamp (yy-mm-dd hh:mm:ss) which tells us when the result was produced. A second time stamp (yyyy-mm-dd_hh:mm:ss) describes the PPP’s epoch in ‘GPS Time’. It is followed by the derived XYZ position in [m], its North, East and Up displacement compared to an introduced a priori coordinate, and the estimated tropospheric delay [m] (model plus correction). If you require more information, you can specify a ‘Logfile directory’ to save daily logfiles per station (filename suffix ‘ppp’) with additional processing details on disk:</p> 3512 <div class="highlight-console"><div class="highlight"><pre><span class="go">Precise Point Positioning of Epoch 2015-10-21_13:23:47.000</span> 3513 <span class="go">---------------------------------------------------------------</span> 3514 <span class="go">2015-10-21_13:23:47.000 SATNUM G 9</span> 3515 <span class="go">2015-10-21_13:23:47.000 SATNUM R 6</span> 3516 <span class="go">2015-10-21_13:23:47.000 SATNUM E 0</span> 3517 <span class="go">2015-10-21_13:23:47.000 SATNUM C 9</span> 3518 <span class="go">2015-10-21_13:23:47.000 RES C01 P3 0.3201</span> 3519 <span class="go">2015-10-21_13:23:47.000 RES C02 P3 0.3597</span> 3520 <span class="go">2015-10-21_13:23:47.000 RES C03 P3 -0.8003</span> 3521 <span class="go">2015-10-21_13:23:47.000 RES C04 P3 2.7684</span> 3522 <span class="go">2015-10-21_13:23:47.000 RES C05 P3 4.9738</span> 3523 <span class="go">2015-10-21_13:23:47.000 RES C06 P3 0.1888</span> 3524 <span class="go">2015-10-21_13:23:47.000 RES C07 P3 -2.8624</span> 3525 <span class="go">2015-10-21_13:23:47.000 RES C08 P3 -2.9075</span> 3526 <span class="go">2015-10-21_13:23:47.000 RES C10 P3 -1.5682</span> 3527 <span class="go">2015-10-21_13:23:47.000 RES G05 P3 0.3828</span> 3528 <span class="go">2015-10-21_13:23:47.000 RES G16 P3 -3.7602</span> 3529 <span class="go">2015-10-21_13:23:47.000 RES G18 P3 0.8424</span> 3530 <span class="go">2015-10-21_13:23:47.000 RES G20 P3 0.4062</span> 3531 <span class="go">2015-10-21_13:23:47.000 RES G21 P3 0.8683</span> 3532 <span class="go">2015-10-21_13:23:47.000 RES G25 P3 -1.3367</span> 3533 <span class="go">2015-10-21_13:23:47.000 RES G26 P3 1.4107</span> 3534 <span class="go">2015-10-21_13:23:47.000 RES G29 P3 1.1870</span> 3535 <span class="go">2015-10-21_13:23:47.000 RES G31 P3 -0.5605</span> 3536 <span class="go">2015-10-21_13:23:47.000 RES R01 P3 -0.1458</span> 3537 <span class="go">2015-10-21_13:23:47.000 RES R02 P3 -2.1184</span> 3538 <span class="go">2015-10-21_13:23:47.000 RES R14 P3 1.8634</span> 3539 <span class="go">2015-10-21_13:23:47.000 RES R15 P3 -1.3964</span> 3540 <span class="go">2015-10-21_13:23:47.000 RES R18 P3 0.5517</span> 3541 <span class="go">2015-10-21_13:23:47.000 RES R24 P3 1.5750</span> 3542 <span class="go">2015-10-21_13:23:47.000 RES C01 L3 -0.0040</span> 3543 <span class="go">2015-10-21_13:23:47.000 RES C02 L3 0.0070</span> 3544 <span class="go">2015-10-21_13:23:47.000 RES C03 L3 0.0093</span> 3545 <span class="go">2015-10-21_13:23:47.000 RES C04 L3 -0.0017</span> 3546 <span class="go">2015-10-21_13:23:47.000 RES C05 L3 -0.0008</span> 3547 <span class="go">2015-10-21_13:23:47.000 RES C06 L3 -0.0031</span> 3548 <span class="go">2015-10-21_13:23:47.000 RES C07 L3 -0.0016</span> 3549 <span class="go">2015-10-21_13:23:47.000 RES C08 L3 -0.0089</span> 3550 <span class="go">2015-10-21_13:23:47.000 RES C10 L3 0.0051</span> 3551 <span class="go">2015-10-21_13:23:47.000 RES G05 L3 -0.0408</span> 3552 <span class="go">2015-10-21_13:23:47.000 RES G16 L3 0.0043</span> 3553 <span class="go">2015-10-21_13:23:47.000 RES G18 L3 0.0017</span> 3554 <span class="go">2015-10-21_13:23:47.000 RES G20 L3 -0.0132</span> 3555 <span class="go">2015-10-21_13:23:47.000 RES G21 L3 0.0188</span> 3556 <span class="go">2015-10-21_13:23:47.000 RES G25 L3 -0.0059</span> 3557 <span class="go">2015-10-21_13:23:47.000 RES G26 L3 0.0028</span> 3558 <span class="go">2015-10-21_13:23:47.000 RES G29 L3 0.0062</span> 3559 <span class="go">2015-10-21_13:23:47.000 RES G31 L3 0.0012</span> 3560 <span class="go">2015-10-21_13:23:47.000 RES R01 L3 0.0260</span> 3561 <span class="go">2015-10-21_13:23:47.000 RES R02 L3 -0.0121</span> 3562 <span class="go">2015-10-21_13:23:47.000 RES R14 L3 0.0055</span> 3563 <span class="go">2015-10-21_13:23:47.000 RES R15 L3 -0.0488</span> 3564 <span class="go">2015-10-21_13:23:47.000 RES R18 L3 0.0475</span> 3565 <span class="go">2015-10-21_13:23:47.000 RES R24 L3 0.0103</span> 3566 3567 <span class="go">2015-10-21_13:23:47.000 CLK 45386.971 +- 0.163</span> 3568 <span class="go">2015-10-21_13:23:47.000 TRP 2.402 +0.083 +- 0.013</span> 3569 <span class="go">2015-10-21_13:23:47.000 OFFGLO 1.766 +- 0.250</span> 3570 <span class="go">2015-10-21_13:23:47.000 OFFGAL 0.000 +- 1000.001</span> 3571 <span class="go">2015-10-21_13:23:47.000 OFFBDS 29.385 +- 0.218</span> 3572 <span class="go">2015-10-21_13:23:47.000 AMB C01 239.913 +- 0.149 epo = 180</span> 3573 <span class="go">2015-10-21_13:23:47.000 AMB C04 151.821 +- 0.149 epo = 180</span> 3574 <span class="go">2015-10-21_13:23:47.000 AMB C05 137.814 +- 0.150 epo = 180</span> 3575 <span class="go">2015-10-21_13:23:47.000 AMB C06 -368.848 +- 0.149 epo = 180</span> 3576 <span class="go">2015-10-21_13:23:47.000 AMB C07 -102.508 +- 0.149 epo = 180</span> 3577 <span class="go">2015-10-21_13:23:47.000 AMB C08 -145.358 +- 0.150 epo = 180</span> 3578 <span class="go">2015-10-21_13:23:47.000 AMB C10 195.732 +- 0.149 epo = 180</span> 3579 <span class="go">2015-10-21_13:23:47.000 AMB G25 58.320 +- 0.159 epo = 180</span> 3580 <span class="go">2015-10-21_13:23:47.000 AMB G26 110.077 +- 0.159 epo = 180</span> 3581 <span class="go">2015-10-21_13:23:47.000 AMB G29 -555.466 +- 0.159 epo = 180</span> 3582 <span class="go">2015-10-21_13:23:47.000 AMB G31 -47.938 +- 0.159 epo = 180</span> 3583 <span class="go">2015-10-21_13:23:47.000 AMB R01 -106.913 +- 0.193 epo = 180</span> 3584 <span class="go">2015-10-21_13:23:47.000 AMB R02 168.316 +- 0.194 epo = 180</span> 3585 <span class="go">2015-10-21_13:23:47.000 AMB R24 189.793 +- 0.193 epo = 180</span> 3586 <span class="go">2015-10-21_13:23:47.000 AMB C02 -50.146 +- 0.149 epo = 175</span> 3587 <span class="go">2015-10-21_13:23:47.000 AMB G05 -185.211 +- 0.173 epo = 175</span> 3588 <span class="go">2015-10-21_13:23:47.000 AMB R14 -509.359 +- 0.194 epo = 175</span> 3589 <span class="go">2015-10-21_13:23:47.000 AMB R15 65.355 +- 0.194 epo = 175</span> 3590 <span class="go">2015-10-21_13:23:47.000 AMB R18 -105.206 +- 0.204 epo = 170</span> 3591 <span class="go">2015-10-21_13:23:47.000 AMB G16 215.751 +- 0.160 epo = 165</span> 3592 <span class="go">2015-10-21_13:23:47.000 AMB G18 -168.240 +- 0.159 epo = 165</span> 3593 <span class="go">2015-10-21_13:23:47.000 AMB G20 -284.129 +- 0.159 epo = 165</span> 3594 <span class="go">2015-10-21_13:23:47.000 AMB G21 -99.245 +- 0.159 epo = 165</span> 3595 <span class="go">2015-10-21_13:23:47.000 AMB C03 -117.727 +- 0.149 epo = 30</span> 3596 3597 <span class="go">2015-10-21_13:23:47.000 CUT07 X = -2364337.4498 +- 0.0279 Y = 4870285.6317 +- 0.0388 Z = -3360809.6395 +- 0.0313 dN = 0.0049 +- 0.0248 dE = -0.0033 +- 0.0239 dU = 0.0294 +- 0.0456</span> 3598 </pre></div> 3599 </div> 3600 <p>Depending on selected processing options you find ‘GPS Time’ stamps (yyyy-mm-dd_hh:mm:ss.sss) followed by</p> 3601 <ul> 3602 <li><p class="first">SATNUM: Number of satellites per GNSS,</p> 3603 </li> 3604 <li><p class="first">RES: Code and phase residuals for contributing GNSS systems in [m]</p> 3605 <p>Given per satellite with cIF/lIF for ionosphere-free linear combination of code/phase observations,</p> 3606 </li> 3607 <li><p class="first">CLK: Receiver clock errors in [m],</p> 3608 </li> 3609 <li><p class="first">TRP: A priori and correction values of tropospheric zenith delay in [m],</p> 3610 </li> 3611 <li><p class="first">OFFGLO: Time offset between GPS time and GLONASS time in [m],</p> 3612 </li> 3613 <li><p class="first">OFFGAL: Time offset between GPS time and Galileo time in [m],</p> 3614 </li> 3615 <li><p class="first">OFFBDS: Time offset between GPS time and BDS time in [m],</p> 3616 </li> 3617 <li><p class="first">AMB: L3 biases, also known as ‘floated ambiguities’</p> 3618 <p>Given per satellite with ‘nEpo’ = number of epochs since last ambiguity reset,</p> 3619 </li> 3620 <li><p class="first">MOUNTPOINT: Here ‘CUT07’ with XYZ position in [m] and dN/dE/dU in [m] for North, East, and Up displacements compared to a priori marker coordinates.</p> 3621 </li> 3622 </ul> 3623 <p>Estimated parameters are presented together with their formal errors as derived from the implemented filter. The PPP algorithm includes outlier and cycle slip detection.</p> 3624 <p>Default value for ‘Logfile directory’ is an empty option field, meaning that you do not want to save daily PPP logfiles on disk. If a specified directory does not exist, BNC will not create PPP logfiles.</p> 3625 </div> 3626 <div class="section" id="nmea-directory-optional"> 3627 <span id="index-28"></span><h5>NMEA Directory - optional<a class="headerlink" href="#nmea-directory-optional" title="Permalink to this headline">¶</a></h5> 3628 <p>You can specify a ‘NMEA directory’ to save daily NMEA files with Point Positioning results recorded as NMEA sentences. Such sentences are usually generated about once per second with pairs of</p> 3629 <ul class="simple"> 3630 <li>GPGGA sentences which mainly carry the estimated latitude, longitude, and height values, plus</li> 3631 <li>GPRMC sentences which mainly carry date and time information.</li> 3632 </ul> 3633 <p>The following is an example for an NMEA output file from BNC:</p> 3634 <div class="highlight-none"><div class="highlight"><pre>$GPRMC,112348,A,3200.233,S,11553.688,E,,,300615,,*A 3188 </p> 3189 3190 <p><h4>2.13.1.9 <a name="ppplogfile">Logfile Directory - optional</h4></p> 3191 <p> 3192 Essential PPP results are shown in the 'Log' tab on the bottom of BNC's main window. Depending on the processing options, the following values are presented about once per second (example): 3193 <pre> 3194 ... 3195 15-10-21 13:23:38 2015-10-21_13:23:38.000 CUT07 X = -2364337.4505 Y = 4870285.6269 Z = -3360809.6481 NEU: -0.0046 -0.0006 +0.0306 TRP: +2.4018 +0.1006 3196 15-10-21 13:23:39 2015-10-21_13:23:39.000 CUT07 X = -2364337.4468 Y = 4870285.6244 Z = -3360809.6453 NEU: -0.0043 -0.0029 +0.0258 TRP: +2.4018 +0.0993 3197 15-10-21 13:23:40 2015-10-21_13:23:40.000 CUT07 X = -2364337.4455 Y = 4870285.6215 Z = -3360809.6466 NEU: -0.0070 -0.0027 +0.0238 TRP: +2.4018 +0.0978 3198 15-10-21 13:23:41 2015-10-21_13:23:41.000 CUT07 X = -2364337.4447 Y = 4870285.6248 Z = -3360809.6445 NEU: -0.0039 -0.0049 +0.0249 TRP: +2.4018 +0.0962 3199 15-10-21 13:23:42 2015-10-21_13:23:42.000 CUT07 X = -2364337.4426 Y = 4870285.6238 Z = -3360809.6424 NEU: -0.0031 -0.0063 +0.0223 TRP: +2.4018 +0.0950 3200 15-10-21 13:23:43 2015-10-21_13:23:43.000 CUT07 X = -2364337.4453 Y = 4870285.6386 Z = -3360809.6518 NEU: -0.0033 -0.0104 +0.0395 TRP: +2.4018 +0.0927 3201 15-10-21 13:23:44 2015-10-21_13:23:44.000 CUT07 X = -2364337.4435 Y = 4870285.6354 Z = -3360809.6487 NEU: -0.0027 -0.0106 +0.0348 TRP: +2.4018 +0.0908 3202 15-10-21 13:23:45 2015-10-21_13:23:45.000 CUT07 X = -2364337.4445 Y = 4870285.6381 Z = -3360809.6532 NEU: -0.0049 -0.0109 +0.0396 TRP: +2.4018 +0.0884 3203 15-10-21 13:23:46 2015-10-21_13:23:46.000 CUT07 X = -2364337.4437 Y = 4870285.6365 Z = -3360809.6548 NEU: -0.0073 -0.0109 +0.0389 TRP: +2.4018 +0.0855 3204 15-10-21 13:23:47 2015-10-21_13:23:47.000 CUT07 X = -2364337.4498 Y = 4870285.6317 Z = -3360809.6395 NEU: +0.0049 -0.0033 +0.0294 TRP: +2.4018 +0.0833 3205 ... 3206 </pre> 3207 </p> 3208 <p> 3209 Each row reports the PPP result of one epoch. It begins with a UTC time stamp (yy-mm-dd hh:mm:ss) which tells us when the result was produced. A second time stamp (yyyy-mm-dd_hh:mm:ss) describes the PPP's epoch in 'GPS Time'. It is followed by the derived XYZ position in [m], its North, East and Up displacement compared to an introduced a priori coordinate, and the estimated tropospheric delay [m] (model plus correction). 3210 </p> 3211 <p> 3212 If you require more information, you can specify a 'Logfile directory' to save daily logfiles per station (filename suffix 'ppp') with additional processing details on disk. 3213 </p> 3214 3215 <p> 3216 <pre> 3217 Precise Point Positioning of Epoch 2015-10-21_13:23:47.000 3218 --------------------------------------------------------------- 3219 2015-10-21_13:23:47.000 SATNUM G 9 3220 2015-10-21_13:23:47.000 SATNUM R 6 3221 2015-10-21_13:23:47.000 SATNUM E 0 3222 2015-10-21_13:23:47.000 SATNUM C 9 3223 2015-10-21_13:23:47.000 RES C01 P3 0.3201 3224 2015-10-21_13:23:47.000 RES C02 P3 0.3597 3225 2015-10-21_13:23:47.000 RES C03 P3 -0.8003 3226 2015-10-21_13:23:47.000 RES C04 P3 2.7684 3227 2015-10-21_13:23:47.000 RES C05 P3 4.9738 3228 2015-10-21_13:23:47.000 RES C06 P3 0.1888 3229 2015-10-21_13:23:47.000 RES C07 P3 -2.8624 3230 2015-10-21_13:23:47.000 RES C08 P3 -2.9075 3231 2015-10-21_13:23:47.000 RES C10 P3 -1.5682 3232 2015-10-21_13:23:47.000 RES G05 P3 0.3828 3233 2015-10-21_13:23:47.000 RES G16 P3 -3.7602 3234 2015-10-21_13:23:47.000 RES G18 P3 0.8424 3235 2015-10-21_13:23:47.000 RES G20 P3 0.4062 3236 2015-10-21_13:23:47.000 RES G21 P3 0.8683 3237 2015-10-21_13:23:47.000 RES G25 P3 -1.3367 3238 2015-10-21_13:23:47.000 RES G26 P3 1.4107 3239 2015-10-21_13:23:47.000 RES G29 P3 1.1870 3240 2015-10-21_13:23:47.000 RES G31 P3 -0.5605 3241 2015-10-21_13:23:47.000 RES R01 P3 -0.1458 3242 2015-10-21_13:23:47.000 RES R02 P3 -2.1184 3243 2015-10-21_13:23:47.000 RES R14 P3 1.8634 3244 2015-10-21_13:23:47.000 RES R15 P3 -1.3964 3245 2015-10-21_13:23:47.000 RES R18 P3 0.5517 3246 2015-10-21_13:23:47.000 RES R24 P3 1.5750 3247 2015-10-21_13:23:47.000 RES C01 L3 -0.0040 3248 2015-10-21_13:23:47.000 RES C02 L3 0.0070 3249 2015-10-21_13:23:47.000 RES C03 L3 0.0093 3250 2015-10-21_13:23:47.000 RES C04 L3 -0.0017 3251 2015-10-21_13:23:47.000 RES C05 L3 -0.0008 3252 2015-10-21_13:23:47.000 RES C06 L3 -0.0031 3253 2015-10-21_13:23:47.000 RES C07 L3 -0.0016 3254 2015-10-21_13:23:47.000 RES C08 L3 -0.0089 3255 2015-10-21_13:23:47.000 RES C10 L3 0.0051 3256 2015-10-21_13:23:47.000 RES G05 L3 -0.0408 3257 2015-10-21_13:23:47.000 RES G16 L3 0.0043 3258 2015-10-21_13:23:47.000 RES G18 L3 0.0017 3259 2015-10-21_13:23:47.000 RES G20 L3 -0.0132 3260 2015-10-21_13:23:47.000 RES G21 L3 0.0188 3261 2015-10-21_13:23:47.000 RES G25 L3 -0.0059 3262 2015-10-21_13:23:47.000 RES G26 L3 0.0028 3263 2015-10-21_13:23:47.000 RES G29 L3 0.0062 3264 2015-10-21_13:23:47.000 RES G31 L3 0.0012 3265 2015-10-21_13:23:47.000 RES R01 L3 0.0260 3266 2015-10-21_13:23:47.000 RES R02 L3 -0.0121 3267 2015-10-21_13:23:47.000 RES R14 L3 0.0055 3268 2015-10-21_13:23:47.000 RES R15 L3 -0.0488 3269 2015-10-21_13:23:47.000 RES R18 L3 0.0475 3270 2015-10-21_13:23:47.000 RES R24 L3 0.0103 3271 3272 2015-10-21_13:23:47.000 CLK 45386.971 +- 0.163 3273 2015-10-21_13:23:47.000 TRP 2.402 +0.083 +- 0.013 3274 2015-10-21_13:23:47.000 OFFGLO 1.766 +- 0.250 3275 2015-10-21_13:23:47.000 OFFGAL 0.000 +- 1000.001 3276 2015-10-21_13:23:47.000 OFFBDS 29.385 +- 0.218 3277 2015-10-21_13:23:47.000 AMB C01 239.913 +- 0.149 epo = 180 3278 2015-10-21_13:23:47.000 AMB C04 151.821 +- 0.149 epo = 180 3279 2015-10-21_13:23:47.000 AMB C05 137.814 +- 0.150 epo = 180 3280 2015-10-21_13:23:47.000 AMB C06 -368.848 +- 0.149 epo = 180 3281 2015-10-21_13:23:47.000 AMB C07 -102.508 +- 0.149 epo = 180 3282 2015-10-21_13:23:47.000 AMB C08 -145.358 +- 0.150 epo = 180 3283 2015-10-21_13:23:47.000 AMB C10 195.732 +- 0.149 epo = 180 3284 2015-10-21_13:23:47.000 AMB G25 58.320 +- 0.159 epo = 180 3285 2015-10-21_13:23:47.000 AMB G26 110.077 +- 0.159 epo = 180 3286 2015-10-21_13:23:47.000 AMB G29 -555.466 +- 0.159 epo = 180 3287 2015-10-21_13:23:47.000 AMB G31 -47.938 +- 0.159 epo = 180 3288 2015-10-21_13:23:47.000 AMB R01 -106.913 +- 0.193 epo = 180 3289 2015-10-21_13:23:47.000 AMB R02 168.316 +- 0.194 epo = 180 3290 2015-10-21_13:23:47.000 AMB R24 189.793 +- 0.193 epo = 180 3291 2015-10-21_13:23:47.000 AMB C02 -50.146 +- 0.149 epo = 175 3292 2015-10-21_13:23:47.000 AMB G05 -185.211 +- 0.173 epo = 175 3293 2015-10-21_13:23:47.000 AMB R14 -509.359 +- 0.194 epo = 175 3294 2015-10-21_13:23:47.000 AMB R15 65.355 +- 0.194 epo = 175 3295 2015-10-21_13:23:47.000 AMB R18 -105.206 +- 0.204 epo = 170 3296 2015-10-21_13:23:47.000 AMB G16 215.751 +- 0.160 epo = 165 3297 2015-10-21_13:23:47.000 AMB G18 -168.240 +- 0.159 epo = 165 3298 2015-10-21_13:23:47.000 AMB G20 -284.129 +- 0.159 epo = 165 3299 2015-10-21_13:23:47.000 AMB G21 -99.245 +- 0.159 epo = 165 3300 2015-10-21_13:23:47.000 AMB C03 -117.727 +- 0.149 epo = 30 3301 3302 2015-10-21_13:23:47.000 CUT07 X = -2364337.4498 +- 0.0279 Y = 4870285.6317 +- 0.0388 Z = -3360809.6395 +- 0.0313 dN = 0.0049 +- 0.0248 dE = -0.0033 +- 0.0239 dU = 0.0294 +- 0.0456 3303 </pre> 3304 <p> 3305 Depending on selected processing options you find 'GPS Time' stamps (yyyy-mm-dd_hh:mm:ss.sss) followed by 3306 <ul> 3307 <li>SATNUM: Number of satellites per GNSS,</li> 3308 <li>RES: Code and phase residuals for contributing GNSS systems in [m]<br>Given per satellite with cIF/lIF for ionosphere-free linear combination of code/phase observations,</li> 3309 <li>CLK: Receiver clock errors in [m], </li> 3310 <li>TRP: A priori and correction values of tropospheric zenith delay in [m], 3311 <li>OFFGLO: Time offset between GPS time and GLONASS time in [m], 3312 <li>OFFGAL: Time offset between GPS time and Galileo time in [m], 3313 <li>OFFBDS: Time offset between GPS time and BDS time in [m], 3314 <li>AMB: L3 biases, also known as 'floated ambiguities'<br>Given per satellite with 'nEpo' = number of epochs since last ambiguity reset, 3315 <li>MOUNTPOINT: Here 'CUT07' with XYZ position in [m] and dN/dE/dU in [m] for North, East, and Up displacements compared to a priori marker coordinates.</li> 3316 </ul> 3317 Estimated parameters are presented together with their formal errors as derived from the implemented filter. The PPP algorithm includes outlier and cycle slip detection. 3318 </p> 3319 <p> 3320 Default value for 'Logfile directory' is an empty option field, meaning that you do not want to save daily PPP logfiles on disk. If a specified directory does not exist, BNC will not create PPP logfiles. 3321 </p> 3322 3323 <p><h4>2.13.1.10 <a name="pppnmeafile">NMEA Directory - optional</h4></p> 3324 <p> 3325 You can specify a 'NMEA directory' to save daily NMEA files with Point Positioning results recorded as NMEA sentences. Such sentences are usually generated about once per second with pairs of 3326 </p> 3327 <p> 3328 <ul> 3329 <li> GPGGA sentences which mainly carry the estimated latitude, longitude, and height values, plus</li> 3330 <li> GPRMC sentences which mainly carry date and time information.</li> 3331 </ul> 3332 </p> 3333 The following is an example for an NMEA output file from BNC. 3334 </p> 3335 <pre> 3336 $GPRMC,112348,A,3200.233,S,11553.688,E,,,300615,,*A 3635 3337 $GPGGA,112348,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*5D 3636 3338 $GPRMC,112349,A,3200.233,S,11553.688,E,,,300615,,*B … … 3651 3353 $GPGGA,112356,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*52 3652 3354 ... 3653 </pre></div> 3654 </div> 3655 <p>The default value for ‘NMEA directory’ is an empty option field, meaning that BNC will not save NMEA sentences into files. If a specified directory does not exist, BNC will not create NMEA files. Note that Tomoji Takasu has written a program named RTKPLOT for visualizing NMEA sentences from IP ports or files. It is available from <a class="reference external" href="http://www.rtklib.com">http://www.rtklib.com</a> and compatible with the ‘NMEA Directory’ and port output of BNC’s ‘PPP’ client option.</p> 3656 </div> 3657 <div class="section" id="snx-tro-directory-optional"> 3658 <h5>SNX TRO Directory - optional<a class="headerlink" href="#snx-tro-directory-optional" title="Permalink to this headline">¶</a></h5> 3659 <p>BNC estimates the tropospheric delay according to equation</p> 3660 <div class="math"> 3661 \[T(z) = T_{apr}(z) + dT / cos(z)\]</div> 3662 <p>where <span class="math">\(T_{apr}\)</span> is the a priori tropospheric delay derived from Saastamoinen model.</p> 3663 <p>You can specify a ‘SNX TRO Directory’ for saving SINEX Troposphere files on disk, see <a class="reference external" href="https://igscb.jpl.nasa.gov/igscb/data/format/sinex_tropo.txt">https://igscb.jpl.nasa.gov/igscb/data/format/sinex_tropo.txt</a> for a documentation of the file format. Note that receiver type information for these files must be provided through the coordinates file described in section ‘Coordinates file’. The following is an example for a troposphere file content:</p> 3664 <div class="highlight-none"><div class="highlight"><pre> %=TRO 2.00 BKG 16:053:42824 BKG 16:053:42824 16:053:43199 P 00376 0 T 3665 +FILE/REFERENCE 3666 DESCRIPTION BNC generated SINEX TRO file 3667 OUTPUT Total Troposphere Zenith Path Delay Product 3668 SOFTWARE BNC 2.12 3669 INPUT Ntrip streams, additional Orbit and Clock information from IGS03 3670 -FILE/REFERENCE 3355 </pre> 3356 <p> 3357 The default value for 'NMEA directory' is an empty option field, meaning that BNC will not save NMEA sentences into files. If a specified directory does not exist, BNC will not create NMEA files. 3358 </p> 3359 3360 <p> 3361 Note that Tomoji Takasu has written a program named RTKPLOT for visualizing NMEA sentences from IP ports or files. It is available from <u>http://www.rtklib.com</u> and compatible with the 'NMEA Directory' and port output of BNC's 'PPP' client option. 3362 </p> 3363 3364 <p><h4>2.13.1.11 <a name="pppsnxtrofile">SNX TRO Directory - optional</h4></p> 3365 <p> 3366 BNC estimates the tropospheric delay according to equation 3367 <pre> 3368 T(z) = T_apr(z) + dT / cos(z) 3369 </pre> 3370 where T_apr is the a priori tropospheric delay derived from Saastamoinen model. 3371 </p> 3372 3373 <p> 3374 You can specify a 'SNX TRO Directory' for saving SINEX Troposphere files on disk, see <u>https://igscb.jpl.nasa.gov/igscb/data/format/sinex_tropo.txt</u> for a documentation of the file format. Note that receiver type information for these files must be provided through the coordinates file described in section 'Coordinates file'. The following is an example for a troposphere file content: 3375 </p> 3376 3377 <pre> 3378 %=TRO 2.00 BKG 16:053:42824 BKG 16:053:42824 16:053:43199 P 00376 0 T 3379 +FILE/REFERENCE 3380 DESCRIPTION BNC generated SINEX TRO file 3381 OUTPUT Total Troposphere Zenith Path Delay Product 3382 SOFTWARE BNC 2.12 3383 INPUT Ntrip streams, additional Orbit and Clock information from IGS03 3384 -FILE/REFERENCE 3671 3385 3672 3386 +SITE/ID 3673 *CODE PT DOMES____ T _STATION DESCRIPTION__ APPROX_LON_ APPROX_LAT_ _APP_H_ 3674 CUT0 A P AUS 115 53 41.3 -32 0 14.0 24.0 3675 -SITE/ID 3676 3677 +SITE/RECEIVER 3678 *SITE PT SOLN T DATA_START__ DATA_END____ DESCRIPTION_________ S/N__ FIRMWARE___ 3679 CUT0 A 0001 P 16:053:42824 16:053:43199 TRM59800.00 SCIS ----- ----------- 3680 -SITE/RECEIVER 3681 3682 +SITE/ANTENNA 3683 *SITE PT SOLN T DATA_START__ DATA_END____ DESCRIPTION_________ S/N__ 3684 CUT0 A 0001 P 16:053:42824 16:053:43199 TRM59800.00 SCIS ----- 3685 -SITE/ANTENNA 3686 3687 +SITE/ECCENTRICITY 3688 * UP______ NORTH___ EAST____ 3689 *SITE PT SOLN T DATA_START__ DATA_END____ AXE ARP->BENCHMARK(M)_________ 3690 CUT0 A 0001 P 16:053:42824 16:053:43199 UNE 0.0000 0.0000 0.0000 3691 -SITE/ECCENTRICITY 3692 3693 +TROP/COORDINATES 3694 *SITE PT SOLN T STA_X_______ STA_Y_______ STA_Z_______ SYSTEM REMARK 3695 CUT0 A 0001 P -2364337.441 4870285.605 -3360809.628 ITRF08 BKG 3696 -TROP/COORDINATES 3697 3698 +TROP/DESCRIPTION 3699 *KEYWORD______________________ VALUE(S)______________ 3700 SAMPLING INTERVAL 1 3701 SAMPLING TROP 1 3702 ELEVATION CUTOFF ANGLE 7 3703 TROP MAPPING FUNCTION Saastamoinen 3704 SOLUTION_FIELDS_1 TROTOT STDEV 3705 -TROP/DESCRIPTION 3706 3707 +TROP/SOLUTION 3708 *SITE EPOCH_______ TROTOT STDEV 3709 CUT0 16:053:42824 0.0 0.0 3710 CUT0 16:053:42825 2401.7 100.0 3711 CUT0 16:053:42826 2401.8 100.0 3712 CUT0 16:053:42827 2401.8 99.9 3713 CUT0 16:053:42828 2402.1 99.9 3714 ... 3715 ... 3716 -TROP/SOLUTION 3717 %=ENDTROP 3718 </pre></div> 3719 </div> 3720 <p>The default value for ‘SNX TRO Directory’ is an empty option field, meaning that BNC will not save SINEX Troposphere files. If a specified directory does not exist, BNC will not create SINEX Troposphere files.</p> 3721 </div> 3722 <div class="section" id="snx-tro-interval-mandatory-if-sinex-tro-directory-is-set"> 3723 <h5>SNX TRO Interval - mandatory if ‘SINEX TRO Directory’ is set<a class="headerlink" href="#snx-tro-interval-mandatory-if-sinex-tro-directory-is-set" title="Permalink to this headline">¶</a></h5> 3724 <p>Select the length of SINEX Troposphere files. Default ‘Interval’ for saving SINEX Troposphere files on disk is ‘1 day’.</p> 3725 </div> 3726 <div class="section" id="snx-tro-sampling-mandatory-if-sinex-tro-directory-is-set"> 3727 <h5>SNX TRO Sampling - mandatory if ‘SINEX TRO Directory’ is set<a class="headerlink" href="#snx-tro-sampling-mandatory-if-sinex-tro-directory-is-set" title="Permalink to this headline">¶</a></h5> 3728 <p>Select a ‘Sampling’ rate in seconds for saving troposphere parameters. Default ‘Sampling’ rate is ‘0’, meaning that all troposphere estimates will be saved on disk.</p> 3729 </div> 3730 <div class="section" id="snx-tro-analysis-center-mandatory-if-sinex-tro-directory-is-set"> 3731 <h5>SNX TRO Analysis Center - Mandatory if ‘SINEX TRO Directory’ is set<a class="headerlink" href="#snx-tro-analysis-center-mandatory-if-sinex-tro-directory-is-set" title="Permalink to this headline">¶</a></h5> 3732 <p>Specify a 3-character abbreviation describing you as the generating Analysis Center (AC) in your SINEX troposphere files. String ‘BKG’ is an example.</p> 3733 </div> 3734 <div class="section" id="snx-tro-solution-id-mandatory-if-sinex-tro-directory-is-set"> 3735 <h5>SNX TRO Solution ID - Mandatory if ‘SINEX TRO Directory’ is set<a class="headerlink" href="#snx-tro-solution-id-mandatory-if-sinex-tro-directory-is-set" title="Permalink to this headline">¶</a></h5> 3736 <p>Specify a 4-character solution ID to allow a distingtion between different solutions per AC. String ‘0001’ is an example.</p> 3737 </div> 3738 </div> 3739 <div class="section" id="ppp-2-processed-stations"> 3740 <span id="index-29"></span><h4>PPP (2): Processed Stations<a class="headerlink" href="#ppp-2-processed-stations" title="Permalink to this headline">¶</a></h4> 3741 <p>This panel allows to enter parameters specific to each PPP process or thread. Individual sigmas for a priori coordinates and a noise for coordinate variations over time can be introduced. Furthermore, a sigma for model-based troposphere estimates and the corresponding noise for troposphere variations can be specified. Finally, local IP server ports can be defined for output of NMEA streams carrying PPP results.</p> 3742 <p>BNC offers to create a table with one line per PPP process or thread to specify station-specific parameters. Hit the ‘Add Station’ button to create the table or add a new line to it. To remove a line from the table, highlight it by clicking it and hit the ‘Delete Station’ button. You can also remove multiple lines simultaneously by highlighting them using +Shift or +Ctrl. BNC will simultaneously produce PPP solutions for all stations listed in the ‘Station’ column of this table, see <a class="reference internal" href="#fig-23"><span class="std std-numref">Fig. 25</span></a> for an example screenshot.</p> 3743 <div class="figure" id="id48"> 3744 <span id="fig-23"></span><a class="reference internal image-reference" href="_images/fig_23.png"><img alt="_images/fig_23.png" src="_images/fig_23.png" style="width: 1281.0px; height: 893.0px;" /></a> 3745 <p class="caption"><span class="caption-number">Fig. 25 </span><span class="caption-text">Precise Point Positioning with BNC, PPP Panel 2, using RTKPLOT for visualization</span></p> 3746 </div> 3747 <div class="section" id="station-mandatory"> 3748 <h5>Station - mandatory<a class="headerlink" href="#station-mandatory" title="Permalink to this headline">¶</a></h5> 3749 <p>Hit the ‘Add Station’ button, double click on the ‘Station’ field, then specify an observation’s mountpoint from the ‘Streams’ section or introduce the 4-character Station ID of your RINEX observation file and hit Enter. BNC will only produce PPP solutions for stations listed in this table.</p> 3750 </div> 3751 <div class="section" id="sigma-north-east-up-mandatory"> 3752 <h5>Sigma North/East/Up - mandatory<a class="headerlink" href="#sigma-north-east-up-mandatory" title="Permalink to this headline">¶</a></h5> 3753 <p>Enter sigmas in meters for the initial coordinate components. A value of 100.0 (default) may be an appropriate choice. However, this value may be significantly smaller (e.g. 0.01) when starting for example from a station with a well-known position in so-called Quick-Start mode.</p> 3754 </div> 3755 <div class="section" id="noise-north-east-up-mandatory"> 3756 <h5>Noise North/East/Up - mandatory<a class="headerlink" href="#noise-north-east-up-mandatory" title="Permalink to this headline">¶</a></h5> 3757 <p>Enter a white ‘Noise’ in meters for estimated coordinate components. A value of 100.0 (default) may be appropriate when considering possible sudden movements of a rover.</p> 3758 </div> 3759 <div class="section" id="tropo-sigma-mandatory"> 3760 <h5>Tropo Sigma - mandatory<a class="headerlink" href="#tropo-sigma-mandatory" title="Permalink to this headline">¶</a></h5> 3761 <p>Enter a sigma in meters for the a priori model based tropospheric delay estimation. A value of 0.1 (default) may be an appropriate choice.</p> 3762 </div> 3763 <div class="section" id="tropo-noise-mandatory"> 3764 <h5>Tropo Noise - mandatory<a class="headerlink" href="#tropo-noise-mandatory" title="Permalink to this headline">¶</a></h5> 3765 <p>Enter a white ‘Noise’ in meters per second to describe the expected variation of the tropospheric effect. Supposing 1Hz observation data, a value of 3e-6 (default) would mean that the tropospheric effect may vary for 3600 * 3e-6 = 0.01 meters per hour.</p> 3766 </div> 3767 <div class="section" id="nmea-port-optional"> 3768 <h5>NMEA Port - optional<a class="headerlink" href="#nmea-port-optional" title="Permalink to this headline">¶</a></h5> 3769 <p>Specify the IP port number of a local port where Point Positioning results become available as NMEA sentences. The default value for ‘NMEA Port’ is an empty option field, meaning that BNC does not provide NMEA sentences via IP port. Note that NMEA file output and NMEA IP port output are the same.</p> 3770 <p>Note also that Tomoji Takasu has written a program named RTKPLOT for visualizing NMEA sentences from IP ports or files. It is available from <a class="reference external" href="http://www.rtklib.com">http://www.rtklib.com</a> and compatible with the NMEA file and port output of BNC’s ‘PPP’ client option.</p> 3771 <p>Furthermore, NASA’s ‘World Wind’ software (see <a class="reference external" href="http://worldwindcentral.com/wiki/NASA_World_Wind_Download">http://worldwindcentral.com/wiki/NASA_World_Wind_Download</a>) can be used for real-time visualization of positions provided through BNC’s NMEA IP output port. You need the ‘GPS Tracker’ plug-in available from <a class="reference external" href="http://worldwindcentral.com/wiki/GPS_Tracker">http://worldwindcentral.com/wiki/GPS_Tracker</a> for that. The ‘Word Wind’ map resolution is not meant for showing centimeter level details.</p> 3772 </div> 3773 </div> 3774 <div class="section" id="ppp-3-processing-options"> 3775 <span id="index-30"></span><h4>PPP (3): Processing Options<a class="headerlink" href="#ppp-3-processing-options" title="Permalink to this headline">¶</a></h4> 3776 <p>BNC allows using various Point Positioning processing options depending on the capability of the involved receiver and the application in mind. You can introduce specific sigmas for code and phase observations as well as for a priori coordinates and troposphere estimates. You could also carry out your PPP solution in Quick-Start mode or enforce BNC to restart a solution if the length of an outage exceeds a certain threshold. The intention of this panel is to specify general processing options to be applied to all PPP threads in one BNC job, see <a class="reference internal" href="#fig-24"><span class="std std-numref">Fig. 26</span></a> for an example setup.</p> 3777 <div class="figure" id="id49"> 3778 <span id="fig-24"></span><a class="reference internal image-reference" href="_images/fig_24.png"><img alt="_images/fig_24.png" src="_images/fig_24.png" style="width: 1269.0px; height: 933.0px;" /></a> 3779 <p class="caption"><span class="caption-number">Fig. 26 </span><span class="caption-text">Precise Point Positioning with BNC, PPP Panel 3</span></p> 3780 </div> 3781 <div class="section" id="linear-combinations-mandatory"> 3782 <span id="index-31"></span><h5>Linear Combinations - mandatory<a class="headerlink" href="#linear-combinations-mandatory" title="Permalink to this headline">¶</a></h5> 3783 <p>Specify on which ionosphere-free Linear Combinations (LCs) of observations you want to base ambiguity resolutions <a class="reference internal" href="bnchelp.html#mervart2008a" id="id11">[9]</a>. This implicitly defines the kind of GNSS observations you want to use. The specification is to be done per GNSS system (‘GPS LCs’, ‘GLONASS LCs’, ‘Galileo LCs’, ‘BDS LCs’).</p> 3784 <ul class="simple"> 3785 <li>Selecting ‘P3’ means that you request BNC to use code data and the so-called P3 ionosphere-free linear combinations of code observations.</li> 3786 <li>‘P3&L3’ means that you request BNC to use both, code and phase data and the so-called P3 and L3 ionosphere-free linear combinations of code and phase observations.</li> 3787 </ul> 3788 <p>Note that most geodetic GPS receivers support the observation of both, code and phase data. Hence, specifying ‘P3&L3’ would be a good choice for GPS when processing data from such a receiver. If multi-GNSS data processing is your intention, make sure your receiver supports GLONASS and/or Galileo and/or BDS observations besides GPS. Note also that the Broadcast Correction stream or file, which is required for PPP, also supports all the systems you have in mind.</p> 3789 <p>Specifying ‘no’ means that you do not at all want BNC to use observations from the affected GNSS system.</p> 3790 </div> 3791 <div class="section" id="code-observations-mandatory"> 3792 <span id="index-32"></span><h5>Code Observations - mandatory<a class="headerlink" href="#code-observations-mandatory" title="Permalink to this headline">¶</a></h5> 3793 <p>Enter a ‘Sigma C1’ for C1 code observations in meters. The bigger the sigma you enter, the less the contribution of C1 code observations to a PPP solution based on a combination of code and phase data. ‘2.0’ meters is likely to be an appropriate choice. Specify a maximum for residuals ‘Max Res C1’ for C1 code observations in a PPP solution. ‘3.0’ meters may be an appropriate choice for that. If the maximum is exceeded, contributions from the corresponding observation will be ignored in the PPP solution.</p> 3794 </div> 3795 <div class="section" id="phase-observations-mandatory"> 3796 <span id="index-33"></span><h5>Phase Observations - mandatory<a class="headerlink" href="#phase-observations-mandatory" title="Permalink to this headline">¶</a></h5> 3797 <p>Enter a ‘Sigma L1’ for L1 phase observations in meters. The bigger the sigma you enter, the less the contribution of L1 phase observations to a PPP solutions based on a combination of code and phase data. ‘0.01’ meters is likely to be an appropriate choice. Specify a maximum for residuals ‘Max Res L1’ for L1 phase observations in a PPP solution. ‘0.03’ meters may be an appropriate choice for that. If the maximum is exceeded, contributions from the corresponding observation will be ignored in the PPP solution.</p> 3798 <p>As the convergence characteristic of a PPP solution can be influenced by the ratio of sigmas for code and phase, you may like to introduce sigmas which differ from the default values:</p> 3799 <ul class="simple"> 3387 *CODE PT DOMES____ T _STATION DESCRIPTION__ APPROX_LON_ APPROX_LAT_ _APP_H_ 3388 CUT0 A P AUS 115 53 41.3 -32 0 14.0 24.0 3389 -SITE/ID 3390 3391 +SITE/RECEIVER 3392 *SITE PT SOLN T DATA_START__ DATA_END____ DESCRIPTION_________ S/N__ FIRMWARE___ 3393 CUT0 A 0001 P 16:053:42824 16:053:43199 TRM59800.00 SCIS ----- ----------- 3394 -SITE/RECEIVER 3395 3396 +SITE/ANTENNA 3397 *SITE PT SOLN T DATA_START__ DATA_END____ DESCRIPTION_________ S/N__ 3398 CUT0 A 0001 P 16:053:42824 16:053:43199 TRM59800.00 SCIS ----- 3399 -SITE/ANTENNA 3400 3401 +SITE/ECCENTRICITY 3402 * UP______ NORTH___ EAST____ 3403 *SITE PT SOLN T DATA_START__ DATA_END____ AXE ARP->BENCHMARK(M)_________ 3404 CUT0 A 0001 P 16:053:42824 16:053:43199 UNE 0.0000 0.0000 0.0000 3405 -SITE/ECCENTRICITY 3406 3407 +TROP/COORDINATES 3408 *SITE PT SOLN T STA_X_______ STA_Y_______ STA_Z_______ SYSTEM REMARK 3409 CUT0 A 0001 P -2364337.441 4870285.605 -3360809.628 ITRF08 BKG 3410 -TROP/COORDINATES 3411 3412 +TROP/DESCRIPTION 3413 *KEYWORD______________________ VALUE(S)______________ 3414 SAMPLING INTERVAL 1 3415 SAMPLING TROP 1 3416 ELEVATION CUTOFF ANGLE 7 3417 TROP MAPPING FUNCTION Saastamoinen 3418 SOLUTION_FIELDS_1 TROTOT STDEV 3419 -TROP/DESCRIPTION 3420 3421 +TROP/SOLUTION 3422 *SITE EPOCH_______ TROTOT STDEV 3423 CUT0 16:053:42824 0.0 0.0 3424 CUT0 16:053:42825 2401.7 100.0 3425 CUT0 16:053:42826 2401.8 100.0 3426 CUT0 16:053:42827 2401.8 99.9 3427 CUT0 16:053:42828 2402.1 99.9 3428 ... 3429 ... 3430 -TROP/SOLUTION 3431 %=ENDTROP 3432 </pre> 3433 3434 <p> 3435 The default value for 'SNX TRO Directory' is an empty option field, meaning that BNC will not save SINEX Troposphere files. If a specified directory does not exist, BNC will not create SINEX Troposphere files. 3436 </p> 3437 3438 <p><h4>2.13.1.11.1 <a name="pppsnxtrointr">Interval - mandatory if 'SINEX TRO Directory' is set</h4></p> 3439 <p> 3440 Select the length of SINEX Troposphere files. 3441 </p> 3442 <p> 3443 Default 'Interval' for saving SINEX Troposphere files on disk is '1 day'. 3444 </p> 3445 3446 <p><h4>2.13.1.11.2 <a name="pppsnxtrosampl">Sampling - mandatory if 'SINEX TRO Directory' is set</h4></p> 3447 <p> 3448 Select a 'Sampling' rate in seconds for saving troposphere parameters. 3449 </p> 3450 <p> 3451 Default 'Sampling' rate is '0', meaning that all troposphere estimates will be saved on disk. 3452 </p> 3453 3454 <p><h4>2.13.1.11.3 <a name="pppsnxAc">Analysis Center - Mandatory if 'SINEX TRO Directory' is set</h4></p> 3455 <p> 3456 Specify a 3-character abbreviation describing you as the generating Analysis Center (AC) in your SINEX troposphere files. String 'BKG' is an example. 3457 </p> 3458 3459 <p><h4>2.13.1.11.4 <a name="pppsnxSol">Solution ID - Mandatory if 'SINEX TRO Directory' is set</h4></p> 3460 <p> 3461 Specify a 4-character solution ID to allow a distingtion between different solutions per AC. String '0001' is an example. 3462 </p> 3463 3464 <p><h4>2.13.2 <a name="pppStation">PPP (2): Processed Stations</h4></p> 3465 3466 <p> 3467 This panel allows to enter parameters specific to each PPP process or thread. Individual sigmas for a priori coordinates and a noise for coordinate variations over time can be introduced. Furthermore, a sigma for model-based troposphere estimates and the corresponding noise for troposphere variations can be specified. Finally, local IP server ports can be defined for output of NMEA streams carrying PPP results. 3468 </p> 3469 <p> 3470 BNC offers to create a table with one line per PPP process or thread to specify station-specific parameters. Hit the 'Add Station' button to create the table or add a new line to it. To remove a line from the table, highlight it by clicking it and hit the 'Delete Station' button. You can also remove multiple lines simultaneously by highlighting them using +Shift or +Ctrl.</p> 3471 </p> 3472 <p> 3473 BNC will simultaneously produce PPP solutions for all stations listed in the 'Station' column of this table. 3474 </p> 3475 3476 <p><img src="IMG/screenshot17.png"/></p> 3477 <p><u>Figure 23:</u> Precise Point Positioning with BNC, PPP Panel 2, using RTKPLOT for visualization</p> 3478 3479 <p><h4>2.13.2.1 <a name="pppsite">Station - mandatory</h4></p> 3480 <p> 3481 Hit the 'Add Station' button, double click on the 'Station' field, then specify an observation's mountpoint from the 'Streams' section or introduce the 4-character Station ID of your RINEX observation file and hit Enter. BNC will only produce PPP solutions for stations listed in this table. 3482 </p> 3483 3484 <p><h4>2.13.2.2 <a name="pppnehsigma">Sigma North/East/Up - mandatory</h4></p> 3485 <p> 3486 Enter sigmas in meters for the initial coordinate components. A value of 100.0 (default) may be an appropriate choice. However, this value may be significantly smaller (e.g. 0.01) when starting for example from a station with a well-known position in so-called Quick-Start mode. 3487 </p> 3488 3489 <p><h4>2.13.2.3 <a name="pppnehnoise">Noise North/East/Up - mandatory</h4></p> 3490 <p> 3491 Enter a white 'Noise' in meters for estimated coordinate components. A value of 100.0 (default) may be appropriate when considering possible sudden movements of a rover. 3492 </p> 3493 3494 <p><h4>2.13.2.4 <a name="ppptropsigma">Tropo Sigma - mandatory</h4></p> 3495 <p> 3496 Enter a sigma in meters for the a priori model based tropospheric delay estimation. A value of 0.1 (default) may be an appropriate choice. 3497 </p> 3498 3499 <p><h4>2.13.2.5 <a name="ppptropnoise">Tropo Noise - mandatory</h4></p> 3500 <p> 3501 Enter a white 'Noise' in meters per second to describe the expected variation of the tropospheric effect. Supposing 1Hz observation data, a value of 3e-6 (default) would mean that the tropospheric effect may vary for 3600 * 3e-6 = 0.01 meters per hour. 3502 </p> 3503 3504 <p><h4>2.13.2.6 <a name="pppnmeaport">NMEA Port - optional</h4></p> 3505 Specify the IP port number of a local port where Point Positioning results become available as NMEA sentences. The default value for 'NMEA Port' is an empty option field, meaning that BNC does not provide NMEA sentences via IP port. Note that NMEA file output and NMEA IP port output are the same. 3506 </p> 3507 <p> 3508 Note also that Tomoji Takasu has written a program named RTKPLOT for visualizing NMEA sentences from IP ports or files. It is available from <u>http://www.rtklib.com</u> and compatible with the NMEA file and port output of BNC's 'PPP' client option. 3509 </p> 3510 <p> 3511 Furthermore, NASA's 'World Wind' software (see <u>http://worldwindcentral.com/wiki/NASA_World_Wind_Download</u>) can be used for real-time visualization of positions provided through BNC's NMEA IP output port. You need the 'GPS Tracker' plug-in available from <u>http://worldwindcentral.com/wiki/GPS_Tracker</u> for that. The 'Word Wind' map resolution is not meant for showing centimeter level details. 3512 </p> 3513 3514 <p><h4>2.13.3 <a name="pppOptions">PPP (3): Processing Options</h4></p> 3515 <p>BNC allows using various Point Positioning processing options depending on the capability of the involved receiver and the application in mind. You can introduce specific sigmas for code and phase observations as well as for a priori coordinates and troposphere estimates. You could also carry out your PPP solution in Quick-Start mode or enforce BNC to restart a solution if the length of an outage exceeds a certain threshold. 3516 </p> 3517 <p> 3518 The intention of this panel is to specify general processing options to be applied to all PPP threads in one BNC job. 3519 </p> 3520 3521 <p><img src="IMG/screenshot18.png"/></p> 3522 <p><u>Figure 24:</u> Precise Point Positioning with BNC, PPP Panel 3</p> 3523 3524 <p><h4>2.13.3.1 <a name="ppplinecombi">Linear Combinations - mandatory</h4></p> 3525 <p> 3526 <p> 3527 Specify on which ionosphere-free Linear Combinations (LCs) of observations you want to base ambiguity resolutions (Mervart et al. 2008). This implicitly defines the kind of GNSS observations you want to use. The specification is to be done per GNSS system ('GPS LCs', 'GLONASS LCs', 'Galileo LCs', 'BDS LCs'). 3528 </p> 3529 <p> 3530 <ul> 3531 <li>Selecting 'P3' means that you request BNC to use code data and the so-called P3 ionosphere-free linear combinations of code observations.</li> 3532 <li>'L3' means that you request BNC to use phase data and the so-called L3 ionosphere-free linear combinations of phase observations.</li> 3533 <li>'P3&L3' means that you request BNC to use both, code and phase data and the so-called P3 and L3 ionosphere-free linear combinations of code and phase observations. 3534 </li> 3535 </ul> 3536 </p> 3537 <p>Note that most geodetic GPS receivers support the observation of both, code and phase data. Hence, specifying 'P3&L3' would be a good choice for GPS when processing data from such a receiver. If multi-GNSS data processing is your intention, make sure your receiver supports GLONASS and/or Galileo and/or BDS observations besides GPS. Note also that the Broadcast Correction stream or file, which is required for PPP, also supports all the systems you have in mind. 3538 </p> 3539 <p>Specifying 'no' means that you do not at all want BNC to use observations from the affected GNSS system. 3540 </p> 3541 3542 <p><h4>2.13.3.2 <a name="pppcodeobs">Code Observations - mandatory</h4></p> 3543 </p> 3544 Enter a 'Sigma C1' for C1 code observations in meters. The bigger the sigma you enter, the less the contribution of C1 code observations to a PPP solution based on a combination of code and phase data. '2.0' meters is likely to be an appropriate choice. 3545 </p> 3546 <p> 3547 Specify a maximum for residuals 'Max Res C1' for C1 code observations in a PPP solution. '3.0' meters may be an appropriate choice for that. If the maximum is exceeded, contributions from the corresponding observation will be ignored in the PPP solution. 3548 </p> 3549 3550 3551 <p><h4>2.13.3.3 <a name="pppphaseobs">Phase Observations - mandatory</h4></p> 3552 <p> 3553 Enter a 'Sigma L1' for L1 phase observations in meters. The bigger the sigma you enter, the less the contribution of L1 phase observations to a PPP solutions based on a combination of code and phase data. '0.01' meters is likely to be an appropriate choice. 3554 </p> 3555 <p> 3556 Specify a maximum for residuals 'Max Res L1' for L1 phase observations in a PPP solution. '0.03' meters may be an appropriate choice for that. If the maximum is exceeded, contributions from the corresponding observation will be ignored in the PPP solution. 3557 </p> 3558 3559 <p> 3560 As the convergence characteristic of a PPP solution can be influenced by the ratio of sigmas for code and phase, you may like to introduce sigmas which differ from the default values. 3561 <ul> 3800 3562 <li>Introducing a smaller sigma (higher accuracy) for code observations or a bigger sigma for phase observations leads to better results shortly after program start. However, it may take more time until you finally get the best possible solution.</li> 3801 3563 <li>Introducing a bigger sigma (lower accuracy) for code observations or a smaller sigma for phase observations may lead to less accurate results shortly after program start and thus a prolonged period of convergence but could provide better positions in the long run.</li> 3802 3564 </ul> 3803 </div> 3804 <div class="section" id="elevation-dependent-weighting-mandatory"> 3805 <span id="index-34"></span><h5>Elevation Dependent Weighting - mandatory<a class="headerlink" href="#elevation-dependent-weighting-mandatory" title="Permalink to this headline">¶</a></h5> 3806 <p>BNC allows elevation dependent weighting when processing GNSS observations. A weight function</p> 3807 <div class="math"> 3808 \[P = cos^2 * z\]</div> 3809 <p>with <span class="math">\(z\)</span> being the zenith distance to the involved satellite can be applied instead of the simple weight function ‘P = 1’ independent from satellite elevation angles:</p> 3810 <ul class="simple"> 3811 <li>Tick ‘Ele Wgt Code’ if you want Elevation Dependent Weighting for code observations.</li> 3812 <li>Tick ‘Ele Wgt Phase’ if you want Elevation Dependent Weighting for phase observations.</li> 3813 </ul> 3814 <p>Default is using the plain weight function ‘P = 1’ for code and phase observations.</p> 3815 </div> 3816 <div class="section" id="minimum-number-of-observations-mandatory"> 3817 <h5>Minimum Number of Observations - mandatory<a class="headerlink" href="#minimum-number-of-observations-mandatory" title="Permalink to this headline">¶</a></h5> 3818 <p>Select the minimum number of observations you want to use per epoch. The minimum for parameter ‘Min # of Obs’ is 4. This is also the default.</p> 3819 </div> 3820 <div class="section" id="minimum-elevation-mandatory"> 3821 <h5>Minimum Elevation - mandatory<a class="headerlink" href="#minimum-elevation-mandatory" title="Permalink to this headline">¶</a></h5> 3822 <p>Select a minimum for satellite elevation angles. Selecting ‘10 deg’ for option ‘Min Elevation’ may be an appropriate choice. Default is ‘0 deg’, meaning that any observation will be used regardless of the involved satellite elevation angle.</p> 3823 </div> 3824 <div class="section" id="wait-for-clock-corrections-optional"> 3825 <span id="index-35"></span><h5>Wait for Clock Corrections - optional<a class="headerlink" href="#wait-for-clock-corrections-optional" title="Permalink to this headline">¶</a></h5> 3826 <p>Specifying ‘no’ for option ‘Wait for clock corr.’ means that BNC processes each epoch of data immediately after arrival using satellite clock corrections available at that time. A non-zero value means that epochs of data are buffered and the processing of each epoch is postponed until satellite clock corrections not older than ‘Wait for clock corr.’ seconds are available. Specifying a value of half the update rate of the clock corrections (e.g. 5 sec) may be appropriate. Note that this causes an additional delay of the PPP solutions in the amount of half of the update rate.</p> 3827 <p>Using observations in sync with the corrections can avoid a possible high frequency noise of PPP solutions. Such noise could result from processing observations regardless of how late after a clock correction they were received. Note that applying the ‘Wait for clock corr.’ option significantly reduces the PPP computation effort for BNC.</p> 3828 <p>Default is an empty option field, meaning that you want BNC to process observations immediately after their arrival through applying the latest received clock correction.</p> 3829 </div> 3830 <div class="section" id="seeding-optional-if-a-priori-coordinates-specified-in-coordinates-file"> 3831 <h5>Seeding - optional if a priori coordinates specified in ‘Coordinates file’<a class="headerlink" href="#seeding-optional-if-a-priori-coordinates-specified-in-coordinates-file" title="Permalink to this headline">¶</a></h5> 3832 <p>Enter the length of a startup period in seconds for which you want to fix the PPP solution to a known position, see option ‘Coordinates file’. Constraining a priori coordinates is done in BNC through setting their white ‘Noise’ temporarily to zero.</p> 3833 <p>This so-called Quick-Start option allows the PPP solutions to rapidly converge after startup. It requires that the antenna remains unmoved on the known position throughout the defined period. A value of ‘60’ seconds is likely to be an appropriate choice for ‘Seeding’. Default is an empty option field, meaning that you do not want BNC to start in Quick-Start mode.</p> 3834 <p>You may need to create your own reference coordinate beforehand through running BNC for an hour in normal mode before applying the ‘Seeding’ option. Do not forget to introduce realistic North/East/Up sigmas under panel ‘PPP (2)’ corresponding to the coordinate’s precision.</p> 3835 <p>‘Seeding’ has also a function for bridging gaps in PPP solutions from failures caused e.g. by longer lasting outages. Should the time span between two consecutive solutions exceed the limit of 60 seconds (maximum solution gap, hard-wired), the algorithm fixes the latest derived coordinate for a period of ‘Seeding’ seconds. This option avoids time-consuming reconvergences and makes especially sense for stationary operated receivers where convergence can be enforced because a good approximation for the receiver position is known.</p> 3836 <p><a class="reference internal" href="#fig-25"><span class="std std-numref">Fig. 27</span></a> provides the screenshot of an example PPP session with BNC showing the beginning of a time series plot when seeding is set to 30 seconds..</p> 3837 <div class="figure" id="id50"> 3838 <span id="fig-25"></span><a class="reference internal image-reference" href="_images/fig_25.png"><img alt="_images/fig_25.png" src="_images/fig_25.png" style="width: 1260.0px; height: 740.0px;" /></a> 3839 <p class="caption"><span class="caption-number">Fig. 27 </span><span class="caption-text">Precise Point Positioning with BNC in ‘Quick-Start’ mode, PPP Panel 4</span></p> 3840 </div> 3841 </div> 3842 </div> 3843 <div class="section" id="ppp-4-plots"> 3844 <span id="index-36"></span><h4>PPP (4): Plots<a class="headerlink" href="#ppp-4-plots" title="Permalink to this headline">¶</a></h4> 3845 <p>This panel presents options for visualizing PPP results as a time series plot or as a track map with PPP tracks on top of OSM or Google maps.</p> 3846 <div class="section" id="ppp-plot-optional"> 3847 <h5>PPP Plot - optional<a class="headerlink" href="#ppp-plot-optional" title="Permalink to this headline">¶</a></h5> 3848 <p>PPP time series of North (red), East (green) and Up (blue) displacements will be plotted under the ‘PPP Plot’ tab when a ‘Mountpoint’ is specified. Values will be referred to an XYZ reference coordinate (if specified, see ‘Coordinates file’). The sliding PPP time series window will cover the period of the latest 5 minutes. Note that a PPP dicplacements time series makes only sense for a stationary operated receiver.</p> 3849 </div> 3850 <div class="section" id="audio-response-optional"> 3851 <h5>Audio Response - optional<a class="headerlink" href="#audio-response-optional" title="Permalink to this headline">¶</a></h5> 3852 <p>For natural hazard prediction and monitoring landslides, it may be appropriate to generate audio alerts. For that you can specify an ‘Audio response’ threshold in meters. A beep is produced by BNC whenever a horizontal PPP coordinate component differs by more than the threshold value from the specified marker coordinate. Default is an empty option field, meaning that you do not want BNC to produce acoustic warnings.</p> 3853 </div> 3854 <div class="section" id="track-map-optional"> 3855 <h5>Track Map - optional<a class="headerlink" href="#track-map-optional" title="Permalink to this headline">¶</a></h5> 3856 <p>You may like to track your rover position using Google Maps or OpenStreetMap as a background map. Track maps (example <a class="reference internal" href="#fig-26"><span class="std std-numref">Fig. 28</span></a>) can be produced with BNC in ‘Real-time Streams’ mode or in ‘RINEX Files’ post processing mode with data coming from files.</p> 3857 <div class="figure" id="id51"> 3858 <span id="fig-26"></span><a class="reference internal image-reference" href="_images/fig_26.png"><img alt="_images/fig_26.png" src="_images/fig_26.png" style="width: 999.0px; height: 743.0px;" /></a> 3859 <p class="caption"><span class="caption-number">Fig. 28 </span><span class="caption-text">Track of positions from BNC with Google Maps in background</span></p> 3860 </div> 3861 </div> 3862 <div class="section" id="google-osm-mandatory-before-pushing-open-map"> 3863 <h5>Google/OSM - mandatory before pushing ‘Open Map’<a class="headerlink" href="#google-osm-mandatory-before-pushing-open-map" title="Permalink to this headline">¶</a></h5> 3864 <p>Select either ‘Google’ or ‘OSM’ as the background map for your rover positions <a class="reference internal" href="#fig-27"><span class="std std-numref">(Fig. 29)</span></a>.</p> 3865 <div class="figure" id="id52"> 3866 <span id="fig-27"></span><a class="reference internal image-reference" href="_images/fig_27.png"><img alt="_images/fig_27.png" src="_images/fig_27.png" style="width: 999.0px; height: 513.0px;" /></a> 3867 <p class="caption"><span class="caption-number">Fig. 29 </span><span class="caption-text">Example for background map from Google Maps and OpenStreetMap (OSM)</span></p> 3868 </div> 3869 </div> 3870 <div class="section" id="dot-properties-mandatory-before-pushing-open-map"> 3871 <h5>Dot-properties - mandatory before pushing ‘Open Map’<a class="headerlink" href="#dot-properties-mandatory-before-pushing-open-map" title="Permalink to this headline">¶</a></h5> 3872 <p>PPP tracks are presented on maps through plotting one colored dot per observation epoch.</p> 3873 </div> 3874 <div class="section" id="size-mandatory-before-pushing-open-map"> 3875 <h5>Size - mandatory before pushing ‘Open Map’<a class="headerlink" href="#size-mandatory-before-pushing-open-map" title="Permalink to this headline">¶</a></h5> 3876 <p>Specify the size of dots showing the rover position. A dot size of ‘3’ may be appropriate. The maximum possible dot size is ‘10’. An empty option field or a size of ‘0’ would mean that you do not want BNC to show the rover’s track on the map.</p> 3877 </div> 3878 <div class="section" id="color-mandatory-before-pushing-open-map"> 3879 <h5>Color - mandatory before pushing ‘Open Map’<a class="headerlink" href="#color-mandatory-before-pushing-open-map" title="Permalink to this headline">¶</a></h5> 3880 <p>Select the color of dots showing the rover track.</p> 3881 </div> 3882 <div class="section" id="post-processing-speed-mandatory-before-pushing-open-map"> 3883 <h5>Post Processing Speed - mandatory before pushing ‘Open Map’<a class="headerlink" href="#post-processing-speed-mandatory-before-pushing-open-map" title="Permalink to this headline">¶</a></h5> 3884 <p>With BNC in PPP ‘RINEX File’ post processing mode, you can specify the speed of computations as appropriate for visualization. Note that you can adjust ‘Post-processing speed’ on-the-fly while BNC is already processing your observations.</p> 3885 </div> 3886 </div> 3887 </div> 3888 <div class="section" id="combine-corrections"> 3889 <span id="index-37"></span><h3>Combine Corrections<a class="headerlink" href="#combine-corrections" title="Permalink to this headline">¶</a></h3> 3890 <p>BNC allows processing several orbit and clock correction streams in real-time to produce, encode, upload and save a combination of Broadcast Corrections from various providers. All corrections must refer to satellite Antenna Phase Centers (APC). It is so far only the satellite clock corrections which are combined by BNC while orbit corrections in the combination product as well as product update rates are just taken over from one of the incoming Broadcast Correction streams. Combining only clock corrections using a fixed orbit reference imposes the potential to introduce some analysis inconsistencies. We may therefore eventually consider improvements on this approach. The clock combination can be based either on a plain ‘Single-Epoch’ or on a Kalman ‘Filter’ approach.</p> 3891 <p>In the Kalman Filter approach, satellite clocks estimated by individual Analyses Centers (ACs) are used as pseudo observations within the adjustment process. Each observation is modeled as a linear function (actually a simple sum) of three estimated parameters: AC specific offset, satellite specific offset common to all ACs, and the actual satellite clock correction, which represents the result of the combination. These three parameter types differ in their statistical properties. The satellite clock offsets are assumed to be static parameters while AC specific and satellite specific offsets are stochastic parameters affected by white noise.</p> 3892 <p>The solution is regularized by a set of minimal constraints. In case of a change of the ‘SSR Provider ID’, ‘SSR Solution ID’, or ‘IOD SSR’ (see section ‘Upload Corrections’), the satellite clock offsets belonging to the corresponding analysis center are reset in the adjustment.</p> 3893 <p>Removing the AC-dependent biases as well as possible is a major issue with clock combinations. Since they vary in time, it can be tricky to do this. Otherwise, there will be artificial jumps in the combined clock stream if one or more AC contributions drop out for certain epochs. Here the Kalman Filter approach is expected to do better than the Single-Epoch approach.</p> 3894 <p>In view of IGS real-time products, the ‘Combine Corrections’ functionality has been integrated in BNC <a class="reference internal" href="bnchelp.html#mervart2011a" id="id12">[10]</a> because:</p> 3895 <ul class="simple"> 3565 </p> 3566 3567 <p><h4>2.13.3.4 <a name="pppeleweight">Elevation Dependent Weighting - mandatory</h4></p> 3568 <p> 3569 BNC allows elevation dependent weighting when processing GNSS observations. A weight function 3570 </p> 3571 3572 <p> P = cos² * z</p> 3573 3574 <p> 3575 with 'z' being the zenith distance to the involved satellite can be applied instead of the simple weight function 'P = 1' independent from satellite elevation angles. 3576 </p> 3577 <ul> 3578 <li>Tick 'Ele Wgt Code' if you want Elevation Dependent Weighting for code observations.</li> 3579 <li>Tick 'Ele Wgt Phase' if you want Elevation Dependent Weighting for phase observations.</li> 3580 </ul> 3581 <p> 3582 Default is using the plain weight function 'P = 1' for code and phase observations. 3583 </p> 3584 3585 <p><h4>2.13.3.5 <a name="pppminobs">Minimum Number of Observations - mandatory</h4></p> 3586 <p> 3587 Select the minimum number of observations you want to use per epoch. The minimum for parameter 'Min # of Obs' is 4. This is also the default. 3588 </p> 3589 3590 <p><h4>2.13.3.6 <a name="pppmineleva">Minimum Elevation - mandatory</h4></p> 3591 <p> 3592 Select a minimum for satellite elevation angles. Selecting '10 deg' for option 'Min Elevation' may be an appropriate choice. 3593 </p> 3594 <p> 3595 Default is '0 deg', meaning that any observation will be used regardless of the involved satellite elevation angle. 3596 </p> 3597 3598 <p><h4>2.13.3.7 <a name="pppwaitclockcorr">Wait for Clock Corrections - optional</h4></p> 3599 <p> 3600 Specifying 'no' for option 'Wait for clock corr.' means that BNC processes each epoch of data immediately after its arrival using satellite clock corrections available at that time. A non-zero value means that epochs of data are buffered and the processing of each epoch is postponed until satellite clock corrections not older than 'Wait for clock corr.' seconds are available. Specifying a value of half the update rate of the clock corrections (e.g. 5 sec) may be appropriate. Note that this causes an additional delay of the PPP solutions in the amount of half of the update rate. 3601 </p> 3602 <p> 3603 Using observations in sync with the corrections can avoid a possible high frequency noise of PPP solutions. Such noise could result from processing observations regardless of how late after a clock correction they were received. Note that applying the 'Wait for clock corr.' option significantly reduces the PPP computation effort for BNC. 3604 </p> 3605 <p> 3606 Default is an empty option field, meaning that you want BNC to process observations immediately after their arrival through applying the latest received clock correction. 3607 </p> 3608 3609 <p><h4>2.13.3.8 <a name="pppseeding">Seeding - optional if a priori coordinates specified in 'Coordinates file'</h4></p> 3610 <p> 3611 Enter the length of a startup period in seconds for which you want to fix the PPP solution to a known position, see option 'Coordinates file'. Constraining a priori coordinates is done in BNC through setting their white 'Noise' temporarily to zero. 3612 </p> 3613 <p> 3614 This so-called <u>Quick-Start</u> option allows the PPP solutions to rapidly converge after startup. It requires that the antenna remains unmoved on the known position throughout the defined period. A value of '60' seconds is likely to be an appropriate choice for 'Seeding'. Default is an empty option field, meaning that you do not want BNC to start in Quick-Start mode. 3615 <p> 3616 You may need to create your own reference coordinate beforehand through running BNC for an hour in normal mode before applying the 'Seeding' option. Do not forget to introduce realistic North/East/Up sigmas under panel 'PPP (2)' corresponding to the coordinate's precision. 3617 </p> 3618 3619 <p> 3620 'Seeding' has also a function for <u>bridging gaps</u> in PPP solutions from failures caused e.g. by longer lasting outages. Should the time span between two consecutive solutions exceed the limit of 60 seconds (maximum solution gap, hard-wired), the algorithm fixes the latest derived coordinate for a period of 'Seeding' seconds. This option avoids time-consuming reconvergences and makes especially sense for stationary operated receivers where convergence can be enforced because a good approximation for the receiver position is known. 3621 </p> 3622 3623 <p> 3624 The following figure provides the screenshot of an example PPP session with BNC. 3625 </p> 3626 3627 <p><img src="IMG/screenshot22.png"/></p> 3628 <p><u>Figure 25:</u> Precise Point Positioning with BNC in 'Quick-Start' mode, PPP Panel 4</p> 3629 3630 <p><h4>2.13.4 <a name="pppPlots">PPP (4): Plots</h4></p> 3631 <p> 3632 This panel presents options for visualizing PPP results as a time series plot or as a track map with PPP tracks on top of OSM or Google maps. 3633 </p> 3634 3635 <p><h4>2.13.4.1 <a name="ppptimeseries">PPP Plot - optional</h4></p> 3636 <p> 3637 PPP time series of North (red), East (green) and Up (blue) displacements will be plotted under the 'PPP Plot' tab when a 'Mountpoint' is specified. Values will be referred to an XYZ reference coordinate (if specified, see 'Coordinates file'). The sliding PPP time series window will cover the period of the latest 5 minutes. 3638 </p> 3639 <p> 3640 Note that a PPP dicplacements time series makes only sense for a stationary operated receiver. 3641 </p> 3642 3643 <p><h4>2.13.4.2 <a name="pppaudioresp">Audio Response - optional</h4></p> 3644 <p> 3645 For natural hazard prediction and monitoring landslides, it may be appropriate to generate audio alerts. For that you can specify an 'Audio response' threshold in meters. A beep is produced by BNC whenever a horizontal PPP coordinate component differs by more than the threshold value from the specified marker coordinate. 3646 </p> 3647 <p> 3648 Default is an empty option field, meaning that you do not want BNC to produce acoustic warnings. 3649 </p> 3650 3651 <p><h4>2.13.4.3 <a name="ppptrackmap">Track Map - optional</h4></p> 3652 <p> 3653 You may like to track your rover position using Google Maps or OpenStreetMap as a background map. Track maps can be produced with BNC in 'Real-time Streams' mode or in 'RINEX Files' post processing mode with data coming from files. 3654 </p> 3655 <p> 3656 Even when in 'RINEX Files' post processing mode, you should not forget to go online with your host and specify a proxy under the 'Network' panel if that is operated in front of BNC. 3657 </p> 3658 <p> 3659 The 'Open Map' button opens a window showing a map according to the selected 'Google/OSM' option. 3660 </p> 3661 3662 <p><img src="IMG/screenshot32.png"/></p> 3663 <p><u>Figure 26:</u> Track of positions from BNC with Google Maps in background</p> 3664 3665 <p><h4>2.13.4.3.1 <a name="pppmaptype">Google/OSM - mandatory before pushing 'Open Map'</h4></p> 3666 <p> 3667 Select either 'Google' or 'OSM' as the background map for your rover positions. 3668 </p> 3669 3670 <p><img src="IMG/screenshot41.png"/></p> 3671 <p><u>Figure 27:</u> Example for background map from Google Maps and OpenStreetMap (OSM)</p> 3672 3673 <p><h4>2.13.4.4 <a name="pppdotprop">Dot-properties - mandatory before pushing 'Open Map'</h4></p> 3674 <p> 3675 PPP tracks are presented on maps through plotting one colored dot per observation epoch. 3676 </p> 3677 3678 <p><h4>2.13.4.4.1 <a name="pppdotsize">Size - mandatory before pushing 'Open Map'</h4></p> 3679 <p> 3680 Specify the size of dots showing the rover position. A dot size of '3' may be appropriate. The maximum possible dot size is '10'. An empty option field or a size of '0' would mean that you do not want BNC to show the rover's track on the map. 3681 </p> 3682 3683 <p><h4>2.13.4.4.2 <a name="pppdotcolor">Color - mandatory before pushing 'Open Map'</h4></p> 3684 <p> 3685 Select the color of dots showing the rover track. 3686 </p> 3687 3688 <p><h4>2.13.4.5 <a name="pppspeed">Post Processing Speed - mandatory before pushing 'Open Map'</h4></p> 3689 <p> 3690 With BNC in PPP 'RINEX File' post processing mode, you can specify the speed of computations as appropriate for visualization. Note that you can adjust 'Post-processing speed' on-the-fly while BNC is already processing your observations. 3691 </p> 3692 3693 <p><h4>2.14 <a name="combi">Combine Corrections</h4></p> 3694 <p> 3695 BNC allows processing several orbit and clock correction streams in real-time to produce, encode, upload and save a combination of Broadcast Corrections from various providers. All corrections must refer to satellite Antenna Phase Centers (APC). It is so far only the satellite clock corrections which are combined by BNC while orbit corrections in the combination product as well as product update rates are just taken over from one of the incoming Broadcast Correction streams. Combining only clock corrections using a fixed orbit reference imposes the potential to introduce some analysis inconsistencies. We may therefore eventually consider improvements on this approach. The clock combination can be based either on a plain 'Single-Epoch' or on a Kalman 'Filter' approach. 3696 </p> 3697 <p> 3698 In the Kalman Filter approach, satellite clocks estimated by individual Analyses Centers (ACs) are used as pseudo observations within the adjustment process. Each observation is modeled as a linear function (actually a simple sum) of three estimated parameters: AC specific offset, satellite specific offset common to all ACs, and the actual satellite clock correction, which represents the result of the combination. These three parameter types differ in their statistical properties. The satellite clock offsets are assumed to be static parameters while AC specific and satellite specific offsets are stochastic parameters affected by white noise. 3699 </p> 3700 <p> 3701 The solution is regularized by a set of minimal constraints. In case of a change of the 'SSR Provider ID', 'SSR Solution ID', or 'IOD SSR' (see section 'Upload Corrections'), the satellite clock offsets belonging to the corresponding analysis center are reset in the adjustment. 3702 </p> 3703 <p> 3704 Removing the AC-dependent biases as well as possible is a major issue with clock combinations. Since they vary in time, it can be tricky to do this. Otherwise, there will be artificial jumps in the combined clock stream if one or more AC contributions drop out for certain epochs. Here the Kalman Filter approach is expected to do better than the Single-Epoch approach. 3705 </p> 3706 <p> 3707 In view of IGS real-time products, the 'Combine Corrections' functionality has been integrated in BNC (Weber and Mervart 2010) because 3708 <ul> 3896 3709 <li>The software with its Graphic User Interface and range of supported Operating Systems represents a perfect platform to process many Broadcast Correction streams in parallel;</li> 3897 3710 <li>Outages of single AC product streams can be mitigated through merging several incoming streams into a combined product;</li> … … 3903 3716 <li>It provides the means to output SP3 and Clock RINEX files containing precise orbit and clock information for further processing using other tools than BNC.</li> 3904 3717 </ul> 3905 <p>Note that the combination process requires real-time access to Broadcast Ephemeris. Therefore, in addition to the orbit and clock correction streams BNC must pull a stream carrying Broadcast Ephemeris in the form of RTCM Version 3 messages. Stream ‘RTCM3EPH’ on caster products.igs-ip.net is an example for that. Note further that BNC will ignore incorrect or outdated Broadcast Ephemeris data when necessary, leaving a note ‘WRONG EPHEMERIS’ or ‘OUTDATED EPHEMERIS’ in the logfile.</p> 3906 <p>A combination is carried out following a specified sampling interval. BNC waits for incoming Broadcast Corrections for the period of one such interval. Corrections received later than that will be ignored. If incoming streams have different rates, only epochs that correspond to the sampling interval are used.</p> 3907 <p>With respect to IGS, it is important to understand that a major effect in the combination of GNSS orbit and clock correction streams is the selection of ACs to include. It is likely that a combination product could be improved in accuracy by using only the best two or three ACs. However, with only a few ACs to depend on, the reliability of the combination product could suffer and the risk of total failures increases. So there is an important tradeoff here that must be considered when selecting streams for a combination. The major strength of a combination product is its reliability and stable median performance which can be much better than that of any single AC product.</p> 3908 <p>This comment applies in situations where we have a limited number of solutions to combine and their quality varies significantly. The situation may be different when the total number of ACs is larger and the range of AC variation is smaller. In that case, a standard full combination is probably the best.</p> 3909 <p>The following recursive algorithm is used to detect orbit outliers in the Kalman Filter combination when Broadcast Corrections are provided by several ACs:</p> 3910 <ol class="arabic simple"> 3911 <li>We do not produce a combination for a certain satellite if only one AC provides corrections for it.</li> 3912 <li>A mean satellite position is calculated as the average of positions from all ACs.</li> 3913 <li>For each AC and satellite, the 3D distance between individual and mean satellite position is calculated.</li> 3914 <li>We find the greatest difference between AC specific and mean satellite positions.</li> 3915 <li>If that is less than a threshold, the conclusion is that we do not have an outlier and can proceed to the next epoch.</li> 3916 <li>If that is greater than a threshold, then corrections of the affiliated AC are ignored for the affected epoch and the outlier detection restarts with 1.</li> 3718 </p> 3719 <p> 3720 Note that the combination process requires real-time access to Broadcast Ephemeris. Therefore, in addition to the orbit and clock correction streams BNC must pull a stream carrying Broadcast Ephemeris in the form of RTCM Version 3 messages. Stream 'RTCM3EPH' on caster <u>products.igs-ip.net</u> is an example for that. Note further that BNC will ignore incorrect or outdated Broadcast Ephemeris data when necessary, leaving a note 'WRONG EPHEMERIS' or 'OUTDATED EPHEMERIS' in the logfile. 3721 </p> 3722 3723 <p> 3724 A combination is carried out following a specified sampling interval. BNC waits for incoming Broadcast Corrections for the period of one such interval. Corrections received later than that will be ignored. If incoming streams have different rates, only epochs that correspond to the sampling interval are used. 3725 </p> 3726 3727 <p> 3728 With respect to IGS, it is important to understand that a major effect in the combination of GNSS orbit and clock correction streams is the selection of ACs to include. It is likely that a combination product could be improved in accuracy by using only the best two or three ACs. However, with only a few ACs to depend on, the reliability of the combination product could suffer and the risk of total failures increases. So there is an important tradeoff here that must be considered when selecting streams for a combination. The major strength of a combination product is its reliability and stable median performance which can be much better than that of any single AC product. 3729 </p> 3730 <p> 3731 This comment applies in situations where we have a limited number of solutions to combine and their quality varies significantly. The situation may be different when the total number of ACs is larger and the range of AC variation is smaller. In that case, a standard full combination is probably the best. 3732 </p> 3733 <p> 3734 The following recursive algorithm is used to detect orbit outliers in the Kalman Filter combination when Broadcast Corrections are provided by several ACs: 3735 <br> 3736 Step 1: We do not produce a combination for a certain satellite if only one AC provides corrections for it. 3737 <br> 3738 Step 2: A mean satellite position is calculated as the average of positions from all ACs. 3739 <br> 3740 Step 3: For each AC and satellite, the 3D distance between individual and mean satellite position is calculated. 3741 <br> 3742 Step 4: We find the greatest difference between AC specific and mean satellite positions. 3743 <br> 3744 Step 5: If that is less than a threshold, the conclusion is that we do not have an outlier and can proceed to the next epoch. 3745 <br> 3746 Step 6: If that is greater than a threshold, then corrections of the affiliated AC are ignored for the affected epoch and the outlier detection restarts with step 1. 3747 </p> 3748 <p> 3749 The following screenshot shows an example setup of BNC when combining Broadcast Correction streams CLK11, CLK21, CLK91, and CLK80. 3750 </p> 3751 3752 <p><img src="IMG/screenshot20.png"/></p> 3753 <p><u>Figure 28:</u> BNC combining Broadcast Correction streams</p> 3754 <p></p> 3755 <p> 3756 Note that BNC can produce an internal PPP solution from combined Broadcast Corrections. For that you have to specify the keyword 'INTERNAL' as 'Corrections stream' in the PPP (1) panel. The following example combines correction streams IGS01 and IGS02 and simultaneously carries out a PPP solution with observations from stream FFMJ1 to allow monitoring the quality of the combination product in the space domain. 3757 </p> 3758 <p><img src="IMG/screenshot23.png"/></p> 3759 <p><u>Figure 29:</u> 'INTERNAL' PPP with BNC using a combination of Broadcast Corrections</p> 3760 3761 <p><h4>2.14.1 <a name="combimounttab">Combine Corrections Table - optional</h4></p> 3762 <p> 3763 Hit the 'Add Row' button, double click on the 'Mountpoint' field, enter a Broadcast Correction mountpoint from the 'Streams' section and hit Enter. Then double click on the 'AC Name' field to enter your choice of an abbreviation for the Analysis Center (AC) providing the Antenna Phase Center (APC) related correction stream. Finally, double click on the 'Weight' field to enter a weight to be applied to this stream in the combination. 3764 </p> 3765 <p> 3766 The sequence of entries in the 'Combine Corrections' table is not of importance. Note that the orbit information in the final combination stream is just copied from one of the incoming streams. The stream used for providing the orbits may vary over time: if the orbit-providing stream has an outage then BNC switches to the next remaining stream for getting hold of the orbit information.</p> 3767 <p> 3768 It is possible to specify only one Broadcast Ephemeris correction stream in the 'Combine Corrections' table. Instead of combining corrections from several sources, BNC will then merge the single corrections stream with Broadcast Ephemeris to allow saving results in SP3 and/or Clock RINEX format when specified accordingly under the 'Upload Corrections' panel. Note that in such a BNC application you must not pull more than one Broadcast Ephemeris correction stream even if a second stream would provide the same corrections from a backup caster. 3769 </p> 3770 <p> 3771 Default is an empty 'Combine Corrections' table, meaning that you do not want BNC to combine orbit and clock correction streams. 3772 </p> 3773 3774 <p><h4>2.14.1.1 <a name="combiadd">Add Row, Delete - optional</h4></p> 3775 <p> 3776 Hit 'Add Row' button to add another row to the 'Combine Corrections' table or hit the 'Delete' button to delete the highlighted row(s). 3777 </p> 3778 3779 <p><h4>2.14.1.2 <a name="combimethod">Method - mandatory if 'Combine Corrections' table is populated</h4></p> 3780 <p> 3781 Select a clock combination method. Available options are Kalman 'Filter' and 'Single-Epoch. It is suggested to use the Kalman Filter approach in case the combined stream of Broadcast Corrections is intended for Precise Point Positioning. 3782 </p> 3783 3784 <p><h4>2.14.1.3 <a name="combimax">Maximal Residuum - mandatory if 'Combine Corrections' table is populated</h4></p> 3785 3786 <p>BNC combines all incoming clocks according to specified weights. Individual clock estimates that differ by more than 'Maximal Residuum' meters from the average of all clocks will be ignored.<p> 3787 </p>It is suggested to specify a value of about 0.2 m for the Kalman Filter combination approach and a value of about 3.0 meters for the Single-Epoch combination approach.</p> 3788 <p>Default is a 'Maximal Residuum' of 999.0 meters.</p> 3789 3790 <p><h4>2.14.1.4 <a name="combismpl">Sampling - mandatory if 'Combine Corrections' table is populated</h4></p> 3791 <p>Specify a combination sampling interval. Orbit and clock corrections will be produced following that interval. A value of 10 sec may be an appropriate choice.</p> 3792 3793 <p><h4>2.14.1.5 <a name="combiGLO">Use GLONASS - optional</h4></p> 3794 <p> 3795 You may tick the 'Use GLONASS' option in case you want to produce a GPS plus GLONASS combination and both systems are supported by the Broadcast Correction streams participating in the combination. 3796 </p> 3797 3798 <p><h4>2.15 <a name="upclk">Upload Corrections</h4></p> 3799 <p> 3800 BNC can upload streams carrying orbit and clock corrections to Broadcast Ephemeris in radial, along-track and out-of-plane components if they are<ol type=a> 3801 <li> 3802 either generated by BNC as a combination of several individual Broadcast Correction streams coming from an number of real-time Analysis Centers (ACs), see section 'Combine Corrections',</li> 3803 <li> 3804 or generated by BNC while the program receives an ASCII stream of precise satellite orbits and clocks via IP port from a connected real-time GNSS engine. Such a stream would be expected in a plain ASCII format and the associated 'decoder' string would have to be 'RTNET', see format description below. </li> 3917 3805 </ol> 3918 <p>The screenshot in <a class="reference internal" href="#fig-28"><span class="std std-numref">Fig. 30</span></a> shows an example setup of BNC when combining Broadcast Correction streams CLK11, CLK21, CLK91, and CLK80.</p> 3919 <div class="figure" id="id53"> 3920 <span id="fig-28"></span><a class="reference internal image-reference" href="_images/fig_28.png"><img alt="_images/fig_28.png" src="_images/fig_28.png" style="width: 1120.0px; height: 843.0px;" /></a> 3921 <p class="caption"><span class="caption-number">Fig. 30 </span><span class="caption-text">BNC combining Broadcast Correction streams</span></p> 3922 </div> 3923 <p>Note that BNC can produce an internal PPP solution from combined Broadcast Corrections. For that you have to specify the keyword ‘INTERNAL’ as ‘Corrections stream’ in the PPP (1) panel. The example in <a class="reference internal" href="#fig-29"><span class="std std-numref">Fig. 31</span></a> combines correction streams IGS01 and IGS02 and simultaneously carries out a PPP solution with observations from stream FFMJ1 to allow monitoring the quality of the combination product in the space domain.</p> 3924 <div class="figure" id="id54"> 3925 <span id="fig-29"></span><a class="reference internal image-reference" href="_images/fig_29.png"><img alt="_images/fig_29.png" src="_images/fig_29.png" style="width: 1000.0px; height: 900.0px;" /></a> 3926 <p class="caption"><span class="caption-number">Fig. 31 </span><span class="caption-text">‘INTERNAL’ PPP with BNC using a combination of Broadcast Corrections</span></p> 3927 </div> 3928 <div class="section" id="combine-corrections-table-optional"> 3929 <h4>Combine Corrections Table - optional<a class="headerlink" href="#combine-corrections-table-optional" title="Permalink to this headline">¶</a></h4> 3930 <p>Hit the ‘Add Row’ button, double click on the ‘Mountpoint’ field, enter a Broadcast Correction mountpoint from the ‘Streams’ section and hit Enter. Then double click on the ‘AC Name’ field to enter your choice of an abbreviation for the Analysis Center (AC) providing the Antenna Phase Center (APC) related correction stream. Finally, double click on the ‘Weight’ field to enter a weight to be applied to this stream in the combination.</p> 3931 <p>The sequence of entries in the ‘Combine Corrections’ table is not of importance. Note that the orbit information in the final combination stream is just copied from one of the incoming streams. The stream used for providing the orbits may vary over time: if the orbit-providing stream has an outage then BNC switches to the next remaining stream for getting hold of the orbit information.</p> 3932 <p>It is possible to specify only one Broadcast Ephemeris correction stream in the ‘Combine Corrections’ table. Instead of combining corrections from several sources, BNC will then merge the single corrections stream with Broadcast Ephemeris to allow saving results in SP3 and/or Clock RINEX format when specified accordingly under the ‘Upload Corrections’ panel. Note that in such a BNC application you must not pull more than one Broadcast Ephemeris correction stream even if a second stream would provide the same corrections from a backup caster.</p> 3933 <p>Default is an empty ‘Combine Corrections’ table, meaning that you do not want BNC to combine orbit and clock correction streams.</p> 3934 </div> 3935 <div class="section" id="add-row-delete-optional"> 3936 <h4>Add Row, Delete - optional<a class="headerlink" href="#add-row-delete-optional" title="Permalink to this headline">¶</a></h4> 3937 <p>Hit ‘Add Row’ button to add another row to the ‘Combine Corrections’ table or hit the ‘Delete’ button to delete the highlighted row(s).</p> 3938 </div> 3939 <div class="section" id="method-mandatory-if-combine-corrections-table-is-populated"> 3940 <h4>Method - mandatory if ‘Combine Corrections’ table is populated<a class="headerlink" href="#method-mandatory-if-combine-corrections-table-is-populated" title="Permalink to this headline">¶</a></h4> 3941 <p>Select a clock combination method. Available options are Kalman ‘Filter’ and ‘Single-Epoch. It is suggested to use the Kalman Filter approach in case the combined stream of Broadcast Corrections is intended for Precise Point Positioning.</p> 3942 </div> 3943 <div class="section" id="maximal-residuum-mandatory-if-combine-corrections-table-is-populated"> 3944 <h4>Maximal Residuum - mandatory if ‘Combine Corrections’ table is populated<a class="headerlink" href="#maximal-residuum-mandatory-if-combine-corrections-table-is-populated" title="Permalink to this headline">¶</a></h4> 3945 <p>BNC combines all incoming clocks according to specified weights. Individual clock estimates that differ by more than ‘Maximal Residuum’ meters from the average of all clocks will be ignored. It is suggested to specify a value of about 0.2 m for the Kalman Filter combination approach and a value of about 3.0 meters for the Single-Epoch combination approach. Default is a ‘Maximal Residuum’ of 999.0 meters.</p> 3946 </div> 3947 <div class="section" id="sampling-mandatory-if-combine-corrections-table-is-populated"> 3948 <h4>Sampling - mandatory if ‘Combine Corrections’ table is populated<a class="headerlink" href="#sampling-mandatory-if-combine-corrections-table-is-populated" title="Permalink to this headline">¶</a></h4> 3949 <p>Specify a combination sampling interval. Orbit and clock corrections will be produced following that interval. A value of 10 sec may be an appropriate choice.</p> 3950 </div> 3951 <div class="section" id="use-glonass-optional"> 3952 <h4>Use GLONASS - optional<a class="headerlink" href="#use-glonass-optional" title="Permalink to this headline">¶</a></h4> 3953 <p>You may tick the ‘Use GLONASS’ option in case you want to produce a GPS plus GLONASS combination and both systems are supported by the Broadcast Correction streams participating in the combination.</p> 3954 </div> 3955 </div> 3956 <div class="section" id="upload-corrections"> 3957 <span id="index-38"></span><h3>Upload Corrections<a class="headerlink" href="#upload-corrections" title="Permalink to this headline">¶</a></h3> 3958 <p>BNC can upload streams carrying orbit and clock corrections to Broadcast Ephemeris in radial, along-track and out-of-plane components if they are:</p> 3959 <ol class="arabic simple"> 3960 <li>either generated by BNC as a combination of several individual Broadcast Correction streams coming from an number of real-time Analysis Centers (ACs), see section ‘Combine Corrections’,</li> 3961 <li>or generated by BNC while the program receives an ASCII stream of precise satellite orbits and clocks via IP port from a connected real-time GNSS engine. Such a stream would be expected in a plain ASCII format and the associated ‘decoder’ string would have to be ‘RTNET’, see format description below.</li> 3962 </ol> 3963 <p>The procedure taken by BNC to generate the orbit and clock corrections to Broadcast Ephemeris and upload them to an Ntrip Broadcaster is as follow:</p> 3964 <ul class="simple"> 3806 The procedure taken by BNC to generate the orbit and clock corrections to Broadcast Ephemeris and upload them to an Ntrip Broadcaster is as follow: 3807 <ul> 3965 3808 <li>Continuously receive up-to-date Broadcast Ephemeris carrying approximate orbits and clocks for all satellites. Read new Broadcast Ephemeris immediately whenever they become available. This information may come via a stream of RTCM messages generated from another BNC instance.</li> 3966 3809 </ul> 3967 <p>Then, epoch by epoch:</p> 3968 <ul class="simple"> 3969 <li>Continuously receive the best available orbit and clock estimates for all satellites in XYZ Earth-Centered-Earth-Fixed IGS08 reference system. Receive them every epoch in plain ASCII format as provided by a real-time GNSS engine such as RTNET or generate them following a combination approach.</li> 3970 <li>Calculate XYZ coordinates from Broadcast Ephemeris orbits.</li> 3971 <li>Calculate differences dX,dY,dZ between Broadcast Ephemeris and IGS08 orbits.</li> 3972 <li>Transform these differences into radial, along-track and out-of-plane corrections to Broadcast Ephemeris orbits.</li> 3973 <li>Calculate corrections to Broadcast Ephemeris clocks as differences between Broadcast Ephemeris clocks and IGS08 clocks.</li> 3974 <li>Encode Broadcast Ephemeris orbit and clock corrections in RTCM Version 3 format.</li> 3975 <li>Upload Broadcast Correction stream to Ntrip Broadcaster.</li> 3976 </ul> 3977 <p>The orbit and clock corrections to Broadcast Ephemeris are usually referred to the latest set of broadcast messages, which are generally also received in real-time by a GNSS rover. However, the use of the latest broadcast message is delayed for a period of 60 seconds, measured from the time of complete reception of ephemeris and clock parameters, in order to accommodate rover applications to obtain the same set of broadcast orbital and clock parameters. This procedure is recommended in the RTCM SSR standard. Because the stream delivery process may put a significant load on the communication link between BNC and the real-time GNSS engine, it is recommended to run both programs on the same host. However, doing so is not compulsory.</p> 3978 <p>The usual handling of BNC when uploading a stream with Broadcast Corrections is that you first specify Broadcast Ephemeris and Broadcast Correction streams. You then specify an Ntrip Broadcaster for stream upload before you start the program.</p> 3979 <p id="index-39"><strong>‘RTNET’ Stream Format</strong></p> 3980 <p>When uploading an SSR stream generated according to 2. then BNC requires precise GNSS orbits and clocks in the IGS Earth-Centered-Earth-Fixed (ECEF) reference system and in a specific ASCII format named ‘RTNET’ because the data may come from a real-time engine such as RTNET. The sampling interval for data transmission should not exceed 15 sec. Note that otherwise tools involved in IP streaming such as Ntrip Broadcasters or Ntrip Clients may respond with a timeout.</p> 3981 <p>Below you find an example for the ‘RTNET’ ASCII format coming from a real-time GNSS engine. Each epoch begins with an asterisk character followed by the time as year, month, day of month, hour, minute and second. Subsequent records can provide</p> 3982 <div class="highlight-none"><div class="highlight"><pre>* 2015 6 11 15 10 40.000000 3983 </pre></div> 3984 </div> 3985 <p>Subsequent records can provide</p> 3986 <ul class="simple"> 3987 <li>Satellite specific parameters</li> 3988 </ul> 3989 <p>A set of parameters can be defined for each satellite as follows:</p> 3990 <div class="highlight-console"><div class="highlight"><pre><span class="go"><SatelliteID> <key> <numValues> <value1 value2 ...></span> 3991 <span class="go"> <key> <numValues> <value1 value2 ...> ...</span> 3992 </pre></div> 3993 </div> 3994 <p>The satellite specific keys and values currently specified for that in BNC are listed in <a class="reference internal" href="#tab-sat-spec-parameter-keys"><span class="std std-numref">Table 10</span></a>.</p> 3995 <table border="1" class="docutils" id="id55"> 3996 <span id="tab-sat-spec-parameter-keys"></span><caption><span class="caption-number">Table 10 </span><span class="caption-text">Keys for satellite specific parameters used in BNC.</span><a class="headerlink" href="#id55" title="Permalink to this table">¶</a></caption> 3997 <colgroup> 3998 <col width="4%" /> 3999 <col width="96%" /> 4000 </colgroup> 4001 <thead valign="bottom"> 4002 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 4003 <th class="head"><strong>Values</strong></th> 4004 </tr> 4005 </thead> 4006 <tbody valign="top"> 4007 <tr class="row-even"><td>APC</td> 4008 <td>Satellite Antenna Phase Center coordinates in meters</td> 4009 </tr> 4010 <tr class="row-odd"><td>Clk</td> 4011 <td>Satellite clock correction in meters, relativistic correction applied like in broadcast clocks</td> 4012 </tr> 4013 <tr class="row-even"><td>Vel</td> 4014 <td>Satellite velocity in meters per second</td> 4015 </tr> 4016 <tr class="row-odd"><td>CoM</td> 4017 <td>Satellite Center of Mass coordinates in meters</td> 4018 </tr> 4019 <tr class="row-even"><td>CodeBias</td> 4020 <td>Satellite Code Biases in meters with two characters for frequency and tracking mode per bias as defined in RINEX 3 and preceded by total number of biases</td> 4021 </tr> 4022 <tr class="row-odd"><td>YawAngle</td> 4023 <td>Satellite Yaw Angle in radian, restricted to be in [0, 2π] which shall be used for the computation of phase wind-up correction</td> 4024 </tr> 4025 <tr class="row-even"><td>YawRate</td> 4026 <td>Satellite Yaw Rate in radian per second which is the rate of Yaw Angle</td> 4027 </tr> 4028 <tr class="row-odd"><td>PhaseBias</td> 4029 <td>Satellite Phase Biases in meters with two characters for frequency and tracking mode per bias as defined in RINEX 3, preceded by total number of biases and followed by Signal Integer Indicator, Signals Wilde-Lane Integer Indicator as well as Signal Discontinuity Counter</td> 4030 </tr> 4031 </tbody> 3810 Then, epoch by epoch: 3811 <ul> 3812 <li>Continuously receive the best available orbit and clock estimates for all satellites in XYZ Earth-Centered-Earth-Fixed IGS08 reference system. Receive them every epoch in plain ASCII format as provided by a real-time GNSS engine such as RTNET or generate them following a combination approach. </li> 3813 <li>Calculate XYZ coordinates from Broadcast Ephemeris orbits. </li> 3814 <li>Calculate differences dX,dY,dZ between Broadcast Ephemeris and IGS08 orbits. </li> 3815 <li>Transform these differences into radial, along-track and out-of-plane corrections to Broadcast Ephemeris orbits. </li> 3816 <li>Calculate corrections to Broadcast Ephemeris clocks as differences between Broadcast Ephemeris clocks and IGS08 clocks. </li> 3817 <li>Encode Broadcast Ephemeris orbit and clock corrections in RTCM Version 3 format. </li> 3818 <li>Upload Broadcast Correction stream to Ntrip Broadcaster. </li> 3819 </ul> 3820 <p> 3821 The orbit and clock corrections to Broadcast Ephemeris are usually referred to the latest set of broadcast messages, which are generally also received in real-time by a GNSS rover. However, the use of the latest broadcast message is delayed for a period of 60 seconds, measured from the time of complete reception of ephemeris and clock parameters, in order to accommodate rover applications to obtain the same set of broadcast orbital and clock parameters. This procedure is recommended in the RTCM SSR standard. 3822 </p> 3823 </p> 3824 Because the stream delivery process may put a significant load on the communication link between BNC and the real-time GNSS engine, it is recommended to run both programs on the same host. However, doing so is not compulsory. 3825 </p> 3826 <p> 3827 The usual handling of BNC when uploading a stream with Broadcast Corrections is that you first specify Broadcast Ephemeris and Broadcast Correction streams. You then specify an Ntrip Broadcaster for stream upload before you start the program. 3828 </p> 3829 <p> 3830 <u>'RTNET' Stream Format</u><br> 3831 When uploading an SSR stream generated according to (b) then BNC requires precise GNSS orbits and clocks in the IGS Earth-Centered-Earth-Fixed (ECEF) reference system and in a specific ASCII format named 'RTNET' because the data may come from a real-time engine such as RTNET. The sampling interval for data transmission should not exceed 15 sec. Note that otherwise tools involved in IP streaming such as Ntrip Broadcasters or Ntrip Clients may respond with a timeout. 3832 </p> 3833 <p> 3834 Below you find an example for the 'RTNET' ASCII format coming from a real-time GNSS engine. Each epoch begins with an asterisk character followed by the time as year, month, day of month, hour, minute and second. Subsequent records can provide 3835 </p> 3836 <p> 3837 <ul> 3838 <li>Satellite specific parameters </li> 3839 </ul> 3840 </p> 3841 <p> 3842 A set of parameters can be defined for each satellite as follows: 3843 <pre> 3844 <SatelliteID> <key> <numValues> <value1 value2 ...> 3845 <key> <numValues> <value1 value2 ...> ... 3846 </pre> 3847 The following satellite specific keys and values are currently specified for that in BNC:<br><br> 3848 <table> 3849 <tr><td><i>Key </i></td><td><i>Values</i></td></tr> 3850 <tr><td>APC</td><td>Satellite Antenna Phase Center coordinates in meters</td></tr> 3851 <tr><td>Clk</td><td>Satellite clock correction in meters, relativistic correction applied like in broadcast clocks</td></tr> 3852 <tr><td>Vel</td><td>Satellite velocity in meters per second</td></tr> 3853 <tr><td>CoM</td><td>Satellite Center of Mass coordinates in meters</td></tr> 3854 <tr><td>CodeBias</td><td>Satellite Code Biases in meters with two characters for frequency and tracking mode per bias as defined in RINEX 3 and preceded by total number of biases</td></tr> 3855 <tr><td>YawAngle</td><td>Satellite Yaw Angle in radian, restricted to be in [0, 2π] which shall be used for the computation of phase wind-up correction</td></tr> 3856 <tr><td>YawRate</td><td>Satellite Yaw Rate in radian per second which is the rate of Yaw Angle</td></tr> 3857 <tr><td>PhaseBias</td><td>Satellite Phase Biases in meters with two characters for frequency and tracking mode per bias as defined in RINEX 3, preceded by total number of biases and followed by Signal Integer Indicator, Signals Wilde-Lane Integer Indicator as well as Signal Discontinuity Counter</td></tr> 4032 3858 </table> 4033 <ul class="simple"> 4034 <li>Non-satellite specific parameters</li> 4035 </ul> 4036 <p>The following syntax will be used:</p> 4037 <div class="highlight-console"><div class="highlight"><pre><span class="go"><key> <value1 value2 ...></span> 4038 </pre></div> 4039 </div> 4040 <p>The non-satellite specific keys and values currently specified in BNC are listed in <a class="reference internal" href="#tab-non-sat-spec-parameter-keys"><span class="std std-numref">Table 11</span></a>.</p> 4041 <table border="1" class="docutils" id="id56"> 4042 <span id="tab-non-sat-spec-parameter-keys"></span><caption><span class="caption-number">Table 11 </span><span class="caption-text">Keys for non-satellite specific parameters used in BNC.</span><a class="headerlink" href="#id56" title="Permalink to this table">¶</a></caption> 4043 <colgroup> 4044 <col width="11%" /> 4045 <col width="89%" /> 4046 </colgroup> 4047 <thead valign="bottom"> 4048 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 4049 <th class="head"><strong>Values</strong></th> 4050 </tr> 4051 </thead> 4052 <tbody valign="top"> 4053 <tr class="row-even"><td>IND</td> 4054 <td>Phase bias information followed by Dispersive Bias Consistency Indicator and MW Consistency Indicator</td> 4055 </tr> 4056 <tr class="row-odd"><td>VTEC</td> 4057 <td>Vertical TEC information followed by Update Interval and Number of Ionospheric Layers</td> 4058 </tr> 4059 </tbody> 3859 <p> 3860 <ul> 3861 <li> Non-satellite specific parameters 3862 </ul> 3863 </p> 3864 <p> 3865 The following syntax will be used: 3866 </p> 3867 <pre> 3868 <key> <value1 value2 ...> 3869 3870 </pre> 3871 <p> 3872 </ul> 3873 The following non-satellite specific keys and values are currently specified in BNC:<br><br> 3874 <table> 3875 <tr><td><i>Key </i></td><td><i>Values</i></td></tr> 3876 <tr><td>IND</td><td>Stands for phase bias information and is followed by Dispersive Bias Consistency Indicator and MW Consistency Indicator</td></tr> 3877 <tr><td>VTEC</td><td>Stands for Vertical TEC information and is followed by Update Interval and Number of Ionospheric Layers</td></tr> 4060 3878 </table> 4061 <p>If key VTEC is specified, a data set for each layer contains within its first line the Layers Number, followed by Maximum Degree, Maximum Order and Layer Height. After that, Cosine and Sinus Spherical Harmonic Coefficients will follow, one block each.</p> 4062 <p>Because each keyword is associated to a certain number of values, an ‘old’ BNC could be operated with an incoming ‘new’ RTNET stream containing so far unknown keys - they would just be skipped in BNC.</p> 4063 <p>Example for ‘RTNET’ stream content and format:</p> 4064 <div class="highlight-console"><div class="highlight"><pre><span class="go">* 2015 6 11 15 10 40.000000</span> 4065 <span class="go">VTEC 0 1 0 6 6 450000.0 20.4660 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5.3590 9.6580 0.0000 0.0000 0.0000 0.0000 0.0000 -6.3610 -0.1210 1.1050 0.0000 0.0000 0.0000 0.0000 -2.7140 -1.8200 -0.9920 -0.6430 0.0000 0.0000 0.0000 1.9140 -0.5180 0.2530 0.0870 -0.0110 0.0000 0.0000 2.2950 1.0510 -0.9540 0.6220 -0.0720 -0.0810 0.0000 -0.9760 0.7570 0.2320 -0.2520 0.1970 -0.0680 -0.0280 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2720 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1100 -1.0170 0.0000 0.0000 0.0000 0.0000 0.0000 -1.1500 0.5440 0.9890 0.0000 0.0000 0.0000 0.0000 -0.3770 -0.1990 0.2670 -0.0470 0.0000 0.0000 0.0000 0.6550 -0.0130 -0.2310 -0.4810 -0.3510 0.0000 0.0000 0.2360 -0.0710 0.0280 0.1900 -0.0810 0.0710</span> 4066 <span class="go">IND 0 1</span> 4067 <span class="go">G01 APC 3 -14442611.532 -13311059.070 -18020998.395 Clk 1 -1426.920500 Vel 3 2274.647600 -28.980300 -1787.861900 CoM 3 -14442612.572 -13311059.518 -18020999.539 CodeBias 6 1W -3.760000 1C -3.320000 2W -6.200000 2X -5.780000 1H -3.350000 5I -5.430000 YawAngle 1 -0.315600 YawRate 1 0.0 PhaseBias 3 1C 3.9473 1 2 4 2W 6.3143 1 2 4 5I 6.7895 1 2 4</span> 4068 <span class="go">G02 APC 3 -8859103.160 14801278.856 20456920.800 Clk 1 171219.083500 Vel 3 -2532.296700 -161.275800 -1042.884100 CoM 3 -8859103.418 14801279.287 20456921.395 CodeBias 6 1W 3.930000 1C 3.610000 2W 6.480000 2X 0.000000 1H 3.580000 5I 0.000000 YawAngle 1 -0.693500 YawRate 1 0.0 PhaseBias 2 1C -4.0902 1 2 4 2W -6.7045 1 2 4</span> 4069 <span class="go">G03 APC 3 -13788295.679 -22525098.353 2644811.508 Clk 1 104212.074300 Vel 3 102.263400 -429.953400 -3150.231900 CoM 3 -13788296.829 -22525099.534 2644811.518 CodeBias 6 1W -2.650000 1C -2.160000 2W -4.360000 2X -4.480000 1H -2.070000 5I -5.340000 YawAngle 1 -0.428800 YawRate 1 0.0 PhaseBias 3 1C 2.9024 1 2 2 2W 4.6124 1 2 2 5I 5.3694 1 2 2</span> 4070 <span class="go">...</span> 4071 <span class="go">R01 APC 3 -6783489.153 -23668850.753 6699094.457 Clk 1 - 45875.658100 Vel 3 -267.103000 -885.983700 -3403.253200 CoM 3 -6783489.307 -23668853.173 6699095.274 CodeBias 4 1P -2.496400 1C -2.490700 2P -4.126600 2C -3.156200</span> 4072 <span class="go">R02 APC 3 -11292959.022 -10047039.425 20577343.288 Clk 1 41215.750900 Vel 3 -476.369400 -2768.936600 -1620.000600 CoM 3 -11292959.672 -10047040.710 20577345.344 CodeBias 4 1P 0.211200 1C 0.391300 2P 0.349100 2C 0.406300</span> 4073 <span class="go">R03 APC 3 -9226469.614 9363128.850 21908853.313 Clk 1 13090.322800 Vel 3 -369.088600 -2964.934500 1111.041000 CoM 3 -9226470.226 9363129.442 21908855.791 CodeBias 4 1P 2.283800 1C 2.483800 2P 3.775300 2C 3.785500</span> 4074 <span class="go">...</span> 4075 <span class="go">E11 APC 3 2965877.898 17754418.441 23503540.946 Clk 1 33955.329000 Vel 3 -1923.398100 1361.709200 -784.555800 CoM 3 2965878.082 17754418.669 23503541.507 CodeBias 3 1B 1.382100 5Q 2.478400 7Q 2.503300</span> 4076 <span class="go">E12 APC 3 -14807433.144 21753389.581 13577231.476 Clk 1 -389652.211900 Vel 3 -1082.464300 825.868400 -2503.982200 CoM 3 -14807433.366 21753389.966 13577231.926 CodeBias 3 1B 0.386600 5Q 0.693300 7Q 0.534700</span> 4077 <span class="go">E19 APC 3 -15922225.351 8097517.292 23611910.403 Clk 1 -2551.650800 Vel 3 -183.377800 -2359.143700 684.105100 CoM 3 -15922225.569 8097517.329 23611910.995 CodeBias 3 1B -1.777000 5Q -3.186600 7Q -3.069100</span> 4078 <span class="go">...</span> 4079 <span class="go">EOE</span> 4080 </pre></div> 4081 </div> 4082 <p>Note that the end of an epoch in the incoming stream is indicated by an ASCII string ‘EOE’ (for End Of Epoch).</p> 4083 <p>When using clocks from Broadcast Ephemeris (with or without applied corrections) or clocks from SP3 files, it may be important to understand that they are not corrected for the conventional periodic relativistic effect. Chapter 10 of the IERS Conventions 2003 mentions that the conventional periodic relativistic correction to the satellite clock (to be added to the broadcast clock) is computed as</p> 4084 <div class="math"> 4085 \[dt = -2 (R * V) / c^2\]</div> 4086 <p>where <span class="math">\(R * V\)</span> is the scalar product of the satellite position and velocity and <span class="math">\(c\)</span> is the speed of light. This can also be found in the GPS Interface Specification, IS-GPS-200, Revision D, 7 March 2006.</p> 4087 <div class="section" id="add-delete-row-optional"> 4088 <h4>Add, Delete Row - optional<a class="headerlink" href="#add-delete-row-optional" title="Permalink to this headline">¶</a></h4> 4089 <p>Hit ‘Add Row’ button to add a row to the stream ‘Upload Table’ or hit the ‘Delete’ button to delete the highlighted row(s). Having an empty ‘Upload Table’ is default and means that you do not want BNC to upload orbit and clock correction streams to any Ntrip Broadcaster.</p> 4090 </div> 4091 <div class="section" id="host-port-mountpoint-password-optional"> 4092 <h4>Host, Port, Mountpoint, Password - optional<a class="headerlink" href="#host-port-mountpoint-password-optional" title="Permalink to this headline">¶</a></h4> 4093 <p>Specify the domain name or IP number of an Ntrip Broadcaster for uploading the stream. Furthermore, specify the caster’s listening IP port, an upload mountpoint and an upload password. Note that Ntrip Broadcasters are often configured to provide access through more than one port, usually ports 80 and 2101. If you experience communication problems on port 80, you should try to use the alternative port(s).</p> 4094 <p>BNC uploads a stream to the Ntrip Broadcaster by referring to a dedicated mountpoint that has been set by its operator. Specify the mountpoint based on the details you received for your stream from the operator. It is often a 4-character ID (capital letters) plus an integer number.</p> 4095 <p>The stream upload may be protected through an upload ‘Password’. Enter the password you received from the Ntrip Broadcaster operator along with the mountpoint(s).</p> 4096 <p>If ‘Host’, ‘Port’, ‘Mountpoint’ and ‘Password’ are set, the stream will be encoded in RTCM’s ‘State Space Representation’ (SSR) messages and uploaded to the specified broadcaster following the Ntrip Version 1 transport protocol.</p> 4097 </div> 4098 <div class="section" id="system-mandatory-if-host-is-set"> 4099 <span id="index-40"></span><h4>System - mandatory if ‘Host’ is set<a class="headerlink" href="#system-mandatory-if-host-is-set" title="Permalink to this headline">¶</a></h4> 4100 <p>BNC allows configuring several Broadcast Correction streams for upload so that they refer to different reference systems and different Ntrip Broadcasters. You may use this functionality for parallel support of a backup Ntrip Broadcaster or for simultaneous support of various regional reference systems. Available options for transforming orbit and clock corrections to specific target reference systems are:</p> 4101 <ul class="simple"> 3879 <br> 3880 If key VTEC is specified, a data set for each layer contains within its first line the Layers Number, followed by Maximum Degree, Maximum Order and Layer Height. After that, Cosine and Sinus Spherical Harmonic Coefficients will follow, one block each. 3881 </p> 3882 <p> 3883 Because each keyword is associated to a certain number of values, an 'old' BNC could be operated with an incoming 'new' RTNET stream containing so far unknown keys - they would just be skipped in BNC. 3884 </p> 3885 <p> 3886 Example for 'RTNET' stream content and format: 3887 </p> 3888 <p> 3889 <pre> 3890 * 2015 6 11 15 10 40.000000 3891 VTEC 0 1 0 6 6 450000.0 20.4660 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5.3590 9.6580 0.0000 0.0000 0.0000 0.0000 0.0000 -6.3610 -0.1210 1.1050 0.0000 0.0000 0.0000 0.0000 -2.7140 -1.8200 -0.9920 -0.6430 0.0000 0.0000 0.0000 1.9140 -0.5180 0.2530 0.0870 -0.0110 0.0000 0.0000 2.2950 1.0510 -0.9540 0.6220 -0.0720 -0.0810 0.0000 -0.9760 0.7570 0.2320 -0.2520 0.1970 -0.0680 -0.0280 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2720 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1100 -1.0170 0.0000 0.0000 0.0000 0.0000 0.0000 -1.1500 0.5440 0.9890 0.0000 0.0000 0.0000 0.0000 -0.3770 -0.1990 0.2670 -0.0470 0.0000 0.0000 0.0000 0.6550 -0.0130 -0.2310 -0.4810 -0.3510 0.0000 0.0000 0.2360 -0.0710 0.0280 0.1900 -0.0810 0.0710 3892 IND 0 1 3893 G01 APC 3 -14442611.532 -13311059.070 -18020998.395 Clk 1 -1426.920500 Vel 3 2274.647600 -28.980300 -1787.861900 CoM 3 -14442612.572 -13311059.518 -18020999.539 CodeBias 6 1W -3.760000 1C -3.320000 2W -6.200000 2X -5.780000 1H -3.350000 5I -5.430000 YawAngle 1 -0.315600 YawRate 1 0.0 PhaseBias 3 1C 3.9473 1 2 4 2W 6.3143 1 2 4 5I 6.7895 1 2 4 3894 G02 APC 3 -8859103.160 14801278.856 20456920.800 Clk 1 171219.083500 Vel 3 -2532.296700 -161.275800 -1042.884100 CoM 3 -8859103.418 14801279.287 20456921.395 CodeBias 6 1W 3.930000 1C 3.610000 2W 6.480000 2X 0.000000 1H 3.580000 5I 0.000000 YawAngle 1 -0.693500 YawRate 1 0.0 PhaseBias 2 1C -4.0902 1 2 4 2W -6.7045 1 2 4 3895 G03 APC 3 -13788295.679 -22525098.353 2644811.508 Clk 1 104212.074300 Vel 3 102.263400 -429.953400 -3150.231900 CoM 3 -13788296.829 -22525099.534 2644811.518 CodeBias 6 1W -2.650000 1C -2.160000 2W -4.360000 2X -4.480000 1H -2.070000 5I -5.340000 YawAngle 1 -0.428800 YawRate 1 0.0 PhaseBias 3 1C 2.9024 1 2 2 2W 4.6124 1 2 2 5I 5.3694 1 2 2 3896 .. 3897 R01 APC 3 -6783489.153 -23668850.753 6699094.457 Clk 1 - 45875.658100 Vel 3 -267.103000 -885.983700 -3403.253200 CoM 3 -6783489.307 -23668853.173 6699095.274 CodeBias 4 1P -2.496400 1C -2.490700 2P -4.126600 2C -3.156200 3898 R02 APC 3 -11292959.022 -10047039.425 20577343.288 Clk 1 41215.750900 Vel 3 -476.369400 -2768.936600 -1620.000600 CoM 3 -11292959.672 -10047040.710 20577345.344 CodeBias 4 1P 0.211200 1C 0.391300 2P 0.349100 2C 0.406300 3899 R03 APC 3 -9226469.614 9363128.850 21908853.313 Clk 1 13090.322800 Vel 3 -369.088600 -2964.934500 1111.041000 CoM 3 -9226470.226 9363129.442 21908855.791 CodeBias 4 1P 2.283800 1C 2.483800 2P 3.775300 2C 3.785500 3900 .. 3901 E11 APC 3 2965877.898 17754418.441 23503540.946 Clk 1 33955.329000 Vel 3 -1923.398100 1361.709200 -784.555800 CoM 3 2965878.082 17754418.669 23503541.507 CodeBias 3 1B 1.382100 5Q 2.478400 7Q 2.503300 3902 E12 APC 3 -14807433.144 21753389.581 13577231.476 Clk 1 -389652.211900 Vel 3 -1082.464300 825.868400 -2503.982200 CoM 3 -14807433.366 21753389.966 13577231.926 CodeBias 3 1B 0.386600 5Q 0.693300 7Q 0.534700 3903 E19 APC 3 -15922225.351 8097517.292 23611910.403 Clk 1 -2551.650800 Vel 3 -183.377800 -2359.143700 684.105100 CoM 3 -15922225.569 8097517.329 23611910.995 CodeBias 3 1B -1.777000 5Q -3.186600 7Q -3.069100 3904 .. 3905 EOE 3906 </pre> 3907 </p> 3908 <p> 3909 Note that the end of an epoch in the incoming stream is indicated by an ASCII string 'EOE' (for End Of Epoch). 3910 </p> 3911 <p> 3912 When using clocks from Broadcast Ephemeris (with or without applied corrections) or clocks from SP3 files, it may be important to understand that they are not corrected for the conventional periodic relativistic effect. Chapter 10 of the IERS Conventions 2003 mentions that the conventional periodic relativistic correction to the satellite clock (to be added to the broadcast clock) is computed as 3913 <pre> 3914 dt = -2 (R * V) / c<sup>2</sup> 3915 </pre> 3916 where R * V is the scalar product of the satellite position and velocity and c is the speed of light. This can also be found in the GPS Interface Specification, IS-GPS-200, Revision D, 7 March 2006. 3917 </p> 3918 3919 <p><h4>2.15.1 <a name="upadd">Add, Delete Row - optional</h4></p> 3920 <p>Hit 'Add Row' button to add a row to the stream 'Upload Table' or hit the 'Delete' button to delete the highlighted row(s). 3921 </p> 3922 <p> 3923 Having an empty 'Upload Table' is default and means that you do not want BNC to upload orbit and clock correction streams to any Ntrip Broadcaster. 3924 </p> 3925 3926 <p><h4>2.15.2 <a name="uphost">Host, Port, Mountpoint, Password - optional</h4></p> 3927 3928 <p>Specify the domain name or IP number of an Ntrip Broadcaster for uploading the stream. Furthermore, specify the caster's listening IP port, an upload mountpoint and an upload password. Note that Ntrip Broadcasters are often configured to provide access through more than one port, usually ports 80 and 2101. If you experience communication problems on port 80, you should try to use the alternative port(s). 3929 </p> 3930 <p> 3931 BNC uploads a stream to the Ntrip Broadcaster by referring to a dedicated mountpoint that has been set by its operator. Specify the mountpoint based on the details you received for your stream from the operator. It is often a 4-character ID (capital letters) plus an integer number.</p> 3932 <p>The stream upload may be protected through an upload 'Password'. Enter the password you received from the Ntrip Broadcaster operator along with the mountpoint(s).</p> 3933 <p> 3934 If 'Host', 'Port', 'Mountpoint' and 'Password' are set, the stream will be encoded in RTCM's 'State Space Representation' (SSR) messages and uploaded to the specified broadcaster following the Ntrip Version 1 transport protocol. 3935 </p> 3936 3937 <p><h4>2.15.3 <a name="upsystem">System - mandatory if 'Host' is set</h4></p> 3938 <p> 3939 BNC allows configuring several Broadcast Correction streams for upload so that they refer to different reference systems and different Ntrip Broadcasters. You may use this functionality for parallel support of a backup Ntrip Broadcaster or for simultaneous support of various regional reference systems. Available options for transforming orbit and clock corrections to specific target reference systems are 3940 <p> 3941 <ul> 4102 3942 <li>IGS08 which stands for the GNSS-based IGS realization of the International Terrestrial Reference Frame 2008 (ITRF2008), and</li> 4103 3943 <li>ETRF2000 which stands for the European Terrestrial Reference Frame 2000 adopted by EUREF, and</li> … … 4107 3947 <li>SIRGAS95 which stands for the Geodetic Datum adopted e.g. for Venezuela, and</li> 4108 3948 <li>DREF91 which stands for the Geodetic Datum adopted for Germany, and</li> 4109 <li>‘Custom’ which allows a transformation of Broadcast Corrections from the IGS08 system to any other system through specifying up to 14 Helmert Transformation Parameters.</li> 4110 </ul> 4111 <p>Because a mathematically strict transformation to a regional reference system is not possible on the BNC server side when a scale factor is involved, the program follows an approximate solution. While orbits are transformed in full accordance with given equations, a transformed clock is derived through applying correction term</p> 4112 <div class="math"> 4113 \[dC = (s - 1) / s * \rho / c\]</div> 4114 <p>where <span class="math">\(s\)</span> is the transformation scale, <span class="math">\(c\)</span> is the speed of light, and <span class="math">\(ρ\)</span> is the topocentric distance between an (approximate) center of the transformation’s validity area and the satellite.</p> 4115 <p>From a theoretical point of view, this kind of approximation leads to inconsistencies between orbits and clocks and is therefore not allowed <a class="reference internal" href="bnchelp.html#huisman2012a" id="id13">[11]</a>. However, it has been proved that resulting errors in Precise Point Positioning are on millimeter level for horizontal components and below one centimeter for height components. The Australian GDA94 transformation with its comparatively large scale parameter is an exception in this as discrepancies may reach up there to two centimeters.</p> 4116 <p>IGS08: As the orbits and clocks coming from real-time GNSS engine are expected to be in the IGS08 system, no transformation is carried out if this option is selected.</p> 4117 <p>ETRF2000: The formulas for the transformation ‘ITRF2008->ETRF2000’ are taken from ‘Claude Boucher and Zuheir Altamimi 2008: Specifications for reference frame fixing in the analysis of EUREF GPS campaign’, see <a class="reference external" href="http://etrs89.ensg.ign.fr/memo-V8.pdf">http://etrs89.ensg.ign.fr/memo-V8.pdf</a>. The following 14 Helmert Transformation Parameters were introduced:</p> 4118 <div class="highlight-console"><div class="highlight"><pre><span class="go">Translation in X at epoch To: 0.0521 m</span> 4119 <span class="go">Translation in Y at epoch To: 0.0493 m</span> 4120 <span class="go">Translation in Z at epoch To: -0.0585 m</span> 4121 <span class="go">Translation rate in X: 0.0001 m/y</span> 4122 <span class="go">Translation rate in Y: 0.0001 m/y</span> 4123 <span class="go">Translation rate in Z: -0.0018 m/y</span> 4124 <span class="go">Rotation in X at epoch To: 0.891 mas</span> 4125 <span class="go">Rotation in Y at epoch To: 5.390 mas</span> 4126 <span class="go">Rotation in Z at epoch To: -8.712 mas</span> 4127 <span class="go">Rotation rate in X: 0.081 mas/y</span> 4128 <span class="go">Rotation rate in Y: 0.490 mas/y</span> 4129 <span class="go">Rotation rate in Z: -0.792 mas/y</span> 4130 <span class="go">Scale at epoch To : 0.00000000134</span> 4131 <span class="go">Scale rate: 0.00000000008 /y</span> 4132 <span class="go">To: 2000.0</span> 4133 </pre></div> 4134 </div> 4135 <p>NAD83: Formulas for the transformation ‘ITRF2008->NAD83’ are taken from <a class="reference internal" href="bnchelp.html#pearson2013a" id="id14">[12]</a>:</p> 4136 <div class="highlight-console"><div class="highlight"><pre><span class="go">Translation in X at epoch To: 0.99343 m</span> 4137 <span class="go">Translation in Y at epoch To: -1.90331 m</span> 4138 <span class="go">Translation in Z at epoch To: -0.52655 m</span> 4139 <span class="go">Translation rate in X: 0.00079 m/y</span> 4140 <span class="go">Translation rate in Y: -0.00060 m/y</span> 4141 <span class="go">Translation rate in Z: -0.00134 m/y</span> 4142 <span class="go">Rotation in X at epoch To: -25.91467 mas</span> 4143 <span class="go">Rotation in Y at epoch To: -9.42645 mas</span> 4144 <span class="go">Rotation in Z at epoch To: -11.59935 mas</span> 4145 <span class="go">Rotation rate in X: -0.06667 mas/y</span> 4146 <span class="go">Rotation rate in Y: 0.75744 mas/y</span> 4147 <span class="go">Rotation rate in Z: 0.05133 mas/y</span> 4148 <span class="go">Scale at epoch To : 0.00000000171504</span> 4149 <span class="go">Scale rate: -0.00000000010201 /y</span> 4150 <span class="go">To: 1997.0</span> 4151 </pre></div> 4152 </div> 4153 <p>GDA94: The formulas for the transformation ‘ITRF2008->GDA94’ are taken from <a class="reference internal" href="bnchelp.html#dawson2010a" id="id15">[13]</a>:</p> 4154 <div class="highlight-console"><div class="highlight"><pre><span class="go">Translation in X at epoch To: -0.08468 m</span> 4155 <span class="go">Translation in Y at epoch To: -0.01942 m</span> 4156 <span class="go">Translation in Z at epoch To: 0.03201 m</span> 4157 <span class="go">Translation rate in X: 0.00142 m/y</span> 4158 <span class="go">Translation rate in Y: 0.00134 m/y</span> 4159 <span class="go">Translation rate in Z: 0.00090 m/y</span> 4160 <span class="go">Rotation in X at epoch To: 0.4254 mas</span> 4161 <span class="go">Rotation in Y at epoch To: -2.2578 mas</span> 4162 <span class="go">Rotation in Z at epoch To: -2.4015 mas</span> 4163 <span class="go">Rotation rate in X: -1.5461 mas/y</span> 4164 <span class="go">Rotation rate in Y: -1.1820 mas/y</span> 4165 <span class="go">Rotation rate in Z: -1.1551 mas/y</span> 4166 <span class="go">Scale at epoch To : 0.000000009710</span> 4167 <span class="go">Scale rate: 0.000000000109 /y</span> 4168 <span class="go">To: 1994.0</span> 4169 </pre></div> 4170 </div> 4171 <p>SIRGAS2000: The formulas for the transformation ‘ITRF2008->SIRGAS2000’ were provided by <a class="reference internal" href="bnchelp.html#ibge-dgc2016a" id="id16">[14]</a>:</p> 4172 <div class="highlight-console"><div class="highlight"><pre><span class="go">Translation in X at epoch To: 0.0020 m</span> 4173 <span class="go">Translation in Y at epoch To: 0.0041 m</span> 4174 <span class="go">Translation in Z at epoch To: 0.0039 m</span> 4175 <span class="go">Translation rate in X: 0.0000 m/y</span> 4176 <span class="go">Translation rate in Y: 0.0000 m/y</span> 4177 <span class="go">Translation rate in Z: 0.0000 m/y</span> 4178 <span class="go">Rotation in X at epoch To: 0.170 mas</span> 4179 <span class="go">Rotation in Y at epoch To: -0.030 mas</span> 4180 <span class="go">Rotation in Z at epoch To: 0.070 mas</span> 4181 <span class="go">Rotation rate in X: 0.000 mas/y</span> 4182 <span class="go">Rotation rate in Y: 0.000 mas/y</span> 4183 <span class="go">Rotation rate in Z: 0.000 mas/y</span> 4184 <span class="go">Scale at epoch To : -0.000000001000</span> 4185 <span class="go">Scale rate: 0.000000000000 /y</span> 4186 <span class="go">To: 0000.0</span> 4187 </pre></div> 4188 </div> 4189 <p>SIRGAS95: The formulas for the transformation ‘ITRF2005->SIRGAS95’ were provided by <a class="reference internal" href="bnchelp.html#acuha2016a" id="id17">[15]</a> , parameters based on values from <a class="reference internal" href="bnchelp.html#sirgas2009a" id="id18">[16]</a>, Table 4.1:</p> 4190 <div class="highlight-console"><div class="highlight"><pre><span class="go">Translation in X at epoch To: 0.0077 m</span> 4191 <span class="go">Translation in Y at epoch To: 0.0058 m</span> 4192 <span class="go">Translation in Z at epoch To: -0.0138 m</span> 4193 <span class="go">Translation rate in X: 0.0000 m/y</span> 4194 <span class="go">Translation rate in Y: 0.0000 m/y</span> 4195 <span class="go">Translation rate in Z: 0.0000 m/y</span> 4196 <span class="go">Rotation in X at epoch To: 0.000 mas</span> 4197 <span class="go">Rotation in Y at epoch To: 0.000 mas</span> 4198 <span class="go">Rotation in Z at epoch To: -0.003 mas</span> 4199 <span class="go">Rotation rate in X: 0.000 mas/y</span> 4200 <span class="go">Rotation rate in Y: 0.000 mas/y</span> 4201 <span class="go">Rotation rate in Z: 0.000 mas/y</span> 4202 <span class="go">Scale at epoch To : 0.00000000157</span> 4203 <span class="go">Scale rate: -0.000000000000 /y</span> 4204 <span class="go">To: 1995.4</span> 4205 </pre></div> 4206 </div> 4207 <p>DREF91 14 Helmert transformation parameters have been introduced <a class="reference internal" href="bnchelp.html#franke2008a" id="id19">[17]</a>:</p> 4208 <div class="highlight-console"><div class="highlight"><pre><span class="go">Translation in X at epoch To: -0.0118 m</span> 4209 <span class="go">Translation in Y at epoch To: 0.1432 m</span> 4210 <span class="go">Translation in Z at epoch To: -0.1117 m</span> 4211 <span class="go">Translation rate in X: 0.0001 m/y</span> 4212 <span class="go">Translation rate in Y: 0.0001 m/y</span> 4213 <span class="go">Translation rate in Z: -0.0018 m/y</span> 4214 <span class="go">Rotation in X at epoch To: 3.291 mas</span> 4215 <span class="go">Rotation in Y at epoch To: 6.190 mas</span> 4216 <span class="go">Rotation in Z at epoch To: -11.012 mas</span> 4217 <span class="go">Rotation rate in X: 0.081 mas/y</span> 4218 <span class="go">Rotation rate in Y: 0.490 mas/y</span> 4219 <span class="go">Rotation rate in Z: -0.792 mas/y</span> 4220 <span class="go">Scale at epoch To : 0.00000001224</span> 4221 <span class="go">Scale rate: 0.00000000008 /y</span> 4222 <span class="go">To: 2000.0</span> 4223 </pre></div> 4224 </div> 4225 <p>Custom: Feel free to specify your own 14 Helmert Transformation parameters for transformations from IGS08/ITRF2008 into your own target system (see <a class="reference internal" href="#fig-30"><span class="std std-numref">Fig. 32</span></a>).</p> 4226 <div class="figure" id="id57"> 4227 <span id="fig-30"></span><a class="reference internal image-reference" href="_images/fig_30.png"><img alt="_images/fig_30.png" src="_images/fig_30.png" style="width: 355.2px; height: 184.79999999999998px;" /></a> 4228 <p class="caption"><span class="caption-number">Fig. 32 </span><span class="caption-text">Setting BNC’s Custom Transformation Parameters window, example for ‘ITRF2008->GDA94’</span></p> 4229 </div> 4230 </div> 4231 <div class="section" id="center-of-mass-optional"> 4232 <h4>Center of Mass - optional<a class="headerlink" href="#center-of-mass-optional" title="Permalink to this headline">¶</a></h4> 4233 <p>BNC allows to either refer Broadcast Corrections to the satellite’s Center of Mass (CoM) or to the satellite’s Antenna Phase Center (APC). By default, corrections refer to APC. Tick ‘Center of Mass’ to refer uploaded corrections to CoM.</p> 4234 </div> 4235 <div class="section" id="sp3-file-optional"> 4236 <h4>SP3 File - optional<a class="headerlink" href="#sp3-file-optional" title="Permalink to this headline">¶</a></h4> 4237 <p>Specify a path for saving the generated orbit corrections as SP3 orbit files. If the specified directory does not exist, BNC will not create SP3 orbit files. The following is a path example for a Linux system:</p> 4238 <div class="highlight-console"><div class="highlight"><pre><span class="go">/home/user/BNC${GPSWD}.sp3</span> 4239 </pre></div> 4240 </div> 4241 <p>Note that ‘${GPSWD}’ produces the GPS Week and Day number in the filename. Default is an empty option field, meaning that you do not want BNC to save the uploaded stream content in daily SP3 files.</p> 4242 <p>As a SP3 file content should be referred to the satellites’ Center of Mass (CoM) while Broadcast Corrections are referred to the satellites’ APC, an offset has to be applied which is available from an IGS ANTEX file (see option ‘ANTEX File’ below). Hence, you should specify the ‘ANTEX File’ path there if you want to save the stream content in SP3 format. If you do not specify an ‘ANTEX File’ path, the SP3 file content will be referred to the satellites APCs.</p> 4243 <p>The filenames for the daily SP3 files follow the convention for SP3 filenames. The first three characters of each filename are set to ‘BNC’. Note that clocks in the SP3 orbit files are not corrected for the conventional periodic relativistic effect.</p> 4244 <p>In case the ‘Combine Corrections’ table contains only one Broadcast Correction stream, BNC will merge that stream with Broadcast Ephemeris to save results in files specified here through SP3 and/or Clock RINEX file path. In such a case you have to define only the SP3 and Clock RINEX file path and no further option in the ‘Upload Corrections’ table.</p> 4245 <p>Note that BNC outputs a complete list of SP3 ‘Epoch Header Records’, even if no ‘Position and Clock Records’ are available for certain epochs because of stream outages. Note further that the ‘Number of Epochs’ in the first SP3 header record may not be correct because that number is not available when the file is created. Depending on your processing software (e.g. Bernese GNSS Software, BSW) it could therefore be necessary to correct an incorrect ‘Number of Epochs’ in the file before you use it in post processing.</p> 4246 </div> 4247 <div class="section" id="rnx-file-optional"> 4248 <h4>RNX File - optional<a class="headerlink" href="#rnx-file-optional" title="Permalink to this headline">¶</a></h4> 4249 <p>The clock corrections generated by BNC for upload can be logged in Clock RINEX format. The file naming follows the RINEX convention.</p> 4250 <p>Specify a path for saving the generated clock corrections as Clock RINEX files. If the specified directory does not exist, BNC will not create Clock RINEX files. The following is a path example for a Linux system:</p> 4251 <div class="highlight-console"><div class="highlight"><pre><span class="go">/home/user/BNC${GPSWD}.clk</span> 4252 </pre></div> 4253 </div> 4254 <p>Note that ‘${GPSWD}’ produces the GPS Week and Day number in the filename. Note further that clocks in the Clock RINEX files are not corrected for the conventional periodic relativistic effect.</p> 4255 </div> 4256 <div class="section" id="pid-sid-iod-optional"> 4257 <h4>PID, SID, IOD - optional<a class="headerlink" href="#pid-sid-iod-optional" title="Permalink to this headline">¶</a></h4> 4258 <p>When applying Broadcast Ephemeris corrections in a PPP algorithm or in a combination of several correction streams, it is important for the client software to receive information on the continuity of discontinuity of the stream contents. Here you can specify three ID’s to describe the contents of your Broadcast Ephemeris correction stream when it is uploaded.</p> 4259 <ul class="simple"> 4260 <li>A ‘SSR Provider ID’ is issued by RTCM SC-104 on request to identify a SSR service (see e.g. url{<a class="reference external" href="http://software.rtcm-ntrip.org/wiki/SSRProvider">http://software.rtcm-ntrip.org/wiki/SSRProvider</a>}). This ID is globally unique. Values vary in the range of 0-65535. Values in the range of 0-255 are reserved for experimental services.</li> 4261 <li>A provider may generate several Broadcast Ephemeris correction streams with different contents. The ‘SSR Solution ID’ indicates different SSR services of one SSR provider. Values vary in the range of 0-15.</li> 4262 <li>A change of the ‘IOD SSR’ is used to indicate a change in the SSR generating configuration which may be relevant for the rover. Values vary in the range of 0-15.</li> 4263 </ul> 4264 </div> 4265 <div class="section" id="interval-mandatory-if-upload-table-entries-specified"> 4266 <h4>Interval - mandatory if ‘Upload Table’ entries specified<a class="headerlink" href="#interval-mandatory-if-upload-table-entries-specified" title="Permalink to this headline">¶</a></h4> 4267 <p>Select the length of Clock RINEX files and SP3 Orbit files. The default value is 1 day.</p> 4268 </div> 4269 <div class="section" id="sampling"> 4270 <h4>Sampling<a class="headerlink" href="#sampling" title="Permalink to this headline">¶</a></h4> 4271 <p>BNC requires an orbit corrections sampling interval for the stream to be uploaded and sampling intervals for SP3 and Clock RINEX files. The outgoing stream’s clock correction sampling interval follows that of incoming corrections and is therefore nothing to be specified here.</p> 4272 <div class="section" id="orbits-orb-mandatory-if-upload-table-entries-specified"> 4273 <h5>Orbits (Orb) - mandatory if ‘Upload Table’ entries specified<a class="headerlink" href="#orbits-orb-mandatory-if-upload-table-entries-specified" title="Permalink to this headline">¶</a></h5> 4274 <p>Select the stream’s orbit correction sampling interval in seconds. A value of 60 sec may be appropriate. A value of zero ‘0’ tells BNC to upload all orbit correction samples coming in from the real-time GNSS engine along with the clock correction samples to produce combined orbit and clock corrections to Broadcast Ephemeris (1060 for GPS, 1066 for GLONASS).</p> 4275 <p>Configuration examples:</p> 4276 <p>Let us suppose a real-time network engine supporting BNC every 5 sec with GPS Broadcast Corrections for orbits, clocks and code biases in ‘RTNET’ stream format:</p> 4277 <p>With ‘Sampling Orb’ set to ‘0’ BNC will produce</p> 4278 <ul class="simple"> 3949 <li>'Custom' which allows a transformation of Broadcast Corrections from the IGS08 system to any other system through specifying up to 14 Helmert Transformation Parameters.</li> 3950 </ul> 3951 </p> 3952 3953 <p> 3954 Because a mathematically strict transformation to a regional reference system is not possible on the BNC server side when a scale factor is involved, the program follows an approximate solution. While <u>orbits</u> are transformed in full accordance with given equations, a transformed <u>clock</u> is derived through applying correction term 3955 </p> 3956 <pre> 3957 dC = (s - 1) / s * ρ / c 3958 </pre> 3959 <p> 3960 where s is the transformation scale, c is the speed of light, and ρ are the topocentric distance between an (approximate) center of the transformation's validity area and the satellite. 3961 </p> 3962 <p> 3963 From a theoretical point of view, this kind of approximation leads to inconsistencies between orbits and clocks and is therefore not allowed (Huisman et al. 2012). However, it has been proved that resulting errors in Precise Point Positioning are on millimeter level for horizontal components and below one centimeter for height components. The Australian GDA94 transformation with its comparatively large scale parameter is an exception in this as discrepancies may reach up there to two centimeters. 3964 </p> 3965 3966 <p> 3967 <u>IGS08:</u> As the orbits and clocks coming from real-time GNSS engine are expected to be in the IGS08 system, no transformation is carried out if this option is selected. 3968 </p> 3969 3970 <p> 3971 <u>ETRF2000:</u> The formulas for the transformation 'ITRF2008->ETRF2000' are taken from 'Claude Boucher and Zuheir Altamimi 2008: Specifications for reference frame fixing in the analysis of EUREF GPS campaign', see <u>http://etrs89.ensg.ign.fr/memo-V8.pdf</u>. The following 14 Helmert Transformation Parameters were introduced: 3972 </p> 3973 <p> 3974 <pre> 3975 Translation in X at epoch To: 0.0521 m 3976 Translation in Y at epoch To: 0.0493 m 3977 Translation in Z at epoch To: -0.0585 m 3978 Translation rate in X: 0.0001 m/y 3979 Translation rate in Y: 0.0001 m/y 3980 Translation rate in Z: -0.0018 m/y 3981 Rotation in X at epoch To: 0.891 mas 3982 Rotation in Y at epoch To: 5.390 mas 3983 Rotation in Z at epoch To: -8.712 mas 3984 Rotation rate in X: 0.081 mas/y 3985 Rotation rate in Y: 0.490 mas/y 3986 Rotation rate in Z: -0.792 mas/y 3987 Scale at epoch To : 0.00000000134 3988 Scale rate: 0.00000000008 /y 3989 To: 2000.0 3990 </pre> 3991 </p> 3992 3993 <p> 3994 <u>NAD83:</u> Formulas for the transformation 'ITRF2008->NAD83' are taken from 'Chris Pearson, Richard Snay 2013: Introducing HTDP 3.1 to transform coordinates across time and spatial reference frames', GPS Solutions, January 2013, Volume 17, Issue 1, pp 1-15. 3995 </p> 3996 <p> 3997 <pre> 3998 Translation in X at epoch To: 0.99343 m 3999 Translation in Y at epoch To: -1.90331 m 4000 Translation in Z at epoch To: -0.52655 m 4001 Translation rate in X: 0.00079 m/y 4002 Translation rate in Y: -0.00060 m/y 4003 Translation rate in Z: -0.00134 m/y 4004 Rotation in X at epoch To: -25.91467 mas 4005 Rotation in Y at epoch To: -9.42645 mas 4006 Rotation in Z at epoch To: -11.59935 mas 4007 Rotation rate in X: -0.06667 mas/y 4008 Rotation rate in Y: 0.75744 mas/y 4009 Rotation rate in Z: 0.05133 mas/y 4010 Scale at epoch To : 0.00000000171504 4011 Scale rate: -0.00000000010201 /y 4012 To: 1997.0 4013 </pre> 4014 </p> 4015 4016 <p> 4017 <u>GDA94:</u> The formulas for the transformation 'ITRF2008->GDA94' are taken from 'John Dawson, Alex Woods 2010: ITRF to GDA94 coordinate transformations', Journal of Applied Geodesy, 4 (2010), 189-199, de Gruyter 2010. DOI 10.1515/JAG.2010.019'. 4018 </p> 4019 <p> 4020 <pre> 4021 Translation in X at epoch To: -0.08468 m 4022 Translation in Y at epoch To: -0.01942 m 4023 Translation in Z at epoch To: 0.03201 m 4024 Translation rate in X: 0.00142 m/y 4025 Translation rate in Y: 0.00134 m/y 4026 Translation rate in Z: 0.00090 m/y 4027 Rotation in X at epoch To: 0.4254 mas 4028 Rotation in Y at epoch To: -2.2578 mas 4029 Rotation in Z at epoch To: -2.4015 mas 4030 Rotation rate in X: -1.5461 mas/y 4031 Rotation rate in Y: -1.1820 mas/y 4032 Rotation rate in Z: -1.1551 mas/y 4033 Scale at epoch To : 0.000000009710 4034 Scale rate: 0.000000000109 /y 4035 To: 1994.0 4036 </pre> 4037 </p> 4038 4039 <p> 4040 <u>SIRGAS2000:</u> The formulas for the transformation 'ITRF2008->SIRGAS2000' were provided via personal communication from CGED-Coordenacao de Geodesia, IBGE/DGC - Diretoria de Geociencias, Brazil.</u>. 4041 </p> 4042 <p> 4043 <pre> 4044 Translation in X at epoch To: 0.0020 m 4045 Translation in Y at epoch To: 0.0041 m 4046 Translation in Z at epoch To: 0.0039 m 4047 Translation rate in X: 0.0000 m/y 4048 Translation rate in Y: 0.0000 m/y 4049 Translation rate in Z: 0.0000 m/y 4050 Rotation in X at epoch To: 0.170 mas 4051 Rotation in Y at epoch To: -0.030 mas 4052 Rotation in Z at epoch To: 0.070 mas 4053 Rotation rate in X: 0.000 mas/y 4054 Rotation rate in Y: 0.000 mas/y 4055 Rotation rate in Z: 0.000 mas/y 4056 Scale at epoch To : -0.000000001000 4057 Scale rate: 0.000000000000 /y 4058 To: 0000.0 4059 </pre> 4060 </p> 4061 4062 <p> 4063 <u>SIRGAS95:</u> The formulas for the transformation 'ITRF2005->SIRGAS95' were provided via personal communication from Gustavo Acuha, Laboratorio de Geodesia Fisica y Satelital at Zulia University (LGFS-LUZ), parameters based on values from Table 4.1 of "Terrestrial Reference Frames (April 10, 2009), Chapter 4" in http://tai.bipm.org/iers/convupdt/convupdt_c4.html.</u>. 4064 </p> 4065 <p> 4066 <pre> 4067 Translation in X at epoch To: 0.0077 m 4068 Translation in Y at epoch To: 0.0058 m 4069 Translation in Z at epoch To: -0.0138 m 4070 Translation rate in X: 0.0000 m/y 4071 Translation rate in Y: 0.0000 m/y 4072 Translation rate in Z: 0.0000 m/y 4073 Rotation in X at epoch To: 0.000 mas 4074 Rotation in Y at epoch To: 0.000 mas 4075 Rotation in Z at epoch To: -0.003 mas 4076 Rotation rate in X: 0.000 mas/y 4077 Rotation rate in Y: 0.000 mas/y 4078 Rotation rate in Z: 0.000 mas/y 4079 Scale at epoch To : 0.00000000157 4080 Scale rate: -0.000000000000 /y 4081 To: 1995.4 4082 </pre> 4083 </p> 4084 4085 <p> 4086 <u>DREF91:</u> 'Referenzkoordinaten fuer SAPOS, Empfehlungen der Projektgruppe SAPOS-Koordinatenmonitoring 2008', Personal communication with Peter Franke, BKG, Germany. The following 14 Helmert Transformation Parameters were introduced: 4087 </p> 4088 <p> 4089 <pre> 4090 Translation in X at epoch To: -0.0118 m 4091 Translation in Y at epoch To: 0.1432 m 4092 Translation in Z at epoch To: -0.1117 m 4093 Translation rate in X: 0.0001 m/y 4094 Translation rate in Y: 0.0001 m/y 4095 Translation rate in Z: -0.0018 m/y 4096 Rotation in X at epoch To: 3.291 mas 4097 Rotation in Y at epoch To: 6.190 mas 4098 Rotation in Z at epoch To: -11.012 mas 4099 Rotation rate in X: 0.081 mas/y 4100 Rotation rate in Y: 0.490 mas/y 4101 Rotation rate in Z: -0.792 mas/y 4102 Scale at epoch To : 0.00000001224 4103 Scale rate: 0.00000000008 /y 4104 To: 2000.0 4105 </pre> 4106 </p> 4107 4108 <p> 4109 <u>Custom:</u> Feel free to specify your own 14 Helmert Transformation parameters for transformations from IGS08/ITRF2008 into your own target system. 4110 </p> 4111 4112 <p><img src="IMG/screenshot38.png"/></p> 4113 <p><u>Figure 30:</u> Setting BNC's Custom Transformation Parameters window, example for 'ITRF2008->GDA94'</p> 4114 4115 <p><h4>2.15.4 <a name="upcom">Center of Mass - optional</h4></p> 4116 <p> 4117 BNC allows to either refer Broadcast Corrections to the satellite's Center of Mass (CoM) or to the satellite's Antenna Phase Center (APC). By default, corrections refer to APC. Tick 'Center of Mass' to refer uploaded corrections to CoM. 4118 </p> 4119 4120 <p><h4>2.15.5 <a name="upsp3">SP3 File - optional</h4></p> 4121 <p>Specify a path for saving the generated orbit corrections as SP3 orbit files. If the specified directory does not exist, BNC will not create SP3 orbit files. The following is a path example for a Linux system: 4122 4123 <pre> 4124 /home/user/BNC${GPSWD}.sp3 4125 </pre> 4126 4127 Note that '${GPSWD}' produces the GPS Week and Day number in the filename.</p> 4128 <p> 4129 Default is an empty option field, meaning that you do not want BNC to save the uploaded stream content in daily SP3 files. 4130 </p> 4131 <p> 4132 As a SP3 file content should be referred to the satellites' Center of Mass (CoM) while Broadcast Corrections are referred to the satellites' APC, an offset has to be applied which is available from an IGS ANTEX file (see option 'ANTEX File' below). Hence, you should specify the 'ANTEX File' path there if you want to save the stream content in SP3 format. If you do not specify an 'ANTEX File' path, the SP3 file content will be referred to the satellites APCs. 4133 </p> 4134 <p> 4135 The filenames for the daily SP3 files follow the convention for SP3 filenames. The first three characters of each filename are set to 'BNC'. Note that clocks in the SP3 orbit files are not corrected for the conventional periodic relativistic effect. 4136 </p> 4137 <p> 4138 In case the 'Combine Corrections' table contains only one Broadcast Correction stream, BNC will merge that stream with Broadcast Ephemeris to save results in files specified here through SP3 and/or Clock RINEX file path. In such a case you have to define only the SP3 and Clock RINEX file path and no further option in the 'Upload Corrections' table. 4139 </p> 4140 4141 <p> 4142 Note that BNC outputs a complete list of SP3 'Epoch Header Records', even if no 'Position and Clock Records' are available for certain epochs because of stream outages. Note further that the 'Number of Epochs' in the first SP3 header record may not be correct because that number is not available when the file is created. Depending on your processing software (e.g. Bernese GNSS Software, BSW) it could therefore be necessary to correct an incorrect 'Number of Epochs' in the file before you use it in post processing. 4143 </p> 4144 4145 <p><h4>2.15.6 <a name="uprinex">RNX File - optional</h4></p> 4146 <p> 4147 The clock corrections generated by BNC for upload can be logged in Clock RINEX format. The file naming follows the RINEX convention. 4148 </p> 4149 <p> 4150 Specify a path for saving the generated clock corrections as Clock RINEX files. If the specified directory does not exist, BNC will not create Clock RINEX files. The following is a path example for a Linux system: 4151 <pre> 4152 /home/user/BNC${GPSWD}.clk 4153 </pre> 4154 Note that '${GPSWD}' produces the GPS Week and Day number in the filename. 4155 </p> 4156 <p> 4157 Note further that clocks in the Clock RINEX files are not corrected for the conventional periodic relativistic effect. 4158 </p> 4159 4160 <p><h4>2.15.7 <a name="pidsidiod">PID, SID, IOD - optional</h4></p> 4161 <p> 4162 When applying Broadcast Ephemeris corrections in a PPP algorithm or in a combination of several correction streams, it is important for the client software to receive information on the continuity of discontinuity of the stream contents. Here you can specify three ID's to describe the contents of your Broadcast Ephemeris correction stream when it is uploaded. 4163 <ul> 4164 <li>A 'SSR Provider ID' is issued by RTCM SC-104 on request to identify a SSR service (see e.g. <u>http://software.rtcm-ntrip.org/wiki/SSRProvider</u>). This ID is globally unique. Values vary in the range of 0-65535. Values in the range of 0-255 are reserved for experimental services.</li> 4165 <li>A provider may generate several Broadcast Ephemeris correction streams with different contents. The 'SSR Solution ID' indicates different SSR services of one SSR provider. Values vary in the range of 0-15.</li> 4166 <li>A change of the 'IOD SSR' is used to indicate a change in the SSR generating configuration which may be relevant for the rover. Values vary in the range of 0-15.</li> 4167 </ul> 4168 </p> 4169 4170 <p><h4>2.15.8 <a name="upinter">Interval - mandatory if 'Upload Table' entries specified</h4></p> 4171 <p> 4172 Select the length of Clock RINEX files and SP3 Orbit files. The default value is 1 day. 4173 </p> 4174 4175 <p><h4>2.15.9 <a name="upclksmpl">Sampling</h4></p> 4176 <p>BNC requires an orbit corrections sampling interval for the stream to be uploaded and sampling intervals for SP3 and Clock RINEX files. The outgoing stream's clock correction sampling interval follows that of incoming corrections and is therefore nothing to be specified here.</p> 4177 4178 <p><h4>2.15.9.1 <a name="upclkorb">Orbits (Orb) - mandatory if 'Upload Table' entries specified</h4></p> 4179 <p>Select the stream's orbit correction sampling interval in seconds. A value of 60 sec may be appropriate.</p> 4180 <p> A value of zero '0' tells BNC to upload all orbit correction samples coming in from the real-time GNSS engine along with the clock correction samples to produce combined orbit and clock corrections to Broadcast Ephemeris (1060 for GPS, 1066 for GLONASS). 4181 </p> 4182 <p> 4183 Configuration examples: 4184 </p> 4185 Let us suppose a real-time network engine supporting BNC every <u>5 sec</u> with GPS Broadcast Corrections for orbits, clocks and code biases in 'RTNET' stream format. 4186 <ul> 4187 <li>With 'Sampling Orb' set to '0' BNC will produce</li> 4188 <ul> 4279 4189 <li>Every 5 sec a 1059 message for GPS code biases,</li> 4280 4190 <li>Every 5 sec a 1060 message for combined orbit and clock corrections to GPS Broadcast Ephemeris.</li> 4281 4191 </ul> 4282 <p>With ‘Sampling Orb’ set to ‘5’ BNC will produce</p> 4283 <ul class="simple"> 4192 <br> 4193 <li>With 'Sampling Orb' set to '5' BNC will produce</li> 4194 <ul> 4284 4195 <li>Every 5 sec a 1057 message for GPS orbit corrections to Broadcast Ephemeris,</li> 4285 4196 <li>Every 5 sec a 1058 message for GPS clock corrections to Broadcast Ephemeris,</li> 4286 4197 <li>Every 5 sec a 1059 message for GPS code biases.</li> 4287 4198 </ul> 4288 <p>With ‘Sampling Orb’ set to ‘10’ BNC will produce</p> 4289 <ul class="simple"> 4199 <br> 4200 <li>With 'Sampling Orb' set to '10' BNC will produce</li> 4201 <ul> 4290 4202 <li>Every 10 sec a 1057 message for GPS orbit corrections to Broadcast Ephemeris,</li> 4291 4203 <li>Every 5 sec a 1058 message for GPS clock corrections to Broadcast Ephemeris,</li> 4292 4204 <li>Every 5 sec a 1059 message for GPS code biases.</li> 4293 4205 </ul> 4294 <p>Note that only when specifying a value of zero ‘0’ (default) for ‘Sampling Orb’, BNC produces combined orbit and clock correction messages.</p> 4295 </div> 4296 <div class="section" id="sp3-mandatory-if-sp3-file-is-specified"> 4297 <h5>SP3 - mandatory if ‘SP3 File’ is specified<a class="headerlink" href="#sp3-mandatory-if-sp3-file-is-specified" title="Permalink to this headline">¶</a></h5> 4298 <p>Select the SP3 orbit file sampling interval in minutes. A value of 15 min may be appropriate. A value of zero ‘0’ tells BNC to store all available samples into SP3 orbit files.</p> 4299 </div> 4300 <div class="section" id="rinex-rnx-mandatory-if-rnx-file-is-specified"> 4301 <h5>RINEX (RNX) - mandatory if ‘RNX File’ is specified<a class="headerlink" href="#rinex-rnx-mandatory-if-rnx-file-is-specified" title="Permalink to this headline">¶</a></h5> 4302 <p>Select the Clock RINEX file sampling interval in seconds. A value of 10 sec may be appropriate. A value of zero ‘0’ tells BNC to store all available samples into Clock RINEX files.</p> 4303 </div> 4304 </div> 4305 <div class="section" id="custom-trafo-optional-if-upload-table-entries-specified"> 4306 <h4>Custom Trafo - optional if ‘Upload Table’ entries specified<a class="headerlink" href="#custom-trafo-optional-if-upload-table-entries-specified" title="Permalink to this headline">¶</a></h4> 4307 <p>Hit ‘Custom Trafo’ to specify your own 14 parameter Helmert Transformation instead of selecting a predefined transformation through ‘System’ button.</p> 4308 </div> 4309 <div class="section" id="antex-file-mandatory-if-sp3-file-is-specified"> 4310 <h4>ANTEX File - mandatory if ‘SP3 File’ is specified<a class="headerlink" href="#antex-file-mandatory-if-sp3-file-is-specified" title="Permalink to this headline">¶</a></h4> 4311 <p>IGS provides a file containing absolute phase center variations for GNSS satellite and receiver antennas in ANTEX format. Entering the full path to such an ANTEX file is required here for referring the SP3 file content to the satellite’s Center of Mass (CoM). If you do not specify an ANTEX file, the SP3 file will contain orbit information which is referred to Antenna Phase Center (APC) instead of CoM.</p> 4312 <p>The screenshot in <a class="reference internal" href="#fig-31"><span class="std std-numref">Fig. 33</span></a> shows the encoding and uploading of a stream of precise orbits and clocks coming from a real-time network engine in ‘RTNET’ ASCII format. The stream is uploaded to Ntrip Broadcaster ‘products.igs-ip.net’. It is referred to APC and IGS08. Uploaded data are locally saved in SP3 and Clock RINEX format. The SSR Provider ID is set to 3. The SSR Solution ID and the Issue of Data SSR are set to 1. Required Broadcast Ephemeris are received via stream ‘RTCM3EPH’.</p> 4313 <div class="figure" id="id58"> 4314 <span id="fig-31"></span><a class="reference internal image-reference" href="_images/fig_31.png"><img alt="_images/fig_31.png" src="_images/fig_31.png" style="width: 1117.0px; height: 754.0px;" /></a> 4315 <p class="caption"><span class="caption-number">Fig. 33 </span><span class="caption-text">BNC producing Broadcast Corrections from incoming precise orbits and clocks and uploading them to an Ntrip Broadcaster</span></p> 4316 </div> 4317 <p>The screenshot in <a class="reference internal" href="#fig-32"><span class="std std-numref">Fig. 34</span></a> shows the encoding and uploading of several Broadcast Ephemeris correction streams combined from streams CLK11, CLK21, CLK80, and CLK91. Combined streams are uploaded to different Ntrip Broadcasters and referred to different reference systems. One of the uploaded streams is locally saved in SP3 and Clock RINEX format. Different SSR Provider IDs, SSR Solution IDs and Issue of Data IDs are specified. Required Broadcast Ephemeris are received via stream ‘RTCM3EPH’.</p> 4318 <div class="figure" id="id59"> 4319 <span id="fig-32"></span><a class="reference internal image-reference" href="_images/fig_32.png"><img alt="_images/fig_32.png" src="_images/fig_32.png" style="width: 1126.0px; height: 834.0px;" /></a> 4320 <p class="caption"><span class="caption-number">Fig. 34 </span><span class="caption-text">BNC uploading a combined Broadcast Correction stream</span></p> 4321 </div> 4322 </div> 4323 </div> 4324 <div class="section" id="upload-ephemeris"> 4325 <span id="index-41"></span><h3>Upload Ephemeris<a class="headerlink" href="#upload-ephemeris" title="Permalink to this headline">¶</a></h3> 4326 <p>BNC can generate a stream carrying only Broadcast Ephemeris in RTCM Version 3 format and upload it to an Ntrip Broadcaster <a class="reference internal" href="#fig-33"><span class="std std-numref">(Fig. 35)</span></a>. Note that Broadcast Ephemeris received in real-time have a system specific period of validity in BNC which is defined in accordance with the update rates of the navigation messages.</p> 4327 <ul class="simple"> 4206 </ul> 4207 <br> 4208 Note that only when specifying a value of zero '0' (default) for 'Sampling Orb', BNC produces <u>combined</u> orbit and clock correction messages. 4209 <p><h4>2.15.9.2 <a name="upclksp3">SP3 - mandatory if 'SP3 File' is specified</h4></p> 4210 <p>Select the SP3 orbit file sampling interval in minutes. A value of 15 min may be appropriate. A value of zero '0' tells BNC to store all available samples into SP3 orbit files.</p> 4211 4212 <p><h4>2.15.9.3 <a name="upclkrnx">RINEX (RNX) - mandatory if 'RNX File' is specified</h4></p> 4213 <p>Select the Clock RINEX file sampling interval in seconds. A value of 10 sec may be appropriate. A value of zero '0' tells BNC to store all available samples into Clock RINEX files.</p> 4214 4215 <p><h4>2.15.10 <a name="upcustom">Custom Trafo - optional if 'Upload Table' entries specified</h4></p> 4216 <p>Hit 'Custom Trafo' to specify your own 14 parameter Helmert Transformation instead of selecting a predefined transformation through 'System' button.</p> 4217 4218 <p><h4>2.15.11 <a name="upantex">ANTEX File - mandatory if 'SP3 File' is specified</h4></p> 4219 <p> 4220 IGS provides a file containing absolute phase center variations for GNSS satellite and receiver antennas in ANTEX format. Entering the full path to such an ANTEX file is required here for referring the SP3 file content to the satellite's Center of Mass (CoM). If you do not specify an ANTEX file, the SP3 file will contain orbit information which is referred to Antenna Phase Center (APC) instead of CoM. 4221 </p> 4222 <p> 4223 The following screenshot shows the encoding and uploading of a stream of precise orbits and clocks coming from a real-time network engine in 'RTNET' ASCII format. The stream is uploaded to Ntrip Broadcaster 'products.igs-ip.net'. It is referred to APC and IGS08. Uploaded data are locally saved in SP3 and Clock RINEX format. The SSR Provider ID is set to 3. The SSR Solution ID and the Issue of Data SSR are set to 1. Required Broadcast Ephemeris are received via stream 'RTCM3EPH'. 4224 </p> 4225 <p><img src="IMG/screenshot26.png"/></p> 4226 <p><u>Figure 31:</u> BNC producing Broadcast Corrections from incoming precise orbits and clocks and uploading them to an Ntrip Broadcaster</p> 4227 <p> 4228 The following screenshot shows the encoding and uploading of several Broadcast Ephemeris correction streams combined from streams CLK11, CLK21, CLK80, and CLK91. Combined streams are uploaded to different Ntrip Broadcasters and referred to different reference systems. One of the uploaded streams is locally saved in SP3 and Clock RINEX format. Different SSR Provider IDs, SSR Solution IDs and Issue of Data IDs are specified. Required Broadcast Ephemeris are received via stream 'RTCM3EPH'. 4229 </p> 4230 <p><img src="IMG/screenshot21.png"/></p> 4231 <p><u>Figure 32:</u> BNC uploading a combined Broadcast Correction stream</p> 4232 <p></p> 4233 4234 <p><h4>2.16 <a name="upeph">Upload Ephemeris</h4></p> 4235 <p> 4236 BNC can generate a stream carrying only Broadcast Ephemeris in RTCM Version 3 format and upload it to an Ntrip Broadcaster. 4237 </p> 4238 4239 <p> 4240 Note that Broadcast Ephemeris received in real-time have a system specific period of validity in BNC which is defined in accordance with the update rates of the navigation messages. 4241 <ul> 4328 4242 <li>GPS ephemeris will be interpreted as outdated and ignored when older than 4 hours.</li> 4329 4243 <li>GLONASS ephemeris will be interpreted as outdated and ignored when older than 1 hour.</li> … … 4333 4247 <li>QZSS ephemeris will be interpreted as outdated and ignored when older than 4 hours.</li> 4334 4248 </ul> 4335 <p>A note ‘OUTDATED EPHEMERIS’ will be given in the logfile and the data will be disregarded when necessary. Furthermore, received Broadcast Ephemeris parameters pass through a plausibility check in BNC which allows to ignore incorrect ephemeris data when necessary, leaving a note ‘WRONG EPHEMERIS’ in the logfile.</p> 4336 <div class="section" id="host-port-optional"> 4337 <h4>Host & Port - optional<a class="headerlink" href="#host-port-optional" title="Permalink to this headline">¶</a></h4> 4338 <p>Specify the ‘Host’ IP number or URL of an Ntrip Broadcaster to upload the stream. An empty option field means that you do not want to upload Broadcast Ephemeris. Enter the Ntrip Broadcaster’s IP ‘Port’ number for stream upload. Note that Ntrip Broadcasters are often configured to provide access through more than one port, usually ports 80 and 2101. If you experience communication problems on port 80, you should try to use the alternative port(s).</p> 4339 </div> 4340 <div class="section" id="mountpoint-password-mandatory-if-host-is-set"> 4341 <h4>Mountpoint & Password - mandatory if ‘Host’ is set<a class="headerlink" href="#mountpoint-password-mandatory-if-host-is-set" title="Permalink to this headline">¶</a></h4> 4342 <p>BNC uploads a stream to the Ntrip Broadcaster by referring it to a dedicated mountpoint that has been set by its operator. Specify the mountpoint based on the details you received for your stream from the operator. It is often a 4-character ID (capital letters) plus an integer number. The stream upload follows Ntrip Version 1 and may be protected through an upload ‘Password’. Enter the password you received from the Ntrip Broadcaster operator along with the mountpoint.</p> 4343 </div> 4344 <div class="section" id="sampling-mandatory-if-host-is-set"> 4345 <h4>Sampling - mandatory if ‘Host’ is set<a class="headerlink" href="#sampling-mandatory-if-host-is-set" title="Permalink to this headline">¶</a></h4> 4346 <p>Select the Broadcast Ephemeris repetition interval in seconds. Default is ‘5’, meaning that a complete set of Broadcast Ephemeris is uploaded every 5 seconds.</p> 4347 <div class="figure" id="id60"> 4348 <span id="fig-33"></span><a class="reference internal image-reference" href="_images/fig_33.png"><img alt="_images/fig_33.png" src="_images/fig_33.png" style="width: 1000.0px; height: 722.0px;" /></a> 4349 <p class="caption"><span class="caption-number">Fig. 35 </span><span class="caption-text">BNC producing a Broadcast Ephemeris stream from navigation messages of globally distributed RTCM streams and uploading them in RTCM Version 3 format to an Ntrip Broadcaster</span></p> 4350 </div> 4351 </div> 4352 </div> 4353 <div class="section" id="streams-canvas"> 4354 <span id="index-42"></span><h3>Streams Canvas<a class="headerlink" href="#streams-canvas" title="Permalink to this headline">¶</a></h3> 4355 <p>Each stream on an Ntrip Broadcaster (and consequently on BNC) is defined using a unique source ID called mountpoint. An Ntrip Client like BNC accesses the desired stream by referring to its mountpoint. Information about streams and their mountpoints is available through the source-table maintained by the Ntrip Broadcaster. Streams selected for retrieval are listed under the ‘Streams’ canvas on BNC’s main window. The list provides the following information either extracted from source-table(s) produced by the Ntrip Broadcasters or introduced by BNC’s user (<a class="reference internal" href="#tab-stream-canvas-keys"><span class="std std-numref">Table 12</span></a>).</p> 4356 <table border="1" class="docutils" id="id61"> 4357 <span id="tab-stream-canvas-keys"></span><span id="index-43"></span><caption><span class="caption-number">Table 12 </span><span class="caption-text">Source table information listed in BNCs Stream Canvas.</span><a class="headerlink" href="#id61" title="Permalink to this table">¶</a></caption> 4358 <colgroup> 4359 <col width="11%" /> 4360 <col width="89%" /> 4361 </colgroup> 4362 <thead valign="bottom"> 4363 <tr class="row-odd"><th class="head"><strong>Keyword</strong></th> 4364 <th class="head"><strong>Meaning</strong></th> 4365 </tr> 4366 </thead> 4367 <tbody valign="top"> 4368 <tr class="row-even"><td>resource loader</td> 4369 <td>Ntrip Broadcaster URL and port, or 4370 TCP/IP host and port, or 4371 UDP port, or 4372 Serial input port specification.</td> 4373 </tr> 4374 <tr class="row-odd"><td>mountpoint</td> 4375 <td>Mountpoint introduced by Ntrip Broadcaster, or 4376 Mountpoint introduced by BNC’s user.</td> 4377 </tr> 4378 <tr class="row-even"><td>decoder</td> 4379 <td>Name of decoder used to handle the incoming stream content according to its format; editable.</td> 4380 </tr> 4381 <tr class="row-odd"><td>lat</td> 4382 <td>Approximate latitude of reference station, in degrees, north; editable if ‘nmea’ = ‘yes’.</td> 4383 </tr> 4384 <tr class="row-even"><td>long</td> 4385 <td>Approximate longitude of reference station, in degrees, east; editable if ‘nmea’ = ‘yes’.</td> 4386 </tr> 4387 <tr class="row-odd"><td>nmea</td> 4388 <td>Indicates whether or not streaming needs to be initiated by BNC through sending NMEA-GGA message carrying position coordinates in ‘lat’ and ‘long’.</td> 4389 </tr> 4390 <tr class="row-even"><td>ntrip</td> 4391 <td>Selected Ntrip transport protocol version (1, 2, 2s, R, or U), or 4392 ‘N’ for TCP/IP streams without Ntrip, or 4393 ‘UN’ for UDP streams without Ntrip, or 4394 ‘S’ for serial input streams without Ntrip.</td> 4395 </tr> 4396 <tr class="row-odd"><td>bytes</td> 4397 <td>Number of bytes received.</td> 4398 </tr> 4399 </tbody> 4249 A note 'OUTDATED EPHEMERIS' will be given in the logfile and the data will be disregarded when necessary. 4250 </p> 4251 <p> 4252 Furthermore, received Broadcast Ephemeris parameters pass through a plausibility check in BNC which allows to ignore incorrect ephemeris data when necessary, leaving a note 'WRONG EPHEMERIS' in the logfile. 4253 </p> 4254 4255 <p><h4>2.16.1 <a name="brdcserver">Host & Port - optional</h4></p> 4256 <p> 4257 Specify the 'Host' IP number or URL of an Ntrip Broadcaster to upload the stream. An empty option field means that you do not want to upload Broadcast Ephemeris. 4258 </p> 4259 <p> 4260 Enter the Ntrip Broadcaster's IP 'Port' number for stream upload. Note that Ntrip Broadcasters are often configured to provide access through more than one port, usually ports 80 and 2101. If you experience communication problems on port 80, you should try to use the alternative port(s). 4261 </p> 4262 4263 <p><h4>2.16.2 <a name="brdcmount">Mountpoint & Password - mandatory if 'Host' is set</h4></p> 4264 <p> 4265 BNC uploads a stream to the Ntrip Broadcaster by referring it to a dedicated mountpoint that has been set by its operator. Specify the mountpoint based on the details you received for your stream from the operator. It is often a 4-character ID (capital letters) plus an integer number.</p> 4266 <p>The stream upload follows Ntrip Version 1 and may be protected through an upload 'Password'. Enter the password you received from the Ntrip Broadcaster operator along with the mountpoint.</p> 4267 </p> 4268 4269 <p><h4>2.16.3 <a name="brdcsmpl">Sampling - mandatory if 'Host' is set</h4></p> 4270 Select the Broadcast Ephemeris repetition interval in seconds. Default is '5', meaning that a complete set of Broadcast Ephemeris is uploaded every 5 seconds. 4271 </p> 4272 4273 <p><img src="IMG/screenshot28.png"/></p> 4274 <p><u>Figure 33:</u> BNC producing a Broadcast Ephemeris stream from navigation messages of globally distributed RTCM streams and uploading them in RTCM Version 3 format to an Ntrip Broadcaster</p> 4275 4276 <p><h4>2.17 <a name="streams">Streams Canvas</h4></p> 4277 <p> 4278 Each stream on an Ntrip Broadcaster (and consequently on BNC) is defined using a unique source ID called mountpoint. An Ntrip Client like BNC accesses the desired stream by referring to its mountpoint. Information about streams and their mountpoints is available through the source-table maintained by the Ntrip Broadcaster. 4279 </p> 4280 4281 <p> 4282 Streams selected for retrieval are listed under the 'Streams' canvas on BNC's main window. The list provides the following information either extracted from source-table(s) produced by the Ntrip Broadcasters or introduced by BNC's user: 4283 </p> 4284 <p> 4285 <table> 4286 <tr><td>'resource loader' </td><td>Ntrip Broadcaster URL and port, or<br>TCP/IP host and port, or<br>UDP port, or<br>Serial input port specification.</td></tr> 4287 <tr><td>'mountpoint' </td><td>Mountpoint introduced by Ntrip Broadcaster, or<br>Mountpoint introduced by BNC's user.</td></tr> 4288 <tr><td>'decoder' </td><td>Name of decoder used to handle the incoming stream content according to its format; editable.</td></tr> 4289 <tr><td>'lat' </td><td>Approximate latitude of reference station, in degrees, north; editable if 'nmea' = 'yes'.</td></tr> 4290 <tr><td>'long' </td><td>Approximate longitude of reference station, in degrees, east; editable if 'nmea' = 'yes'.</td></tr> 4291 <tr><td>'nmea' </td><td>Indicates whether or not streaming needs to be initiated by BNC through sending NMEA-GGA message carrying position coordinates in 'lat' and 'long'.</td></tr> 4292 <tr><td>'ntrip' </td><td>Selected Ntrip transport protocol version (1, 2, 2s, R, or U), or<br>'N' for TCP/IP streams without Ntrip, or<br>'UN' for UDP streams without Ntrip, or<br>'S' for serial input streams without Ntrip.</td></tr> 4293 <tr><td>'bytes' </td><td>Number of bytes received. 4400 4294 </table> 4401 <div class="section" id="edit-streams"> 4402 <h4>Edit Streams<a class="headerlink" href="#edit-streams" title="Permalink to this headline">¶</a></h4> 4403 <p>BNC automatically allocates one of its internal decoders to a stream based on the stream’s ‘format’ and ‘format-details’ as given in the source-table. However, there might be cases where you need to override the automatic selection due to an incorrect source-table for example. BNC allows users to manually select the required decoder by editing the decoder string. Double click on the ‘decoder’ field, enter your preferred decoder and then hit Enter. Accepted decoder strings are ‘RTCM_2.x’, ‘RTCM_3.x’ and ‘RTNET’.</p> 4404 <p>In case you need to log the raw data as it is, BNC allows users to by-pass its decoders and directly save the input in daily logfiles. To do this, specify the decoder string as ‘ZERO’. The generated filenames are created from the characters of the streams mountpoints plus two-digit numbers each for year, month, and day. Example: Setting the ‘decoder’ string for mountpoint WTZZ0 to ‘ZERO’ and running BNC on March 29, 2007 would save raw data in a file named WTZZ0_070329.</p> 4405 <p>BNC can also retrieve streams from virtual reference stations (VRS). To initiate these streams, an approximate rover position needs to be sent in NMEA format to the Ntrip Broadcaster. In return, a user-specific data stream is generated, typically by Network RTK software. VRS streams are indicated by a ‘yes’ in the source-table as well as in the ‘nmea’ column on the ‘Streams’ canvas in BNC’s main window. They are customized exactly to the latitude and longitude transmitted to the Ntrip Broadcaster via NMEA GGA sentences.</p> 4406 <p>If NMEA GGA sentences are not coming from a serially connected GNSS rover, BNC simulates them from the default latitude and longitude of the source-table as shown in the ‘lat’ and ‘long’ columns on the ‘Streams’ canvas. However, in many cases you would probably want to change these defaults according to your requirement. Double-click on ‘lat’ and ‘long’ fields, enter the values you wish to send and then hit Enter. The format is in positive north latitude degrees (e.g. for northern hemisphere: 52.436, for southern hemisphere: -24.567) and eastern longitude degrees (example: 358.872 or -1.128). Only streams with a ‘yes’ in their ‘nmea’ column can be edited. The position should preferably be a point within the VRS service area of the network. RINEX files generated from these streams will contain an additional COMMENT line in the header beginning with ‘NMEA’ showing the ‘lat’ and ‘long’ used.</p> 4407 <p>Note that when running BNC in a Local Area Network (LAN), NMEA strings may be blocked by a proxy server, firewall or virus scanner when not using the Ntrip Version 2 transport protocol.</p> 4408 </div> 4409 <div class="section" id="delete-streams"> 4410 <h4>Delete Streams<a class="headerlink" href="#delete-streams" title="Permalink to this headline">¶</a></h4> 4411 <p>To remove a stream from the ‘Streams’ canvas in the main window, highlight it by clicking on it and hit the ‘Delete Stream’ button. You can also remove multiple streams simultaneously by highlighting them using +Shift or +Ctrl.</p> 4412 </div> 4413 <div class="section" id="reconfigure-stream-selection-on-the-fly"> 4414 <h4>Reconfigure Stream Selection On-the-fly<a class="headerlink" href="#reconfigure-stream-selection-on-the-fly" title="Permalink to this headline">¶</a></h4> 4415 <p>The streams selection can be changed on-the-fly without interrupting uninvolved threads in the running BNC process.</p> 4416 <p>Window mode: Hit ‘Reread & Save Configuration’ while BNC is in window mode and already processing data to let changes of your stream selection immediately become effective.</p> 4417 <p>No window mode: When operating BNC online in ‘no window’ mode (command line option -nw), you force BNC to reread its ‘mountPoints’ configuration option from disk at pre-defined intervals. Select ‘1 min’, ‘1 hour’, or ‘1 day’ as ‘Reread configuration’ option to reread the ‘mountPoints’ option every full minute, hour, or day. This lets a ‘mountPoints’ option edited in between in the configuration file become effective without terminating uninvolved threads. See section ‘Configuration Examples’ for configuration file examples and section ‘Reread Configuration’ for a list of other on-the-fly changeable options.</p> 4418 </div> 4419 </div> 4420 <div class="section" id="logging-canvas"> 4421 <span id="index-44"></span><h3>Logging Canvas<a class="headerlink" href="#logging-canvas" title="Permalink to this headline">¶</a></h3> 4422 <p>The ‘Logging Canvas’ above the bottom menu bar on the main window labeled ‘Log’, ‘Throughput’, ‘Latency’, and ‘PPP Plot’ provides control of BNC’s activities. Tabs are available for continuously showing logfile content, for a plot controlling the bandwidth consumption, a plot showing stream latencies, and for time series plots of PPP results.</p> 4423 <div class="section" id="log"> 4424 <h4>Log<a class="headerlink" href="#log" title="Permalink to this headline">¶</a></h4> 4425 <p>Records of BNC’s activities are shown in the ‘Log’ tab. They can be saved into a file when a valid path is specified in the ‘Logfile (full path)’ field.</p> 4426 </div> 4427 <div class="section" id="throughput"> 4428 <h4>Throughput<a class="headerlink" href="#throughput" title="Permalink to this headline">¶</a></h4> 4429 <p>The bandwidth consumption per stream is shown in the ‘Throughput’ tab in bits per second (bps) or kilobits per second (kbps). <a class="reference internal" href="#fig-34"><span class="std std-numref">Fig. 36</span></a> shows an example for the bandwidth consumption of incoming streams.</p> 4430 <div class="figure" id="id62"> 4431 <span id="fig-34"></span><a class="reference internal image-reference" href="_images/fig_34.png"><img alt="_images/fig_34.png" src="_images/fig_34.png" style="width: 783.0px; height: 177.0px;" /></a> 4432 <p class="caption"><span class="caption-number">Fig. 36 </span><span class="caption-text">Bandwidth consumption of RTCM streams received by BNC</span></p> 4433 </div> 4434 </div> 4435 <div class="section" id="id20"> 4436 <h4>Latency<a class="headerlink" href="#id20" title="Permalink to this headline">¶</a></h4> 4437 <p>The latency of observations in each incoming stream is shown in the ‘Latency’ tab in milliseconds or seconds. Streams not carrying observations (e.g. those providing only Broadcast Ephemeris messages) or having an outage are not considered here and shown in red color. Note that the calculation of correct latencies requires the clock of the host computer to be properly synchronized. <a class="reference internal" href="#fig-35"><span class="std std-numref">Fig. 37</span></a> shows an example for the latency of incoming streams.</p> 4438 <div class="figure" id="id63"> 4439 <span id="fig-35"></span><a class="reference internal image-reference" href="_images/fig_35.png"><img alt="_images/fig_35.png" src="_images/fig_35.png" style="width: 782.0px; height: 177.0px;" /></a> 4440 <p class="caption"><span class="caption-number">Fig. 37 </span><span class="caption-text">Latency of RTCM streams received by BNC</span></p> 4441 </div> 4442 </div> 4443 <div class="section" id="ppp-plot"> 4444 <h4>PPP Plot<a class="headerlink" href="#ppp-plot" title="Permalink to this headline">¶</a></h4> 4445 <p>Precise Point Positioning time series of North (red), East (green) and Up (blue) coordinate components are shown in the ‘PPP Plot’ tab when a ‘Mountpoint’ option is defined under PPP (4). Values are referred to a priori reference coordinates. The time as given in format [hh:mm] refers to GPS Time. The sliding PPP time series window covers a period of 5 minutes. Note that it may take up to 30 seconds or more until the first PPP solutions becomes available. <a class="reference internal" href="#fig-36"><span class="std std-numref">Fig. 38</span></a> shows the screenshot of a PPP time series plot of North, East and Up coordinate displacements.</p> 4446 <div class="figure" id="id64"> 4447 <span id="fig-36"></span><a class="reference internal image-reference" href="_images/fig_36.png"><img alt="_images/fig_36.png" src="_images/fig_36.png" style="width: 784.0px; height: 305.0px;" /></a> 4448 <p class="caption"><span class="caption-number">Fig. 38 </span><span class="caption-text">Example for time series plot of displacements produced by BNC</span></p> 4449 </div> 4450 </div> 4451 </div> 4452 <div class="section" id="bottom-menu-bar"> 4453 <h3>Bottom Menu Bar<a class="headerlink" href="#bottom-menu-bar" title="Permalink to this headline">¶</a></h3> 4454 <p>The bottom menu bar allows to add or delete streams to or from BNC’s configuration and to start or stop it. It also provides access to BNC’s online help function. The ‘Add Stream’ button opens a window that allows users to select one of several input communication links, see <a class="reference internal" href="#fig-37"><span class="std std-numref">Fig. 39</span></a>.</p> 4455 <div class="figure" id="id65"> 4456 <span id="fig-37"></span><a class="reference internal image-reference" href="_images/fig_37.png"><img alt="_images/fig_37.png" src="_images/fig_37.png" style="width: 427.0px; height: 115.0px;" /></a> 4457 <p class="caption"><span class="caption-number">Fig. 39 </span><span class="caption-text">Steam input communication links accepted by BNC</span></p> 4458 </div> 4459 <div class="section" id="add-stream"> 4460 <h4>Add Stream<a class="headerlink" href="#add-stream" title="Permalink to this headline">¶</a></h4> 4461 <p>Button ‘Add Stream’ allows you to pull streams either from an Ntrip Broadcaster or from a TCP/IP port, UPD port, or serial port.</p> 4462 </div> 4463 <div class="section" id="add-delete-stream-coming-from-caster"> 4464 <h4>Add/Delete Stream - Coming from Caster<a class="headerlink" href="#add-delete-stream-coming-from-caster" title="Permalink to this headline">¶</a></h4> 4465 <p>Button ‘Add Stream’ > ‘Coming from Caster’ opens a window that allows users to select data streams from an Ntrip Broadcaster according to their mountpoints and show a distribution map of offered streams.</p> 4466 <p>Button ‘Delete Stream’ allows you to delete streams previously selected for retrieval as listed under the ‘Streams’ canvas on BNC’s main window.</p> 4467 <div class="section" id="caster-host-and-port-mandatory"> 4468 <h5>Caster Host and Port - mandatory<a class="headerlink" href="#caster-host-and-port-mandatory" title="Permalink to this headline">¶</a></h5> 4469 <p>Enter the Ntrip Broadcaster host IP and port number. Note that EUREF and IGS operate Ntrip Broadcasters at <a class="reference external" href="http://www.euref-ip.net/home">http://www.euref-ip.net/home</a>, <a class="reference external" href="http://www.igs-ip.net/home">http://www.igs-ip.net/home</a>, <a class="reference external" href="http://products.igs-ip.net/home">http://products.igs-ip.net/home</a> and <a class="reference external" href="http://mgex.igs-ip.net/home">http://mgex.igs-ip.net/home</a>.</p> 4470 </div> 4471 <div class="section" id="casters-table-optional"> 4472 <h5>Casters Table - optional<a class="headerlink" href="#casters-table-optional" title="Permalink to this headline">¶</a></h5> 4473 <p>It may be that you are not sure about your Ntrip Broadcaster’s host and port number or you are interested in other broadcaster installations operated elsewhere. Hit ‘Show’ for a table of known broadcasters maintained at www.rtcm-ntrip.org/home. A window opens which allows selecting a broadcaster for stream retrieval, see <a class="reference internal" href="#fig-38"><span class="std std-numref">Fig. 40</span></a>.</p> 4474 <div class="figure" id="id66"> 4475 <span id="fig-38"></span><a class="reference internal image-reference" href="_images/fig_38.png"><img alt="_images/fig_38.png" src="_images/fig_38.png" style="width: 1123.0px; height: 710.0px;" /></a> 4476 <p class="caption"><span class="caption-number">Fig. 40 </span><span class="caption-text">BNC’s ‘Select Broadcaster’ table</span></p> 4477 </div> 4478 </div> 4479 <div class="section" id="user-and-password-mandatory-for-protected-streams"> 4480 <h5>User and Password - mandatory for protected streams<a class="headerlink" href="#user-and-password-mandatory-for-protected-streams" title="Permalink to this headline">¶</a></h5> 4481 <p>Streams on Ntrip Broadcasters may be protected. Enter a valid ‘User’ ID and ‘Password’ for access to protected streams. Accounts are usually provided per Ntrip Broadcaster through a registration procedure. Register through <a class="reference external" href="http://register.rtcm-ntrip.org">http://register.rtcm-ntrip.org</a> for access to protected streams from EUREF and IGS.</p> 4482 </div> 4483 <div class="section" id="get-table"> 4484 <h5>Get Table<a class="headerlink" href="#get-table" title="Permalink to this headline">¶</a></h5> 4485 <p>Use the ‘Get Table’ button to download the source-table from the Ntrip Broadcaster. Pay attention to data fields ‘format’ and ‘format-details’. Keep in mind that BNC can only decode and convert streams that come in RTCM Version 2, RTCM Version 3, or RTNET format. For access to observations, Broadcast Ephemeris and Broadcast Corrections in RTCM format, streams must contain a selection of appropriate message types as listed in the Annex, cf. data field ‘format-details’ for available message types and their repetition rates in brackets. Note that in order to produce RINEX Navigation files, RTCM Version 3 streams containing message types 1019 (GPS) and 1020 (GLONASS) and 1043 (SBAS) and 1044 (QZSS) and 1045, 1046 (Galileo) and 63 (BDS/BeiDou, tentative message number) are required. Select your streams line by line, use +Shift and +Ctrl when necessary. <a class="reference internal" href="#fig-39"><span class="std std-numref">Fig. 41</span></a> provides an example source-table.</p> 4486 <p>The content of data field ‘nmea’ tells you whether a stream retrieval needs to be initiated by BNC through sending an NMEA-GGA message carrying approximate position coordinates (Virtual Reference Station, VRS).</p> 4487 <p>Hit ‘OK’ to return to the main window. If you wish, you can click on ‘Add Stream’ and repeat the process of retrieving streams from different casters.</p> 4488 <div class="figure" id="id67"> 4489 <span id="fig-39"></span><a class="reference internal image-reference" href="_images/fig_39.png"><img alt="_images/fig_39.png" src="_images/fig_39.png" style="width: 1064.0px; height: 434.0px;" /></a> 4490 <p class="caption"><span class="caption-number">Fig. 41 </span><span class="caption-text">Broadcaster source-table shown by BNC</span></p> 4491 </div> 4492 </div> 4493 <div class="section" id="ntrip-version-mandatory"> 4494 <h5>Ntrip Version - mandatory<a class="headerlink" href="#ntrip-version-mandatory" title="Permalink to this headline">¶</a></h5> 4495 <p>Some limitations and deficiencies of the Ntrip Version 1 stream transport protocol are solved in Ntrip Version 2. Improvements mainly concern a full HTTP compatibility in view of requirements coming from proxy servers. Version 2 is backwards compatible to Version 1. Options implemented in BNC are summarized in <a class="reference internal" href="#tab-ntrip-options"><span class="std std-numref">Table 13</span></a>.</p> 4496 <table border="1" class="docutils" id="id68"> 4497 <span id="tab-ntrip-options"></span><span id="index-45"></span><caption><span class="caption-number">Table 13 </span><span class="caption-text">Ntrip options implemented in BNC.</span><a class="headerlink" href="#id68" title="Permalink to this table">¶</a></caption> 4498 <colgroup> 4499 <col width="30%" /> 4500 <col width="70%" /> 4501 </colgroup> 4502 <thead valign="bottom"> 4503 <tr class="row-odd"><th class="head"><strong>Option</strong></th> 4504 <th class="head"><strong>Meaning</strong></th> 4505 </tr> 4506 </thead> 4507 <tbody valign="top"> 4508 <tr class="row-even"><td>1</td> 4509 <td>Ntrip Version 1, TCP/IP</td> 4510 </tr> 4511 <tr class="row-odd"><td>2</td> 4512 <td>Ntrip Version 2 in TCP/IP mode</td> 4513 </tr> 4514 <tr class="row-even"><td>2s</td> 4515 <td>Ntrip Version 2 in TCP/IP mode via SSL</td> 4516 </tr> 4517 <tr class="row-odd"><td>R</td> 4518 <td>Ntrip Version 2 in RTSP/RTP mode</td> 4519 </tr> 4520 <tr class="row-even"><td>U</td> 4521 <td>Ntrip Version 2 in UDP mode</td> 4522 </tr> 4523 </tbody> 4295 </p> 4296 4297 <p><h4>2.17.1 <a name="streamedit">Edit Streams</h4></p> 4298 <ul> 4299 <li> 4300 BNC automatically allocates one of its internal decoders to a stream based on the stream's 'format' and 'format-details' as given in the source-table. However, there might be cases where you need to override the automatic selection due to an incorrect source-table for example. BNC allows users to manually select the required decoder by editing the decoder string. Double click on the 'decoder' field, enter your preferred decoder and then hit Enter. Accepted decoder strings are 'RTCM_2.x', 'RTCM_3.x' and 'RTNET'. 4301 </li> 4302 <li> 4303 In case you need to log the raw data as it is, BNC allows users to by-pass its decoders and directly save the input in daily logfiles. To do this, specify the decoder string as 'ZERO'. The generated filenames are created from the characters of the streams mountpoints plus two-digit numbers each for year, month, and day. Example: Setting the 'decoder' string for mountpoint WTZZ0 to 'ZERO' and running BNC on March 29, 2007 would save raw data in a file named WTZZ0_070329. 4304 </li> 4305 <li> 4306 BNC can also retrieve streams from virtual reference stations (VRS). To initiate these streams, an approximate rover position needs to be sent in NMEA format to the Ntrip Broadcaster. In return, a user-specific data stream is generated, typically by Network RTK software. VRS streams are indicated by a 'yes' in the source-table as well as in the 'nmea' column on the 'Streams' canvas in BNC's main window. They are customized exactly to the latitude and longitude transmitted to the Ntrip Broadcaster via NMEA GGA sentences. 4307 <br>If NMEA GGA sentences are not coming from a serially connected GNSS rover, BNC simulates them from the default latitude and longitude of the source-table as shown in the 'lat' and 'long' columns on the 'Streams' canvas. However, in many cases you would probably want to change these defaults according to your requirement. Double-click on 'lat' and 'long' fields, enter the values you wish to send and then hit Enter. The format is in positive north latitude degrees (e.g. for northern hemisphere: 52.436, for southern hemisphere: -24.567) and eastern longitude degrees (example: 358.872 or -1.128). Only streams with a 'yes' in their 'nmea' column can be edited. The position should preferably be a point within the VRS service area of the network. RINEX files generated from these streams will contain an additional COMMENT line in the header beginning with 'NMEA' showing the 'lat' and 'long' used. 4308 <br>Note that when running BNC in a Local Area Network (LAN), NMEA strings may be blocked by a proxy server, firewall or virus scanner when not using the Ntrip Version 2 transport protocol. 4309 </li> 4310 </ul> 4311 4312 <p><h4>2.17.2 <a name="streamdelete">Delete Stream</h4></p> 4313 <p> 4314 To remove a stream from the 'Streams' canvas in the main window, highlight it by clicking on it and hit the 'Delete Stream' button. You can also remove multiple streams simultaneously by highlighting them using +Shift or +Ctrl.</p> 4315 4316 <p><h4>2.17.3 <a name="streamconf">Reconfigure Stream Selection On-the-fly</h4></p> 4317 <p> 4318 The streams selection can be changed on-the-fly without interrupting uninvolved threads in the running BNC process. 4319 </p> 4320 <p> 4321 <u>Window mode:</u> Hit 'Reread & Save Configuration' while BNC is in window mode and already processing data to let changes of your stream selection immediately become effective. 4322 <p> 4323 <u>No window mode:</u> When operating BNC online in 'no window' mode (command line option -nw), you force BNC to reread its 'mountPoints' configuration option from disk at pre-defined intervals. Select '1 min', '1 hour', or '1 day' as 'Reread configuration' option to reread the 'mountPoints' option every full minute, hour, or day. This lets a 'mountPoints' option edited in between in the configuration file become effective without terminating uninvolved threads. See section 'Configuration Examples' for configuration file examples and section 'Reread Configuration' for a list of other on-the-fly changeable options. 4324 </p> 4325 4326 <p><h4>2.18 <a name="logs">Logging Canvas</h4></p> 4327 <p> 4328 The 'Logging Canvas' above the bottom menu bar on the main window labeled 'Log', 'Throughput', 'Latency', and 'PPP Plot' provides control of BNC's activities. Tabs are available for continuously showing logfile content, for a plot controlling the bandwidth consumption, a plot showing stream latencies, and for time series plots of PPP results. 4329 </p> 4330 <p><h4>2.18.1 <a name="logfile">Log</h4></p> 4331 <p> 4332 Records of BNC's activities are shown in the 'Log' tab. They can be saved into a file when a valid path is specified in the 'Logfile (full path)' field. 4333 </p> 4334 4335 <p><h4>2.18.2 <a name="throughput">Throughput</h4></p> 4336 <p> 4337 The bandwidth consumption per stream is shown in the 'Throughput' tab in bits per second (bps) or kilobits per second (kbps). The following figure shows an example for the bandwidth consumption of incoming streams. 4338 </p> 4339 4340 <p><img src="IMG/screenshot08.png"/></p> 4341 <p><u>Figure 34:</u> Bandwidth consumption of RTCM streams received by BNC</p> 4342 4343 <p><h4>2.18.3 <a name="latency">Latency</h4></p> 4344 <p> 4345 The latency of observations in each incoming stream is shown in the 'Latency' tab in milliseconds or seconds. Streams not carrying observations (e.g. those providing only Broadcast Ephemeris messages) or having an outage are not considered here and shown in red color. Note that the calculation of correct latencies requires the clock of the host computer to be properly synchronized. The next figure shows an example for the latency of incoming streams. 4346 </p> 4347 4348 <p><img src="IMG/screenshot07.png"/></p> 4349 <p><u>Figure 35:</u> Latency of RTCM streams received by BNC</p> 4350 4351 <p><h4>2.18.4 <a name="ppptab">PPP Plot</h4></p> 4352 <p> 4353 Precise Point Positioning time series of North (red), East (green) and Up (blue) coordinate components are shown in the 'PPP Plot' tab when a 'Mountpoint' option is defined under PPP (4). Values are referred to a priori reference coordinates. The time as given in format [hh:mm] refers to GPS Time. The sliding PPP time series window covers a period of 5 minutes. Note that it may take up to 30 seconds or more until the first PPP solutions becomes available. The following figure shows the screenshot of a PPP time series plot of North, East and Up coordinate displacements. 4354 </p> 4355 4356 <p><img src="IMG/screenshot13.png"/></p> 4357 <p><u>Figure 36:</u> Example for time series plot of displacements produced by BNC</p> 4358 4359 <p><h4>2.19 <a name="bottom">Bottom Menu Bar</h4></p> 4360 <p> 4361 The bottom menu bar allows to add or delete streams to or from BNC's configuration and to start or stop it. It also provides access to BNC's online help function. The 'Add Stream' button opens a window that allows users to select one of several input communication links, see figure below. 4362 </p> 4363 4364 <p><img src="IMG/screenshot06.png"/></p> 4365 <p><u>Figure 37:</u> Steam input communication links accepted by BNC</p> 4366 4367 <p><h4>2.19.1 <a name="streamadd">Add Stream</h4></p> 4368 <p> 4369 Button 'Add Stream' allows you to pull streams either from an Ntrip Broadcaster or from a TCP/IP port, UPD port, or serial port. 4370 </p> 4371 4372 <p><h4>2.19.1.1 <a name="streamcaster">Add Stream - Coming from Caster</h4></p> 4373 4374 <p> 4375 Button 'Add Stream' > 'Coming from Caster' opens a window that allows users to select data streams from an Ntrip Broadcaster according to their mountpoints and show a distribution map of offered streams. 4376 </p> 4377 4378 <p><h4>2.19.1.1.1 <a name="streamhost">Caster Host and Port - mandatory</h4></p> 4379 <p> 4380 Enter the Ntrip Broadcaster host IP and port number. Note that EUREF and IGS operate Ntrip Broadcasters at <u>http://www.euref-ip.net/home</u>, <u>http://www.igs-ip.net/home</u>, <u>http://products.igs-ip.net/home</u> and <u>http://mgex.igs-ip.net/home</u>. 4381 </p> 4382 4383 <p><h4>2.19.1.1.2 <a name="streamtable">Casters Table - optional</h4></p> 4384 <p> 4385 It may be that you are not sure about your Ntrip Broadcaster's host and port number or you are interested in other broadcaster installations operated elsewhere. Hit 'Show' for a table of known broadcasters maintained at <u>www.rtcm-ntrip.org/home</u>. A window opens which allows selecting a broadcaster for stream retrieval, see figure below. 4386 </p> 4387 </p> 4388 <p><img src="IMG/screenshot04.png"/></p> 4389 4390 <p><u>Figure 38:</u> BNC's 'Select Broadcaster' table</p> 4391 4392 <p><h4>2.19.1.1.3 <a name="streamuser">User and Password - mandatory for protected streams</h4></p> 4393 <p> 4394 Streams on Ntrip Broadcasters may be protected. Enter a valid 'User' ID and 'Password' for access to protected streams. Accounts are usually provided per Ntrip Broadcaster through a registration procedure. Register through <u>http://register.rtcm-ntrip.org</u> for access to protected streams from EUREF and IGS. 4395 </p> 4396 4397 <p><h4>2.19.1.1.4 <a name="gettable">Get Table</h4></p> 4398 <p> 4399 Use the 'Get Table' button to download the source-table from the Ntrip Broadcaster. Pay attention to data fields 'format' and 'format-details'. Keep in mind that BNC can only decode and convert streams that come in RTCM Version 2, RTCM Version 3, or RTNET format. For access to observations, Broadcast Ephemeris and Broadcast Corrections in RTCM format, streams must contain a selection of appropriate message types as listed in the Annex, cf. data field 'format-details' for available message types and their repetition rates in brackets. Note that in order to produce RINEX Navigation files, RTCM Version 3 streams containing message types 1019 (GPS) and 1020 (GLONASS) and 1043 (SBAS) and 1044 (QZSS) and 1045, 1046 (Galileo) and 63 (BDS/BeiDou, tentative message number) are required. Select your streams line by line, use +Shift and +Ctrl when necessary. The figure below provides an example source-table. 4400 </p> 4401 <p> 4402 The content of data field 'nmea' tells you whether a stream retrieval needs to be initiated by BNC through sending an NMEA-GGA message carrying approximate position coordinates (Virtual Reference Station, VRS). 4403 </p> 4404 <p> 4405 Hit 'OK' to return to the main window. If you wish, you can click on 'Add Stream' and repeat the process of retrieving streams from different casters. 4406 </p> 4407 <p><img src="IMG/screenshot05.png"/></p> 4408 <p><u>Figure 39:</u> Broadcaster source-table shown by BNC</p> 4409 4410 <p><h4>2.19.1.1.5 <a name="ntripv">Ntrip Version - mandatory</h4></p> 4411 <p> 4412 Some limitations and deficiencies of the Ntrip Version 1 stream transport protocol are solved in Ntrip Version 2. Improvements mainly concern a full HTTP compatibility in view of requirements coming from proxy servers. Version 2 is backwards compatible to Version 1. Options implemented in BNC are: 4413 </p> 4414 4415 <p> 4416 <table> 4417 <tr></tr> 4418 <tr><td><b>Option </b></td><td><b>Meaning</b></td></tr> 4419 <tr><td> 1</td><td>Ntrip Version 1, TCP/IP</td></tr> 4420 <tr><td> 2</td><td>Ntrip Version 2 in TCP/IP mode</td></tr> 4421 <tr><td> 2s</td><td>Ntrip Version 2 in TCP/IP mode via SSL</td></tr> 4422 <tr><td> R</td><td>Ntrip Version 2 in RTSP/RTP mode</td></tr> 4423 <tr><td> U</td><td>Ntrip Version 2 in UDP mode</td></tr> 4524 4424 </table> 4525 <p>If Ntrip Version 2 is supported by the broadcaster:</p> 4526 <ul class="simple"> 4527 <li>Try using option ‘2’ if your streams are otherwise blocked by a proxy server operated in front of BNC.</li> 4528 <li>When using Ntrip Version 2 via SSL (option ‘2s’) you need to specify the appropriate ‘Caster port’ for that. It is usually port number 443. Clarify ‘SSL’ options offered in panel ‘Network’.</li> 4529 <li>Option ‘R’ or ‘U’ may be selected if latency is more important than completeness for your application. Note that the latency reduction is likely to be in the order of 0.5 sec or less. Note further that options ‘R’ (RTSP/RTP mode) and ‘U’ (UDP mode) are not accepted by proxy servers and a mobile Internet Service Provider may not support it.</li> 4530 </ul> 4531 <p>Select option ‘1’ if you are not sure whether the broadcaster supports Ntrip Version 2.</p> 4532 </div> 4533 <div class="section" id="map-optional"> 4534 <h5>Map - optional<a class="headerlink" href="#map-optional" title="Permalink to this headline">¶</a></h5> 4535 <p>Button ‘Map’ opens a window to show a distribution map of the caster’s streams <a class="reference internal" href="#fig-40"><span class="std std-numref">(Fig. 42)</span></a>. You may like to zoom in or out using the mouse. Left button: draw a rectangle to zoom, right button: zoom out, middle button: zoom back.</p> 4536 <div class="figure" id="id69"> 4537 <span id="fig-40"></span><a class="reference internal image-reference" href="_images/fig_40.png"><img alt="_images/fig_40.png" src="_images/fig_40.png" style="width: 808.0px; height: 737.0px;" /></a> 4538 <p class="caption"><span class="caption-number">Fig. 42 </span><span class="caption-text">Stream distribution map shown by BNC as derived from Ntrip Broadcaster source-table</span></p> 4539 </div> 4540 </div> 4541 </div> 4542 <div class="section" id="add-stream-coming-from-tcp-ip-port"> 4543 <h4>Add Stream - Coming from TCP/IP Port<a class="headerlink" href="#add-stream-coming-from-tcp-ip-port" title="Permalink to this headline">¶</a></h4> 4544 <p>Button ‘Add Stream’ > ‘Coming from TCP/IP Port’ allows to retrieve streams via TCP directly from an IP address without using the Ntrip transport protocol. For that you:</p> 4545 <ul class="simple"> 4425 </p> 4426 4427 <p> 4428 If Ntrip Version 2 is supported by the broadcaster: 4429 </p> 4430 <ul> 4431 <li>Try using option '2' if your streams are otherwise blocked by a proxy server operated in front of BNC.</li> 4432 <li>When using Ntrip Version 2 via SSL (option '2s') you need to specify the appropriate 'Caster port' for that. It is usually port number 443. Clarify 'SSL' options offered in panel 'Network'.</li> 4433 <li>Option 'R' or 'U' may be selected if latency is more important than completeness for your application. Note that the latency reduction is likely to be in the order of 0.5 sec or less. Note further that options 'R' (RTSP/RTP mode) and 'U' (UDP mode) are not accepted by proxy servers and a mobile Internet Service Provider may not support it.</li> 4434 </ul> 4435 <p> 4436 Select option '1' if you are not sure whether the broadcaster supports Ntrip Version 2.</li> 4437 </p> 4438 4439 <p><h4>2.19.1.1.6 <a name="castermap">Map - optional</h4></p> 4440 <p> 4441 Button 'Map' opens a window to show a distribution map of the caster's streams. You may like to zoom in or out using the mouse. Left button: draw a rectangle to zoom, right button: zoom out, middle button: zoom back. 4442 </p> 4443 4444 <p><img src="IMG/screenshot24.png"/></p> 4445 <p><u>Figure 40:</u> Stream distribution map shown by BNC as derived from Ntrip Broadcaster source-table</p> 4446 4447 <p><h4>2.19.1.2 <a name="streamip">Add Stream - Coming from TCP/IP Port</h4></p> 4448 <p> 4449 Button 'Add Stream' > 'Coming from TCP/IP Port' allows to retrieve streams via TCP directly from an IP address without using the Ntrip transport protocol. For that you: 4450 <ul> 4546 4451 <li>Enter the IP address of the stream providing host.</li> 4547 4452 <li>Enter the IP port number of the stream providing host.</li> 4548 4453 <li>Specify a mountpoint. Recommended is a 4-character station ID. Example: FFMJ</li> 4549 <li>Specify the stream format. Available options are ‘RTCM_2’, ‘RTCM_3’, ‘RTNET’, and ‘ZERO’.</li>4454 <li>Specify the stream format. Available options are 'RTCM_2', 'RTCM_3', 'RTNET', and 'ZERO'.</li> 4550 4455 <li>Enter the approximate latitude of the stream providing rover in degrees. Example: 45.32.</li> 4551 4456 <li>Enter the approximate longitude of the stream providing rover in degrees. Example: -15.20.</li> 4552 4457 </ul> 4553 <p>Streams directly received from a TCP/IP port show up with an ‘N’ for ‘No Ntrip’ in the ‘Streams’ canvas on BNC’s main window. Latitude and longitude are to be entered just for informal reasons. Note that this option works only if no proxy server is involved in the communication link.</p> 4554 </div> 4555 <div class="section" id="add-stream-coming-from-udp-port"> 4556 <h4>Add Stream - Coming from UDP Port<a class="headerlink" href="#add-stream-coming-from-udp-port" title="Permalink to this headline">¶</a></h4> 4557 <p>Button ‘Add Stream’ > ‘Coming from UDP Port’ allows to pick up streams arriving directly at one of the local host’s UDP ports without using the Ntrip transport protocol. For that you:</p> 4558 <ul class="simple"> 4458 </p> 4459 <p> 4460 Streams directly received from a TCP/IP port show up with an 'N' for 'No Ntrip' in the 'Streams' canvas on BNC's main window. Latitude and longitude are to be entered just for informal reasons. 4461 <p> 4462 </p> 4463 Note that this option works only if no proxy server is involved in the communication link. 4464 </p> 4465 4466 <p><h4>2.19.1.3 <a name="streamudp">Add Stream - Coming from UDP Port</h4></p> 4467 <p> 4468 Button 'Add Stream' > 'Coming from UDP Port' allows to pick up streams arriving directly at one of the local host's UDP ports without using the Ntrip transport protocol. For that you: 4469 <ul> 4559 4470 <li>Enter the local port number where the UDP stream arrives.</li> 4560 4471 <li>Specify a mountpoint. Recommended is a 4-character station ID. Example: FFMJ</li> 4561 <li>Specify the stream format. Available options are ‘RTCM_2’, ‘RTCM_3’, ‘RTNET’, and ‘ZERO’.</li>4472 <li>Specify the stream format. Available options are 'RTCM_2', 'RTCM_3', 'RTNET', and 'ZERO'.</li> 4562 4473 <li>Enter the approximate latitude of the stream providing rover in degrees. Example: 45.32.</li> 4563 4474 <li>Enter the approximate longitude of the stream providing rover in degrees. Example: -15.20.</li> 4564 4475 </ul> 4565 <p>Streams directly received at a UDP port show up with a ‘UN’ for ‘UDP, No Ntrip’ in the ‘Streams’ canvas section on BNC’s main window. Latitude and longitude are to be entered just for informal reasons.</p> 4566 </div> 4567 <div class="section" id="add-stream-coming-from-serial-port"> 4568 <h4>Add Stream - Coming from Serial Port<a class="headerlink" href="#add-stream-coming-from-serial-port" title="Permalink to this headline">¶</a></h4> 4569 <p>Button ‘Add Stream’ > ‘Coming from Serial Port’ allows to retrieve streams from a GNSS receiver via serial port without using the Ntrip transport protocol. For that you:</p> 4570 <ul class="simple"> 4476 </p> 4477 <p> 4478 Streams directly received at a UDP port show up with a 'UN' for 'UDP, No Ntrip' in the 'Streams' canvas section on BNC's main window. Latitude and longitude are to be entered just for informal reasons. 4479 <p> 4480 4481 <p><h4>2.19.1.4 <a name="streamser">Add Stream - Coming from Serial Port</h4></p> 4482 <p> 4483 Button 'Add Stream' > 'Coming from Serial Port' allows to retrieve streams from a GNSS receiver via serial port without using the Ntrip transport protocol. For that you: 4484 <ul> 4571 4485 <li>Specify a mountpoint. Recommended is a 4-character station ID. Example: FFMJ</li> 4572 <li>Specify the stream format. Available options are ‘RTCM_2’, ‘RTCM_3’, ‘RTNET’, and ‘ZERO’.</li>4486 <li>Specify the stream format. Available options are 'RTCM_2', 'RTCM_3', 'RTNET', and 'ZERO'.</li> 4573 4487 <li>Enter the approximate latitude of the stream providing receiver in degrees. Example: 45.32.</li> 4574 4488 <li>Enter the approximate longitude of the stream providing receiver in degrees. Example: -15.20.</li> 4575 <li>Enter the serial ‘Port name’ selected on your host for communication with the receiver. Valid port names are listed in <a class="reference internal" href="#tab-serial-port-names"><span class="std std-numref">Table 14</span></a>.</li> 4576 <li>Select a ‘Baud rate’ for the serial input. Note that using a high baud rate is recommended.</li> 4577 <li>Select the number of ‘Data bits’ for the serial input. Note that often ‘8’ data bits are used.</li> 4578 <li>Select the ‘Parity’ for the serial input. Note that parity is often set to ‘NONE’.</li> 4579 <li>Select the number of ‘Stop bits’ for the serial input. Note that often ‘1’ stop bit is used.</li> 4580 <li>Select a ‘Flow control’ for the serial link. Select ‘OFF’ if you do not know better.</li> 4581 </ul> 4582 <p>When selecting one of the serial communication options listed above, make sure that you pick those configured to the serially connected GNSS receiver. Streams received from a serially connected GNSS receiver show up with an ‘S’ (for Serial Port, no Ntrip) in the ‘Streams’ canvas section on BNC’s main window. Latitude and longitude are to be entered just for informal reasons.</p> 4583 <table border="1" class="docutils" id="id70"> 4584 <span id="tab-serial-port-names"></span><caption><span class="caption-number">Table 14 </span><span class="caption-text">Valid port names in BNC.</span><a class="headerlink" href="#id70" title="Permalink to this table">¶</a></caption> 4585 <colgroup> 4586 <col width="37%" /> 4587 <col width="63%" /> 4588 </colgroup> 4589 <thead valign="bottom"> 4590 <tr class="row-odd"><th class="head"><strong>OS</strong></th> 4591 <th class="head"><strong>Valid port names</strong></th> 4592 </tr> 4593 </thead> 4594 <tbody valign="top"> 4595 <tr class="row-even"><td>Windows</td> 4596 <td>COM1, COM2</td> 4597 </tr> 4598 <tr class="row-odd"><td>Linux</td> 4599 <td>/dev/ttyS0, /dev/ttyS1</td> 4600 </tr> 4601 <tr class="row-even"><td>FreeBSD</td> 4602 <td>/dev/ttyd0, /dev/ttyd1</td> 4603 </tr> 4604 <tr class="row-odd"><td>Digital Unix</td> 4605 <td>/dev/tty01, /dev/tty02</td> 4606 </tr> 4607 <tr class="row-even"><td>HP-UX</td> 4608 <td>/dev/tty1p0, /dev/tty2p0</td> 4609 </tr> 4610 <tr class="row-odd"><td>SGI/IRIX</td> 4611 <td>/dev/ttyf1, /dev/ttyf2</td> 4612 </tr> 4613 <tr class="row-even"><td>SunOS/Solaris</td> 4614 <td>/dev/ttya, /dev/ttyb</td> 4615 </tr> 4616 </tbody> 4617 </table> 4618 <p><a class="reference internal" href="#fig-41"><span class="std std-numref">Fig. 43</span></a> shows a BNC example setup for pulling a stream via serial port on a Windows operating system.</p> 4619 <div class="figure" id="id71"> 4620 <span id="fig-41"></span><a class="reference internal image-reference" href="_images/fig_41.png"><img alt="_images/fig_41.png" src="_images/fig_41.png" style="width: 408.0px; height: 209.0px;" /></a> 4621 <p class="caption"><span class="caption-number">Fig. 43 </span><span class="caption-text">BNC configuration for pulling a stream via serial port</span></p> 4622 </div> 4623 </div> 4624 <div class="section" id="map"> 4625 <h4>Map<a class="headerlink" href="#map" title="Permalink to this headline">¶</a></h4> 4626 <p>Button ‘Map’ opens a window to show a distribution map of the streams selected for retrieval as listed under the ‘Streams’ canvas. You may like to zoom in or out using the mouse. Left button: draw a rectangle to zoom, right button: zoom out, middle button: zoom back.</p> 4627 </div> 4628 <div class="section" id="start-stop"> 4629 <h4>Start/Stop<a class="headerlink" href="#start-stop" title="Permalink to this headline">¶</a></h4> 4630 <p>Hit ‘Start’ to start retrieving, decoding or converting GNSS data streams in real-time. Note that ‘Start’ generally forces BNC to begin with fresh RINEX files which might overwrite existing files when necessary unless option ‘Append files’ is ticked.</p> 4631 <p>Hit the ‘Stop’ button in order to stop BNC.</p> 4632 </div> 4633 <div class="section" id="help-shift-f1"> 4634 <h4>Help? = Shift+F1<a class="headerlink" href="#help-shift-f1" title="Permalink to this headline">¶</a></h4> 4635 <p>BNC comes with a ‘What’s This’ help system providing information about its functionality and usage. Short descriptions are available for any widget and program option. Focus to the relevant object and press Shift+F1 to request help information. A help text appears immediately; it disappears as soon as the user does something else. The dialogs on some operating systems may provide a ‘?’ button that users can click; click the relevant widget to pop up the help text.</p> 4636 </div> 4637 </div> 4638 <div class="section" id="command-line-options"> 4639 <span id="index-46"></span><h3>Command Line Options<a class="headerlink" href="#command-line-options" title="Permalink to this headline">¶</a></h3> 4640 <p>Command line options are available to run BNC in ‘no window’ mode or let it read previously recorded input offline from one or several files for debugging or post processing purposes. It is also possible to introduce a specific configuration filename instead of using the default filename ‘BNC.bnc’. The self-explaining content of the configuration file can easily be edited. In addition to reading processing options from the involved configuration file, BNC can optionally read any configuration option from command line. Running BNC with command line option ‘help’</p> 4641 <div class="highlight-console"><div class="highlight"><pre><span class="go">bnc --help (MS Windows: bnc.exe --help | more)</span> 4642 </pre></div> 4643 </div> 4644 <p>provides a list of all available command line options.</p> 4645 <div class="section" id="id21"> 4646 <h4>Version - optional<a class="headerlink" href="#id21" title="Permalink to this headline">¶</a></h4> 4647 <p>Command line option <code class="docutils literal"><span class="pre">--version</span></code> lets BNC print its version number.</p> 4648 <div class="highlight-console"><div class="highlight"><pre><span class="go">bnc --version (MS Windows: bnc.exe --version | more)</span> 4649 </pre></div> 4650 </div> 4651 </div> 4652 <div class="section" id="display-optional"> 4653 <h4>Display - optional<a class="headerlink" href="#display-optional" title="Permalink to this headline">¶</a></h4> 4654 <p>On systems which support graphics, command line option <code class="docutils literal"><span class="pre">--display</span></code> forces BNC to present the BNC window on the specified display.</p> 4655 <div class="highlight-console"><div class="highlight"><pre><span class="go">bnc.exe --display localhost:10.0</span> 4656 </pre></div> 4657 </div> 4658 </div> 4659 <div class="section" id="no-window-mode-optional"> 4660 <h4>No Window Mode - optional<a class="headerlink" href="#no-window-mode-optional" title="Permalink to this headline">¶</a></h4> 4661 <p>Apart from its regular windows mode, BNC can be started on all systems as a batch job with command line option ‘-nw’. BNC will then run in ‘no window’ mode, using processing options from its configuration file on disk. Terminate BNC using Windows Task Manager when running it in ‘no window’ mode on Windows systems.</p> 4662 <div class="highlight-console"><div class="highlight"><pre><span class="go">bnc.exe --nw</span> 4663 </pre></div> 4664 </div> 4665 <p>It is obvious that BNC requires graphics support when started in interactive mode. However, note that graphics support is also required when producing plots in batch mode (option <code class="docutils literal"><span class="pre">-nw</span></code>). Windows and Mac OS X systems always support graphics. For producing plots in batch mode on Linux systems you must make sure that at least a virtual X-Server such as ‘Xvfb’ is installed and the <code class="docutils literal"><span class="pre">-display</span></code> option is used. The following is an example shell script to execute BNC in batch mode for producing QC plots from RINEX files. It could be used via <code class="docutils literal"><span class="pre">crontab</span></code>:</p> 4666 <div class="highlight-none"><div class="highlight"><pre>#!/bin/bash 4667 # Save string localhost 4668 echo "localhost" > /home/user/hosts 4669 4670 # Start virtual X-Server, save process ID 4671 /usr/bin/Xvfb :29 -auth /home/user/hosts -screen 0 1280x1024x8 & 4672 psID=`echo $!` 4673 4674 # Run BNC application with defined display variable 4675 /home/user/BNC/bnc --conf /dev/null --key reqcAction Analyze --key reqcObsFile ons12090.12o --key reqcNavFile brdc2090.12p --key reqcOutLogFile multi.txt --key reqcPlotDir /home/user --display localhost:29 --nw 4676 4677 # BNC done, kill X-server process 4678 kill $psID 4679 </pre></div> 4680 </div> 4681 </div> 4682 <div class="section" id="file-mode-optional"> 4683 <h4>File Mode - optional<a class="headerlink" href="#file-mode-optional" title="Permalink to this headline">¶</a></h4> 4684 <p>Although BNC is primarily a real-time online tool, for debugging purposes it can be run offline to read data from a file previously saved through option ‘Raw output file’ (Record & Replay functionality). Enter the following command line option for that</p> 4685 <div class="highlight-console"><div class="highlight"><pre><span class="go">--file <inputFileName></span> 4686 </pre></div> 4687 </div> 4688 <p>and specify the full path to an input file containing previously saved data, e.g.</p> 4689 <div class="highlight-console"><div class="highlight"><pre><span class="go">./bnc --file /home/user/raw.output_110301</span> 4690 </pre></div> 4691 </div> 4692 <p>Note that when running BNC offline, it will use options for file saving, interval, sampling, PPP etc. from its configuration file. Note further that option <code class="docutils literal"><span class="pre">--file</span></code> forces BNC to apply the ‘-nw’ option for running in ‘no window’ mode.</p> 4693 </div> 4694 <div class="section" id="configuration-file-optional"> 4695 <h4>Configuration File - optional<a class="headerlink" href="#configuration-file-optional" title="Permalink to this headline">¶</a></h4> 4696 <p>The default configuration filename is <code class="docutils literal"><span class="pre">BNC.bnc</span></code>. You may change this name at startup time using command line option <code class="docutils literal"><span class="pre">--conf</span> <span class="pre"><confFileName></span></code>. This allows running several BNC jobs in parallel on the same host using different sets of configuration options. ‘confFileName’ stands either for the full path to a configuration file or just for a filename. If you introduce only a filename, the corresponding file will be saved in the current working directory from where BNC is started, e.g.</p> 4697 <div class="highlight-console"><div class="highlight"><pre><span class="go">./bnc --conf MyConfig.bnc</span> 4698 </pre></div> 4699 </div> 4700 <p>This leads to a BNC job using configuration file ‘MyConfig.bnc’. The configuration file will be saved in the current working directory.</p> 4701 </div> 4702 <div class="section" id="configuration-options-optional"> 4703 <h4>Configuration Options - optional<a class="headerlink" href="#configuration-options-optional" title="Permalink to this headline">¶</a></h4> 4704 <p>BNC applies options from the configuration file but allows updating every one of them on the command line while the content of the configuration file remains unchanged. Note the following syntax for Command Line Interface (CLI) options:</p> 4705 <div class="highlight-console"><div class="highlight"><pre><span class="go">--key <keyName> <keyValue></span> 4706 </pre></div> 4707 </div> 4708 <p>Parameter <keyName> stands for the key name of an option contained in the configuration file and <keyValue> stands for the value you want to assign to it. The following is a syntax example for a complete command line:</p> 4709 <div class="highlight-console"><div class="highlight"><pre><span class="go">bnc --nw --conf <confFileName> --key <keyName1> <keyValue1> --key <keyName2> <keyValue2> ...</span> 4710 </pre></div> 4711 </div> 4712 <p>Configuration options which are part of the configuration files PPP section must be prefixed by ‘PPP/’. As an example, option ‘minObs’ from the PPP section of the BNC configuration file would be specified as ‘PPP/minObs’ on a command line.</p> 4713 <p>Values for configuration options can be introduced via command line exactly as they show up in the configuration file. However, any value containing one or more blank characters must be enclosed by quotation marks when specified on command line.</p> 4714 <p id="bibtex-bibliography-chapter5-0"><table class="docutils citation" frame="void" id="rupprecht2000a" rules="none"> 4715 <colgroup><col class="label" /><col /></colgroup> 4716 <tbody valign="top"> 4717 <tr><td class="label">[1]</td><td>W Rupprecht. DGPS-IP. 2000. URL: <a class="reference external" href="http://www.wsrcc.com/wolfgang/gps/dgps-ip.html">http://www.wsrcc.com/wolfgang/gps/dgps-ip.html</a>.</td></tr> 4718 </tbody> 4719 </table> 4720 <table class="docutils citation" frame="void" id="weber2004a" rules="none"> 4721 <colgroup><col class="label" /><col /></colgroup> 4722 <tbody valign="top"> 4723 <tr><td class="label">[2]</td><td>G Weber and M Honkala. The future is talking Ntrip. Newsletter, Trimble GmbH Raunheim, Germany, 2004.</td></tr> 4724 </tbody> 4725 </table> 4726 <table class="docutils citation" frame="void" id="weber2005a" rules="none"> 4727 <colgroup><col class="label" /><col /></colgroup> 4728 <tbody valign="top"> 4729 <tr><td class="label">[3]</td><td>G Weber, D Dettmering, and H Gebhard. Networked Transport of RTCM via Internet Protocol (NTRIP). In F Sanso, editor, <em>A Window on the Future, Proceedings of the IAG General Assembly, Sapporo, Japan, 2003</em>, volume 128, 60–64. Springer, 2005.</td></tr> 4730 </tbody> 4731 </table> 4732 <table class="docutils citation" frame="void" id="weber2005b" rules="none"> 4733 <colgroup><col class="label" /><col /></colgroup> 4734 <tbody valign="top"> 4735 <tr><td class="label">[4]</td><td>G Weber, D Dettmering, H Gebhard, and R Kalafus. Networked Transport of RTCM via Internet Protocol (Ntrip) ... IP-Streaming for Real-Time GNSS Applications. In <em>Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), September 13 - 16, 2005, Long Beach Convention Center, Long Beach, CA, USA</em>. 2005.</td></tr> 4736 </tbody> 4737 </table> 4738 <table class="docutils citation" frame="void" id="rtcm-sc104-2011a" rules="none"> 4739 <colgroup><col class="label" /><col /></colgroup> 4740 <tbody valign="top"> 4741 <tr><td class="label">[5]</td><td>RTCM-SC104. Amendment 1 to RTCM Standard 10410.1 Networked Transport of RTCM via Internet Protocol (Ntrip) - Version 2.0. RTCM Papter 139-2011-SC104-STD, 2011. <a class="reference external" href="http://dx.doi.org/10.1007/s10291-012-0255-y">doi:10.1007/s10291-012-0255-y</a>.</td></tr> 4742 </tbody> 4743 </table> 4744 <table class="docutils citation" frame="void" id="weber2009a" rules="none"> 4745 <colgroup><col class="label" /><col /></colgroup> 4746 <tbody valign="top"> 4747 <tr><td class="label">[6]</td><td>G Weber and L Mervart. The BKG Ntrip Client (BNC). In <em>Report on EUREF Symposium 2007 in London</em>, volume 42 of Mitteilungen des Bundesamtes fuer Kartographie und Geodaesie. Frankfurt am Main, 2009.</td></tr> 4748 </tbody> 4749 </table> 4750 <table class="docutils citation" frame="void" id="estey1999a" rules="none"> 4751 <colgroup><col class="label" /><col /></colgroup> 4752 <tbody valign="top"> 4753 <tr><td class="label"><a class="fn-backref" href="#id3">[7]</a></td><td>L H Estey and C M Meertens. TEQC: The Multi-Purpose Toolkit for GPS/GLONASS Data. <em>GPS Solutions</em>, 3(1):42–49, 1999. <a class="reference external" href="http://dx.doi.org/10.1007/PL00012778">doi:10.1007/PL00012778</a>.</td></tr> 4754 </tbody> 4755 </table> 4756 <table class="docutils citation" frame="void" id="caissy2012a" rules="none"> 4757 <colgroup><col class="label" /><col /></colgroup> 4758 <tbody valign="top"> 4759 <tr><td class="label"><a class="fn-backref" href="#id9">[8]</a></td><td>M Caissy, L Agrotis, G Weber, M Hernandez-Pajares, and U. Hugentobler. Coming Soon: The International GNSS Real-Time Service. <em>GPS World</em>, 23(6):52–58, 2012.</td></tr> 4760 </tbody> 4761 </table> 4762 <table class="docutils citation" frame="void" id="mervart2008a" rules="none"> 4763 <colgroup><col class="label" /><col /></colgroup> 4764 <tbody valign="top"> 4765 <tr><td class="label"><a class="fn-backref" href="#id11">[9]</a></td><td>L Mervart, Z Lukes, C Rocken, and T Iwabuchi. Precise Point Positioning With Ambiguity Resolution in Real-Time. In <em>Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), September 16-19, 2008, Savannah International Convention Center, Savannah, GA, USA</em>, 397–405. 2008.</td></tr> 4766 </tbody> 4767 </table> 4768 <table class="docutils citation" frame="void" id="mervart2011a" rules="none"> 4769 <colgroup><col class="label" /><col /></colgroup> 4770 <tbody valign="top"> 4771 <tr><td class="label"><a class="fn-backref" href="#id12">[10]</a></td><td>L Mervart and G Weber. Real-time Combination of GNSS Orbit and Clock Correction Streams Using a Kalman Filter Approach. In <em>Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011), September 20 - 23, 2011, Oregon Convention Center, Portland, Oregon, Portland, OR , USA</em>. 2011.</td></tr> 4772 </tbody> 4773 </table> 4774 <table class="docutils citation" frame="void" id="huisman2012a" rules="none"> 4775 <colgroup><col class="label" /><col /></colgroup> 4776 <tbody valign="top"> 4777 <tr><td class="label"><a class="fn-backref" href="#id13">[11]</a></td><td>L Huisman, P Teunissen, and C Hu. GNSS Precise Point Positioning in Regional Reference Frames Using Real-time Broadcast Corrections. <em>Journal of Applied Geodesy</em>, 6(1):15–23, 2012. <a class="reference external" href="http://dx.doi.org/10.1515/jag-2011-0006">doi:10.1515/jag-2011-0006</a>.</td></tr> 4778 </tbody> 4779 </table> 4780 <table class="docutils citation" frame="void" id="pearson2013a" rules="none"> 4781 <colgroup><col class="label" /><col /></colgroup> 4782 <tbody valign="top"> 4783 <tr><td class="label"><a class="fn-backref" href="#id14">[12]</a></td><td>C Pearson and R Snay. Introducing HTDP 3.1 to transform coordinates across time and spatial reference frames. <em>GPS Solutions</em>, 17(1):1–15, 2013.</td></tr> 4784 </tbody> 4785 </table> 4786 <table class="docutils citation" frame="void" id="dawson2010a" rules="none"> 4787 <colgroup><col class="label" /><col /></colgroup> 4788 <tbody valign="top"> 4789 <tr><td class="label"><a class="fn-backref" href="#id15">[13]</a></td><td>J Dawson and A. Woods. ITRF to GDA94 coordinate transformations. <em>Journal of Applied Geodesy</em>, 4:189–199, 2010. <a class="reference external" href="http://dx.doi.org/10.1515/JAG.2010.019">doi:10.1515/JAG.2010.019</a>.</td></tr> 4790 </tbody> 4791 </table> 4792 <table class="docutils citation" frame="void" id="ibge-dgc2016a" rules="none"> 4793 <colgroup><col class="label" /><col /></colgroup> 4794 <tbody valign="top"> 4795 <tr><td class="label"><a class="fn-backref" href="#id16">[14]</a></td><td>IBGE/DGC, Diretoria de Geociencias Brazil, CGED-Coordenacao de Geodesia. Transformation ITRF2008 to SIRGAS2000. personal communication from CGED-Coordenacao de Geodesia, 2016.</td></tr> 4796 </tbody> 4797 </table> 4798 <table class="docutils citation" frame="void" id="acuha2016a" rules="none"> 4799 <colgroup><col class="label" /><col /></colgroup> 4800 <tbody valign="top"> 4801 <tr><td class="label"><a class="fn-backref" href="#id17">[15]</a></td><td>G Acuha. Transformation parameters ITRF2005 to SIRGAS95. personal communication. Laboratorio de Geodesia Fisica y Satelital at Zulia University (LGFS-LUZ).</td></tr> 4802 </tbody> 4803 </table> 4804 <table class="docutils citation" frame="void" id="sirgas2009a" rules="none"> 4805 <colgroup><col class="label" /><col /></colgroup> 4806 <tbody valign="top"> 4807 <tr><td class="label"><a class="fn-backref" href="#id18">[16]</a></td><td>Sirgas. Terrestrial Reference Frames. 2009. URL: <a class="reference external" href="http://tai.bipm.org/iers/convupdt/convupdt_c4.html">http://tai.bipm.org/iers/convupdt/convupdt_c4.html</a>.</td></tr> 4808 </tbody> 4809 </table> 4810 <table class="docutils citation" frame="void" id="franke2008a" rules="none"> 4811 <colgroup><col class="label" /><col /></colgroup> 4812 <tbody valign="top"> 4813 <tr><td class="label"><a class="fn-backref" href="#id19">[17]</a></td><td>P Franke. Referenzkoordinaten für SAPOS, Empfehlungen der Projektgruppe SAPOS-Koordinatenmonitoring 2008. personal communication, 2008.</td></tr> 4814 </tbody> 4815 </table> 4816 <table class="docutils citation" frame="void" id="weber2007a" rules="none"> 4817 <colgroup><col class="label" /><col /></colgroup> 4818 <tbody valign="top"> 4819 <tr><td class="label">[18]</td><td>G Weber, L Mervart, Z Lukes, C Rocken, and J Dousa. Real-time Clock and Orbit Corrections for Improved Point Positioning via NTRIP. In <em>Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), September 25 - 28, 2007, Fort Worth Convention Center, Fort Worth, TX, USA</em>. 2007.</td></tr> 4820 </tbody> 4821 </table> 4822 </p> 4823 </div> 4824 </div> 4825 </div> 4826 <span id="document-annex"></span><span class="target" id="index-0"></span><div class="section" id="annex"> 4827 <h2>Annex<a class="headerlink" href="#annex" title="Permalink to this headline">¶</a></h2> 4828 <div class="section" id="revision-history"> 4829 <span id="index-1"></span><h3>Revision History<a class="headerlink" href="#revision-history" title="Permalink to this headline">¶</a></h3> 4830 <table border="1" class="docutils"> 4831 <colgroup> 4832 <col width="5%" /> 4833 <col width="8%" /> 4834 <col width="87%" /> 4835 </colgroup> 4836 <tbody valign="top"> 4837 <tr class="row-odd"><td>Dec 2006</td> 4838 <td>Version 1.0b</td> 4489 <li>Enter the serial 'Port name' selected on your host for communication with the receiver. Valid port names are 4490 <pre> 4491 Windows: COM1, COM2 4492 Linux: /dev/ttyS0, /dev/ttyS1 4493 FreeBSD: /dev/ttyd0, /dev/ttyd1 4494 Digital Unix: /dev/tty01, /dev/tty02 4495 HP-UX: /dev/tty1p0, /dev/tty2p0 4496 SGI/IRIX: /dev/ttyf1, /dev/ttyf2 4497 SunOS/Solaris: /dev/ttya, /dev/ttyb 4498 </pre> 4499 </li> 4500 <li>Select a 'Baud rate' for the serial input. Note that using a high baud rate is recommended.</li> 4501 <li>Select the number of 'Data bits' for the serial input. Note that often '8' data bits are used.</li> 4502 <li>Select the 'Parity' for the serial input. Note that parity is often set to 'NONE'.</li> 4503 <li>Select the number of 'Stop bits' for the serial input. Note that often '1' stop bit is used.</li> 4504 <li>Select a 'Flow control' for the serial link. Select 'OFF' if you do not know better.</li> 4505 </ul> 4506 </p> 4507 <p> 4508 When selecting one of the serial communication options listed above, make sure that you pick those configured to the serially connected GNSS receiver. 4509 </p> 4510 4511 <p> 4512 Streams received from a serially connected GNSS receiver show up with an 'S' (for <u>S</u>erial Port, no Ntrip) in the 'Streams' canvas section on BNC's main window. Latitude and longitude are to be entered just for informal reasons. 4513 <p> 4514 4515 <p> 4516 The following figure shows a BNC example setup for pulling a stream via serial port on a Windows operating system. 4517 </p> 4518 <p><img src="IMG/screenshot15.png"/></p> 4519 <p><u>Figure 41:</u> BNC configuration for pulling a stream via serial port</p> 4520 4521 <p><h4>2.19.2 <a name="streamsdelete">Delete Stream</h4></p> 4522 <p> 4523 Button 'Delete Stream' allows you to delete streams previously selected for retrieval as listed under the 'Streams' canvas on BNC's main window. 4524 </p> 4525 4526 <p><h4>2.19.3 <a name="streamsmap">Map</h4></p> 4527 <p> 4528 Button 'Map' opens a window to show a distribution map of the streams selected for retrieval as listed under the 'Streams' canvas. You may like to zoom in or out using the mouse. Left button: draw a rectangle to zoom, right button: zoom out, middle button: zoom back. 4529 </p> 4530 4531 <p><h4>2.19.4 <a name="start">Start</h4></p> 4532 <p> 4533 Hit 'Start' to start retrieving, decoding or converting GNSS data streams in real-time. Note that 'Start' generally forces BNC to begin with fresh RINEX files which might overwrite existing files when necessary unless option 'Append files' is ticked. 4534 </p> 4535 4536 <p><h4>2.19.5 <a name="stop">Stop</h4></p> 4537 <p> 4538 Hit the 'Stop' button in order to stop BNC. 4539 </p> 4540 4541 <p><h4>2.19.6 <a name="contexthelp">Help? = Shift+F1</h4></p> 4542 <p> 4543 BNC comes with a <i>What's This</i> help system providing information about its functionality and usage. Short descriptions are available for any widget and program option. Focus to the relevant object and press Shift+F1 to request help information. A help text appears immediately; it disappears as soon as the user does something else. The dialogs on some operating systems may provide a '?' button that users can click; click the relevant widget to pop up the help text. 4544 </p> 4545 4546 <p><h4>2.20 <a name="cmd">Command Line Options</h4></p> 4547 <p> 4548 Command line options are available to run BNC in 'no window' mode or let it read previously recorded input offline from one or several files for debugging or post processing purposes. It is also possible to introduce a specific configuration filename instead of using the default filename 'BNC.bnc'. The self-explaining content of the configuration file can easily be edited. 4549 </p> 4550 <p> 4551 In addition to reading processing options from the involved configuration file, BNC can optionally read any configuration option from command line. Running BNC with command line option 'help' 4552 </p> 4553 <p> 4554 Example:<br><br> 4555 bnc --help (MS Windows: bnc.exe --help | more) 4556 </p> 4557 <p> 4558 provides a list of all available command line options. 4559 </p> 4560 4561 <p><h4>2.20.1 <a name="cmdVersion">Version - optional</h4></p> 4562 <p> 4563 Command line option '--version' lets BNC print its version number. 4564 </p> 4565 <p> 4566 Example:<br><br> 4567 bnc --version (MS Windows: bnc.exe --version | more) 4568 </p> 4569 4570 <p><h4>2.20.2 <a name="cmdDisplay">Display - optional</h4></p> 4571 <p> 4572 On systems which support graphics, command line option '--display' forces BNC to present the BNC window on the specified display. 4573 </p> 4574 <p> 4575 Example:<br><br> 4576 bnc.exe --display localhost:10.0 4577 </p> 4578 4579 <p><h4>2.20.3 <a name="nw">No Window Mode - optional</h4></p> 4580 <p> 4581 Apart from its regular windows mode, BNC can be started on all systems as a batch job with command line option '-nw'. BNC will then run in 'no window' mode, using processing options from its configuration file on disk. Terminate BNC using Windows Task Manager when running it in 'no window' mode on Windows systems. 4582 </p> 4583 <p> 4584 Example:<br><br> 4585 bnc.exe --nw 4586 </p> 4587 <p> 4588 It is obvious that BNC requires graphics support when started in interactive 4589 mode. However, note that graphics support is also required when producing plots in 4590 batch mode (option -nw). Windows and Mac OS X systems always support graphics. For 4591 producing plots in batch mode on Linux systems you must make sure that at 4592 least a virtual X-Server such as 'Xvfb' is installed and the '-display' option 4593 is used. The following is an example shell script to execute BNC in batch mode 4594 for producing QC plots from RINEX files. It could be used via 'crontab': 4595 </p> 4596 <pre> 4597 #!/bin/bash 4598 4599 # Save string localhost 4600 echo "localhost" > /home/user/hosts 4601 4602 # Start virtual X-Server, save process ID 4603 /usr/bin/Xvfb :29 -auth /home/user/hosts -screen 0 1280x1024x8 & 4604 psID=`echo $!` 4605 4606 # Run BNC application with defined display variable 4607 /home/user/BNC/bnc --conf /dev/null --key reqcAction Analyze --key reqcObsFile ons12090.12o --key reqcNavFile brdc2090.12p --key reqcOutLogFile multi.txt --key reqcPlotDir /home/user --display localhost:29 --nw 4608 4609 # BNC done, kill X-server process 4610 kill $psID 4611 </pre> 4612 4613 <p><h4>2.20.4 <a name="post">File Mode - optional</h4></p> 4614 <p> 4615 Although BNC is primarily a real-time online tool, for debugging purposes it can be run offline to read data from a file previously saved through option 'Raw output file' (Record & Replay functionality). Enter the following command line option for that 4616 </p> 4617 <p> 4618 --file <<u>inputFileName</u>> 4619 </p> 4620 4621 and specify the full path to an input file containing previously saved data. Example:<br><br> 4622 ./bnc --file /home/user/raw.output_110301 4623 </p> 4624 <p> 4625 Note that when running BNC offline, it will use options for file saving, interval, sampling, PPP etc. from its configuration file. 4626 </p> 4627 <p>Note further that option '--file' forces BNC to apply the '-nw' option for running in 'no window' mode. 4628 </p> 4629 4630 <p><h4>2.20.5 <a name="conffile">Configuration File - optional</h4></p> 4631 The default configuration filename is 'BNC.bnc'. You may change this name at startup time using command line option '--conf <<u>confFileName</u>>'. This allows running several BNC jobs in parallel on the same host using different sets of configuration options. <u>confFileName</u> stands either for the full path to a configuration file or just for a filename. If you introduce only a filename, the corresponding file will be saved in the current working directory from where BNC is started. 4632 </p> 4633 <p> 4634 Example:<br><br> 4635 ./bnc --conf MyConfig.bnc 4636 </p> 4637 <p> 4638 This leads to a BNC job using configuration file 'MyConfig.bnc'. The configuration file will be saved in the current working directory. 4639 </p> 4640 4641 <p><h4>2.20.6 <a name="confopt">Configuration Options - optional</h4></p> 4642 <p> 4643 BNC applies options from the configuration file but allows updating every one of them on the command line while the content of the configuration file remains unchanged. Note the following syntax for Command Line Interface (CLI) options: 4644 </p> 4645 <p> 4646 --key <keyName> <keyValue> 4647 </p> 4648 <p> 4649 Parameter <keyName> stands for the key name of an option contained in the configuration file and <keyValue> stands for the value you want to assign to it. The following is a syntax example for a complete command line: 4650 </p> 4651 <p> 4652 bnc --nw --conf <confFileName> --key <keyName1> <keyValue1> --key <keyName2> <keyValue2> ... 4653 </p> 4654 <p> 4655 Configuration options which are part of the configuration files PPP section must be prefixed by 'PPP/'. As an example, option 'minObs' from the PPP section of the BNC configuration file would be specified as 'PPP/minObs' on a command line. 4656 </p> 4657 <p> 4658 Values for configuration options can be introduced via command line exactly as they show up in the configuration file. However, any value containing one or more blank characters must be enclosed by quotation marks when specified on command line. 4659 </p> 4660 4661 <p><h3>3. <a name="annex">Annex</h3></p> 4662 4663 <p><h4>3.1 <a name=history>Revision History</h3></p> 4664 <table> 4665 <tr></tr> 4666 4667 <tr> 4668 <td>Dec 2006 </td><td>Version 1.0b </td> 4839 4669 <td>[Add] First Beta Binaries published based on Qt 4.2.3.</td> 4840 4670 </tr> 4841 <tr class="row-even"><td>Jan 2007</td> 4842 <td>Version 1.1b</td> 4843 <td>[Add] Observables C2, S1, and S2</td> 4671 4672 <tr> 4673 <td>Jan 2007 </td><td>Version 1.1b </td> 4674 <td>[Add] Observables C2, S1, and S2<br>[Add] Virtual reference station access<br>[Bug] RTCM2 decoder time tag fixed<br>[Mod] Small letters for public RINEX skeleton files<br>[Add] Online help through Shift+F1</td> 4844 4675 </tr> 4845 <tr class="row-odd"><td></td> 4846 <td> </td> 4847 <td>[Add] Virtual reference station access</td> 4676 4677 <tr> 4678 <td>Apr 2007 </td><td>Version 1.2b </td> 4679 <td>[Bug] Output only through IP port<br>[Bug] Method 'reconnecting' now thread-save<br> [Add] ZERO decoder added<br> [Mod] Download public RINEX skeletons once per day<br> [Mod] Upgrade to Qt Version 4.2.3<br> [Mod] Replace 'system' call for RINEX script by 'QProcess'<br> [Add] HTTP Host directive for skeleton file download<br> [Add] Percent encoding for user IDs and passwords<br> [Bug] Exit execution of calling thread for RTCM3 streams<br> [Bug] Signal-slot mechanism for threads</td> 4848 4680 </tr> 4849 <tr class="row-even"><td></td> 4850 <td> </td> 4851 <td>[Bug] RTCM2 decoder time tag fixed</td> 4852 </tr> 4853 <tr class="row-odd"><td></td> 4854 <td> </td> 4855 <td>[Mod] Small letters for public RINEX skeleton files</td> 4856 </tr> 4857 <tr class="row-even"><td></td> 4858 <td> </td> 4859 <td>[Add] Online help through Shift+F1</td> 4860 </tr> 4861 <tr class="row-odd"><td>Apr 2007</td> 4862 <td>Version 1.2b</td> 4863 <td>[Bug] Output only through IP port</td> 4864 </tr> 4865 <tr class="row-even"><td></td> 4866 <td> </td> 4867 <td>[Bug] Method ‘reconnecting’ now thread-save</td> 4868 </tr> 4869 <tr class="row-odd"><td></td> 4870 <td> </td> 4871 <td>[Add] ZERO decoder added</td> 4872 </tr> 4873 <tr class="row-even"><td></td> 4874 <td> </td> 4875 <td>[Mod] Download public RINEX skeletons once per day</td> 4876 </tr> 4877 <tr class="row-odd"><td></td> 4878 <td> </td> 4879 <td>[Mod] Upgrade to Qt Version 4.2.3</td> 4880 </tr> 4881 <tr class="row-even"><td></td> 4882 <td> </td> 4883 <td>[Mod] Replace ‘system’ call for RINEX script by ‘QProcess’</td> 4884 </tr> 4885 <tr class="row-odd"><td></td> 4886 <td> </td> 4887 <td>[Add] HTTP Host directive for skeleton file download</td> 4888 </tr> 4889 <tr class="row-even"><td></td> 4890 <td> </td> 4891 <td>[Add] Percent encoding for user IDs and passwords</td> 4892 </tr> 4893 <tr class="row-odd"><td></td> 4894 <td> </td> 4895 <td>[Bug] Exit execution of calling thread for RTCM3 streams</td> 4896 </tr> 4897 <tr class="row-even"><td></td> 4898 <td> </td> 4899 <td>[Bug] Signal-slot mechanism for threads</td> 4900 </tr> 4901 <tr class="row-odd"><td>May 2007</td> 4902 <td>Version 1.3</td> 4681 4682 <tr> 4683 <td>May 2007 </td><td>Version 1.3 </td> 4903 4684 <td>[Add] Source code published.</td> 4904 4685 </tr> 4905 <tr class="row-even"><td>Jul 2007</td> 4906 <td>Version 1.4</td> 4907 <td>[Bug] Skip messages from proxy server</td> 4686 4687 <tr> 4688 <td>Jul 2007 </td><td>Version 1.4 </td> 4689 <td>[Bug] Skip messages from proxy server<br> [Bug] Call RINEX script through 'nohup'</td> 4908 4690 </tr> 4909 <tr class="row-odd"><td></td> 4910 <td> </td> 4911 <td>[Bug] Call RINEX script through ‘nohup’</td> 4691 4692 <tr> 4693 <td>Apr 2008 </td><td>Version 1.5 </td> 4694 <td>[Add] Handle ephemeris from RTCM Version 3 streams<br> [Add] Upgrade to Qt Version 4.3.2<br> [Add] Optional RINEX v3 output<br> [Add] SBAS support<br> [Bug] RINEX skeleton download following stream outage<br> [Add] Handle ephemeris from RTIGS streams<br> [Add] Monitor stream failure/recovery and latency<br> [Mod] Redesign of main window<br> [Bug] Freezing of About window on Mac OS X<br> [Bug] Fixed problem with PRN 32 in RTCM v2 decoder<br> [Bug] Fix for Trimble 4000SSI receivers in RTCM v2 decoder<br> [Mod] Major revision of input buffer in RTCM v2 decoder</td> 4912 4695 </tr> 4913 <tr class="row-even"><td>Apr 2008</td> 4914 <td>Version 1.5</td> 4915 <td>[Add] Handle ephemeris from RTCM Version 3 streams</td> 4696 4697 <tr> 4698 <td>Dec 2008 </td><td>Version 1.6 </td> 4699 <td>[Mod] Fill blank columns in RINEX v3 with 0.000<br> [Add] RTCM v3 decoder for orbit and clock corrections<br>[Add] Check RTCM v3 streams for incoming message types<br> [Add] Decode RTCM v2 message types 3, 20, 21, and 22<br> [Add] Loss of lock and lock time indicator<br> [Bug] Rounding error in RTCM v3 decoder concerning GLONASS height<br> [Mod] Accept GLONASS in RTCM v3 when transmitted first<br> [Add] Leap second 1 January 2009<br> [Add] Offline mode, read data from file<br> [Add] Output antenna descriptor, coordinates and eccentricities from RTCM v3<br> [Add] Reconfiguration on-the-fly<br> [Mod] Binary output of synchronized observations<br> [Add] Binary output of unsynchronized observations<br> [Bug] Fixed problem with joined RTCM v3 blocks</td> 4916 4700 </tr> 4917 <tr class="row-odd"><td></td> 4918 <td> </td> 4919 <td>[Add] Upgrade to Qt Version 4.3.2</td> 4920 </tr> 4921 <tr class="row-even"><td></td> 4922 <td> </td> 4923 <td>[Add] Optional RINEX v3 output</td> 4924 </tr> 4925 <tr class="row-odd"><td></td> 4926 <td> </td> 4927 <td>[Add] SBAS support</td> 4928 </tr> 4929 <tr class="row-even"><td></td> 4930 <td> </td> 4931 <td>[Bug] RINEX skeleton download following stream outage</td> 4932 </tr> 4933 <tr class="row-odd"><td></td> 4934 <td> </td> 4935 <td>[Add] Handle ephemeris from RTIGS streams</td> 4936 </tr> 4937 <tr class="row-even"><td></td> 4938 <td> </td> 4939 <td>[Add] Monitor stream failure/recovery and latency</td> 4940 </tr> 4941 <tr class="row-odd"><td></td> 4942 <td> </td> 4943 <td>[Mod] Redesign of main window</td> 4944 </tr> 4945 <tr class="row-even"><td></td> 4946 <td> </td> 4947 <td>[Bug] Freezing of About window on Mac OS X</td> 4948 </tr> 4949 <tr class="row-odd"><td></td> 4950 <td> </td> 4951 <td>[Bug] Fixed problem with PRN 32 in RTCM v2 decoder</td> 4952 </tr> 4953 <tr class="row-even"><td></td> 4954 <td> </td> 4955 <td>[Bug] Fix for Trimble 4000SSI receivers in RTCM v2 decoder</td> 4956 </tr> 4957 <tr class="row-odd"><td></td> 4958 <td> </td> 4959 <td>[Mod] Major revision of input buffer in RTCM v2 decoder</td> 4960 </tr> 4961 <tr class="row-even"><td>Dec 2008</td> 4962 <td>Version 1.6</td> 4963 <td>[Mod] Fill blank columns in RINEX v3 with 0.000</td> 4964 </tr> 4965 <tr class="row-odd"><td></td> 4966 <td> </td> 4967 <td>[Add] RTCM v3 decoder for orbit and clock corrections</td> 4968 </tr> 4969 <tr class="row-even"><td></td> 4970 <td> </td> 4971 <td>[Add] Check RTCM v3 streams for incoming message types</td> 4972 </tr> 4973 <tr class="row-odd"><td></td> 4974 <td> </td> 4975 <td>[Add] Decode RTCM v2 message types 3, 20, 21, and 22</td> 4976 </tr> 4977 <tr class="row-even"><td></td> 4978 <td> </td> 4979 <td>[Add] Loss of lock and lock time indicator</td> 4980 </tr> 4981 <tr class="row-odd"><td></td> 4982 <td> </td> 4983 <td>[Bug] Rounding error in RTCM v3 decoder concerning GLONASS height</td> 4984 </tr> 4985 <tr class="row-even"><td></td> 4986 <td> </td> 4987 <td>[Mod] Accept GLONASS in RTCM v3 when transmitted first</td> 4988 </tr> 4989 <tr class="row-odd"><td></td> 4990 <td> </td> 4991 <td>[Add] Leap second 1 January 2009</td> 4992 </tr> 4993 <tr class="row-even"><td></td> 4994 <td> </td> 4995 <td>[Add] Offline mode, read data from file</td> 4996 </tr> 4997 <tr class="row-odd"><td></td> 4998 <td> </td> 4999 <td>[Add] Output antenna descriptor, coordinates and eccentricities from RTCM v3</td> 5000 </tr> 5001 <tr class="row-even"><td></td> 5002 <td> </td> 5003 <td>[Add] Reconfiguration on-the-fly</td> 5004 </tr> 5005 <tr class="row-odd"><td></td> 5006 <td> </td> 5007 <td>[Mod] Binary output of synchronized observations</td> 5008 </tr> 5009 <tr class="row-even"><td></td> 5010 <td> </td> 5011 <td>[Add] Binary output of unsynchronized observations</td> 5012 </tr> 5013 <tr class="row-odd"><td></td> 5014 <td> </td> 5015 <td>[Bug] Fixed problem with joined RTCM v3 blocks</td> 5016 </tr> 5017 <tr class="row-even"><td>Dec 2008</td> 5018 <td>Version 1.6.1</td> 4701 4702 <tr> 4703 <td>Dec 2008 </td><td>Version 1.6.1 </td> 5019 4704 <td>[Mod] HTTP GET when no proxy in front</td> 5020 4705 </tr> 5021 <tr class="row-odd"><td>Nov 2009</td> 5022 <td>Version 1.7</td> 5023 <td>[Bug] RINEX Navigation file format</td> 4706 4707 <tr> 4708 <td>Nov 2009 </td><td>Version 1.7 </td> 4709 <td>[Bug] RINEX Navigation file format<br> [Add] Upgrade to Qt Version 4.5.2<br> [Add] Support of Ntrip v2<br> [Add] Rover support via serial port<br> [Add] Show broadcaster table from www.rtcm-ntrip.org<br> [Add] Enable/disable panel widgets<br> [Add] User defined configuration filename<br> [Mod] Switch to configuration files in ini-Format<br> [Add] Daily logfile rotation<br> [Add] Read from TCP/IP port, by-pass Ntrip transport protocol<br> [Add] Save NMEA sentences coming from rover<br> [Add] Auto start<br> [Add] Drag and drop ini files<br> [Add] Read from serial port, by-pass Ntrip transport protocol<br> [Mod] Update of SSR messages following RTCM 091-2009-SC104-542<br> [Add] Read from UPD port, by-pass Ntrip transport protocol<br> [Mod] Output format of Broadcast Corrections<br> [Add] Throughput plot<br> [Add] Latency plot</td> 5024 4710 </tr> 5025 <tr class="row-even"><td></td> 5026 <td> </td> 5027 <td>[Add] Upgrade to Qt Version 4.5.2</td> 5028 </tr> 5029 <tr class="row-odd"><td></td> 5030 <td> </td> 5031 <td>[Add] Support of Ntrip v2</td> 5032 </tr> 5033 <tr class="row-even"><td></td> 5034 <td> </td> 5035 <td>[Add] Rover support via serial port</td> 5036 </tr> 5037 <tr class="row-odd"><td></td> 5038 <td> </td> 5039 <td>[Add] Show broadcaster table from www.rtcm-ntrip.org</td> 5040 </tr> 5041 <tr class="row-even"><td></td> 5042 <td> </td> 5043 <td>[Add] Enable/disable panel widgets</td> 5044 </tr> 5045 <tr class="row-odd"><td></td> 5046 <td> </td> 5047 <td>[Add] User defined configuration filename</td> 5048 </tr> 5049 <tr class="row-even"><td></td> 5050 <td> </td> 5051 <td>[Mod] Switch to configuration files in ini-Format</td> 5052 </tr> 5053 <tr class="row-odd"><td></td> 5054 <td> </td> 5055 <td>[Add] Daily logfile rotation</td> 5056 </tr> 5057 <tr class="row-even"><td></td> 5058 <td> </td> 5059 <td>[Add] Read from TCP/IP port, by-pass Ntrip transport protocol</td> 5060 </tr> 5061 <tr class="row-odd"><td></td> 5062 <td> </td> 5063 <td>[Add] Save NMEA sentences coming from rover</td> 5064 </tr> 5065 <tr class="row-even"><td></td> 5066 <td> </td> 5067 <td>[Add] Auto start</td> 5068 </tr> 5069 <tr class="row-odd"><td></td> 5070 <td> </td> 5071 <td>[Add] Drag and drop ini files</td> 5072 </tr> 5073 <tr class="row-even"><td></td> 5074 <td> </td> 5075 <td>[Add] Read from serial port, by-pass Ntrip transport protocol</td> 5076 </tr> 5077 <tr class="row-odd"><td></td> 5078 <td> </td> 5079 <td>[Mod] Update of SSR messages following RTCM 091-2009-SC104-542</td> 5080 </tr> 5081 <tr class="row-even"><td></td> 5082 <td> </td> 5083 <td>[Add] Read from UPD port, by-pass Ntrip transport protocol</td> 5084 </tr> 5085 <tr class="row-odd"><td></td> 5086 <td> </td> 5087 <td>[Mod] Output format of Broadcast Corrections</td> 5088 </tr> 5089 <tr class="row-even"><td></td> 5090 <td> </td> 5091 <td>[Add] Throughput plot</td> 5092 </tr> 5093 <tr class="row-odd"><td></td> 5094 <td> </td> 5095 <td>[Add] Latency plot</td> 5096 </tr> 5097 <tr class="row-even"><td>Nov 2009</td> 5098 <td>Version 1.8</td> 4711 4712 <tr> 4713 <td>Nov 2009 </td><td>Version 1.8 </td> 5099 4714 <td>[Mod] On-the-fly reconfiguration of latency and throughput plots</td> 5100 4715 </tr> 5101 <tr class="row-odd"><td>Feb 2010</td> 5102 <td>Version 2.0</td> 5103 <td>[Mod] Change sign of Broadcast Corrections</td> 4716 4717 <tr> 4718 <td>Feb 2010 </td><td>Version 2.0 </td> 4719 <td>[Mod] Change sign of Broadcast Corrections<br> [Add] Real-time PPP option</td> 5104 4720 </tr> 5105 <tr class="row-even"><td></td> 5106 <td> </td> 5107 <td>[Add] Real-time PPP option</td> 4721 4722 <tr> 4723 <td>Jun 2010 </td><td>Version 2.1 </td> 4724 <td>[Bug] SSR GLONASS message generation<br> [Add] PPP in post processing mode<br> [Mod] Update of SSR messages following draft dated 2010-04-12<br> [Mod] Generating error message when observation epoch is wrong</td> 5108 4725 </tr> 5109 <tr class="row-odd"><td>Jun 2010</td> 5110 <td>Version 2.1</td> 5111 <td>[Bug] SSR GLONASS message generation</td> 5112 </tr> 5113 <tr class="row-even"><td></td> 5114 <td> </td> 5115 <td>[Add] PPP in post processing mode</td> 5116 </tr> 5117 <tr class="row-odd"><td></td> 5118 <td> </td> 5119 <td>[Mod] Update of SSR messages following draft dated 2010-04-12</td> 5120 </tr> 5121 <tr class="row-even"><td></td> 5122 <td> </td> 5123 <td>[Mod] Generating error message when observation epoch is wrong</td> 5124 </tr> 5125 <tr class="row-odd"><td>Jul 2010</td> 5126 <td>Version 2.2</td> 4726 4727 <tr> 4728 <td>Jul 2010 </td><td>Version 2.2 </td> 5127 4729 <td>[Bug] GLONASS ephemeris time</td> 5128 4730 </tr> 5129 <tr class="row-even"><td>Aug 2010</td> 5130 <td>Version 2.3</td> 5131 <td>[Mod] Internal format for saving raw streams</td> 4731 4732 <tr> 4733 <td>Aug 2010 </td><td>Version 2.3 </td> 4734 <td>[Mod] Internal format for saving raw streams<br> [Bug] Outlier detection in GLONASS ambiguity resolution<br> [Mod] Format of PPP logs in logfile<br> [Bug] Complete acceleration terms for GLONASS ephemeris<br> [Bug] Handling ephemeris IOD's in PPP mode</td> 5132 4735 </tr> 5133 <tr class="row-odd"><td></td> 5134 <td> </td> 5135 <td>[Bug] Outlier detection in GLONASS ambiguity resolution</td> 4736 4737 <tr> 4738 <td>Dec 2010 </td><td>Version 2.4 </td> 4739 <td>[Add] Output of averaged positions when in PPP mode<br> [Mod] Use always the latest received set of Broadcast Ephemeris<br> [Add] QuickStart PPP option<br> [Mod] Improvement of data sharing efficiency among different threads<br> [Mod] Design of PPP panel section<br> [Add] Sigmas for observations and parameters<br> [Add] Stream distribution map<br> [Bug] GPS Ephemeris in RINEX v3 format</td> 5136 4740 </tr> 5137 <tr class="row-even"><td></td> 5138 <td> </td> 5139 <td>[Mod] Format of PPP logs in logfile</td> 4741 4742 <tr> 4743 <td>Feb 2011 </td><td>Version 2.5 </td> 4744 <td>[Add] PPP option for sync of clock observations and corrections<br> [Add] Drafted RTCM v3 Galileo ephemeris messages 1045<br> [Add] Drafted RTCM v3 Multiple Signal Messages<br> [Add] Optional specification of sigmas for coordinates and troposphere in PPP<br> [Add] Include Galileo in SPP<br> [Add] Include Galileo observations in output via IP port<br> [Add] Include Galileo observations in output via RINEX v3 files<br> [Mod] Interface format for feeding a real-time engine with observations<br> [Add] Correct observations for Antenna Phase Center offsets<br> [Add] Combine orbit/clock correction streams<br> [Add] Specify corrections mountpoint in PPP panel</td> 5140 4745 </tr> 5141 <tr class="row-odd"><td></td> 5142 <td> </td> 5143 <td>[Bug] Complete acceleration terms for GLONASS ephemeris</td> 4746 4747 <tr> 4748 <td>Apr 2011 </td><td>Version 2.6 </td> 4749 <td>[Add] Complete integration of BNS in BNC<br> [Add] SP3 and Clock RINEX output<br> [Add] PPP in post processing Mode<br> [Add] Some RINEX editing & QC functionality<br> [Add] Threshold for orbit outliers in combination solution<br> [Add] Real-time engine becomes orbit/clock server instead of client<br> [Mod] 'EOE' added to orbit/clock stream from engine<br> [Add] Correction for antenna eccentricities<br> [Add] Quick start mode for PPP<br> [Mod] Design of format for feeding engine changed to follow RINEX v3<br> [Mod] Implementation of SSR message encoding modified according to standard<br> [Add] SSL/TLS Support of Ntrip Version 2<br> [Mod] Switch to Qt version 4.7.3<br> [Add] RINEX editing, concatenation and quality check<br> [Add] Reading all configuration options from command line<br> [Mod] RTCM v3 Galileo Broadcast Ephemeris message 1045<br> [Mod] Change default configuration file suffix from 'ini' to 'bnc'<br> [Add] Specific rates for orbits and clocks in streams and SP3/RNX files</td> 5144 4750 </tr> 5145 <tr class="row-even"><td></td> 5146 <td> </td> 5147 <td>[Bug] Handling ephemeris IOD’s in PPP mode</td> 4751 4752 <tr> 4753 <td>May 2012 </td><td>Version 2.6 </td> 4754 <td>[Add] Version 2.6 published</td> 5148 4755 </tr> 5149 <tr class="row-odd"><td>Dec 2010</td> 5150 <td>Version 2.4</td> 5151 <td>[Add] Output of averaged positions when in PPP mode</td> 4756 4757 <tr> 4758 <td>Sep 2012 </td><td>Version 2.7 </td> 4759 <td>[Bug] Bug in L5 decoding fixed<br> [Bug] Bug in on-the-fly configuration fixed<br> [Add] Clock RINEX file header extended<br> [Add] Decoding/converting BeiDou and QZSS added<br> [Add] Work on RINEX v2 and v3 quality check started<br> [Mod] Source code completely re-arranged<br> [Add] QWT and QWTPOLAR graphics libraries added<br> [Add] RINEX QC through multipath analysis sky plot<br> [Add] RINEX QC through signal-to-noise ratio sky plot<br> [Add] RINEX QC through satellite availability plot<br> [Add] RINEX QC through satellite elevation plot<br> [Add RINEX QC through PDOP plot<br> [Bug] Short periodic outages in PPP time series when 'Sync Corr' set to zero<br> |Add] Log observation types contained in RTCM Version 3 MSM streams<br> [Add] Reading RINEX v3 observation type header records from RINEX skeleton files<br> [Add] Logfile for RINEX file editing and concatenation<br>[Add] Save PNG plot files on disk<br> [Mod] Plot stream distribution map from Ntrip Broadcaster source-table<br> [Add] Plot stream distribution map from selected sources<br> [Add] Version 2.7 published</td> 5152 4760 </tr> 5153 <tr class="row-even"><td></td> 5154 <td> </td> 5155 <td>[Mod] Use always the latest received set of Broadcast Ephemeris</td> 4761 4762 <tr> 4763 <td>Mar 2013 </td><td>Version 2.8 </td> 4764 <td>[Mod] Started work on new version in Sep 2012<br> [Bug] Epoch special event flag in RINEX concatenation<br> [Bug] Limit RINEX v2 records length to 80 characters<br> [Bug] SSR message update interval indicator<br> [Bug] Fixed SSR stream encoding and upload<br> [Add] Concatenate RINEX v3 navigation files containing Galileo ephemeris<br> [Mod] Plausibility check of GLONASS ephemeris<br> [Add] Correcting clocks for scale factor involved in transformation<br> [Mod] Orbit/clock interpolation in SSR stream encoding and upload to caster<br> [Add] Version 2.8 published</td> 5156 4765 </tr> 5157 <tr class="row-odd"><td></td> 5158 <td> </td> 5159 <td>[Add] QuickStart PPP option</td> 4766 4767 <tr> 4768 <td>Jul 2013 </td><td>Version 2.9 </td> 4769 <td>[Add] Started work on new version in Mar 2013<br>[Bug] SSR stream upload buffering disabled<br>[Mod] Format for feeding a connected GNSS engine<br>[Mod] RTNET format for receiving data from a connected GNSS engine<br>[Add] Include Galileo in SPP<br>[Add] RINEX QC multipath an SNR sky plots for GLONASS and Galileo<br>[Add] Bias estimation for GLONASS clocks in PPP<br>[Add] Trace positions on GM or OSM maps<br>[Add] Version 2.9 published</td> 5160 4770 </tr> 5161 <tr class="row-even"><td></td> 5162 <td> </td> 5163 <td>[Mod] Improvement of data sharing efficiency among different threads</td> 4771 4772 <tr> 4773 <td>Dec 2013 </td><td>Version 2.10 </td> 4774 <td>[Add] Started work on new version in Aug 2013<br>[Bug] Clock RINEX und SP3 file generation on Windows systems<br>[Bug] Broadcast Ephemeris generation<br>[Add] Transformation ITRF2008 to NAD83 and DREF91<br>[Add] CodeBias added to RTNET stream format<br>[Bug] GPS L2 in 'Feed Engine' output<br>[Mod] Made C1 in BeiDou default observation type instead of C2<br>[Add] Feed engine output sorted per stream<br>[Add] Feed engine output filename change on-the-fly<br>[Add] 'Append files' option for RINEX observation files<br>[Mod] Broadcast Correction ASCII file output for message 1058 & 1064 modified<br>[Bug] GPS L2 phase data in RINEX2<br>[Bug] GLONASS frequency numbers<br>[Add] RTCM v3 Galileo Broadcast Ephemeris message 1046<br>[Add] Reset ambiguities in PPP when orbit/clock correction IDs change<br>[Add] Satellite clock offsets are reset in adjustment for combination when orbit/clock correction IDs change<br>[Add] Version 2.10 published</td> 5164 4775 </tr> 5165 <tr class="row-odd"><td></td> 5166 <td> </td> 5167 <td>[Mod] Design of PPP panel section</td> 4776 4777 <tr> 4778 <td>Sep 2014 </td><td>Version 2.11 </td> 4779 <td>[Add] Started work on new version in Dec 2013<br>[Mod] SIRGAS transformation parameters adjusted<br>[Mod] ANTEX file updated<br>[Mod] RTCM SSR messages updated<br>[Bug] GLONASS code biases<br>[Mod] Maximum number of GNSS observations increased<br>[Mod] Loss of lock handling changed<br>[Add] Raw stream output through TCP/IP port<br>[Add] Version 2.11.0 published</td> 5168 4780 </tr> 5169 <tr class="row-even"><td></td> 5170 <td> </td> 5171 <td>[Add] Sigmas for observations and parameters</td> 4781 4782 <tr> 4783 <td>Mar 2016 </td><td>Version 2.12 </td><td> 4784 [Add] Started work on new version in Sep 2014<br> 4785 [Mod] RINEX file concatenation<br> 4786 [Add] Observation code selection in RINEX file editing<br> 4787 [Mod] Routine handling of data input and output in RINEX format re-written<br> 4788 [Mod] QC routines re-written with the goal of handling all signal types<br> 4789 [Add] Machine-readable output of RINEX QC<br> 4790 [Add] PPP client functionality for parallel processing of an arbitrary number of stations in separate threads<br> 4791 [Bug] Receiver antenna PCO in ionosphere-free PPP mode<br> 4792 [Add] NMEA output for any station processed in PPP mode<br> 4793 [Add] PPP processing of any number of linear combinations of GNSS measurements selected by user<br> 4794 [Add] Encoding/Decoding RTCM SSR I messages for Galileo, BDS, SBAS and QZSS<br> 4795 [Add] Encoding/Decoding RTCM SSR phase bias messages<br> 4796 [Add] Encoding/Decoding RTCM SSR ionospheric model messages, single-layer model for total electron content<br> 4797 [Add] RTCM SSR I messages for Galileo, BDS, SBAS and QZSS support from RTNET interface<br> 4798 [Add] RTCM SSR II messages (phase biases and SSR ionospheric model) support from RTNET interface<br> 4799 [Add] Computataion of VTEC and STEC from SSR ionospheric model messages for usage in PPP mode<br> 4800 [Add] Handle old-fashioned SNR values in RINEX<br> 4801 [Mod] SNR and MP visualization depending on RINEX observation attribute<br> 4802 [Bug] Saastamoinen tropospheric correction for very high elevation receivers<br> 4803 [Add] Comparison of SP3 files<br> 4804 [Add] Encoding/Decoding of RTCM v3 proposal for Galileo Broadcast Ephemeris message 1046<br> 4805 [Add] Encoding/Decoding of RTCM v3 QZSS Broadcast Ephemeris message 1044<br> 4806 [Add] Encoding/Decoding of RTCM v3 SBAS Broadcast Ephemeris message 1043<br> 4807 [Add] Encoding/Decoding of RTCM v3 BDS Broadcast Ephemeris message 63<br> 4808 [Add] RINEX v3 support of Galileo, BDS, SBAS and QZSS Broadcast Ephemerides<br> 4809 [Add] Consideration of the aspect that Galileo NAV message can be providet for the same epoch but with different flags (I/NAV, F/NAV, DVS)<br> 4810 [Bug] VRS support in sending NMEA in Auto/Manual mode to Ntrip Broadcaster<br> 4811 [Add] Forwarding NMEA GNGGA to Ntrip Broadcaster<br> 4812 [Bug] Stream failure/recovery reports<br> 4813 [Add] Compute IODs for BDS and SBAS from CRC over broadcast ephemeris and clock parameters<br> 4814 [Mod] PPP default options<br> 4815 [Add] Example configuration for SP3 file comparison<br> 4816 [Add] Choose between code and phase observations when in PPP SSR I mode<br> 4817 [Bug] Reset time series plot when restarting PPP in post processing mode<br> 4818 [Add] Broadcast ephemeris check regarding allowed age of data sets<br> 4819 [Add] Code bias usage for PPP SSR I mode<br> 4820 [Add] Code bias, phase bias and VTEC usage in extended PPP mode<br> 4821 [Mod] Consideration of the full antenna PCO vector in all PPP modes<br> 4822 [Add] Allow GPS-only and GLONASS-only RINEX v2 Navigation files<br> 4823 [Mod] SSR clock correction converted to seconds to be consistent with broadcast values<br> 4824 [Add] Support Galileo I/NAV broadcast ephemeris<br> 4825 [Add] Extended RINEX v3 filenames<br> 4826 [Add] Stream's country added to configuration string 'mountPoints'<br> 4827 [Add] destinction of GEO/MEO satellites during BDS velocity derermination <br> 4828 [Bug] Velocity determination for geostationary BDS satellites<br> 4829 [Add] Set TOE from BDS week and second<br> 4830 [Add] Use BDS observations and ephemerides in PPP SSR I mode<br> 4831 [Add] Considering that yaw angle restricted to -180 to +180 deg<br> 4832 [Mod] Read local RINEX skeleton files<br> 4833 [Add] Update interval for VTEC in RTNET stream format<br> 4834 [Bug] SBAS IODN<br> 4835 [Bug] Galileo week number<br> 4836 [Add] Phase shift records in RINEX v3 headers<br> 4837 [Add] Output GLONASS slot numbers from scanning stream content<br> 4838 [Add] Decoder interface for PPP SSR I+II messages for Galileo/QZSS/SBAS/BDS<br> 4839 [Mod] Renaming BDS first frequency from '1' to '2'<br> 4840 [Add] RINEX QC, receiver/antenna information editable<br> 4841 [Add] Support of new RINEX header lines regarding phase shifts, GLONAQSS slots and GLONASS biases during file merging<br> 4842 [Add] Switch to port 443 for skeleton file download from https website<br> 4843 [Mod] Default observation types for RINEX v3 files<br> 4844 [Bug] RTCM v2 decoder<br> 4845 [Add] SINEX Troposphere file output<br> 4846 [Add] Comments with respect to RINEX v3 to RINEX v2 observation file conversion 4847 [Add] String for Operating System in logfile output<br> 4848 [Add] Full integration of 'rtcm3torinex'<br> 4849 [Add] Extended command line help<br> 4850 [Add] Version 2.12.0 published<br> 4851 4852 </td> 5172 4853 </tr> 5173 <tr class="row-odd"><td></td> 5174 <td> </td> 5175 <td>[Add] Stream distribution map</td> 5176 </tr> 5177 <tr class="row-even"><td></td> 5178 <td> </td> 5179 <td>[Bug] GPS Ephemeris in RINEX v3 format</td> 5180 </tr> 5181 <tr class="row-odd"><td>Feb 2011</td> 5182 <td>Version 2.5</td> 5183 <td>[Add] PPP option for sync of clock observations and corrections</td> 5184 </tr> 5185 <tr class="row-even"><td></td> 5186 <td> </td> 5187 <td>[Add] Drafted RTCM v3 Galileo ephemeris messages 1045</td> 5188 </tr> 5189 <tr class="row-odd"><td></td> 5190 <td> </td> 5191 <td>[Add] Drafted RTCM v3 Multiple Signal Messages</td> 5192 </tr> 5193 <tr class="row-even"><td></td> 5194 <td> </td> 5195 <td>[Add] Optional specification of sigmas for coordinates and troposphere in PPP</td> 5196 </tr> 5197 <tr class="row-odd"><td></td> 5198 <td> </td> 5199 <td>[Add] Include Galileo in SPP</td> 5200 </tr> 5201 <tr class="row-even"><td></td> 5202 <td> </td> 5203 <td>[Add] Include Galileo observations in output via IP port</td> 5204 </tr> 5205 <tr class="row-odd"><td></td> 5206 <td> </td> 5207 <td>[Add] Include Galileo observations in output via RINEX v3 files</td> 5208 </tr> 5209 <tr class="row-even"><td></td> 5210 <td> </td> 5211 <td>[Mod] Interface format for feeding a real-time engine with observations</td> 5212 </tr> 5213 <tr class="row-odd"><td></td> 5214 <td> </td> 5215 <td>[Add] Correct observations for Antenna Phase Center offsets</td> 5216 </tr> 5217 <tr class="row-even"><td></td> 5218 <td> </td> 5219 <td>[Add] Combine orbit/clock correction streams</td> 5220 </tr> 5221 <tr class="row-odd"><td></td> 5222 <td> </td> 5223 <td>[Add] Specify corrections mountpoint in PPP panel</td> 5224 </tr> 5225 <tr class="row-even"><td>Apr 2011</td> 5226 <td>Version 2.6</td> 5227 <td>[Add] Complete integration of BNS in BNC</td> 5228 </tr> 5229 <tr class="row-odd"><td></td> 5230 <td> </td> 5231 <td>[Add] SP3 and Clock RINEX output</td> 5232 </tr> 5233 <tr class="row-even"><td></td> 5234 <td> </td> 5235 <td>[Add] PPP in post processing Mode</td> 5236 </tr> 5237 <tr class="row-odd"><td></td> 5238 <td> </td> 5239 <td>[Add] Some RINEX editing & QC functionality</td> 5240 </tr> 5241 <tr class="row-even"><td></td> 5242 <td> </td> 5243 <td>[Add] Threshold for orbit outliers in combination solution</td> 5244 </tr> 5245 <tr class="row-odd"><td></td> 5246 <td> </td> 5247 <td>[Add] Real-time engine becomes orbit/clock server instead of client</td> 5248 </tr> 5249 <tr class="row-even"><td></td> 5250 <td> </td> 5251 <td>[Mod] ‘EOE’ added to orbit/clock stream from engine</td> 5252 </tr> 5253 <tr class="row-odd"><td></td> 5254 <td> </td> 5255 <td>[Add] Correction for antenna eccentricities</td> 5256 </tr> 5257 <tr class="row-even"><td></td> 5258 <td> </td> 5259 <td>[Add] Quick start mode for PPP</td> 5260 </tr> 5261 <tr class="row-odd"><td></td> 5262 <td> </td> 5263 <td>[Mod] Design of format for feeding engine changed to follow RINEX v3</td> 5264 </tr> 5265 <tr class="row-even"><td></td> 5266 <td> </td> 5267 <td>[Mod] Implementation of SSR message encoding modified according to standard</td> 5268 </tr> 5269 <tr class="row-odd"><td></td> 5270 <td> </td> 5271 <td>[Add] SSL/TLS Support of Ntrip Version 2</td> 5272 </tr> 5273 <tr class="row-even"><td></td> 5274 <td> </td> 5275 <td>[Mod] Switch to Qt version 4.7.3</td> 5276 </tr> 5277 <tr class="row-odd"><td></td> 5278 <td> </td> 5279 <td>[Add] RINEX editing, concatenation and quality check</td> 5280 </tr> 5281 <tr class="row-even"><td></td> 5282 <td> </td> 5283 <td>[Add] Reading all configuration options from command line</td> 5284 </tr> 5285 <tr class="row-odd"><td></td> 5286 <td> </td> 5287 <td>[Mod] RTCM v3 Galileo Broadcast Ephemeris message 1045</td> 5288 </tr> 5289 <tr class="row-even"><td></td> 5290 <td> </td> 5291 <td>[Mod] Change default configuration file suffix from ‘ini’ to ‘bnc’</td> 5292 </tr> 5293 <tr class="row-odd"><td></td> 5294 <td> </td> 5295 <td>[Add] Specific rates for orbits and clocks in streams and SP3/RNX files</td> 5296 </tr> 5297 <tr class="row-even"><td></td> 5298 <td> </td> 5299 <td>[Add] Version 2.6 published, May 2012</td> 5300 </tr> 5301 <tr class="row-odd"><td>Sep 2012</td> 5302 <td>Version 2.7</td> 5303 <td>[Bug] Bug in L5 decoding fixed</td> 5304 </tr> 5305 <tr class="row-even"><td></td> 5306 <td> </td> 5307 <td>[Bug] Bug in on-the-fly configuration fixed</td> 5308 </tr> 5309 <tr class="row-odd"><td></td> 5310 <td> </td> 5311 <td>[Add] Clock RINEX file header extended</td> 5312 </tr> 5313 <tr class="row-even"><td></td> 5314 <td> </td> 5315 <td>[Add] Decoding/converting BeiDou and QZSS added</td> 5316 </tr> 5317 <tr class="row-odd"><td></td> 5318 <td> </td> 5319 <td>[Add] Work on RINEX v2 and v3 quality check started</td> 5320 </tr> 5321 <tr class="row-even"><td></td> 5322 <td> </td> 5323 <td>[Mod] Source code completely re-arranged</td> 5324 </tr> 5325 <tr class="row-odd"><td></td> 5326 <td> </td> 5327 <td>[Add] QWT and QWTPOLAR graphics libraries added</td> 5328 </tr> 5329 <tr class="row-even"><td></td> 5330 <td> </td> 5331 <td>[Add] RINEX QC through multipath analysis sky plot</td> 5332 </tr> 5333 <tr class="row-odd"><td></td> 5334 <td> </td> 5335 <td>[Add] RINEX QC through signal-to-noise ratio sky plot</td> 5336 </tr> 5337 <tr class="row-even"><td></td> 5338 <td> </td> 5339 <td>[Add] RINEX QC through satellite availability plot</td> 5340 </tr> 5341 <tr class="row-odd"><td></td> 5342 <td> </td> 5343 <td>[Add] RINEX QC through satellite elevation plot</td> 5344 </tr> 5345 <tr class="row-even"><td></td> 5346 <td> </td> 5347 <td>[Add] RINEX QC through PDOP plot</td> 5348 </tr> 5349 <tr class="row-odd"><td></td> 5350 <td> </td> 5351 <td>[Bug] Short periodic outages in PPP time series when ‘Sync Corr’ set to zero</td> 5352 </tr> 5353 <tr class="row-even"><td></td> 5354 <td> </td> 5355 <td><a href="#id1"><span class="problematic" id="id2">|</span></a>Add] Log observation types contained in RTCM Version 3 MSM streams</td> 5356 </tr> 5357 <tr class="row-odd"><td></td> 5358 <td> </td> 5359 <td>[Add] Reading RINEX v3 observation type header records from RINEX skeleton</td> 5360 </tr> 5361 <tr class="row-even"><td></td> 5362 <td> </td> 5363 <td>[Add] Logfile for RINEX file editing and concatenation</td> 5364 </tr> 5365 <tr class="row-odd"><td></td> 5366 <td> </td> 5367 <td>[Add] Save PNG plot files on disk</td> 5368 </tr> 5369 <tr class="row-even"><td></td> 5370 <td> </td> 5371 <td>[Mod] Plot stream distribution map from Ntrip Broadcaster source-table</td> 5372 </tr> 5373 <tr class="row-odd"><td></td> 5374 <td> </td> 5375 <td>[Add] Plot stream distribution map from selected sources</td> 5376 </tr> 5377 <tr class="row-even"><td></td> 5378 <td> </td> 5379 <td>[Add] Version 2.7 published</td> 5380 </tr> 5381 <tr class="row-odd"><td>Sep 2012</td> 5382 <td>Version 2.8</td> 5383 <td>[Mod] Started work on new version in Sep 2012</td> 5384 </tr> 5385 <tr class="row-even"><td></td> 5386 <td> </td> 5387 <td>[Bug] Epoch special event flag in RINEX concatenation</td> 5388 </tr> 5389 <tr class="row-odd"><td></td> 5390 <td> </td> 5391 <td>[Bug] Limit RINEX v2 records length to 80 characters</td> 5392 </tr> 5393 <tr class="row-even"><td></td> 5394 <td> </td> 5395 <td>[Bug] SSR message update interval indicator</td> 5396 </tr> 5397 <tr class="row-odd"><td></td> 5398 <td> </td> 5399 <td>[Bug] Fixed SSR stream encoding and upload</td> 5400 </tr> 5401 <tr class="row-even"><td></td> 5402 <td> </td> 5403 <td>[Add] Concatenate RINEX v3 navigation files containing Galileo ephemeris</td> 5404 </tr> 5405 <tr class="row-odd"><td></td> 5406 <td> </td> 5407 <td>[Mod] Plausibility check of GLONASS ephemeris</td> 5408 </tr> 5409 <tr class="row-even"><td></td> 5410 <td> </td> 5411 <td>[Add] Correcting clocks for scale factor involved in transformation</td> 5412 </tr> 5413 <tr class="row-odd"><td></td> 5414 <td> </td> 5415 <td>[Mod] Orbit/clock interpolation in SSR stream encoding and upload to caster</td> 5416 </tr> 5417 <tr class="row-even"><td></td> 5418 <td> </td> 5419 <td>[Add] Version 2.8 published, Mar 2013</td> 5420 </tr> 5421 <tr class="row-odd"><td>Mar 2013</td> 5422 <td>Version 2.9</td> 5423 <td>[Add] Started work on new version in Mar 2013</td> 5424 </tr> 5425 <tr class="row-even"><td></td> 5426 <td> </td> 5427 <td>[Bug] SSR stream upload buffering disabled</td> 5428 </tr> 5429 <tr class="row-odd"><td></td> 5430 <td> </td> 5431 <td>[Mod] Format for feeding a connected GNSS engine</td> 5432 </tr> 5433 <tr class="row-even"><td></td> 5434 <td> </td> 5435 <td>[Mod] RTNET format for receiving data from a connected GNSS engine</td> 5436 </tr> 5437 <tr class="row-odd"><td></td> 5438 <td> </td> 5439 <td>[Add] Include Galileo in SPP</td> 5440 </tr> 5441 <tr class="row-even"><td></td> 5442 <td> </td> 5443 <td>[Add] RINEX QC multipath an SNR sky plots for GLONASS and Galileo</td> 5444 </tr> 5445 <tr class="row-odd"><td></td> 5446 <td> </td> 5447 <td>[Add] Bias estimation for GLONASS clocks in PPP</td> 5448 </tr> 5449 <tr class="row-even"><td></td> 5450 <td> </td> 5451 <td>[Add] Trace positions on GM or OSM maps</td> 5452 </tr> 5453 <tr class="row-odd"><td></td> 5454 <td> </td> 5455 <td>[Add] Version 2.9 published, Jul 2013</td> 5456 </tr> 5457 <tr class="row-even"><td>Aug 2013</td> 5458 <td>Version 2.10</td> 5459 <td>[Add] Started work on new version in Aug 2013</td> 5460 </tr> 5461 <tr class="row-odd"><td></td> 5462 <td> </td> 5463 <td>[Bug] Clock RINEX und SP3 file generation on Windows systems</td> 5464 </tr> 5465 <tr class="row-even"><td></td> 5466 <td> </td> 5467 <td>[Bug] Broadcast Ephemeris generation</td> 5468 </tr> 5469 <tr class="row-odd"><td></td> 5470 <td> </td> 5471 <td>[Add] Transformation ITRF2008 to NAD83 and DREF91</td> 5472 </tr> 5473 <tr class="row-even"><td></td> 5474 <td> </td> 5475 <td>[Add] CodeBias added to RTNET stream format</td> 5476 </tr> 5477 <tr class="row-odd"><td></td> 5478 <td> </td> 5479 <td>[Bug] GPS L2 in ‘Feed Engine’ output</td> 5480 </tr> 5481 <tr class="row-even"><td></td> 5482 <td> </td> 5483 <td>[Mod] Made C1 in BeiDou default observation type instead of C2</td> 5484 </tr> 5485 <tr class="row-odd"><td></td> 5486 <td> </td> 5487 <td>[Add] Feed engine output sorted per stream</td> 5488 </tr> 5489 <tr class="row-even"><td></td> 5490 <td> </td> 5491 <td>[Add] Feed engine output filename change on-the-fly</td> 5492 </tr> 5493 <tr class="row-odd"><td></td> 5494 <td> </td> 5495 <td>[Add] ‘Append files’ option for RINEX observation files</td> 5496 </tr> 5497 <tr class="row-even"><td></td> 5498 <td> </td> 5499 <td>[Mod] Broadcast Correction ASCII file output for message 1058 & 1064 modified</td> 5500 </tr> 5501 <tr class="row-odd"><td></td> 5502 <td> </td> 5503 <td>[Bug] GPS L2 phase data in RINEX2</td> 5504 </tr> 5505 <tr class="row-even"><td></td> 5506 <td> </td> 5507 <td>[Bug] GLONASS frequency numbers</td> 5508 </tr> 5509 <tr class="row-odd"><td></td> 5510 <td> </td> 5511 <td>[Add] RTCM v3 Galileo Broadcast Ephemeris message 1046</td> 5512 </tr> 5513 <tr class="row-even"><td></td> 5514 <td> </td> 5515 <td>[Add] Reset ambiguities in PPP when orbit/clock correction IDs change</td> 5516 </tr> 5517 <tr class="row-odd"><td></td> 5518 <td> </td> 5519 <td>[Add] Satellite clock offsets are reset in adjustment for combination when orbit/clock correction IDs change</td> 5520 </tr> 5521 <tr class="row-even"><td></td> 5522 <td> </td> 5523 <td>[Add] Version 2.10 published in Dec 2013</td> 5524 </tr> 5525 <tr class="row-odd"><td>Dec 2013</td> 5526 <td>Version 2.11</td> 5527 <td>[Add] Started work on new version in Dec 2013</td> 5528 </tr> 5529 <tr class="row-even"><td></td> 5530 <td> </td> 5531 <td>[Mod] SIRGAS transformation parameters adjusted</td> 5532 </tr> 5533 <tr class="row-odd"><td></td> 5534 <td> </td> 5535 <td>[Mod] ANTEX file updated</td> 5536 </tr> 5537 <tr class="row-even"><td></td> 5538 <td> </td> 5539 <td>[Mod] RTCM SSR messages updated</td> 5540 </tr> 5541 <tr class="row-odd"><td></td> 5542 <td> </td> 5543 <td>[Bug] GLONASS code biases</td> 5544 </tr> 5545 <tr class="row-even"><td></td> 5546 <td> </td> 5547 <td>[Mod] Maximum number of GNSS observations increased</td> 5548 </tr> 5549 <tr class="row-odd"><td></td> 5550 <td> </td> 5551 <td>[Mod] Loss of lock handling changed</td> 5552 </tr> 5553 <tr class="row-even"><td></td> 5554 <td> </td> 5555 <td>[Add] Raw stream output through TCP/IP port</td> 5556 </tr> 5557 <tr class="row-odd"><td></td> 5558 <td> </td> 5559 <td>[Add] Version 2.11.0 published in Sep 2014</td> 5560 </tr> 5561 <tr class="row-even"><td>Sep 2014</td> 5562 <td>Version 2.12</td> 5563 <td>[Add] Started work on new version in Sep 2014</td> 5564 </tr> 5565 <tr class="row-odd"><td></td> 5566 <td> </td> 5567 <td>[Mod] RINEX file concatenation</td> 5568 </tr> 5569 <tr class="row-even"><td></td> 5570 <td> </td> 5571 <td>[Add] Observation code selection in RINEX file editing</td> 5572 </tr> 5573 <tr class="row-odd"><td></td> 5574 <td> </td> 5575 <td>[Mod] Routine handling of data input and output in RINEX format re-written</td> 5576 </tr> 5577 <tr class="row-even"><td></td> 5578 <td> </td> 5579 <td>[Mod] QC routines re-written with the goal of handling all signal types</td> 5580 </tr> 5581 <tr class="row-odd"><td></td> 5582 <td> </td> 5583 <td>[Add] Machine-readable output of RINEX QC</td> 5584 </tr> 5585 <tr class="row-even"><td></td> 5586 <td> </td> 5587 <td>[Add] PPP client functionality for parallel processing of an arbitrary number of stations in separate threads</td> 5588 </tr> 5589 <tr class="row-odd"><td></td> 5590 <td> </td> 5591 <td>[Bug] Receiver antenna PCO in ionosphere-free PPP mode</td> 5592 </tr> 5593 <tr class="row-even"><td></td> 5594 <td> </td> 5595 <td>[Add] NMEA output for any station processed in PPP mode</td> 5596 </tr> 5597 <tr class="row-odd"><td></td> 5598 <td> </td> 5599 <td>[Add] PPP processing of any number of linear combinations of GNSS measurements selected by user</td> 5600 </tr> 5601 <tr class="row-even"><td></td> 5602 <td> </td> 5603 <td>[Add] Encoding/Decoding RTCM SSR I messages for Galileo, BDS, SBAS and QZSS</td> 5604 </tr> 5605 <tr class="row-odd"><td></td> 5606 <td> </td> 5607 <td>[Add] Encoding/Decoding RTCM SSR phase bias messages</td> 5608 </tr> 5609 <tr class="row-even"><td></td> 5610 <td> </td> 5611 <td>[Add] Encoding/Decoding RTCM SSR ionospheric model messages, single-layer model for total electron content</td> 5612 </tr> 5613 <tr class="row-odd"><td></td> 5614 <td> </td> 5615 <td>[Add] RTCM SSR I messages for Galileo, BDS, SBAS and QZSS support from RTNET interface</td> 5616 </tr> 5617 <tr class="row-even"><td></td> 5618 <td> </td> 5619 <td>[Add] RTCM SSR II messages (phase biases and SSR ionospheric model) support from RTNET interface</td> 5620 </tr> 5621 <tr class="row-odd"><td></td> 5622 <td> </td> 5623 <td>[Add] Computation of VTEC and STEC from SSR ionospheric model messages for usage in PPP mode</td> 5624 </tr> 5625 <tr class="row-even"><td></td> 5626 <td> </td> 5627 <td>[Add] Handle old-fashioned SNR values in RINEX</td> 5628 </tr> 5629 <tr class="row-odd"><td></td> 5630 <td> </td> 5631 <td>[Mod] SNR and MP visualization depending on RINEX observation attribute</td> 5632 </tr> 5633 <tr class="row-even"><td></td> 5634 <td> </td> 5635 <td>[Bug] Saastamoinen tropospheric correction for very high elevation receivers</td> 5636 </tr> 5637 <tr class="row-odd"><td></td> 5638 <td> </td> 5639 <td>[Add] Comparison of SP3 files</td> 5640 </tr> 5641 <tr class="row-even"><td></td> 5642 <td> </td> 5643 <td>[Add] Encoding/Decoding of RTCM v3 proposal for Galileo Broadcast Ephemeris message 1046</td> 5644 </tr> 5645 <tr class="row-odd"><td></td> 5646 <td> </td> 5647 <td>[Add] Encoding/Decoding of RTCM v3 QZSS Broadcast Ephemeris message 1044</td> 5648 </tr> 5649 <tr class="row-even"><td></td> 5650 <td> </td> 5651 <td>[Add] Encoding/Decoding of RTCM v3 SBAS Broadcast Ephemeris message 1043</td> 5652 </tr> 5653 <tr class="row-odd"><td></td> 5654 <td> </td> 5655 <td>[Add] Encoding/Decoding of RTCM v3 BDS Broadcast Ephemeris message 63</td> 5656 </tr> 5657 <tr class="row-even"><td></td> 5658 <td> </td> 5659 <td>[Add] RINEX v3 support of Galileo, BDS, SBAS and QZSS Broadcast Ephemerides</td> 5660 </tr> 5661 <tr class="row-odd"><td></td> 5662 <td> </td> 5663 <td>[Add] Consideration of the aspect that Galileo NAV message can be provided for the same epoch but with different flags (I/NAV, F/NAV, DVS)</td> 5664 </tr> 5665 <tr class="row-even"><td></td> 5666 <td> </td> 5667 <td>[Bug] VRS support in sending NMEA in Auto/Manual mode to Ntrip Broadcaster</td> 5668 </tr> 5669 <tr class="row-odd"><td></td> 5670 <td> </td> 5671 <td>[Add] Forwarding NMEA GNGGA to Ntrip Broadcaster</td> 5672 </tr> 5673 <tr class="row-even"><td></td> 5674 <td> </td> 5675 <td>[Bug] Stream failure/recovery reports</td> 5676 </tr> 5677 <tr class="row-odd"><td></td> 5678 <td> </td> 5679 <td>[Add] Compute IODs for BDS and SBAS from CRC over Broadcast Ephemeris and clock parameters</td> 5680 </tr> 5681 <tr class="row-even"><td></td> 5682 <td> </td> 5683 <td>[Mod] PPP default options</td> 5684 </tr> 5685 <tr class="row-odd"><td></td> 5686 <td> </td> 5687 <td>[Add] Example configuration for SP3 file comparison</td> 5688 </tr> 5689 <tr class="row-even"><td></td> 5690 <td> </td> 5691 <td>[Add] Choose between code and phase observations when in PPP SSR I mode</td> 5692 </tr> 5693 <tr class="row-odd"><td></td> 5694 <td> </td> 5695 <td>[Bug] Reset time series plot when restarting PPP in post processing mode</td> 5696 </tr> 5697 <tr class="row-even"><td></td> 5698 <td> </td> 5699 <td>[Add] Broadcast ephemeris check regarding allowed age of data sets</td> 5700 </tr> 5701 <tr class="row-odd"><td></td> 5702 <td> </td> 5703 <td>[Add] Code bias usage for PPP SSR I mode</td> 5704 </tr> 5705 <tr class="row-even"><td></td> 5706 <td> </td> 5707 <td>[Add] Code bias, phase bias and VTEC usage in extended PPP mode</td> 5708 </tr> 5709 <tr class="row-odd"><td></td> 5710 <td> </td> 5711 <td>[Mod] Consideration of the full antenna PCO vector in all PPP modes</td> 5712 </tr> 5713 <tr class="row-even"><td></td> 5714 <td> </td> 5715 <td>[Add] Allow GPS-only and GLONASS-only RINEX v2 Navigation files</td> 5716 </tr> 5717 <tr class="row-odd"><td></td> 5718 <td> </td> 5719 <td>[Mod] SSR clock correction converted to seconds to be consistent with broadcast values</td> 5720 </tr> 5721 <tr class="row-even"><td></td> 5722 <td> </td> 5723 <td>[Add] Support Galileo I/NAV Broadcast Ephemeris</td> 5724 </tr> 5725 <tr class="row-odd"><td></td> 5726 <td> </td> 5727 <td>[Add] Extended RINEX v3 filenames</td> 5728 </tr> 5729 <tr class="row-even"><td></td> 5730 <td> </td> 5731 <td>[Add] Stream’s country added to configuration string ‘mountPoints’</td> 5732 </tr> 5733 <tr class="row-odd"><td></td> 5734 <td> </td> 5735 <td>[Add] Distinction of GEO/MEO satellites during BDS velocity determination</td> 5736 </tr> 5737 <tr class="row-even"><td></td> 5738 <td> </td> 5739 <td>[Bug] Velocity determination for geostationary BDS satellites</td> 5740 </tr> 5741 <tr class="row-odd"><td></td> 5742 <td> </td> 5743 <td>[Add] Set TOE from BDS week and second</td> 5744 </tr> 5745 <tr class="row-even"><td></td> 5746 <td> </td> 5747 <td>[Add] Use BDS observations and ephemerides in PPP SSR I mode</td> 5748 </tr> 5749 <tr class="row-odd"><td></td> 5750 <td> </td> 5751 <td>[Add] Considering that yaw angle restricted to -180 to +180 deg</td> 5752 </tr> 5753 <tr class="row-even"><td></td> 5754 <td> </td> 5755 <td>[Mod] Read local RINEX skeleton files</td> 5756 </tr> 5757 <tr class="row-odd"><td></td> 5758 <td> </td> 5759 <td>[Add] Update interval for VTEC in RTNET stream format</td> 5760 </tr> 5761 <tr class="row-even"><td></td> 5762 <td> </td> 5763 <td>[Bug] SBAS IODN</td> 5764 </tr> 5765 <tr class="row-odd"><td></td> 5766 <td> </td> 5767 <td>[Bug] Galileo week number</td> 5768 </tr> 5769 <tr class="row-even"><td></td> 5770 <td> </td> 5771 <td>[Add] Phase shift records in RINEX v3 headers</td> 5772 </tr> 5773 <tr class="row-odd"><td></td> 5774 <td> </td> 5775 <td>[Add] Output GLONASS slot numbers from scanning stream content</td> 5776 </tr> 5777 <tr class="row-even"><td></td> 5778 <td> </td> 5779 <td>[Add] Decoder interface for PPP SSR I+II messages for Galileo/QZSS/SBAS/BDS</td> 5780 </tr> 5781 <tr class="row-odd"><td></td> 5782 <td> </td> 5783 <td>[Mod] Renaming BDS first frequency from ‘1’ to ‘2’</td> 5784 </tr> 5785 <tr class="row-even"><td></td> 5786 <td> </td> 5787 <td>[Add] RINEX QC, receiver/antenna information editable</td> 5788 </tr> 5789 <tr class="row-odd"><td></td> 5790 <td> </td> 5791 <td>[Add] Support of new RINEX header lines regarding phase shifts, GLONAQSS slots and GLONASS biases during file merging</td> 5792 </tr> 5793 <tr class="row-even"><td></td> 5794 <td> </td> 5795 <td>[Add] Switch to port 443 for skeleton file download from https website</td> 5796 </tr> 5797 <tr class="row-odd"><td></td> 5798 <td> </td> 5799 <td>[Mod] Default observation types for RINEX v3 files</td> 5800 </tr> 5801 <tr class="row-even"><td></td> 5802 <td> </td> 5803 <td>[Bug] RTCM v2 decoder</td> 5804 </tr> 5805 <tr class="row-odd"><td></td> 5806 <td> </td> 5807 <td>[Add] SINEX Troposphere file output</td> 5808 </tr> 5809 <tr class="row-even"><td></td> 5810 <td> </td> 5811 <td>[Add] Comments with respect to RINEX v3 to RINEX v2 observation file conversion [Add] String for Operating System in logfile output</td> 5812 </tr> 5813 <tr class="row-odd"><td></td> 5814 <td> </td> 5815 <td>[Add] Full integration of ‘rtcm3torinex’</td> 5816 </tr> 5817 <tr class="row-even"><td></td> 5818 <td> </td> 5819 <td>[Add] Extended command line help</td> 5820 </tr> 5821 <tr class="row-odd"><td></td> 5822 <td> </td> 5823 <td>[Add] Version 2.12.0 published in April 2016</td> 5824 </tr> 5825 <tr class="row-even"><td>Apr 2016</td> 5826 <td>Version 2.13</td> 5827 <td>[Add] Started work on new version in Apr 2016</td> 5828 </tr> 5829 </tbody> 4854 5830 4855 </table> 5831 </div> 5832 <div class="section" id="rtcm-standards"> 5833 <span id="index-2"></span><h3>RTCM Standards<a class="headerlink" href="#rtcm-standards" title="Permalink to this headline">¶</a></h3> 5834 <p>The Radio Technical Commission for Maritime Services (RTCM) is an international non-profit scientific, professional and educational organization. Special Committees provide a forum in which governmental and non-governmental members work together to develop technical standards and consensus recommendations in regard to issues of particular concern. RTCM is engaged in the development of international standards for maritime radionavigation and radiocommunication systems. The output documents and reports prepared by RTCM Committees are published as RTCM Recommended Standards. Topics concerning Differential Global Navigation Satellite Systems (DGNSS) are handled by the Special Committee SC 104.</p> 5835 <p>Personal copies of RTCM Recommended Standards can be ordered through <a class="reference external" href="http://www.rtcm.org/orderinfo.php">http://www.rtcm.org/orderinfo.php</a>.</p> 5836 <div class="section" id="ntrip-version-1"> 5837 <span id="index-3"></span><h4>Ntrip Version 1<a class="headerlink" href="#ntrip-version-1" title="Permalink to this headline">¶</a></h4> 5838 <p>‘Networked Transport of RTCM via Internet Protocol’ Version 1.0 (Ntrip) stands for an application-level protocol streaming Global Navigation Satellite System (GNSS) data over the Internet. Ntrip is a generic, stateless protocol based on the Hypertext Transfer Protocol HTTP/1.1. The HTTP objects are enhanced to GNSS data streams.</p> 5839 <p>Ntrip Version 1 is an RTCM standard designed for disseminating differential correction data (e.g. in the RTCM-104 format) or other kinds of GNSS streaming data to stationary or mobile users over the Internet, allowing simultaneous PC, Laptop, PDA, or receiver connections to a broadcasting host. Ntrip supports wireless Internet access through Mobile IP Networks like GSM, GPRS, EDGE, or UMTS.</p> 5840 <p>Ntrip is implemented in three system software components: Ntrip Clients, Ntrip Servers and Ntrip Broadcasters. The Ntrip Broadcaster is the actual HTTP server program whereas Ntrip Client and Ntrip Server are acting as HTTP clients.</p> 5841 <p>Ntrip is an open none-proprietary protocol. Major characteristics of Ntrip’s dissemination technique are:</p> 5842 <ul class="simple"> 4856 </p> 4857 4858 <p><h4>3.2 <a name="rtcm">RTCM Standards</h4></p> 4859 4860 <p> 4861 The Radio Technical Commission for Maritime Services (RTCM) is an international non-profit scientific, professional and educational organization. Special Committees provide a forum in which governmental and non-governmental members work together to develop technical standards and consensus recommendations in regard to issues of particular concern. RTCM is engaged in the development of international standards for maritime radionavigation and radiocommunication systems. The output documents and reports prepared by RTCM Committees are published as RTCM Recommended Standards. Topics concerning Differential Global Navigation Satellite Systems (DGNSS) are handled by the Special Committee SC 104. 4862 <p> 4863 Personal copies of RTCM Recommended Standards can be ordered through <u>http://www.rtcm.org/orderinfo.php</u>. 4864 </p> 4865 4866 <p><h4>3.2.1 <a name="ntrip1">Ntrip Version 1</h4></p> 4867 4868 <p> 4869 'Networked Transport of RTCM via Internet Protocol' Version 1.0 (Ntrip) stands for an application-level protocol streaming Global Navigation Satellite System (GNSS) data over the Internet. Ntrip is a generic, stateless protocol based on the Hypertext Transfer Protocol HTTP/1.1. The HTTP objects are enhanced to GNSS data streams. 4870 </p> 4871 4872 <p> 4873 Ntrip Version 1 is an RTCM standard designed for disseminating differential correction data (e.g. in the RTCM-104 format) or other kinds of GNSS streaming data to stationary or mobile users over the Internet, allowing simultaneous PC, Laptop, PDA, or receiver connections to a broadcasting host. Ntrip supports wireless Internet access through Mobile IP Networks like GSM, GPRS, EDGE, or UMTS. 4874 </p> 4875 4876 <p> 4877 Ntrip is implemented in three system software components: Ntrip Clients, Ntrip Servers and Ntrip Broadcasters. The Ntrip Broadcaster is the actual HTTP server program whereas Ntrip Client and Ntrip Server are acting as HTTP clients. 4878 </p> 4879 4880 <p> 4881 Ntrip is an open none-proprietary protocol. Major characteristics of Ntrip's dissemination technique are: 4882 <ul> 5843 4883 <li>Based on the popular HTTP streaming standard; comparatively easy to implement when having limited client and server platform resources available;</li> 5844 4884 <li>Application not limited to one particular plain or coded stream content; ability to distribute any kind of GNSS data;</li> … … 5847 4887 <li>Enables streaming over mobile IP networks because of using TCP/IP.</li> 5848 4888 </ul> 5849 <p>The Ntrip Broadcaster maintains a source-table containing information on available Ntrip streams, networks of Ntrip streams and Ntrip Broadcasters. The source-table is sent to an Ntrip Client on request. Source-table records are dedicated to one of the following: Data Streams (record type STR), Casters (record type CAS), or Networks of streams (record type NET).</p> 5850 <p>Source-table records of type STR contain the following data fields: ‘mountpoint’, ‘identifier’, ‘format’, ‘format-details’, ‘carrier’, ‘nav-system’, ‘network’, ‘country’, ‘latitude’, ‘longitude’, ‘nmea’, ‘solution’, ‘generator’, ‘compr-encryp’, ‘authentication’, ‘fee’, ‘bitrate’, ‘misc’.</p> 5851 <p>Source-table records of type NET contain the following data fields: ‘identifier’, ‘operator’, ‘authentication’, ‘fee’, ‘web-net’, ‘web-str’, ‘web-reg’, ‘misc’.</p> 5852 <p>Source-table records of type CAS contain the following data fields: ‘host’, ‘port’, ‘identifier’, ‘operator’, ‘nmea’, ‘country’, ‘latitude’, ‘longitude’, ‘misc’.</p> 5853 </div> 5854 <div class="section" id="ntrip-version-2"> 5855 <span id="index-4"></span><h4>Ntrip Version 2<a class="headerlink" href="#ntrip-version-2" title="Permalink to this headline">¶</a></h4> 5856 <p>The major changes of Ntrip Version 2 compared to Version 1.0 are:</p> 5857 <ul class="simple"> 4889 </p> 4890 4891 <p> 4892 The Ntrip Broadcaster maintains a source-table containing information on available Ntrip streams, networks of Ntrip streams and Ntrip Broadcasters. The source-table is sent to an Ntrip Client on request. Source-table records are dedicated to one of the following: Data Streams (record type STR), Casters (record type CAS), or Networks of streams (record type NET). 4893 </p> 4894 4895 <p> 4896 Source-table records of type STR contain the following data fields: 'mountpoint', 'identifier', 'format', 'format-details', 'carrier', 'nav-system', 'network', 'country', 'latitude', 'longitude', 'nmea', 'solution', 'generator', 'compr-encryp', 'authentication', 'fee', 'bitrate', 'misc'. 4897 </p> 4898 <p> 4899 Source-table records of type NET contain the following data fields: 'identifier', 'operator', 'authentication', 'fee', 'web-net', 'web-str', 'web-reg', 'misc'. 4900 </p> 4901 <p> 4902 Source-table records of type CAS contain the following data fields: 'host', 'port', 'identifier', 'operator', 'nmea', 'country', 'latitude', 'longitude', 'misc'. 4903 </p> 4904 4905 <p><h4>3.2.2 <a name="ntrip2">Ntrip Version 2</h4></p> 4906 4907 <p> 4908 The major changes of Ntrip Version 2 compared to Version 1.0 are: 4909 </p> 4910 4911 <ul> 5858 4912 <li>Cleared and fixed design problems and HTTP protocol violations;</li> 5859 4913 <li>Replaced nonstandard directives;</li> … … 5863 4917 <li>RTSP communication.</li> 5864 4918 </ul> 5865 <p>Ntrip Version 2 allows to communicate either in TCP/IP mode or in RTSP/RTP mode or in UDP mode whereas Version 1 is limited to TCP/IP only. It furthermore allows using the Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL) cryptographic protocols for secure Ntrip communication over the Internet.</p> 5866 </div> 5867 <div class="section" id="rtcm-version-2"> 5868 <span id="index-5"></span><h4>RTCM Version 2<a class="headerlink" href="#rtcm-version-2" title="Permalink to this headline">¶</a></h4> 5869 <p>Transmitting GNSS carrier phase data can be done through RTCM Version 2 messages. Please note that only RTCM Version 2.2 and 2.3 streams may include GLONASS data. Messages that may be of interest here are:</p> 5870 <ul class="simple"> 5871 <li>Type 1 message is the range correction message and is the primary message in code-phase differential positioning (DGPS). It is computed in the base receiver by computing the error in the range measurement for each tracked SV.</li> 5872 <li>Type 2 message is automatically generated when a new set of satellite ephemeris is downloaded to the base receiver. It is the computed difference between the old ephemeris and the new ephemeris. Type 2 messages are used when the base station is transmitting Type 1 messages.</li> 5873 <li>Type 3 and 22 messages are the base station position and the antenna offset. Type 3 and 22 are used in RTK processing to perform antenna reduction.</li> 5874 <li>Type 6 message is a null frame filler message that is provided for data links that require continuous transmission of data, even if there are no corrections to send. As many Type 6 messages are sent as required to fill in the gap between two correction messages (type 1). Message 6 is not sent in burst mode.</li> 5875 <li>Type 9 message serves the same purpose as Type 1, but does not require a complete satellite set. As a result, Type 9 messages require a more stable clock than a station transmitting Type 1 ‘s, because the satellite corrections have different time references.</li> 5876 <li>Type 16 message is simply a text message entered by the user that is transmitted from the base station to the rover. It is used with code-phase differential.</li> 5877 <li>Type 18 and 20 messages are RTK uncorrected carrier phase data and carrier phase corrections.</li> 5878 <li>Type 19 and 21 messages are the uncorrected pseudo-range measurements and pseudo-range corrections used in RTK.</li> 5879 <li>Type 23 message provides the information on the antenna type used on the reference station.</li> 5880 <li>Type 24 message carries the coordinates of the installed antenna’s ARP in the GNSS coordinate system coordinates.</li> 5881 </ul> 5882 </div> 5883 <div class="section" id="rtcm-version-3"> 5884 <span id="index-6"></span><h4>RTCM Version 3<a class="headerlink" href="#rtcm-version-3" title="Permalink to this headline">¶</a></h4> 5885 <p>RTCM Version 3 has been developed as a more efficient alternative to RTCM Version 2. Service providers and vendors have asked for a standard that would be more efficient, easy to use, and more easily adaptable to new situations. The main complaint was that the Version 2 parity scheme was wasteful of bandwidth. Another complaint was that the parity is not independent from word to word. Still another was that even with so many bits devoted to parity, the actual integrity of the message was not as high as it should be. Plus, 30-bit words are awkward to handle. The Version 3 standard is intended to correct these weaknesses.</p> 5886 <p>RTCM Version 3 defines a number of message types. Messages that may be of interest here are:</p> 5887 <ul class="simple"> 4919 4920 <p>Ntrip Version 2 allows to communicate either in TCP/IP mode or in RTSP/RTP mode or in UDP mode whereas Version 1 is limited to TCP/IP only. It furthermore allows using the Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL) cryptographic protocols for secure Ntrip communication over the Internet. 4921 </p> 4922 4923 <p><h4>3.2.3 <a name="rtcm2">RTCM Version 2</h4></p> 4924 <p> 4925 Transmitting GNSS carrier phase data can be done through RTCM Version 2 messages. Please note that only RTCM Version 2.2 and 2.3 streams may include GLONASS data. Messages that may be of interest here are: 4926 </p> 4927 4928 <ul> 4929 <li> 4930 Type 1 message is the range correction message and is the primary message in code-phase differential positioning (DGPS). It is computed in the base receiver by computing the error in the range measurement for each tracked SV. 4931 </li> 4932 <li> 4933 Type 2 message is automatically generated when a new set of satellite ephemeris is downloaded to the base receiver. It is the computed difference between the old ephemeris and the new ephemeris. Type 2 messages are used when the base station is transmitting Type 1 messages. 4934 </li> 4935 <li> 4936 Type 3 and 22 messages are the base station position and the antenna offset. Type 3 and 22 are used in RTK processing to perform antenna reduction. 4937 </li> 4938 <li> 4939 Type 6 message is a null frame filler message that is provided for data links that require continuous transmission of data, even if there are no corrections to send. As many Type 6 messages are sent as required to fill in the gap between two correction messages (type 1). Message 6 is not sent in burst mode. 4940 </li> 4941 <li> 4942 Type 9 message serves the same purpose as Type 1, but does not require a complete satellite set. As a result, Type 9 messages require a more stable clock than a station transmitting Type 1 's, because the satellite corrections have different time references. 4943 </li> 4944 <li> 4945 Type 16 message is simply a text message entered by the user that is transmitted from the base station to the rover. It is used with code-phase differential. 4946 </li> 4947 <li> 4948 Type 18 and 20 messages are RTK uncorrected carrier phase data and carrier phase corrections. 4949 </li> 4950 <li> 4951 Type 19 and 21 messages are the uncorrected pseudo-range measurements and pseudo-range corrections used in RTK. 4952 </li> 4953 <li> 4954 Type 23 message provides the information on the antenna type used on the reference station. 4955 </li> 4956 <li> 4957 Type 24 message carries the coordinates of the installed antenna's ARP in the GNSS coordinate system coordinates. 4958 </li> 4959 </ul> 4960 4961 <p><h4>3.2.4 <a name="rtcm3">RTCM Version 3</h4></p> 4962 <p> 4963 RTCM Version 3 has been developed as a more efficient alternative to RTCM Version 2. Service providers and vendors have asked for a standard that would be more efficient, easy to use, and more easily adaptable to new situations. The main complaint was that the Version 2 parity scheme was wasteful of bandwidth. Another complaint was that the parity is not independent from word to word. Still another was that even with so many bits devoted to parity, the actual integrity of the message was not as high as it should be. Plus, 30-bit words are awkward to handle. The Version 3 standard is intended to correct these weaknesses. 4964 </p> 4965 <p> 4966 RTCM Version 3 defines a number of message types. Messages that may be of interest here are: 4967 <ul> 5888 4968 <li>Type 1001, GPS L1 code and phase.</li> 5889 4969 <li>Type 1002, GPS L1 code and phase and ambiguities and carrier-to-noise ratio.</li> … … 5906 4986 <li>Type 1045, Galileo F/NAV ephemeris.</li> 5907 4987 <li>Type 1046, Galileo I/NAV ephemeris.</li> 5908 <li>Type 63, BeiDou ephemeris, tentative.</li> 5909 <li>Type 4088 and 4095, Proprietary messages.</li> 5910 </ul> 5911 <p>The following are so-called ‘State Space Representation’ (SSR) messages:</p> 5912 <ul class="simple"> 4988 <li>Type 63, BeiDou ephemeris, tentative.</li> 4989 <li>Type 4088 and 4095, Proprietary messages. 4990 </li> 4991 </ul> 4992 </p> 4993 4994 <p> 4995 The following are so-called 'State Space Representation' (SSR) messages: 4996 <ul> 5913 4997 <li>Type 1057, GPS orbit corrections to Broadcast Ephemeris</li> 5914 4998 <li>Type 1058, GPS clock corrections to Broadcast Ephemeris</li> … … 5916 5000 <li>Type 1060, Combined orbit and clock corrections to GPS Broadcast Ephemeris</li> 5917 5001 <li>Type 1061, GPS User Range Accuracy (URA)</li> 5918 <li>Type 1062, High-rate GPS clock corrections to Broadcast Ephemeris</li> 5002 <li>Type 1062, High-rate GPS clock corrections to Broadcast Ephemeris<br><br></li> 5003 5919 5004 <li>Type 1063, GLONASS orbit corrections to Broadcast Ephemeris</li> 5920 5005 <li>Type 1064, GLONASS clock corrections to Broadcast Ephemeris</li> … … 5922 5007 <li>Type 1066, Combined orbit and clock corrections to GLONASS Broadcast Ephemeris</li> 5923 5008 <li>Type 1067, GLONASS User Range Accuracy (URA)</li> 5924 <li>Type 1068, High-rate GLONASS clock corrections to Broadcast Ephemeris</li> 5009 <li>Type 1068, High-rate GLONASS clock corrections to Broadcast Ephemeris<br><br></li> 5010 5925 5011 <li>Type 1240, Galileo orbit corrections to Broadcast Ephemeris</li> 5926 5012 <li>Type 1241, Galileo clock corrections to Broadcast Ephemeris</li> … … 5928 5014 <li>Type 1243, Combined orbit and clock corrections to Galileo Broadcast Ephemeris</li> 5929 5015 <li>Type 1244, Galileo User Range Accuracy (URA)</li> 5930 <li>Type 1245, High-rate Galileo clock corrections to Broadcast Ephemeris</li> 5016 <li>Type 1245, High-rate Galileo clock corrections to Broadcast Ephemeris<br><br></li> 5017 5931 5018 <li>Type 1246, QZSS orbit corrections to Broadcast Ephemeris</li> 5932 5019 <li>Type 1247, QZSS clock corrections to Broadcast Ephemeris</li> … … 5934 5021 <li>Type 1249, Combined orbit and clock corrections to QZSS Broadcast Ephemeris</li> 5935 5022 <li>Type 1250, QZSS User Range Accuracy (URA)</li> 5936 <li>Type 1251, High-rate QZSS clock corrections to Broadcast Ephemeris</li> 5023 <li>Type 1251, High-rate QZSS clock corrections to Broadcast Ephemeris<br><br></li> 5024 5937 5025 <li>Type 1252, SBAS orbit corrections to Broadcast Ephemeris</li> 5938 5026 <li>Type 1253, SBAS clock corrections to Broadcast Ephemeris</li> … … 5940 5028 <li>Type 1255, Combined orbit and clock corrections to SBAS Broadcast Ephemeris</li> 5941 5029 <li>Type 1256, SBAS User Range Accuracy (URA)</li> 5942 <li>Type 1257, High-rate SBAS clock corrections to Broadcast Ephemeris</li> 5030 <li>Type 1257, High-rate SBAS clock corrections to Broadcast Ephemeris<br><br></li> 5031 5943 5032 <li>Type 1258, BDS orbit corrections to Broadcast Ephemeris</li> 5944 5033 <li>Type 1259, BDS clock corrections to Broadcast Ephemeris</li> … … 5946 5035 <li>Type 1261, Combined orbit and clock corrections to BDS Broadcast Ephemeris</li> 5947 5036 <li>Type 1262, BDS User Range Accuracy (URA)</li> 5948 <li>Type 1263, High-rate BDS clock corrections to Broadcast Ephemeris\</li> 5037 <li>Type 1263, High-rate BDS clock corrections to Broadcast Ephemeris<br><br></li> 5038 5949 5039 <li>Type 1264 SSR Ionosphere VTEC Spherical Harmonics</li> 5950 5040 <li>Type 1265 SSR GPS Satellite Phase Bias</li> … … 5955 5045 <li>Type 1270 SSR Satellite BDS Phase Bias</li> 5956 5046 </ul> 5957 <p>The following are so-called ‘Multiple Signal Messages’ (MSM):</p> 5958 <ul class="simple"> 5047 </p> 5048 5049 <p> 5050 The following are so-called 'Multiple Signal Messages' (MSM): 5051 <ul> 5959 5052 <li>Type 1071, Compact GPS pseudo-ranges</li> 5960 5053 <li>Type 1072, Compact GPS carrier phases</li> … … 5963 5056 <li>Type 1075, Full GPS pseudo-ranges, carrier phases, Doppler and signal strength</li> 5964 5057 <li>Type 1076, Full GPS pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 5965 <li>Type 1077, Full GPS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)< /li>5058 <li>Type 1077, Full GPS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 5966 5059 <li>Type 1081, Compact GLONASS pseudo-ranges</li> 5967 5060 <li>Type 1082, Compact GLONASS carrier phases</li> … … 5970 5063 <li>Type 1085, Full GLONASS pseudo-ranges, carrier phases, Doppler and signal strength</li> 5971 5064 <li>Type 1086, Full GLONASS pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 5972 <li>Type 1087, Full GLONASS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)< /li>5065 <li>Type 1087, Full GLONASS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 5973 5066 <li>Type 1091, Compact Galileo pseudo-ranges</li> 5974 5067 <li>Type 1092, Compact Galileo carrier phases</li> … … 5977 5070 <li>Type 1095, Full Galileo pseudo-ranges, carrier phases, Doppler and signal strength</li> 5978 5071 <li>Type 1096, Full Galileo pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 5979 <li>Type 1097, Full Galileo pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)< /li>5072 <li>Type 1097, Full Galileo pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 5980 5073 <li>Type 1121, Compact BeiDou pseudo-ranges</li> 5981 5074 <li>Type 1122, Compact BeiDou carrier phases</li> … … 5984 5077 <li>Type 1125, Full BeiDou pseudo-ranges, carrier phases, Doppler and signal strength</li> 5985 5078 <li>Type 1126, Full BeiDou pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 5986 <li>Type 1127, Full BeiDou pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)< /li>5079 <li>Type 1127, Full BeiDou pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 5987 5080 <li>Type 1111, Compact QZSS pseudo-ranges</li> 5988 5081 <li>Type 1112, Compact QZSS carrier phases</li> … … 5991 5084 <li>Type 1115, Full QZSS pseudo-ranges, carrier phases, Doppler and signal strength</li> 5992 5085 <li>Type 1116, Full QZSS pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 5993 <li>Type 1117, Full QZSS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)</li> 5994 </ul> 5995 <p>The following are proposed ‘Multiple Signal Messages’ (MSM) under discussion for standardization:</p> 5996 <ul class="simple"> 5086 <li>Type 1117, Full QZSS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 5087 5088 </ul> 5089 </p> 5090 5091 <p> 5092 The following are proposed 'Multiple Signal Messages' (MSM) under discussion for standardization: 5093 <ul> 5997 5094 <li>Type 1101, Compact SBAS pseudo-ranges</li> 5998 5095 <li>Type 1102, Compact SBAS carrier phases</li> … … 6001 5098 <li>Type 1105, Full SBAS pseudo-ranges, carrier phases, Doppler and signal strength</li> 6002 5099 <li>Type 1106, Full SBAS pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 6003 <li>Type 1107, Full SBAS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)\</li> 6004 </ul> 6005 </div> 6006 </div> 6007 <div class="section" id="command-line-help"> 6008 <span id="index-7"></span><h3>Command Line Help<a class="headerlink" href="#command-line-help" title="Permalink to this headline">¶</a></h3> 6009 <p>Command line option <code class="docutils literal"><span class="pre">--help</span></code> provides a complete list of all configuration parameters which can be specified via BNC’s Command Line Interface (CLI). Note that command line options overrule configuration options specified in the configuration file. The following is the output produced when running BNC with command line option ‘–help’:</p> 6010 <div class="section" id="usage"> 6011 <h4>Usage<a class="headerlink" href="#usage" title="Permalink to this headline">¶</a></h4> 6012 <div class="highlight-bash"><div class="highlight"><pre>bnc --help <span class="o">(</span>MS Windows: bnc.exe --help <span class="p">|</span> more<span class="o">)</span> 6013 --nw 6014 --version <span class="o">(</span>MS Windows: bnc.exe --version <span class="p">|</span> more<span class="o">)</span> 6015 --display <span class="o">{</span>name<span class="o">}</span> 6016 --conf <span class="o">{</span>confFileName<span class="o">}</span> 6017 --file <span class="o">{</span>rawFileName<span class="o">}</span> 6018 --key <span class="o">{</span>keyName<span class="o">}</span> <span class="o">{</span>keyValue<span class="o">}</span> 6019 </pre></div> 6020 </div> 6021 </div> 6022 <div class="section" id="network-panel-keys"> 6023 <span id="index-8"></span><h4>Network Panel keys<a class="headerlink" href="#network-panel-keys" title="Permalink to this headline">¶</a></h4> 6024 <table border="1" class="docutils"> 6025 <colgroup> 6026 <col width="18%" /> 6027 <col width="82%" /> 6028 </colgroup> 6029 <thead valign="bottom"> 6030 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6031 <th class="head"><strong>Meaning</strong></th> 6032 </tr> 6033 </thead> 6034 <tbody valign="top"> 6035 <tr class="row-even"><td>proxyHost</td> 6036 <td>Proxy host, name or IP address [character string]</td> 6037 </tr> 6038 <tr class="row-odd"><td>proxyPort</td> 6039 <td>Proxy port [integer number]</td> 6040 </tr> 6041 <tr class="row-even"><td>sslCaCertPath</td> 6042 <td>Full path to SSL certificates [character string]</td> 6043 </tr> 6044 <tr class="row-odd"><td>sslIgnoreErrors</td> 6045 <td>Ignore SSL authorization errors [integer number: 0=no,2=yes]</td> 6046 </tr> 6047 </tbody> 6048 </table> 6049 </div> 6050 <div class="section" id="general-panel-keys"> 6051 <span id="index-9"></span><h4>General Panel keys<a class="headerlink" href="#general-panel-keys" title="Permalink to this headline">¶</a></h4> 6052 <table border="1" class="docutils"> 6053 <colgroup> 6054 <col width="18%" /> 6055 <col width="82%" /> 6056 </colgroup> 6057 <thead valign="bottom"> 6058 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6059 <th class="head"><strong>Meaning</strong></th> 6060 </tr> 6061 </thead> 6062 <tbody valign="top"> 6063 <tr class="row-even"><td>logFile</td> 6064 <td>Logfile, full path [character string]</td> 6065 </tr> 6066 <tr class="row-odd"><td>rnxAppend</td> 6067 <td>Append files [integer number: 0=no,2=yes]</td> 6068 </tr> 6069 <tr class="row-even"><td>onTheFlyInterval</td> 6070 <td>Configuration reload interval [character string: 1 day|1 hour|5 min|1 min]</td> 6071 </tr> 6072 <tr class="row-odd"><td>autoStart</td> 6073 <td>Auto start [integer number: 0=no,2=yes]</td> 6074 </tr> 6075 <tr class="row-even"><td>rawOutFile</td> 6076 <td>Raw output file, full path [character string]</td> 6077 </tr> 6078 </tbody> 6079 </table> 6080 </div> 6081 <div class="section" id="rinex-observations-panel-keys"> 6082 <span id="index-10"></span><h4>RINEX Observations Panel keys<a class="headerlink" href="#rinex-observations-panel-keys" title="Permalink to this headline">¶</a></h4> 6083 <table border="1" class="docutils"> 6084 <colgroup> 6085 <col width="18%" /> 6086 <col width="82%" /> 6087 </colgroup> 6088 <thead valign="bottom"> 6089 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6090 <th class="head"><strong>Meaning</strong></th> 6091 </tr> 6092 </thead> 6093 <tbody valign="top"> 6094 <tr class="row-even"><td>rnxPath</td> 6095 <td>Directory [character string]</td> 6096 </tr> 6097 <tr class="row-odd"><td>rnxIntr</td> 6098 <td>File interval [character string: 1 min|2 min|5 min|10 min|15 min|30 min|1 hour|1 day]</td> 6099 </tr> 6100 <tr class="row-even"><td>rnxSampl</td> 6101 <td>File sampling rate [integer number of seconds: 0,5|10|15|20|25|30|35|40|45|50|55|60]</td> 6102 </tr> 6103 <tr class="row-odd"><td>rnxSkel</td> 6104 <td>RINEX skeleton file extension [character string]</td> 6105 </tr> 6106 <tr class="row-even"><td>rnxOnlyWithSKL</td> 6107 <td>Using RINEX skeleton file is mandatory [integer number: 0=no,2=yes]</td> 6108 </tr> 6109 <tr class="row-odd"><td>rnxScript</td> 6110 <td>File upload script, full path [character string]</td> 6111 </tr> 6112 <tr class="row-even"><td>rnxV2Priority</td> 6113 <td>Priority of signal attributes [character string, list separated by blank character, example: G:CWPX_? R:CP]</td> 6114 </tr> 6115 <tr class="row-odd"><td>rnxV3</td> 6116 <td>Produce version 3 file content [integer number: 0=no,2=yes]</td> 6117 </tr> 6118 <tr class="row-even"><td>rnxV3filenames</td> 6119 <td>Produce version 3 filenames [integer number: 0=no,2=yes]</td> 6120 </tr> 6121 </tbody> 6122 </table> 6123 </div> 6124 <div class="section" id="rinex-ephemeris-panel-keys"> 6125 <span id="index-11"></span><h4>RINEX Ephemeris Panel keys<a class="headerlink" href="#rinex-ephemeris-panel-keys" title="Permalink to this headline">¶</a></h4> 6126 <table border="1" class="docutils"> 6127 <colgroup> 6128 <col width="18%" /> 6129 <col width="82%" /> 6130 </colgroup> 6131 <thead valign="bottom"> 6132 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6133 <th class="head"><strong>Meaning</strong></th> 6134 </tr> 6135 </thead> 6136 <tbody valign="top"> 6137 <tr class="row-even"><td>ephPath</td> 6138 <td>Directory [character string]</td> 6139 </tr> 6140 <tr class="row-odd"><td>ephIntr</td> 6141 <td>File interval [character string: 1 min|2 min|5 min|10 min|15 min|30 min|1 hour|1 day]</td> 6142 </tr> 6143 <tr class="row-even"><td>ephOutPort</td> 6144 <td>Output port [integer number]</td> 6145 </tr> 6146 <tr class="row-odd"><td>ephV3</td> 6147 <td>Produce version 3 file content [integer number: 0=no,2=yes]</td> 6148 </tr> 6149 <tr class="row-even"><td>ephV3filenames</td> 6150 <td>Produce version 3 filenames [integer number: 0=no,2=yes]</td> 6151 </tr> 6152 </tbody> 6153 </table> 6154 </div> 6155 <div class="section" id="rinex-editing-and-qc-panel-keys"> 6156 <span id="index-12"></span><h4>RINEX Editing and QC Panel keys<a class="headerlink" href="#rinex-editing-and-qc-panel-keys" title="Permalink to this headline">¶</a></h4> 6157 <table border="1" class="docutils"> 6158 <colgroup> 6159 <col width="17%" /> 6160 <col width="83%" /> 6161 </colgroup> 6162 <thead valign="bottom"> 6163 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6164 <th class="head"><strong>Meaning</strong></th> 6165 </tr> 6166 </thead> 6167 <tbody valign="top"> 6168 <tr class="row-even"><td>reqcAction</td> 6169 <td>Action specification [character string: Blank|Edit/Concatenate|Analyze]</td> 6170 </tr> 6171 <tr class="row-odd"><td>reqcObsFile</td> 6172 <td>Input observations file(s), full path [character string, comma separated list in quotation marks]</td> 6173 </tr> 6174 <tr class="row-even"><td>reqcNavFile</td> 6175 <td>Input navigation file(s), full path [character string, comma separated list in quotation marks]</td> 6176 </tr> 6177 <tr class="row-odd"><td>reqcOutObsFile</td> 6178 <td>Output observations file, full path [character string]</td> 6179 </tr> 6180 <tr class="row-even"><td>reqcOutNavFile</td> 6181 <td>Output navigation file, full path [character string]</td> 6182 </tr> 6183 <tr class="row-odd"><td>reqcOutLogFile</td> 6184 <td>Output logfile, full path [character string]</td> 6185 </tr> 6186 <tr class="row-even"><td>reqcLogSummaryOnly</td> 6187 <td>Output only summary of logfile [integer number: 0=no,2=yes]</td> 6188 </tr> 6189 <tr class="row-odd"><td>reqcSkyPlotSignals</td> 6190 <td>Observation signals [character string, list separated by blank character, example: C:2&7 E:1&5 G:1&2 J:1&2 R:1&2 S:1&5]</td> 6191 </tr> 6192 <tr class="row-even"><td>reqcPlotDir</td> 6193 <td>QC plots directory [character string]</td> 6194 </tr> 6195 <tr class="row-odd"><td>reqcRnxVersion</td> 6196 <td>RINEX version [integer number: 2|3]</td> 6197 </tr> 6198 <tr class="row-even"><td>reqcSampling</td> 6199 <td>RINEX output file sampling rate [integer number of seconds: 0|5|10|15|20|25|30|35|40|45|50|55|60]</td> 6200 </tr> 6201 <tr class="row-odd"><td>reqcV2Priority</td> 6202 <td>Version 2 priority of signal attributes [character string, list separated by blank character, example: G:CWPX_? R:CP]</td> 6203 </tr> 6204 <tr class="row-even"><td>reqcStartDateTime</td> 6205 <td>Start time [character string, example: 1967-11-02T00:00:00]</td> 6206 </tr> 6207 <tr class="row-odd"><td>reqcEndDateTime</td> 6208 <td>Stop time [character string, example: 2099-01-01T00:00:00]</td> 6209 </tr> 6210 <tr class="row-even"><td>reqcRunBy</td> 6211 <td>Operators name [character string]</td> 6212 </tr> 6213 <tr class="row-odd"><td>eqcUseObsTypes</td> 6214 <td>Use observation types [character string, list separated by blank character, example: G:C1C G:L1C R:C1C RC1P]</td> 6215 </tr> 6216 <tr class="row-even"><td>reqcComment</td> 6217 <td>Additional comments [character string]</td> 6218 </tr> 6219 <tr class="row-odd"><td>reqcOldMarkerName</td> 6220 <td>Old marker name [character string]</td> 6221 </tr> 6222 <tr class="row-even"><td>reqcNewMarkerName</td> 6223 <td>New marker name [character string]</td> 6224 </tr> 6225 <tr class="row-odd"><td>reqcOldAntennaName</td> 6226 <td>Old antenna name [character string]</td> 6227 </tr> 6228 <tr class="row-even"><td>reqcNewAntennaName</td> 6229 <td>New antenna name [character string]</td> 6230 </tr> 6231 <tr class="row-odd"><td>reqcOldAntennaNumber</td> 6232 <td>Old antenna number [character string]</td> 6233 </tr> 6234 <tr class="row-even"><td>reqcNewAntennaNumber</td> 6235 <td>New antenna number [character string]</td> 6236 </tr> 6237 <tr class="row-odd"><td>reqcOldAntennadN</td> 6238 <td>Old north eccentricity [character string]</td> 6239 </tr> 6240 <tr class="row-even"><td>reqcNewAntennadN</td> 6241 <td>New north eccentricity [character string]</td> 6242 </tr> 6243 <tr class="row-odd"><td>reqcOldAntennadE</td> 6244 <td>Old east eccentricity [character string]</td> 6245 </tr> 6246 <tr class="row-even"><td>reqcNewAntennadE</td> 6247 <td>New east eccentricity [character string]</td> 6248 </tr> 6249 <tr class="row-odd"><td>reqcOldAntennadU</td> 6250 <td>Old up eccentricity [character string]</td> 6251 </tr> 6252 <tr class="row-even"><td>reqcNewAntennadU</td> 6253 <td>New up eccentricity [character string]</td> 6254 </tr> 6255 <tr class="row-odd"><td>reqcOldReceiverName</td> 6256 <td>Old receiver name [character string]</td> 6257 </tr> 6258 <tr class="row-even"><td>reqcNewReceiverName</td> 6259 <td>New receiver name [character string]</td> 6260 </tr> 6261 <tr class="row-odd"><td>reqcOldReceiverNumber</td> 6262 <td>Old receiver number [character string]</td> 6263 </tr> 6264 <tr class="row-even"><td>reqcNewReceiverNumber</td> 6265 <td>New receiver number [character string]</td> 6266 </tr> 6267 </tbody> 6268 </table> 6269 </div> 6270 <div class="section" id="sp3-comparison-panel-keys"> 6271 <span id="index-13"></span><h4>SP3 Comparison Panel keys<a class="headerlink" href="#sp3-comparison-panel-keys" title="Permalink to this headline">¶</a></h4> 6272 <table border="1" class="docutils"> 6273 <colgroup> 6274 <col width="18%" /> 6275 <col width="82%" /> 6276 </colgroup> 6277 <thead valign="bottom"> 6278 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6279 <th class="head"><strong>Meaning</strong></th> 6280 </tr> 6281 </thead> 6282 <tbody valign="top"> 6283 <tr class="row-even"><td>sp3CompFile</td> 6284 <td>SP3 input files, full path [character string, comma separated list in quotation marks]</td> 6285 </tr> 6286 <tr class="row-odd"><td>sp3CompExclude</td> 6287 <td>Satellite exclusion list [character string, comma separated list in quotation marks, example: G04,G31,R]</td> 6288 </tr> 6289 <tr class="row-even"><td>sp3CompOutLogFile</td> 6290 <td>Output logfile, full path [character string]</td> 6291 </tr> 6292 </tbody> 6293 </table> 6294 </div> 6295 <div class="section" id="broadcast-corrections-panel-keys"> 6296 <span id="index-14"></span><h4>Broadcast Corrections Panel keys<a class="headerlink" href="#broadcast-corrections-panel-keys" title="Permalink to this headline">¶</a></h4> 6297 <table border="1" class="docutils"> 6298 <colgroup> 6299 <col width="18%" /> 6300 <col width="82%" /> 6301 </colgroup> 6302 <thead valign="bottom"> 6303 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6304 <th class="head"><strong>Meaning</strong></th> 6305 </tr> 6306 </thead> 6307 <tbody valign="top"> 6308 <tr class="row-even"><td>corrPath</td> 6309 <td>Directory for saving files in ASCII format [character string]</td> 6310 </tr> 6311 <tr class="row-odd"><td>corrIntr</td> 6312 <td>File interval [character string: 1 min|2 min|5 min|10 min|15 min|30 min|1 hour|1 day]</td> 6313 </tr> 6314 <tr class="row-even"><td>corrPort</td> 6315 <td>Output port [integer number]</td> 6316 </tr> 6317 </tbody> 6318 </table> 6319 </div> 6320 <div class="section" id="feed-engine-panel-keys"> 6321 <span id="index-15"></span><h4>Feed Engine Panel keys<a class="headerlink" href="#feed-engine-panel-keys" title="Permalink to this headline">¶</a></h4> 6322 <table border="1" class="docutils"> 6323 <colgroup> 6324 <col width="18%" /> 6325 <col width="82%" /> 6326 </colgroup> 6327 <thead valign="bottom"> 6328 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6329 <th class="head"><strong>Meaning</strong></th> 6330 </tr> 6331 </thead> 6332 <tbody valign="top"> 6333 <tr class="row-even"><td>outPort</td> 6334 <td>Output port, synchronized [integer number]</td> 6335 </tr> 6336 <tr class="row-odd"><td>outWait</td> 6337 <td>Wait for full observation epoch [integer number of seconds: 1-30]</td> 6338 </tr> 6339 <tr class="row-even"><td>outSampl</td> 6340 <td>Sampling rate [integer number of seconds: 0|5|10|15|20|25|30|35|40|45|50|55|60]</td> 6341 </tr> 6342 <tr class="row-odd"><td>outFile</td> 6343 <td>Output file, full path [character string]</td> 6344 </tr> 6345 <tr class="row-even"><td>outUPort</td> 6346 <td>Output port, unsynchronized [integer number]</td> 6347 </tr> 6348 </tbody> 6349 </table> 6350 </div> 6351 <div class="section" id="serial-output-panel-keys"> 6352 <span id="index-16"></span><h4>Serial Output Panel keys<a class="headerlink" href="#serial-output-panel-keys" title="Permalink to this headline">¶</a></h4> 6353 <table border="1" class="docutils"> 6354 <colgroup> 6355 <col width="18%" /> 6356 <col width="82%" /> 6357 </colgroup> 6358 <thead valign="bottom"> 6359 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6360 <th class="head"><strong>Meaning</strong></th> 6361 </tr> 6362 </thead> 6363 <tbody valign="top"> 6364 <tr class="row-even"><td>serialMountPoint</td> 6365 <td>Mountpoint [character string]</td> 6366 </tr> 6367 <tr class="row-odd"><td>serialPortName</td> 6368 <td>Port name [character string]</td> 6369 </tr> 6370 <tr class="row-even"><td>serialBaudRate</td> 6371 <td>Baud rate [integer number: 110|300|600|1200|2400|4800|9600|19200|38400|57600|115200]</td> 6372 </tr> 6373 <tr class="row-odd"><td>serialFlowControl</td> 6374 <td>Flow control [character string: OFF|XONXOFF|HARDWARE</td> 6375 </tr> 6376 <tr class="row-even"><td>serialDataBits</td> 6377 <td>Data bits [integer number: 5|6|7|8]</td> 6378 </tr> 6379 <tr class="row-odd"><td>serialParity</td> 6380 <td>Parity [character string: NONE|ODD|EVEN|SPACE]</td> 6381 </tr> 6382 <tr class="row-even"><td>serialStopBits</td> 6383 <td>Stop bits [integer number: 1|2]</td> 6384 </tr> 6385 <tr class="row-odd"><td>serialAutoNMEA</td> 6386 <td>NMEA specification [character string: no|Auto|Manual GPGGA|Manual GNGGA]</td> 6387 </tr> 6388 <tr class="row-even"><td>serialFileNMEA</td> 6389 <td>NMEA filename, full path [character string]</td> 6390 </tr> 6391 <tr class="row-odd"><td>serialHeightNMEA</td> 6392 <td>Height [floating-point number]</td> 6393 </tr> 6394 <tr class="row-even"><td>serialHeightNMEASampling</td> 6395 <td>Sampling rate [integer number of seconds: 0|10|20|30|...|280|290|300]</td> 6396 </tr> 6397 </tbody> 6398 </table> 6399 </div> 6400 <div class="section" id="outages-panel-keys"> 6401 <span id="index-17"></span><h4>Outages Panel keys<a class="headerlink" href="#outages-panel-keys" title="Permalink to this headline">¶</a></h4> 6402 <table border="1" class="docutils"> 6403 <colgroup> 6404 <col width="18%" /> 6405 <col width="82%" /> 6406 </colgroup> 6407 <thead valign="bottom"> 6408 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6409 <th class="head"><strong>Meaning</strong></th> 6410 </tr> 6411 </thead> 6412 <tbody valign="top"> 6413 <tr class="row-even"><td>adviseObsRate</td> 6414 <td>Stream observation rate [character string: 0.1 Hz|0.2 Hz|0.5 Hz|1 Hz|5 Hz]</td> 6415 </tr> 6416 <tr class="row-odd"><td>adviseFail</td> 6417 <td>Failure threshold [integer number of minutes: 0-60]</td> 6418 </tr> 6419 <tr class="row-even"><td>adviseReco</td> 6420 <td>Recovery threshold [integer number of minutes: 0-60]</td> 6421 </tr> 6422 <tr class="row-odd"><td>adviseScript</td> 6423 <td>Advisory script, full path [character string]</td> 6424 </tr> 6425 </tbody> 6426 </table> 6427 </div> 6428 <div class="section" id="miscellaneous-panel-keys"> 6429 <span id="index-18"></span><h4>Miscellaneous Panel keys<a class="headerlink" href="#miscellaneous-panel-keys" title="Permalink to this headline">¶</a></h4> 6430 <table border="1" class="docutils"> 6431 <colgroup> 6432 <col width="18%" /> 6433 <col width="82%" /> 6434 </colgroup> 6435 <thead valign="bottom"> 6436 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6437 <th class="head"><strong>Meaning</strong></th> 6438 </tr> 6439 </thead> 6440 <tbody valign="top"> 6441 <tr class="row-even"><td>miscMount</td> 6442 <td>Mountpoint [character string]</td> 6443 </tr> 6444 <tr class="row-odd"><td>miscIntr</td> 6445 <td>Interval for logging latency [character string: Blank|2 sec|10 sec|1 min|5 min|15 min|1 hour|6 hours|1 day]</td> 6446 </tr> 6447 <tr class="row-even"><td>miscScanRTCM</td> 6448 <td>Scan for RTCM message numbers [integer number: 0=no,2=yes]</td> 6449 </tr> 6450 <tr class="row-odd"><td>miscPort</td> 6451 <td>Output port [integer number]</td> 6452 </tr> 6453 </tbody> 6454 </table> 6455 </div> 6456 <div class="section" id="ppp-client-panel-1-keys"> 6457 <span id="index-19"></span><h4>PPP Client Panel 1 keys<a class="headerlink" href="#ppp-client-panel-1-keys" title="Permalink to this headline">¶</a></h4> 6458 <table border="1" class="docutils"> 6459 <colgroup> 6460 <col width="18%" /> 6461 <col width="82%" /> 6462 </colgroup> 6463 <thead valign="bottom"> 6464 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6465 <th class="head"><strong>Meaning</strong></th> 6466 </tr> 6467 </thead> 6468 <tbody valign="top"> 6469 <tr class="row-even"><td>PPP/dataSource</td> 6470 <td>Data source [character string: Blank|Real-Time Streams|RINEX Files]</td> 6471 </tr> 6472 <tr class="row-odd"><td>PPP/rinexObs</td> 6473 <td>RINEX observation file, full path [character string]</td> 6474 </tr> 6475 <tr class="row-even"><td>PPP/rinexNav</td> 6476 <td>RINEX navigation file, full path [character string]</td> 6477 </tr> 6478 <tr class="row-odd"><td>PPP/corrMount</td> 6479 <td>Corrections mountpoint [character string]</td> 6480 </tr> 6481 <tr class="row-even"><td>PPP/corrFile</td> 6482 <td>Corrections file, full path [character string]</td> 6483 </tr> 6484 <tr class="row-odd"><td>PPP/antexFile</td> 6485 <td>ANTEX file, full path [character string]</td> 6486 </tr> 6487 <tr class="row-even"><td>PPP/crdFile</td> 6488 <td>Coordinates file, full path [character string]</td> 6489 </tr> 6490 <tr class="row-odd"><td>PPP/v3filenames</td> 6491 <td>Produce version 3 filenames, [integer number: 0=no,2=yes]</td> 6492 </tr> 6493 <tr class="row-even"><td>PPP/logPath</td> 6494 <td>Directory for PPP log files [character string]</td> 6495 </tr> 6496 <tr class="row-odd"><td>PPP/nmeaPath</td> 6497 <td>Directory for NMEA output files [character string]</td> 6498 </tr> 6499 <tr class="row-even"><td>PPP/snxtroPath</td> 6500 <td>Directory for SINEX troposphere output files [character string]</td> 6501 </tr> 6502 <tr class="row-odd"><td>PPP/snxtroIntr</td> 6503 <td>SINEX troposphere file interval [character string: 1 min|2 min|5 min|10 min|15 min|30 min|1 hour|1 day]</td> 6504 </tr> 6505 <tr class="row-even"><td>PPP/snxtroSampl</td> 6506 <td>SINEX troposphere file sampling rate [integer number of seconds: 0|30|60|90|120|150|180|210|240|270|300]</td> 6507 </tr> 6508 <tr class="row-odd"><td>PPP/snxtroAc</td> 6509 <td>SINEX troposphere Analysis Center [character string]</td> 6510 </tr> 6511 <tr class="row-even"><td>PPP/snxtroSol</td> 6512 <td>SINEX troposphere solution ID [character string]</td> 6513 </tr> 6514 </tbody> 6515 </table> 6516 </div> 6517 <div class="section" id="ppp-client-panel-2-keys"> 6518 <span id="index-20"></span><h4>PPP Client Panel 2 keys<a class="headerlink" href="#ppp-client-panel-2-keys" title="Permalink to this headline">¶</a></h4> 6519 <table border="1" class="docutils"> 6520 <colgroup> 6521 <col width="9%" /> 6522 <col width="91%" /> 6523 </colgroup> 6524 <thead valign="bottom"> 6525 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6526 <th class="head"><strong>Meaning</strong></th> 6527 </tr> 6528 </thead> 6529 <tbody valign="top"> 6530 <tr class="row-even"><td>PPP/staTable</td> 6531 <td>Station specifications table [character string, semicolon separated list, each element in quotation marks, example:”FFMJ1,100.0,100.0,100.0,100.0,100.0,100.0,0.1,3e-6,7777;CUT07,100.0,100.0,100.0,100.0,100.0,100.0,0.1,3e-6,7778”]</td> 6532 </tr> 6533 </tbody> 6534 </table> 6535 </div> 6536 <div class="section" id="ppp-client-panel-3-keys"> 6537 <span id="index-21"></span><h4>PPP Client Panel 3 keys<a class="headerlink" href="#ppp-client-panel-3-keys" title="Permalink to this headline">¶</a></h4> 6538 <table border="1" class="docutils"> 6539 <colgroup> 6540 <col width="18%" /> 6541 <col width="82%" /> 6542 </colgroup> 6543 <thead valign="bottom"> 6544 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6545 <th class="head"><strong>Meaning</strong></th> 6546 </tr> 6547 </thead> 6548 <tbody valign="top"> 6549 <tr class="row-even"><td>PPP/lcGPS</td> 6550 <td>Select linear combination from GPS code or phase data [character string; P3|P3&L3]</td> 6551 </tr> 6552 <tr class="row-odd"><td>PPP/lcGLONASS</td> 6553 <td>Select linear combination from GLONASS code or phase data [character string: no|P3|L3|P3&L3]</td> 6554 </tr> 6555 <tr class="row-even"><td>PPP/lcGalileo</td> 6556 <td>elect linear combination from Galileo code or phase data [character string: no|P3|L3|P3&L3]</td> 6557 </tr> 6558 <tr class="row-odd"><td>PPP/lcBDS</td> 6559 <td>Select linear combination from BDS code or phase data [character string: no|P3|L3|P3&L3]</td> 6560 </tr> 6561 <tr class="row-even"><td>PPP/sigmaC1</td> 6562 <td>Sigma for code observations in meters [floating-point number]</td> 6563 </tr> 6564 <tr class="row-odd"><td>PPP/sigmaL1</td> 6565 <td>Sigma for phase observations in meters [floating-point number]</td> 6566 </tr> 6567 <tr class="row-even"><td>PPP/maxResC1</td> 6568 <td>Maximal residuum for code observations in meters [floating-point number]</td> 6569 </tr> 6570 <tr class="row-odd"><td>PPP/maxResL1</td> 6571 <td>Maximal residuum for phase observations in meters [floating-point number]</td> 6572 </tr> 6573 <tr class="row-even"><td>PPP/eleWgtCode</td> 6574 <td>Elevation dependent waiting of code observations [integer number: 0=no,2=yes]</td> 6575 </tr> 6576 <tr class="row-odd"><td>PPP/eleWgtPhase</td> 6577 <td>Elevation dependent waiting of phase observations [integer number: 0=no,2=yes]</td> 6578 </tr> 6579 <tr class="row-even"><td>PPP/minObs</td> 6580 <td>Minimum number of observations [integer number: 4|5|6]</td> 6581 </tr> 6582 <tr class="row-odd"><td>PPP/minEle</td> 6583 <td>Minimum satellite elevation in degrees [integer number: 0-20]</td> 6584 </tr> 6585 <tr class="row-even"><td>PPP/corrWaitTime</td> 6586 <td>Wait for clock corrections [integer number of seconds: no|1-20]</td> 6587 </tr> 6588 <tr class="row-odd"><td>PPP/seedingTime</td> 6589 <td>Seeding time span for Quick Start [integer number of seconds]</td> 6590 </tr> 6591 </tbody> 6592 </table> 6593 </div> 6594 <div class="section" id="ppp-client-panel-4-keys"> 6595 <span id="index-22"></span><h4>PPP Client Panel 4 keys<a class="headerlink" href="#ppp-client-panel-4-keys" title="Permalink to this headline">¶</a></h4> 6596 <table border="1" class="docutils"> 6597 <colgroup> 6598 <col width="18%" /> 6599 <col width="82%" /> 6600 </colgroup> 6601 <thead valign="bottom"> 6602 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6603 <th class="head"><strong>Meaning</strong></th> 6604 </tr> 6605 </thead> 6606 <tbody valign="top"> 6607 <tr class="row-even"><td>PPP/plotCoordinates</td> 6608 <td>Mountpoint for time series plot [character string]</td> 6609 </tr> 6610 <tr class="row-odd"><td>PPP/audioResponse</td> 6611 <td>Audio response threshold in meters [floating-point number]</td> 6612 </tr> 6613 <tr class="row-even"><td>PPP/useOpenStreetMap</td> 6614 <td>OSM track map [character string: true|false]</td> 6615 </tr> 6616 <tr class="row-odd"><td>PPP/useGoogleMap</td> 6617 <td>Google track map [character string: true|false]</td> 6618 </tr> 6619 <tr class="row-even"><td>PPP/mapWinDotSize</td> 6620 <td>Size of dots on map [integer number: 0-10]</td> 6621 </tr> 6622 <tr class="row-odd"><td>PPP/mapWinDotColor</td> 6623 <td>Color of dots and cross hair on map [character string: red|yellow]</td> 6624 </tr> 6625 <tr class="row-even"><td>PPP/mapSpeedSlider</td> 6626 <td>Offline processing speed for mapping [integer number: 1-100]</td> 6627 </tr> 6628 </tbody> 6629 </table> 6630 </div> 6631 <div class="section" id="combine-corrections-panel-keys"> 6632 <span id="index-23"></span><h4>Combine Corrections Panel keys<a class="headerlink" href="#combine-corrections-panel-keys" title="Permalink to this headline">¶</a></h4> 6633 <table border="1" class="docutils"> 6634 <colgroup> 6635 <col width="15%" /> 6636 <col width="85%" /> 6637 </colgroup> 6638 <thead valign="bottom"> 6639 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6640 <th class="head"><strong>Meaning</strong></th> 6641 </tr> 6642 </thead> 6643 <tbody valign="top"> 6644 <tr class="row-even"><td>cmbStreams</td> 6645 <td>Correction streams table [character string, semicolon separated list, each element in quotation marks, example:”IGS01 ESA 1.0;IGS03 BKG 1.0”]</td> 6646 </tr> 6647 <tr class="row-odd"><td>cmbMethodFilter</td> 6648 <td>Combination approach [character string: Single-Epoch|Filter]</td> 6649 </tr> 6650 <tr class="row-even"><td>cmbMaxres</td> 6651 <td>Clock outlier residuum threshold in meters [floating-point number]</td> 6652 </tr> 6653 <tr class="row-odd"><td>cmbSampl</td> 6654 <td>Clock sampling rate [integer number of seconds: 10|20|30|40|50|60]</td> 6655 </tr> 6656 <tr class="row-even"><td>cmbUseGlonass</td> 6657 <td>Use GLONASS in combination [integer number: 0=no,2=yes]</td> 6658 </tr> 6659 </tbody> 6660 </table> 6661 </div> 6662 <div class="section" id="upload-corrections-panel-keys"> 6663 <span id="index-24"></span><h4>Upload Corrections Panel keys<a class="headerlink" href="#upload-corrections-panel-keys" title="Permalink to this headline">¶</a></h4> 6664 <table border="1" class="docutils"> 6665 <colgroup> 6666 <col width="8%" /> 6667 <col width="92%" /> 6668 </colgroup> 6669 <thead valign="bottom"> 6670 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6671 <th class="head"><strong>Meaning</strong></th> 6672 </tr> 6673 </thead> 6674 <tbody valign="top"> 6675 <tr class="row-even"><td>uploadMountpointsOut</td> 6676 <td>Upload corrections table [character string, semicolon separated list, each element in quotation marks, example: “www.igs-ip.net,2101,IGS01,pass,IGS08,0, /home/user/BNC$[GPSWD}.sp3, /home/user/BNC$[GPSWD}.clk,258,1,0; www.euref-ip.net,2101,EUREF01,pass,ETRF2000,0,,,258,2,0”]</td> 6677 </tr> 6678 <tr class="row-odd"><td>uploadIntr</td> 6679 <td>Length of SP3 and Clock RINEX file interval [character string: 1 min|2 min|5 min|10 min|15 min|30 min|1 hour|1 day]</td> 6680 </tr> 6681 <tr class="row-even"><td>uploadSamplRtcmEphCorr</td> 6682 <td>Orbit corrections stream sampling rate [integer number of seconds: 0|5|10|15|20|25|30|35|40|45|50|55|60]</td> 6683 </tr> 6684 <tr class="row-odd"><td>uploadSamplSp3</td> 6685 <td>SP3 file sampling rate [integer number of minutes: 0-15]</td> 6686 </tr> 6687 <tr class="row-even"><td>uploadSamplClkRnx</td> 6688 <td>Clock RINEX file sampling rate [integer number of seconds: 0|5|10|15|20|25|30|35|40|45|50|55|60]</td> 6689 </tr> 6690 </tbody> 6691 </table> 6692 </div> 6693 <div class="section" id="custom-trafo-keys"> 6694 <span id="index-25"></span><h4>Custom Trafo keys<a class="headerlink" href="#custom-trafo-keys" title="Permalink to this headline">¶</a></h4> 6695 <table border="1" class="docutils"> 6696 <colgroup> 6697 <col width="18%" /> 6698 <col width="82%" /> 6699 </colgroup> 6700 <thead valign="bottom"> 6701 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6702 <th class="head"><strong>Meaning</strong></th> 6703 </tr> 6704 </thead> 6705 <tbody valign="top"> 6706 <tr class="row-even"><td>trafo_dx</td> 6707 <td>Translation X in meters [floating-point number]</td> 6708 </tr> 6709 <tr class="row-odd"><td>trafo_dy</td> 6710 <td>Translation Y in meters [floating-point number]</td> 6711 </tr> 6712 <tr class="row-even"><td>trafo_dz</td> 6713 <td>Translation Z in meters [floating-point number]</td> 6714 </tr> 6715 <tr class="row-odd"><td>trafo_dxr</td> 6716 <td>Translation change X in meters per year [floating-point number]</td> 6717 </tr> 6718 <tr class="row-even"><td>trafo_dyr</td> 6719 <td>Translation change Y in meters per year [floating-point number]</td> 6720 </tr> 6721 <tr class="row-odd"><td>trafo_dzr</td> 6722 <td>Translation change Z in meters per year [floating-point number]</td> 6723 </tr> 6724 <tr class="row-even"><td>trafo_ox</td> 6725 <td>Rotation X in arcsec [floating-point number]</td> 6726 </tr> 6727 <tr class="row-odd"><td>trafo_oy</td> 6728 <td>Rotation Y in arcsec [floating-point number]</td> 6729 </tr> 6730 <tr class="row-even"><td>trafo_oz</td> 6731 <td>Rotation Z in arcsec [floating-point number]</td> 6732 </tr> 6733 <tr class="row-odd"><td>trafo_oxr</td> 6734 <td>Rotation change X in arcsec per year [floating-point number]</td> 6735 </tr> 6736 <tr class="row-even"><td>trafo_oyr</td> 6737 <td>Rotation change Y in arcsec per year [floating-point number]</td> 6738 </tr> 6739 <tr class="row-odd"><td>trafo_ozr</td> 6740 <td>Rotation change Z in arcsec per year [floating-point number]</td> 6741 </tr> 6742 <tr class="row-even"><td>trafo_sc</td> 6743 <td>Scale [10^-9, floating-point number]</td> 6744 </tr> 6745 <tr class="row-odd"><td>trafo_scr</td> 6746 <td>Scale change [10^-9 per year, floating-point number]</td> 6747 </tr> 6748 <tr class="row-even"><td>trafo_t0</td> 6749 <td>Reference year [integer number]</td> 6750 </tr> 6751 </tbody> 6752 </table> 6753 </div> 6754 <div class="section" id="upload-ephemeris-panel-keys"> 6755 <span id="index-26"></span><h4>Upload Ephemeris Panel keys<a class="headerlink" href="#upload-ephemeris-panel-keys" title="Permalink to this headline">¶</a></h4> 6756 <table border="1" class="docutils"> 6757 <colgroup> 6758 <col width="18%" /> 6759 <col width="82%" /> 6760 </colgroup> 6761 <thead valign="bottom"> 6762 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6763 <th class="head"><strong>Meaning</strong></th> 6764 </tr> 6765 </thead> 6766 <tbody valign="top"> 6767 <tr class="row-even"><td>uploadEphHost</td> 6768 <td>Broadcaster host, name or IP address [character string]</td> 6769 </tr> 6770 <tr class="row-odd"><td>uploadEphPort</td> 6771 <td>Broadcaster port [integer number]</td> 6772 </tr> 6773 <tr class="row-even"><td>uploadEphMountpoint</td> 6774 <td>Mountpoint [character string]</td> 6775 </tr> 6776 <tr class="row-odd"><td>uploadEphPassword</td> 6777 <td>Stream upload password [character string]</td> 6778 </tr> 6779 <tr class="row-even"><td>uploadEphSample</td> 6780 <td>Stream upload sampling rate [integer number of seconds: 5|10|15|20|25|30|35|40|45|50|55|60]</td> 6781 </tr> 6782 </tbody> 6783 </table> 6784 </div> 6785 <div class="section" id="add-stream-keys"> 6786 <span id="index-27"></span><h4>Add Stream keys<a class="headerlink" href="#add-stream-keys" title="Permalink to this headline">¶</a></h4> 6787 <table border="1" class="docutils"> 6788 <colgroup> 6789 <col width="18%" /> 6790 <col width="82%" /> 6791 </colgroup> 6792 <thead valign="bottom"> 6793 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6794 <th class="head"><strong>Meaning</strong></th> 6795 </tr> 6796 </thead> 6797 <tbody valign="top"> 6798 <tr class="row-even"><td>mountPoints</td> 6799 <td>Mountpoints [character string, semicolon separated list, example:</td> 6800 </tr> 6801 <tr class="row-odd"><td><div class="first last line-block"> 6802 <div class="line"><br /></div> 6803 </div> 6804 </td> 6805 <td>“//user:pass@www.igs-ip.net:2101/FFMJ1 RTCM_3.1 DEU 50.09 8.66 no 2;</td> 6806 </tr> 6807 <tr class="row-even"><td><div class="first last line-block"> 6808 <div class="line"><br /></div> 6809 </div> 6810 </td> 6811 <td>//user:pass@www.igs-ip.net:2101/FFMJ2 RTCM_3.1 DEU 50.09 8.66 no 2”</td> 6812 </tr> 6813 <tr class="row-odd"><td>ntripVersion</td> 6814 <td>Ntrip Version [character string: 1|2|2s|R|U]</td> 6815 </tr> 6816 <tr class="row-even"><td>casterUrlList</td> 6817 <td>Visited Broadcasters [character string, comma separated list]</td> 6818 </tr> 6819 </tbody> 6820 </table> 6821 </div> 6822 <div class="section" id="appearance-keys"> 6823 <span id="index-28"></span><h4>Appearance keys<a class="headerlink" href="#appearance-keys" title="Permalink to this headline">¶</a></h4> 6824 <table border="1" class="docutils"> 6825 <colgroup> 6826 <col width="18%" /> 6827 <col width="82%" /> 6828 </colgroup> 6829 <thead valign="bottom"> 6830 <tr class="row-odd"><th class="head"><strong>KeyName</strong></th> 6831 <th class="head"><strong>Meaning</strong></th> 6832 </tr> 6833 </thead> 6834 <tbody valign="top"> 6835 <tr class="row-even"><td>startTab</td> 6836 <td>Index of top panel to be presented at start time [integer number: 0-17]</td> 6837 </tr> 6838 <tr class="row-odd"><td>statusTab</td> 6839 <td>Index of bottom panel to be presented at start time [integer number: 0-3]</td> 6840 </tr> 6841 <tr class="row-even"><td>font</td> 6842 <td>Font specification [character string in quotation marks, example: “Helvetica,14,-1,5,50,0,0,0,0,0”]</td> 6843 </tr> 6844 </tbody> 6845 </table> 6846 </div> 6847 <div class="section" id="example-command-lines"> 6848 <h4>Example command lines<a class="headerlink" href="#example-command-lines" title="Permalink to this headline">¶</a></h4> 6849 <p>The syntax of some command line configuration options slightly differs from that 5100 <li>Type 1107, Full SBAS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 5101 </ul> 5102 </p> 5103 5104 <p><h4>3.3 <a name="confList">Command Line Help</h3></p> 5105 5106 <p> 5107 Command line option '--help' provides a complete list of all configuration parameters which can be specified via BNC's Command Line Interface (CLI). Note that command line options overrule configuration options specified in the configuration file. The following is the output produced when running BNC with command line option '--help': 5108 </p> 5109 <pre> 5110 <b>Usage:</b> 5111 bnc --help (MS Windows: bnc.exe --help | more) 5112 --nw 5113 --version (MS Windows: bnc.exe --version | more) 5114 --display {name} 5115 --conf {confFileName} 5116 --file {rawFileName} 5117 --key {keyName} {keyValue} 5118 5119 <b>Network Panel keys:</b> 5120 proxyHost {Proxy host, name or IP address [character string]} 5121 proxyPort {Proxy port [integer number]} 5122 sslCaCertPath {Full path to SSL certificates [character string]} 5123 sslIgnoreErrors {Ignore SSL authorization errors [integer number: 0=no,2=yes]} 5124 5125 <b>General Panel keys:</b> 5126 logFile {Logfile, full path [character string]} 5127 rnxAppend {Append files [integer number: 0=no,2=yes]} 5128 onTheFlyInterval {Configuration reload interval [character string: 1 day|1 hour|5 min|1 min]} 5129 autoStart {Auto start [integer number: 0=no,2=yes]} 5130 rawOutFile {Raw output file, full path [character string]} 5131 5132 <b>RINEX Observations Panel keys:</b> 5133 rnxPath {Directory [character string]} 5134 rnxIntr {File interval [character string: 1 min|2 min|5 min|10 min|15 min|30 min|1 hour|1 day]} 5135 rnxSampl {File sampling rate [integer number of seconds: 0,5|10|15|20|25|30|35|40|45|50|55|60]} 5136 rnxSkel {RINEX skeleton file extension [character string]} 5137 rnxOnlyWithSKL {Using RINEX skeleton file is mandatory [integer number: 0=no,2=yes]} 5138 rnxScript {File upload script, full path [character string]} 5139 rnxV2Priority {Priority of signal attributes [character string, list separated by blank character, example: G:CWPX_? R:CP]} 5140 rnxV3 {Produce version 3 file content [integer number: 0=no,2=yes]} 5141 rnxV3filenames {Produce version 3 filenames [integer number: 0=no,2=yes]} 5142 5143 <b>RINEX Ephemeris Panel keys:</b> 5144 ephPath {Directory [character string]} 5145 ephIntr {File interval [character string: 1 min|2 min|5 min|10 min|15 min|30 min|1 hour|1 day]} 5146 ephOutPort {Output port [integer number]} 5147 ephV3 {Produce version 3 file content [integer number: 0=no,2=yes]} 5148 ephV3filenames {Produce version 3 filenames [integer number: 0=no,2=yes]} 5149 5150 <b>RINEX Editing and QC Panel keys:</b> 5151 reqcAction {Action specification [character string: Blank|Edit/Concatenate|Analyze]} 5152 reqcObsFile {Input observations file(s), full path [character string, comma separated list in quotation marks]} 5153 reqcNavFile {Input navigation file(s), full path [character string, comma separated list in quotation marks]} 5154 reqcOutObsFile {Output observations file, full path [character string]} 5155 reqcOutNavFile {Output navigation file, full path [character string]} 5156 reqcOutLogFile {Output logfile, full path [character string]} 5157 reqcLogSummaryOnly {Output only summary of logfile [integer number: 0=no,2=yes]} 5158 reqcSkyPlotSignals {Observation signals [character string, list separated by blank character, example: C:2&7 E:1&5 G:1&2 J:1&2 R:1&2 S:1&5]} 5159 reqcPlotDir {QC plots directory [character string]} 5160 reqcRnxVersion {RINEX version [integer number: 2|3]} 5161 reqcSampling {RINEX output file sampling rate [integer number of seconds: 0|5|10|15|20|25|30|35|40|45|50|55|60]} 5162 reqcV2Priority {Version 2 priority of signal attributes [character string, list separated by blank character, example: G:CWPX_? R:CP]} 5163 reqcStartDateTime {Start time [character string, example: 1967-11-02T00:00:00]} 5164 reqcEndDateTime {Stop time [character string, example: 2099-01-01T00:00:00 } 5165 reqcRunBy {Operators name [character string]} 5166 reqcUseObsTypes {Use observation types [character string, list separated by blank character, example: G:C1C G:L1C R:C1C RC1P]} 5167 reqcComment {Additional comments [character string]} 5168 reqcOldMarkerName {Old marker name [character string]} 5169 reqcNewMarkerName {New marker name [character string]} 5170 reqcOldAntennaName {Old antenna name [character string]} 5171 reqcNewAntennaName {New antenna name [character string]} 5172 reqcOldAntennaNumber {Old antenna number [character string]} 5173 reqcNewAntennaNumber {New antenna number [character string]} 5174 reqcOldAntennadN {Old north eccentricity [character string]} 5175 reqcNewAntennadN {New north eccentricity [character string]} 5176 reqcOldAntennadE {Old east eccentricity [character string]} 5177 reqcNewAntennadE {New east eccentricity [character string]} 5178 reqcOldAntennadU {Old up eccentricity [character string]} 5179 reqcNewAntennadU {New up eccentricity [character string]} 5180 reqcOldReceiverName {Old receiver name [character string]} 5181 reqcNewReceiverName {New receiver name [character string]} 5182 reqcOldReceiverNumber {Old receiver number [character string]} 5183 reqcNewReceiverNumber {New receiver number [character string]} 5184 5185 <b>SP3 Comparison Panel keys:</b> 5186 sp3CompFile {SP3 input files, full path [character string, comma separated list in quotation marks]} 5187 sp3CompExclude {Satellite exclusion list [character string, comma separated list in quotation marks, example: G04,G31,R]} 5188 sp3CompOutLogFile {Output logfile, full path [character string]} 5189 5190 <b>Broadcast Corrections Panel keys:</b> 5191 corrPath {Directory for saving files in ASCII format [character string]} 5192 corrIntr {File interval [character string: 1 min|2 min|5 min|10 min|15 min|30 min|1 hour|1 day]} 5193 corrPort {Output port [integer number]} 5194 5195 <b>Feed Engine Panel keys:</b> 5196 outPort {Output port, synchronized [integer number]} 5197 outWait {Wait for full observation epoch [integer number of seconds: 1-30]} 5198 outSampl {Sampling rate [integer number of seconds: 0|5|10|15|20|25|30|35|40|45|50|55|60]} 5199 outFile {Output file, full path [character string]} 5200 outUPort {Output port, unsynchronized [integer number]} 5201 5202 <b>Serial Output Panel keys:</b> 5203 serialMountPoint {Mountpoint [character string]} 5204 serialPortName {Port name [character string]} 5205 serialBaudRate {Baud rate [integer number: 110|300|600|1200|2400|4800|9600|19200|38400|57600|115200]} 5206 serialFlowControl {Flow control [character string: OFF|XONXOFF|HARDWARE} 5207 serialDataBits {Data bits [integer number: 5|6|7|8]} 5208 serialParity {Parity [character string: NONE|ODD|EVEN|SPACE]} 5209 serialStopBits {Stop bits [integer number: 1|2]} 5210 serialAutoNMEA {NMEA specification [character string: no|Auto|Manual GPGGA|Manual GNGGA]} 5211 serialFileNMEA {NMEA filename, full path [character string]} 5212 serialHeightNMEA {Height [floating-point number]} 5213 serialHeightNMEASampling {Sampling rate [integer number of seconds: 0|10|20|30|...|280|290|300]} 5214 5215 <b>Outages Panel keys:</b> 5216 adviseObsRate {Stream observation rate [character string: 0.1 Hz|0.2 Hz|0.5 Hz|1 Hz|5 Hz]} 5217 adviseFail {Failure threshold [integer number of minutes: 0-60]} 5218 adviseReco {Recovery threshold [integer number of minutes: 0-60]} 5219 adviseScript {Advisory script, full path [character string]} 5220 5221 <b>Miscellaneous Panel keys:</b> 5222 miscMount {Mountpoint [character string]} 5223 miscIntr {Interval for logging latency [character string: Blank|2 sec|10 sec|1 min|5 min|15 min|1 hour|6 hours|1 day]} 5224 miscScanRTCM {Scan for RTCM message numbers [integer number: 0=no,2=yes]} 5225 miscPort {Output port [integer number]} 5226 5227 <b>PPP Client Panel 1 keys:</b> 5228 PPP/dataSource {Data source [character string: Blank|Real-Time Streams|RINEX Files]} 5229 PPP/rinexObs {RINEX observation file, full path [character string]} 5230 PPP/rinexNav {RINEX navigation file, full path [character string]} 5231 PPP/corrMount {Corrections mountpoint [character string]} 5232 PPP/corrFile {Corrections file, full path [character string]} 5233 PPP/antexFile {ANTEX file, full path [character string]} 5234 PPP/crdFile {Coordinates file, full path [character string]} 5235 PPP/v3filenames {Produce version 3 filenames, [integer number: 0=no,2=yes]} 5236 PPP/logPath {Directory for PPP log files [character string]} 5237 PPP/nmeaPath {Directory for NMEA output files [character string]} 5238 PPP/snxtroPath {Directory for SINEX troposphere output files [character string]} 5239 PPP/snxtroIntr {SINEX troposphere file interval [character string: 1 min|2 min|5 min|10 min|15 min|30 min|1 hour|1 day]} 5240 PPP/snxtroSampl {SINEX troposphere file sampling rate [integer number of seconds: 0|30|60|90|120|150|180|210|240|270|300]} 5241 PPP/snxtroAc {SINEX troposphere Analysis Center [character string]} 5242 PPP/snxtroSol {SINEX troposphere solution ID [character string]} 5243 5244 <b>PPP Client Panel 2 keys:</b> 5245 PPP/staTable {Station specifications table [character string, semicolon separated list, each element in quotation marks, example: 5246 "FFMJ1,100.0,100.0,100.0,100.0,100.0,100.0,0.1,3e-6,7777;CUT07,100.0,100.0,100.0,100.0,100.0,100.0,0.1,3e-6,7778"]} 5247 5248 <b>PPP Client Panel 3 keys:</b> 5249 PPP/lcGPS {Select linear combination from GPS code or phase data [character string; P3|P3&L3]} 5250 PPP/lcGLONASS {Select linear combination from GLONASS code or phase data [character string: no|P3|L3|P3&L3]} 5251 PPP/lcGalileo {Select linear combination from Galileo code or phase data [character string: no|P3|L3|P3&L3]} 5252 PPP/lcBDS {Select linear combination from BDS code or phase data [character string: no|P3|L3|P3&L3]} 5253 PPP/sigmaC1 {Sigma for code observations in meters [floating-point number]} 5254 PPP/sigmaL1 {Sigma for phase observations in meters [floating-point number]} 5255 PPP/maxResC1 {Maximal residuum for code observations in meters [floating-point number]} 5256 PPP/maxResL1 {Maximal residuum for phase observations in meters [floating-point number]} 5257 PPP/eleWgtCode {Elevation dependent waiting of code observations [integer number: 0=no,2=yes]} 5258 PPP/eleWgtPhase {Elevation dependent waiting of phase observations [integer number: 0=no,2=yes]} 5259 PPP/minObs {Minimum number of observations [integer number: 4|5|6]} 5260 PPP/minEle {Minimum satellite elevation in degrees [integer number: 0-20]} 5261 PPP/corrWaitTime {Wait for clock corrections [integer number of seconds: no|1-20]} 5262 PPP/seedingTime {Seeding time span for Quick Start [integer number of seconds]} 5263 5264 <b>PPP Client Panel 4 keys:</b> 5265 PPP/plotCoordinates {Mountpoint for time series plot [character string]} 5266 PPP/audioResponse {Audio response threshold in meters [floating-point number]} 5267 PPP/useOpenStreetMap {OSM track map [character string: true|false]} 5268 PPP/useGoogleMap {Google track map [character string: true|false]} 5269 PPP/mapWinDotSize {Size of dots on map [integer number: 0-10]} 5270 PPP/mapWinDotColor {Color of dots and cross hair on map [character string: red|yellow]} 5271 PPP/mapSpeedSlider {Offline processing speed for mapping [integer number: 1-100]} 5272 5273 <b>Combine Corrections Panel keys:</b> 5274 cmbStreams {Correction streams table [character string, semicolon separated list, each element in quotation marks, example: 5275 "IGS01 ESA 1.0;IGS03 BKG 1.0"]} 5276 cmbMethodFilter {Combination approach [character string: Single-Epoch|Filter] 5277 cmbMaxres {Clock outlier residuum threshold in meters [floating-point number] 5278 cmbSampl {Clock sampling rate [integer number of seconds: 10|20|30|40|50|60]} 5279 cmbUseGlonass {Use GLONASS in combination [integer number: 0=no,2=yes] 5280 5281 <b>Upload Corrections Panel keys:</b> 5282 uploadMountpointsOut {Upload corrections table [character string, semicolon separated list, each element in quotation marks, example: 5283 "www.igs-ip.net,2101,IGS01,pass,IGS08,0,/home/user/BNC$[GPSWD}.sp3,/home/user/BNC$[GPSWD}.clk,258,1,0; 5284 www.euref-ip.net,2101,EUREF01,pass,ETRF2000,0,,,258,2,0"]} 5285 uploadIntr {Length of SP3 and Clock RINEX file interval [character string: 1 min|2 min|5 min|10 min|15 min|30 min|1 hour|1 day]} 5286 uploadSamplRtcmEphCorr {Orbit corrections stream sampling rate [integer number of seconds: 0|5|10|15|20|25|30|35|40|45|50|55|60]} 5287 uploadSamplSp3 {SP3 file sampling rate [integer number of minutes: 0-15]} 5288 uploadSamplClkRnx {Clock RINEX file sampling rate [integer number of seconds: 0|5|10|15|20|25|30|35|40|45|50|55|60]} 5289 5290 <b>Custom Trafo keys:</b> 5291 trafo_dx {Translation X in meters [floating-point number] 5292 trafo_dy {Translation Y in meters [floating-point number] 5293 trafo_dz {Translation Z in meters [floating-point number] 5294 trafo_dxr {Translation change X in meters per year [floating-point number] 5295 trafo_dyr {Translation change Y in meters per year [floating-point number] 5296 trafo_dzr {Translation change Z in meters per year [floating-point number] 5297 trafo_ox {Rotation X in arcsec [floating-point number]} 5298 trafo_oy {Rotation Y in arcsec [floating-point number]} 5299 trafo_oz {Rotation Z in arcsec [floating-point number]} 5300 trafo_oxr {Rotation change X in arcsec per year [floating-point number]} 5301 trafo_oyr {Rotation change Y in arcsec per year [floating-point number]} 5302 trafo_ozr {Rotation change Z in arcsec per year [floating-point number]} 5303 trafo_sc {Scale [10^-9, floating-point number]} 5304 trafo_scr {Scale change [10^-9 per year, floating-point number]} 5305 trafo_t0 {Reference year [integer number]} 5306 5307 <b>Upload Ephemeris Panel keys:</b> 5308 uploadEphHost {Broadcaster host, name or IP address [character string]} 5309 uploadEphPort {Broadcaster port [integer number]} 5310 uploadEphMountpoint {Mountpoint [character string]} 5311 uploadEphPassword {Stream upload password [character string]} 5312 uploadEphSample {Stream upload sampling rate [integer number of seconds: 5|10|15|20|25|30|35|40|45|50|55|60]} 5313 5314 <b>Add Stream keys:</b> 5315 mountPoints {Mountpoints [character string, semicolon separated list, example: 5316 "//user:pass@www.igs-ip.net:2101/FFMJ1 RTCM_3.1 DEU 50.09 8.66 no 2; 5317 //user:pass@www.igs-ip.net:2101/FFMJ2 RTCM_3.1 DEU 50.09 8.66 no 2"} 5318 ntripVersion {Ntrip Version [character string: 1|2|2s|R|U]} 5319 casterUrlList {Visited Broadcasters [character string, comma separated list]} 5320 5321 <b>Appearance keys:</b> 5322 startTab {Index of top panel to be presented at start time [integer number: 0-17]} 5323 statusTab {Index of bottom panel to be presented at start time [integer number: 0-3]} 5324 font {Font specification [character string in quotation marks, example: "Helvetica,14,-1,5,50,0,0,0,0,0"]} 5325 5326 <b>Note:</b> 5327 The syntax of some command line configuration options slightly differs from that 6850 5328 used in configuration files: Configuration file options which contain one or more 6851 5329 blank characters or contain a semicolon separated parameter list must be enclosed 6852 by quotation marks when specified on command line.</p> 6853 <ol class="arabic simple"> 6854 <li><code class="docutils literal"><span class="pre">/home/weber/bin/bnc</span></code></li> 6855 <li><code class="docutils literal"><span class="pre">/Applications/bnc.app/Contents/MacOS/bnc</span></code></li> 6856 <li><code class="docutils literal"><span class="pre">/home/weber/bin/bnc</span> <span class="pre">--conf</span> <span class="pre">/home/weber/MyConfigFile.bnc</span></code></li> 6857 <li><code class="docutils literal"><span class="pre">bnc</span> <span class="pre">--conf</span> <span class="pre">/Users/weber/.config/BKG/BNC.bnc</span> <span class="pre">-nw</span></code></li> 6858 <li><code class="docutils literal"><span class="pre">bnc</span> <span class="pre">--conf</span> <span class="pre">/dev/null</span> <span class="pre">--key</span> <span class="pre">startTab</span> <span class="pre">4</span> <span class="pre">--key</span> <span class="pre">reqcAction</span> <span class="pre">Edit/Concatenate</span> <span class="pre">--key</span> <span class="pre">reqcObsFile</span> <span class="pre">AGAR.15O</span> <span class="pre">--key</span> <span class="pre">reqcOutObsFile</span> <span class="pre">AGAR_X.15O</span> <span class="pre">--key</span> <span class="pre">reqcRnxVersion</span> <span class="pre">2</span> <span class="pre">--key</span> <span class="pre">reqcSampling</span> <span class="pre">30</span> <span class="pre">--key</span> <span class="pre">reqcV2Priority</span> <span class="pre">CWPX_?</span></code></li> 6859 <li><code class="docutils literal"><span class="pre">bnc</span> <span class="pre">--key</span> <span class="pre">mountPoints</span> <span class="pre">"//user:pass@mgex.igs-ip.net:2101/CUT07</span> <span class="pre">RTCM_3.0</span> <span class="pre">ETH</span> <span class="pre">9.03</span> <span class="pre">38.74</span> <span class="pre">no</span> <span class="pre">2;//user:pass@www.igs-ip.net:2101/FFMJ1</span> <span class="pre">RTCM_3.1</span> <span class="pre">DEU</span> <span class="pre">50.09</span> <span class="pre">8.66</span> <span class="pre">no</span> <span class="pre">2"</span></code></li> 6860 <li><code class="docutils literal"><span class="pre">bnc</span> <span class="pre">--key</span> <span class="pre">cmbStreams</span> <span class="pre">"CLK11</span> <span class="pre">BLG</span> <span class="pre">1.0;CLK93</span> <span class="pre">CNES</span> <span class="pre">1.0"</span></code></li> 6861 <li><code class="docutils literal"><span class="pre">bnc</span> <span class="pre">--key</span> <span class="pre">uploadMountpointsOut</span> <span class="pre">"products.igs-ip.net,98756,TEST,</span> <span class="pre">letmein,IGS08,2,/Users/weber/BNC${GPSWD}.clk,,33,3,2;</span> <span class="pre">www.euref-ip.net,333,TEST2,aaaaa,NAD83,2,,,33,5,5"</span></code></li> 6862 <li><code class="docutils literal"><span class="pre">bnc</span> <span class="pre">--key</span> <span class="pre">PPP/staTable</span> <span class="pre">"FFMJ1,100.0,100.0,100.0,100.0,100.0,100.0,</span> <span class="pre">0.1,3e-6,7777;CUT07,100.0,100.0,100.0,100.0,100.0,100.0,0.1,3e-6,</span> <span class="pre">7778"</span></code></li> 6863 </ol> 6864 </div> 6865 </div> 6866 <div class="section" id="further-reading"> 6867 <span id="index-29"></span><h3>Further Reading<a class="headerlink" href="#further-reading" title="Permalink to this headline">¶</a></h3> 6868 <table border="1" class="docutils"> 6869 <colgroup> 6870 <col width="53%" /> 6871 <col width="47%" /> 6872 </colgroup> 6873 <tbody valign="top"> 6874 <tr class="row-odd"><td>Ntrip</td> 6875 <td><a class="reference external" href="http://igs.bkg.bund.de/ntrip/index">http://igs.bkg.bund.de/ntrip/index</a></td> 6876 </tr> 6877 <tr class="row-even"><td>EUREF-IP Ntrip Broadcaster</td> 6878 <td><a class="reference external" href="http://www.euref-ip.net/home">http://www.euref-ip.net/home</a></td> 6879 </tr> 6880 <tr class="row-odd"><td>IGS-IP Ntrip Broadcaster</td> 6881 <td><a class="reference external" href="http://www.igs-ip.net/home">http://www.igs-ip.net/home</a></td> 6882 </tr> 6883 <tr class="row-even"><td>IGS products Ntrip Broadcaster</td> 6884 <td><a class="reference external" href="http://products.igs-ip.net/home">http://products.igs-ip.net/home</a></td> 6885 </tr> 6886 <tr class="row-odd"><td>IGS M-GEX Ntrip Broadcaster</td> 6887 <td><a class="reference external" href="http://mgex.igs-ip.net/home">http://mgex.igs-ip.net/home</a></td> 6888 </tr> 6889 <tr class="row-even"><td>IGS Central Bureau Ntrip Broadcaster</td> 6890 <td><a class="reference external" href="http://rt.igs.org">http://rt.igs.org</a></td> 6891 </tr> 6892 <tr class="row-odd"><td>IGS Real-time Service</td> 6893 <td><a class="reference external" href="http://rts.igs.org">http://rts.igs.org</a></td> 6894 </tr> 6895 <tr class="row-even"><td>Distribution of IGS-IP streams</td> 6896 <td><a class="reference external" href="http://www.igs.oma.be/real_time">http://www.igs.oma.be/real_time</a></td> 6897 </tr> 6898 <tr class="row-odd"><td>Completeness and latency of IGS-IP data</td> 6899 <td><a class="reference external" href="http://www.igs.oma.be/highrate/">http://www.igs.oma.be/highrate/</a></td> 6900 </tr> 6901 <tr class="row-even"><td>Ntrip Broadcaster overview</td> 6902 <td><a class="reference external" href="http://www.rtcm-ntrip.org/home">http://www.rtcm-ntrip.org/home</a></td> 6903 </tr> 6904 <tr class="row-odd"><td>Ntrip Open Source software code</td> 6905 <td><a class="reference external" href="http://software.rtcm-ntrip.org">http://software.rtcm-ntrip.org</a></td> 6906 </tr> 6907 <tr class="row-even"><td>EUREF-IP Project</td> 6908 <td><a class="reference external" href="http://www.epncb.oma.be/euref_IP">http://www.epncb.oma.be/euref_IP</a></td> 6909 </tr> 6910 <tr class="row-odd"><td>Radio Technical Commission for Maritime 6911 Services</td> 6912 <td><a class="reference external" href="http://www.rtcm.org">http://www.rtcm.org</a></td> 6913 </tr> 6914 </tbody> 5330 by quotation marks when specified on command line. 5331 5332 <b>Example command lines:</b> 5333 (1) /home/weber/bin/bnc 5334 (2) /Applications/bnc.app/Contents/MacOS/bnc 5335 (3) /home/weber/bin/bnc --conf /home/weber/MyConfigFile.bnc 5336 (4) bnc --conf /Users/weber/.config/BKG/BNC.bnc -nw 5337 (5) bnc --conf /dev/null --key startTab 4 --key reqcAction Edit/Concatenate --key reqcObsFile AGAR.15O --key reqcOutObsFile AGAR_X.15O 5338 --key reqcRnxVersion 2 --key reqcSampling 30 --key reqcV2Priority CWPX_? 5339 (6) bnc --key mountPoints "//user:pass@mgex.igs-ip.net:2101/CUT07 RTCM_3.0 ETH 9.03 38.74 no 2; 5340 //user:pass@www.igs-ip.net:2101/FFMJ1 RTCM_3.1 DEU 50.09 8.66 no 2" 5341 (7) bnc --key cmbStreams "CLK11 BLG 1.0;CLK93 CNES 1.0" 5342 (8) bnc --key uploadMountpointsOut "products.igs-ip.net,98756,TEST,letmein,IGS08,2,/Users/weber/BNC${GPSWD}.clk,,33,3,2; 5343 www.euref-ip.net,333,TEST2,aaaaa,NAD83,2,,,33,5,5" 5344 (9) bnc --key PPP/staTable "FFMJ1,100.0,100.0,100.0,100.0,100.0,100.0,0.1,3e-6,7777; 5345 CUT07,100.0,100.0,100.0,100.0,100.0,100.0,0.1,3e-6,7778" 5346 </pre> 5347 <p><h4>3.4 <a name="links">Further Reading</h3></p> 5348 5349 <table> 5350 <tr></tr> 5351 <tr><td><b>Links</b></td></tr> 5352 <tr><td>Ntrip </td><td><u>http://igs.bkg.bund.de/ntrip/index</u></td></tr> 5353 <tr><td>EUREF-IP Ntrip Broadcaster </td><td><u>http://www.euref-ip.net/home</u></td></tr> 5354 <tr><td>IGS-IP Ntrip Broadcaster </td><td><u>http://www.igs-ip.net/home</u></td></tr> 5355 <tr><td>IGS products Ntrip Broadcaster </td><td><u>http://products.igs-ip.net/home</u></td></tr> 5356 <tr><td>IGS M-GEX Ntrip Broadcaster </td><td><u>http://mgex.igs-ip.net/home</u></td></tr> 5357 <tr><td>IGS Central Bureau Ntrip Broadcaster </td><td><u>http://rt.igs.org</u></td></tr> 5358 <tr><td>IGS Real-time Service </td><td><u>http://rts.igs.org</u></td></tr> 5359 <tr><td>Distribution of IGS-IP streams </td><td><u>http://www.igs.oma.be/real_time/</u></td></tr> 5360 <tr><td>Completeness and latency of IGS-IP data </td><td><u>http://www.igs.oma.be/highrate/</u></td></tr> 5361 <tr><td>Ntrip Broadcaster overview </td><td><u>http://www.rtcm-ntrip.org/home</u></td></tr> 5362 <tr><td>Ntrip Open Source software code </td><td><u>http://software.rtcm-ntrip.org</u></td></tr> 5363 <tr><td>EUREF-IP Project </td><td><u>http://www.epncb.oma.be/euref_IP</u></td></tr> 5364 <tr><td>Real-time IGS Pilot Project </td><td><u>http://www.rtigs.net/pilot</u></td></tr> 5365 <tr><td>Radio Technical Commission<br>for Maritime Services </td><td><u>http://www.rtcm.org</u> 6915 5366 </table> 6916 </div> 6917 </div> 6918 </div> 6919 <p id="bibtex-bibliography-bnchelp-0"></p> 6920 </div> 6921 6922 6923 </div> 6924 </div> 6925 </div> 6926 <div class="clearer"></div> 6927 </div> 6928 <div class="related" role="navigation" aria-label="related navigation"> 6929 <h3>Navigation</h3> 6930 <ul> 6931 <li class="nav-item nav-item-0"><a href="bnchelp.html#document-bnchelp">BNC 2.12 documentation</a> »</li> 6932 </ul> 6933 </div> 6934 <div class="footer" role="contentinfo"> 6935 © Copyright 2016, Weber, G., Mervart, L., Stuerze, A., Ruelke, A., Stoecker, D.. 6936 Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.4.6. 6937 </div> 6938 </body> 6939 </html> 5367 5368 <br> 5369 <table> 5370 <tr><td><b>Publications</b></td></tr> 5371 5372 <tr><td>Caissy, M., L. Agrotis, G. Weber, M. Hernandez-Pajares and U. Hugentobler (2012)</td><td>The International GNSS Real-Time Service. GPS World, June 1, 2012.</td></tr> 5373 5374 <tr><td>Estey, L. H. and C. M. Meertens (1999)</td><td>TEQC: The Multi-Purpose Toolkit for GPS/GLONASS Data. GPS Solutions, Vol. 3, No. 1, pp. 42-49, 1999.</td></tr> 5375 5376 <tr><td>Huisman, L., P. Teunissen and C. Hu (2012)</td><td>GNSS Precise Point Positioning in Regional Reference Frames Using Real-time Broadcast Corrections. Journal of Applied Geodesy, Vol. 6, pp15-23, 2012.</td></tr> 5377 5378 <tr><td>Mervart, L., Z. Lukes, C. Rocken and T. Iwabuchi (2008)</td><td>Precise Point Positioning With Ambiguity Resolution in Real-Time. ION GNSS 2008.</td></tr> 5379 5380 <tr><td>RTCM SC-104 (2011)</td><td>Amendment 1 to RTCM Standard 10410.1 Networked Transport of RTCM via Internet Protocol (Ntrip) - Version 2.0. RTCM Papter 139-2011-SC104-STD, 2011.</td></tr> 5381 5382 <tr><td>Rupprecht, W. (2000)</td><td>DGPS-IP. <u>http://www.wsrcc.com/wolfgang/gps/dgps-ip.html</u>, 2000.</td></tr> 5383 5384 <tr><td>Weber, G., D. Dettmering and H. Gebhard (2005a)</td><td>Networked Transport of RTCM via Internet Protocol (NTRIP). In: Sanso F. (Ed.): A Window on the Future, Proceedings of the IAG General Assembly, Sapporo, Japan, 2003, Springer Verlag, Symposia Series, Vol. 128, p. 60-64, 2005.</td></tr> 5385 5386 <tr><td>Weber, G., D. Dettmering, H. Gebhard and R. Kalafus (2005b)</td><td>Networked Transport of RTCM via Internet Protocol (Ntrip), IP-Streaming for Real-Time GNSS Applications. ION GNSS 2005.</td></tr> 5387 5388 <tr><td>Weber, G., and M. Honkala (2004)</td><td>The future is talking Ntrip. Newsletter, Trimble GmbH Raunheim, Germany, 2004.</td></tr> 5389 5390 <tr><td>Weber, G. and L. Mervart (2009)</td><td>The BKG Ntrip Client (BNC), Report on EUREF Symposium 2007 in London. Mitteilungen des Bundesamtes fuer Kartographie und Geodaesie, Band 42, Frankfurt, 2009.</td></tr> 5391 5392 <tr><td>Weber, G. and L. Mervart (2010)</td><td>Real-time Combination of GNSS Orbit and Clock Correction Streams Using a Kalman Filter Approach. ION GNSS 2010.</td></tr> 5393 5394 <tr><td>Weber, G, L. Mervart, Z. Lukes, C. Rocken and J. Dousa (2007)</td><td>Real-time Clock and Orbit Corrections for Improved Point Positioning via Ntrip. ION GNSS 2007.</td></tr> 5395 5396 <tr><td>Weber, G., L. Mervart, A. Stürze, A. Rülke and D. Stöcker (2016)</td><td>BKG Ntrip Client, Version 2.12. Mitteilungen des Bundesamtes für Kartographie und Geodäsie, Vol. 49, Frankfurt am Main, 2016.</td><tr> 5397 5398 </table> 5399 5400 <p><h4>3.5 <a name="abbrev">Abbreviations</h3></p> 5401 <table> 5402 5403 <tr><td>AC</td><td>Analysis Center</td></tr> 5404 <tr><td>AFREF</td><td>IAG Reference Frame Sub-Commission for Africa</td></tr> 5405 <tr><td>ANTEX</td><td>Antenna Exchange Format</td></tr> 5406 <tr><td>APC</td><td>Antenna Phase Center</td></tr> 5407 <tr><td>APREF</td><td>IAG Reference Frame Sub-Commission for Asia and Pacific</td></tr> 5408 <tr><td>ARP</td><td>Antenna Reference Point</td></tr> 5409 <tr><td>BKG</td><td>Bundesamt für Kartographie und Geodäsie</td></tr> 5410 <tr><td>BNC</td><td>BNK Ntrip Client</td></tr> 5411 <tr><td>BSW</td><td>Bernese GNSS Software</td></tr> 5412 <tr><td>CC</td><td>Combination Center</td></tr> 5413 <tr><td>CLI</td><td>Command Line Interface</td></tr> 5414 <tr><td>CoM</td><td>Center Of Mass</td></tr> 5415 <tr><td>DGNSS</td><td>Differential GNSS</td></tr> 5416 <tr><td>DGPS-IP</td><td>Differential GPS via Internet Protocol</td></tr> 5417 <tr><td>DMG</td><td>Disk Image, File</td></tr> 5418 <tr><td>DREF91</td><td>Geodetic Datum for Germany 1991</td></tr> 5419 <tr><td>ECEF</td><td>Earth-Centred-Earth-Fixed</td></tr> 5420 <tr><td>EDGE</td><td>Enhanced Data Rates for GSM Evolution</td></tr> 5421 <tr><td>ETRF2000</td><td>European Terrestrial Reference Frame 2000</td></tr> 5422 <tr><td>EUREF</td><td>IAG Reference Frame Sub-Commission for Europe</td></tr> 5423 <tr><td>EoE</td><td>End of Epoch</td></tr> 5424 <tr><td>FKP</td><td>Flächen-Korrektur-Parameter</td></tr> 5425 <tr><td>FTP</td><td>File Transfer Protocol</td></tr> 5426 <tr><td>GDA94</td><td>Geodetic Datum Australia 1994</td></tr> 5427 <tr><td>GM</td><td>Google Maps</td></tr> 5428 <tr><td>GNSS</td><td>Global Navigation Satellite System</td></tr> 5429 <tr><td>GNU</td><td>GNU's Not Unix</td></tr> 5430 <tr><td>GPL</td><td>General Public License</td></tr> 5431 <tr><td>GPRS</td><td>General Packet Radio Service</td></tr> 5432 <tr><td>GPSWD</td><td>GPS Week and Day</td></tr> 5433 <tr><td>GSM</td><td>Global System for Mobile Communications</td></tr> 5434 <tr><td>GUI</td><td>Graphical User Interface</td></tr> 5435 <tr><td>HP MSM</td><td>High Precision Multiple Signal Messages</td></tr> 5436 <tr><td>HR URA</td><td>High Rate User Range Accuracy</td></tr> 5437 <tr><td>HTTP</td><td>Hypertext Transfer Protocol</td></tr> 5438 <tr><td>HTTPS</td><td>Hypertext Transfer Protocol Secure</td></tr> 5439 <tr><td>IAG</td><td>International Association of Geodesy</td></tr> 5440 <tr><td>ICECAST</td><td>Streaming Media Server</td></tr> 5441 <tr><td>IGS08</td><td>IGS Reference Frame 2008</td></tr> 5442 <tr><td>IGS</td><td>International GNSS Service</td></tr> 5443 <tr><td>IOD</td><td>Issue of Data</td></tr> 5444 <tr><td>IP</td><td>Internet Protocol</td></tr> 5445 <tr><td>ITRF2008</td><td>International Terrestrial Reference Frame 2008</td></tr> 5446 <tr><td>L3</td><td>Ionosphere-Free Linear Combination Of Phase Observations</td></tr> 5447 <tr><td>LAN</td><td>Local Area Network</td></tr> 5448 <tr><td>LC</td><td>Linea Combination</td></tr> 5449 <tr><td>M-GEX</td><td>Multi GNSS-Experiment</td></tr> 5450 <tr><td>MAC</td><td>Master Auxiliary Concept</td></tr> 5451 <tr><td>MJD</td><td>Modified Julian Date</td></tr> 5452 <tr><td>MSI</td><td>Microsoft Installer, File</td></tr> 5453 <tr><td>MSM</td><td>Multiple Signal Messages</td></tr> 5454 <tr><td>MW</td><td>Melbourne Wübbena Linear Combination</td></tr> 5455 <tr><td>NAD83</td><td>North American Datum 1983</td></tr> 5456 <tr><td>NAREF</td><td>IAG Reference Frame Sub-Commission for North America</td></tr> 5457 <tr><td>NMEA</td><td>National Marine Electronics Association Format</td></tr> 5458 <tr><td>Ntrip</td><td>Networked Transport of RTCM via Internet Protocol</td></tr> 5459 <tr><td>OSM</td><td>OpenStreetMap</td></tr> 5460 <tr><td>OSR</td><td>Observation Space Representation</td></tr> 5461 <tr><td>P3</td><td>Ionosphere-Free Linear Combination Of Code Observations</td></tr> 5462 <tr><td>PDOP</td><td>Positional Dilution Of Precision</td></tr> 5463 <tr><td>PNG</td><td>Portable Network Graphics</td></tr> 5464 <tr><td>PPP</td><td>Precise Point Positioning</td></tr> 5465 <tr><td>Qt</td><td>Cross-Platform Application Framework</td></tr> 5466 <tr><td>REQC</td><td>RINEX Editing and Quality Checking</td></tr> 5467 <tr><td>RINEX</td><td>Receiver Independent Exchange Format</td></tr> 5468 <tr><td>RTCM SC-104</td><td>Radio Technical Commission for Maritime Services, Special Committee 104</td></tr> 5469 <tr><td>RTK</td><td>Real Time Kinematic</td></tr> 5470 <tr><td>RTKPLOT</td><td>View and Plot Positioning Solutions Software, Part of RTKLIB</td></tr> 5471 <tr><td>RTNET</td><td>Real-Time Network Format</td></tr> 5472 <tr><td>RTP</td><td>Real-Time Transport Protocol</td></tr> 5473 <tr><td>RTSP</td><td>Real-Time Streaming Protocol</td></tr> 5474 <tr><td>SBAS</td><td>Space Based Augmentation System</td></tr> 5475 <tr><td>SINEX TRO</td><td>Troposphere Solution Independent Exchange Format</td></tr> 5476 <tr><td>SINEX</td><td>Solution Independent Exchange Format</td></tr> 5477 <tr><td>SIRGAS2000</td><td>Geodetic Datum for Latin America and Caribbean 2000</td></tr> 5478 <tr><td>SIRGAS95</td><td>Geodetic Datum for Latin America and Caribbean 1995</td></tr> 5479 <tr><td>SIRGAS</td><td>IAG Reference Frame Sub-Commission for Latin America and Caribbean</td></tr> 5480 <tr><td>SP3</td><td>Standard Product # 3</td></tr> 5481 <tr><td>SPP</td><td>Single Point Positioning</td></tr> 5482 <tr><td>SSL</td><td>Secure Sockets Layer</td></tr> 5483 <tr><td>SSR</td><td>State Space Representation</td></tr> 5484 <tr><td>SVN</td><td>Subversion, Revision Control System</td></tr> 5485 <tr><td>TCP</td><td>Transmission Control Protocol</td></tr> 5486 <tr><td>TEQC</td><td>Translation, Editing and Quality Checking</td></tr> 5487 <tr><td>TLS</td><td>Transport Layer Security</td></tr> 5488 <tr><td>UDP</td><td>User Datagram Protocol</td></tr> 5489 <tr><td>UMTS</td><td>Universal Mobile Telecommunications System</td></tr> 5490 <tr><td>URA</td><td>User Range Accuracy</td></tr> 5491 <tr><td>VRS</td><td>Virtual Reference Station</td></tr> 5492 <tr><td>VTEC</td><td>Vertical Total Electron Content</td></tr> 5493 5494 </table> 5495 5496 <p><img src="IMG/screenshot44.png"/></p>
Note:
See TracChangeset
for help on using the changeset viewer.