source: ntrip/trunk/BNC/src/rinex/reqcanalyze.cpp@ 4694

Last change on this file since 4694 was 4694, checked in by mervart, 12 years ago
File size: 20.5 KB
Line 
1// Part of BNC, a utility for retrieving decoding and
2// converting GNSS data streams from NTRIP broadcasters.
3//
4// Copyright (C) 2007
5// German Federal Agency for Cartography and Geodesy (BKG)
6// http://www.bkg.bund.de
7// Czech Technical University Prague, Department of Geodesy
8// http://www.fsv.cvut.cz
9//
10// Email: euref-ip@bkg.bund.de
11//
12// This program is free software; you can redistribute it and/or
13// modify it under the terms of the GNU General Public License
14// as published by the Free Software Foundation, version 2.
15//
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25/* -------------------------------------------------------------------------
26 * BKG NTRIP Client
27 * -------------------------------------------------------------------------
28 *
29 * Class: t_reqcAnalyze
30 *
31 * Purpose: Analyze RINEX Files
32 *
33 * Author: L. Mervart
34 *
35 * Created: 11-Apr-2012
36 *
37 * Changes:
38 *
39 * -----------------------------------------------------------------------*/
40
41#include <iostream>
42#include <iomanip>
43#include <qwt_plot_renderer.h>
44
45#include "reqcanalyze.h"
46#include "bncapp.h"
47#include "bncsettings.h"
48#include "reqcedit.h"
49#include "bncutils.h"
50#include "bncpostprocess.h"
51#include "graphwin.h"
52#include "polarplot.h"
53#include "availplot.h"
54#include "eleplot.h"
55#include "dopplot.h"
56
57using namespace std;
58
59const double SLIPTRESH = 5.0; // cycle-slip threshold (meters)
60
61// Constructor
62////////////////////////////////////////////////////////////////////////////
63t_reqcAnalyze::t_reqcAnalyze(QObject* parent) : QThread(parent) {
64
65 bncSettings settings;
66
67 _logFileName = settings.value("reqcOutLogFile").toString(); expandEnvVar(_logFileName);
68 _logFile = 0;
69 _log = 0;
70 _obsFileNames = settings.value("reqcObsFile").toString().split(",", QString::SkipEmptyParts);
71 _navFileNames = settings.value("reqcNavFile").toString().split(",", QString::SkipEmptyParts);
72
73 _currEpo = 0;
74
75 connect(this, SIGNAL(dspSkyPlot(const QString&,
76 const QByteArray&,
77 QVector<t_polarPoint*>*,
78 const QByteArray&,
79 QVector<t_polarPoint*>*,
80 const QByteArray&, double)),
81 this, SLOT(slotDspSkyPlot(const QString&,
82 const QByteArray&,
83 QVector<t_polarPoint*>*,
84 const QByteArray&,
85 QVector<t_polarPoint*>*,
86 const QByteArray&, double)));
87
88 connect(this, SIGNAL(dspAvailPlot(const QString&, const QByteArray&)),
89 this, SLOT(slotDspAvailPlot(const QString&, const QByteArray&)));
90}
91
92// Destructor
93////////////////////////////////////////////////////////////////////////////
94t_reqcAnalyze::~t_reqcAnalyze() {
95 for (int ii = 0; ii < _rnxObsFiles.size(); ii++) {
96 delete _rnxObsFiles[ii];
97 }
98 for (int ii = 0; ii < _ephs.size(); ii++) {
99 delete _ephs[ii];
100 }
101 delete _log; _log = 0;
102 delete _logFile; _logFile = 0;
103 bncApp* app = (bncApp*) qApp;
104 if ( app->mode() != bncApp::interactive) {
105 app->exit(0);
106 }
107}
108
109//
110////////////////////////////////////////////////////////////////////////////
111void t_reqcAnalyze::slotDspSkyPlot(const QString& fileName,
112 const QByteArray& title1,
113 QVector<t_polarPoint*>* data1,
114 const QByteArray& title2,
115 QVector<t_polarPoint*>* data2,
116 const QByteArray& scaleTitle,
117 double maxValue) {
118
119 bncApp* app = dynamic_cast<bncApp*>(qApp);
120 if (app->GUIenabled()) {
121
122 if (maxValue == 0.0) {
123 if (data1) {
124 for (int ii = 0; ii < data1->size(); ii++) {
125 double val = data1->at(ii)->_value;
126 if (maxValue < val) {
127 maxValue = val;
128 }
129 }
130 }
131 if (data2) {
132 for (int ii = 0; ii < data2->size(); ii++) {
133 double val = data2->at(ii)->_value;
134 if (maxValue < val) {
135 maxValue = val;
136 }
137 }
138 }
139 }
140
141 QwtInterval scaleInterval(0.0, maxValue);
142
143 QVector<QWidget*> plots;
144 if (data1) {
145 t_polarPlot* plot1 = new t_polarPlot(QwtText(title1), scaleInterval,
146 app->mainWindow());
147 plot1->addCurve(data1);
148 plots << plot1;
149 }
150 if (data2) {
151 t_polarPlot* plot2 = new t_polarPlot(QwtText(title2), scaleInterval,
152 app->mainWindow());
153 plot2->addCurve(data2);
154 plots << plot2;
155 }
156
157 t_graphWin* graphWin = new t_graphWin(0, fileName, plots,
158 &scaleTitle, &scaleInterval);
159
160 graphWin->show();
161
162 bncSettings settings;
163 QString dirName = settings.value("reqcPlotDir").toString();
164 if (!dirName.isEmpty()) {
165 QByteArray ext = scaleTitle.isEmpty() ? "_S.png" : "_M.png";
166 graphWin->savePNG(dirName, ext);
167 }
168 }
169}
170
171//
172////////////////////////////////////////////////////////////////////////////
173void t_reqcAnalyze::run() {
174
175 // Open Log File
176 // -------------
177 _logFile = new QFile(_logFileName);
178 if (_logFile->open(QIODevice::WriteOnly | QIODevice::Text)) {
179 _log = new QTextStream();
180 _log->setDevice(_logFile);
181 }
182
183 // Initialize RINEX Observation Files
184 // ----------------------------------
185 t_reqcEdit::initRnxObsFiles(_obsFileNames, _rnxObsFiles, _log);
186
187 // Read Ephemerides
188 // ----------------
189 t_reqcEdit::readEphemerides(_navFileNames, _ephs);
190
191 // Loop over all RINEX Files
192 // -------------------------
193 for (int ii = 0; ii < _rnxObsFiles.size(); ii++) {
194 analyzeFile(_rnxObsFiles[ii]);
195 }
196
197 // Exit
198 // ----
199 emit finished();
200 deleteLater();
201}
202
203//
204////////////////////////////////////////////////////////////////////////////
205void t_reqcAnalyze::analyzeFile(t_rnxObsFile* obsFile) {
206
207 if (_log) {
208 *_log << "\nAnalyze File\n"
209 << "------------\n"
210 << "File: " << obsFile->fileName().toAscii().data() << endl;
211 }
212
213 _allObsMap.clear();
214 _availDataMap.clear();
215
216 // A priori Coordinates
217 // --------------------
218 ColumnVector xyzSta = obsFile->xyz();
219
220 // Loop over all Epochs
221 // --------------------
222 try {
223 unsigned iEpo = 0;
224 while ( (_currEpo = obsFile->nextEpoch()) != 0) {
225
226 if (iEpo == 0) {
227 _obsStat._startTime = _currEpo->tt;
228 _obsStat._antennaName = obsFile->antennaName();
229 _obsStat._markerName = obsFile->markerName();
230 _obsStat._receiverType = obsFile->receiverType();
231 _obsStat._interval = obsFile->interval();
232 }
233 _obsStat._endTime = _currEpo->tt;
234
235 // Loop over all satellites
236 // ------------------------
237 for (unsigned iObs = 0; iObs < _currEpo->rnxSat.size(); iObs++) {
238 const t_rnxObsFile::t_rnxSat& rnxSat = _currEpo->rnxSat[iObs];
239 t_obs obs;
240 t_postProcessing::setObsFromRnx(obsFile, _currEpo, rnxSat, obs);
241
242 if (obs.satSys == 'R') {
243 // TODO: set channel number
244 }
245
246 QString prn = QString("%1%2").arg(obs.satSys)
247 .arg(obs.satNum, 2, 10, QChar('0'));
248
249 t_irc irc = _allObsMap[prn].addObs(obs);
250
251 if (irc == success) {
252 const t_oneObs* newObs = _allObsMap[prn]._oneObsVec.last();
253 if (newObs->_hasL1 && newObs->_hasL2) {
254 _obsStat._prnStat[prn]._numObs += 1;
255 }
256 }
257 }
258
259 prepareObsStat(iEpo, obsFile->interval(), xyzSta);
260 iEpo++;
261
262 } // while (_currEpo)
263 }
264 catch (QString str) {
265 if (_log) {
266 *_log << "Exception " << str << endl;
267 }
268 else {
269 qDebug() << str;
270 }
271 return;
272 }
273
274 // Analyze the Multipath
275 // ---------------------
276 QVector<t_polarPoint*>* dataMP1 = new QVector<t_polarPoint*>;
277 QVector<t_polarPoint*>* dataMP2 = new QVector<t_polarPoint*>;
278 QVector<t_polarPoint*>* dataSNR1 = new QVector<t_polarPoint*>;
279 QVector<t_polarPoint*>* dataSNR2 = new QVector<t_polarPoint*>;
280
281 QMutableMapIterator<QString, t_allObs> it(_allObsMap);
282 while (it.hasNext()) {
283 it.next();
284 QString prn = it.key();
285 preparePlotData(prn, xyzSta, obsFile->interval(),
286 dataMP1, dataMP2, dataSNR1, dataSNR2);
287 }
288
289 emit dspSkyPlot(obsFile->fileName(), "MP1", dataMP1, "MP2", dataMP2,
290 "Meters", 2.0);
291
292 emit dspSkyPlot(obsFile->fileName(), "SNR1", dataSNR1, "SNR2", dataSNR2,
293 "", 9.0);
294
295 QFileInfo fileInfo(obsFile->fileName());
296 QByteArray title = fileInfo.fileName().toAscii();
297
298 emit dspAvailPlot(obsFile->fileName(), title);
299
300 printReport();
301}
302
303//
304////////////////////////////////////////////////////////////////////////////
305t_irc t_reqcAnalyze::t_allObs::addObs(const t_obs& obs) {
306
307 t_oneObs* newObs = new t_oneObs(obs.GPSWeek, obs.GPSWeeks);
308 bool okFlag = false;
309
310 // Availability and Slip Flags
311 // ---------------------------
312 double L1 = obs.measdata("L1", 3.0);
313 if (L1 != 0) {
314 newObs->_hasL1 = true;
315 }
316 double L2 = obs.measdata("L2", 3.0);
317 if (L2 != 0) {
318 newObs->_hasL2 = true;
319 }
320 if (obs.slipL1) {
321 newObs->_slipL1 = true;
322 }
323 if (obs.slipL2) {
324 newObs->_slipL2 = true;
325 }
326
327 // Compute the Multipath
328 // ----------------------
329 if (L1 != 0.0 && L2 != 0.0) {
330 double f1 = t_CST::f1(obs.satSys, obs.slotNum);
331 double f2 = t_CST::f2(obs.satSys, obs.slotNum);
332
333 L1 = L1 * t_CST::c / f1;
334 L2 = L2 * t_CST::c / f2;
335
336 double P1 = obs.measdata("C1", 3.0);
337 if (P1 != 0.0) {
338 newObs->_MP1 = P1 - L1 - 2.0*f2*f2/(f1*f1-f2*f2) * (L1 - L2);
339 okFlag = true;
340 }
341 double P2 = obs.measdata("C2", 3.0);
342 if (P2 != 0.0) {
343 newObs->_MP2 = P2 - L2 - 2.0*f1*f1/(f1*f1-f2*f2) * (L1 - L2);
344 okFlag = true;
345 }
346 }
347
348 // Signal-to-Noise
349 // ---------------
350 double S1 = obs.measdata("S1", 3.0);
351 if (S1 != 0.0) {
352 newObs->_SNR1 = floor(S1/6);
353 if (newObs->_SNR1 > 9.0) {
354 newObs->_SNR1 = 9.0;
355 }
356 if (newObs->_SNR1 < 1.0) {
357 newObs->_SNR1 = 1.0;
358 }
359 okFlag = true;
360 }
361 else {
362 if (obs.snrL1 > 0) {
363 newObs->_SNR1 = obs.snrL1;
364 okFlag = true;
365 }
366 }
367 double S2 = obs.measdata("S2", 3.0);
368 if (S2 != 0.0) {
369 newObs->_SNR2 = floor(S2/6);
370 if (newObs->_SNR2 > 9.0) {
371 newObs->_SNR2 = 9.0;
372 }
373 if (newObs->_SNR2 < 1.0) {
374 newObs->_SNR2 = 1.0;
375 }
376 okFlag = true;
377 }
378 else {
379 if (obs.snrL2 > 0) {
380 newObs->_SNR2 = obs.snrL2;
381 okFlag = true;
382 }
383 }
384
385 // Remember the Observation
386 // ------------------------
387 if (okFlag) {
388 _oneObsVec << newObs;
389 return success;
390 }
391 else {
392 delete newObs;
393 return failure;
394 }
395}
396
397//
398////////////////////////////////////////////////////////////////////////////
399void t_reqcAnalyze::prepareObsStat(unsigned iEpo, double obsInterval,
400 const ColumnVector& xyzSta) {
401 const int sampl = int(30.0 / obsInterval);
402 if (iEpo % sampl == 0) {
403 double mjdX24 = _currEpo->tt.mjddec() * 24.0;
404 if (iEpo != 0) {
405 _obsStat._mjdX24 << mjdX24;
406 _obsStat._numSat << _obsStat._numSat.last();
407 _obsStat._PDOP << _obsStat._PDOP.last();
408 }
409 _obsStat._mjdX24 << mjdX24;
410 _obsStat._numSat << _currEpo->rnxSat.size();
411 _obsStat._PDOP << cmpDOP(xyzSta);
412 }
413}
414
415//
416////////////////////////////////////////////////////////////////////////////
417void t_reqcAnalyze::preparePlotData(const QString& prn,
418 const ColumnVector& xyzSta,
419 double obsInterval,
420 QVector<t_polarPoint*>* dataMP1,
421 QVector<t_polarPoint*>* dataMP2,
422 QVector<t_polarPoint*>* dataSNR1,
423 QVector<t_polarPoint*>* dataSNR2) {
424
425 const int chunkStep = int( 30.0 / obsInterval); // chunk step (30 sec)
426 const int numEpo = int(600.0 / obsInterval); // # epochs in one chunk (10 min)
427
428 t_allObs& allObs = _allObsMap[prn];
429
430 // Loop over all Chunks of Data
431 // ----------------------------
432 for (int chunkStart = 0; chunkStart + numEpo < allObs._oneObsVec.size();
433 chunkStart += chunkStep) {
434
435 // Chunk-Specific Variables
436 // ------------------------
437 bncTime currTime;
438 bncTime prevTime;
439 bncTime chunkStartTime;
440 double mjdX24 = 0.0;
441 bool availL1 = false;
442 bool availL2 = false;
443 bool gapL1 = false;
444 bool gapL2 = false;
445 bool slipL1 = false;
446 bool slipL2 = false;
447 bool slipMP = false;
448 double meanMP1 = 0.0;
449 double meanMP2 = 0.0;
450 double minSNR1 = 0.0;
451 double minSNR2 = 0.0;
452 double aziDeg = 0.0;
453 double zenDeg = 0.0;
454 bool zenFlag = false;
455
456 // Loop over all Epochs within one Chunk of Data
457 // ---------------------------------------------
458 for (int ii = 0; ii < numEpo; ii++) {
459 int iEpo = chunkStart + ii;
460 const t_oneObs* oneObs = allObs._oneObsVec[iEpo];
461
462 currTime.set(oneObs->_GPSWeek, oneObs->_GPSWeeks);
463
464 // Compute the Azimuth and Zenith Distance
465 // ---------------------------------------
466 if (ii == 0) {
467 chunkStartTime = currTime;
468 mjdX24 = chunkStartTime.mjddec() * 24.0;
469
470 if (xyzSta.size()) {
471 t_eph* eph = 0;
472 for (int ie = 0; ie < _ephs.size(); ie++) {
473 if (_ephs[ie]->prn() == prn) {
474 eph = _ephs[ie];
475 break;
476 }
477 }
478
479 if (eph) {
480 double xSat, ySat, zSat, clkSat;
481 eph->position(oneObs->_GPSWeek, oneObs->_GPSWeeks,
482 xSat, ySat, zSat, clkSat);
483
484 double rho, eleSat, azSat;
485 topos(xyzSta(1), xyzSta(2), xyzSta(3),
486 xSat, ySat, zSat, rho, eleSat, azSat);
487
488 aziDeg = azSat * 180.0/M_PI;
489 zenDeg = 90.0 - eleSat * 180.0/M_PI;
490 zenFlag = true;
491 }
492 }
493 }
494
495 // Check Interval
496 // --------------
497 if (prevTime.valid()) {
498 double dt = currTime - prevTime;
499 if (dt != obsInterval) {
500 gapL1 = true;
501 gapL2 = true;
502 }
503 }
504 prevTime = currTime;
505
506 // Check L1 and L2 availability
507 // ----------------------------
508 if (oneObs->_hasL1) {
509 availL1 = true;
510 }
511 else {
512 gapL1 = true;
513 }
514 if (oneObs->_hasL2) {
515 availL2 = true;
516 }
517 else {
518 gapL2 = true;
519 }
520
521 // Check Minimal Signal-to-Noise Ratio
522 // -----------------------------------
523 if ( oneObs->_SNR1 > 0 && (minSNR1 == 0 || minSNR1 > oneObs->_SNR1) ) {
524 minSNR1 = oneObs->_SNR1;
525 }
526 if ( oneObs->_SNR2 > 0 && (minSNR2 == 0 || minSNR2 > oneObs->_SNR2) ) {
527 minSNR2 = oneObs->_SNR2;
528 }
529
530 // Check Slip Flags
531 // ----------------
532 if (oneObs->_slipL1) {
533 slipL1 = true;
534 }
535 if (oneObs->_slipL2) {
536 slipL2 = true;
537 }
538
539 // Check Slip Threshold
540 // --------------------
541 if (ii > 0) {
542 double diff1 = oneObs->_MP1 - allObs._oneObsVec[iEpo-1]->_MP1;
543 double diff2 = oneObs->_MP2 - allObs._oneObsVec[iEpo-1]->_MP2;
544 if (fabs(diff1) > SLIPTRESH || fabs(diff2) > SLIPTRESH) {
545 slipMP = true;
546 }
547 }
548
549 meanMP1 += oneObs->_MP1;
550 meanMP2 += oneObs->_MP2;
551 }
552
553 // Availability Plot Data
554 // ----------------------
555 if (availL1) {
556 if (slipL1) {
557 _availDataMap[prn]._L1slip << mjdX24;
558 }
559 else if (gapL1) {
560 _availDataMap[prn]._L1gap << mjdX24;
561 }
562 else {
563 _availDataMap[prn]._L1ok << mjdX24;
564 }
565 }
566 if (availL2) {
567 if (slipL2) {
568 _availDataMap[prn]._L2slip << mjdX24;
569 }
570 else if (gapL2) {
571 _availDataMap[prn]._L2gap << mjdX24;
572 }
573 else {
574 _availDataMap[prn]._L2ok << mjdX24;
575 }
576 }
577 if (zenFlag) {
578 _availDataMap[prn]._eleTim << mjdX24;
579 _availDataMap[prn]._eleDeg << 90.0 - zenDeg;
580 }
581
582 // Signal-to-Noise Ration Plot Data
583 // --------------------------------
584 (*dataSNR1) << (new t_polarPoint(aziDeg, zenDeg, minSNR1));
585 (*dataSNR2) << (new t_polarPoint(aziDeg, zenDeg, minSNR2));
586
587 // Compute the Multipath
588 // ---------------------
589 if (!slipMP) {
590 meanMP1 /= numEpo;
591 meanMP2 /= numEpo;
592 double MP1 = 0.0;
593 double MP2 = 0.0;
594 for (int ii = 0; ii < numEpo; ii++) {
595 int iEpo = chunkStart + ii;
596 const t_oneObs* oneObs = allObs._oneObsVec[iEpo];
597 double diff1 = oneObs->_MP1 - meanMP1;
598 double diff2 = oneObs->_MP2 - meanMP2;
599 MP1 += diff1 * diff1;
600 MP2 += diff2 * diff2;
601 }
602 MP1 = sqrt(MP1 / (numEpo-1));
603 MP2 = sqrt(MP2 / (numEpo-1));
604 (*dataMP1) << (new t_polarPoint(aziDeg, zenDeg, MP1));
605 (*dataMP2) << (new t_polarPoint(aziDeg, zenDeg, MP2));
606 }
607 }
608}
609
610//
611////////////////////////////////////////////////////////////////////////////
612void t_reqcAnalyze::slotDspAvailPlot(const QString& fileName,
613 const QByteArray& title) {
614
615 if (dynamic_cast<bncApp*>(qApp)->GUIenabled()) {
616
617 t_availPlot* plotA = new t_availPlot(0, &_availDataMap);
618 plotA->setTitle(title);
619
620 t_elePlot* plotZ = new t_elePlot(0, &_availDataMap);
621
622 t_dopPlot* plotD = new t_dopPlot(0, &_obsStat);
623
624 QVector<QWidget*> plots;
625 plots << plotA << plotZ << plotD;
626 t_graphWin* graphWin = new t_graphWin(0, fileName, plots, 0, 0);
627
628 int ww = QFontMetrics(graphWin->font()).width('w');
629 graphWin->setMinimumSize(120*ww, 40*ww);
630
631 graphWin->show();
632
633 bncSettings settings;
634 QString dirName = settings.value("reqcPlotDir").toString();
635 if (!dirName.isEmpty()) {
636 QByteArray ext = "_A.png";
637 graphWin->savePNG(dirName, ext);
638 }
639 }
640}
641
642// Compute Dilution of Precision
643////////////////////////////////////////////////////////////////////////////
644double t_reqcAnalyze::cmpDOP(const ColumnVector& xyzSta) const {
645
646 if (xyzSta.size() != 3) {
647 return 0.0;
648 }
649
650 unsigned nSat = _currEpo->rnxSat.size();
651
652 if (nSat < 4) {
653 return 0.0;
654 }
655
656 Matrix AA(nSat, 4);
657
658 unsigned nSatUsed = 0;
659 for (unsigned iSat = 0; iSat < nSat; iSat++) {
660
661 const t_rnxObsFile::t_rnxSat& rnxSat = _currEpo->rnxSat[iSat];
662
663 QString prn = QString("%1%2").arg(rnxSat.satSys)
664 .arg(rnxSat.satNum, 2, 10, QChar('0'));
665
666 t_eph* eph = 0;
667 for (int ie = 0; ie < _ephs.size(); ie++) {
668 if (_ephs[ie]->prn() == prn) {
669 eph = _ephs[ie];
670 break;
671 }
672 }
673 if (eph) {
674 ++nSatUsed;
675 ColumnVector xSat(3);
676 double clkSat;
677 eph->position(_currEpo->tt.gpsw(), _currEpo->tt.gpssec(),
678 xSat(1), xSat(2), xSat(3), clkSat);
679 ColumnVector dx = xSat - xyzSta;
680 double rho = dx.norm_Frobenius();
681 AA(nSatUsed,1) = dx(1) / rho;
682 AA(nSatUsed,2) = dx(2) / rho;
683 AA(nSatUsed,3) = dx(3) / rho;
684 AA(nSatUsed,4) = 1.0;
685 }
686 }
687
688 if (nSatUsed < 4) {
689 return 0.0;
690 }
691
692 AA = AA.Rows(1, nSatUsed);
693
694 SymmetricMatrix QQ;
695 QQ << AA.t() * AA;
696 QQ = QQ.i();
697
698 return sqrt(QQ.trace());
699}
700
701// Finish the report
702////////////////////////////////////////////////////////////////////////////
703void t_reqcAnalyze::printReport() {
704
705 if (!_log) {
706 return;
707 }
708
709 *_log << "Marker name: " << _obsStat._markerName << endl
710 << "Receiver: " << _obsStat._receiverType << endl
711 << "Antenna: " << _obsStat._antennaName << endl
712 << "Start time: " << _obsStat._startTime.datestr().c_str() << ' '
713 << _obsStat._startTime.timestr().c_str() << endl
714 << "End time: " << _obsStat._endTime.datestr().c_str() << ' '
715 << _obsStat._endTime.timestr().c_str() << endl
716 << "Interval: " << _obsStat._interval << endl
717 << "# Sat.: " << _obsStat._prnStat.size() << endl;
718
719 int numObs = 0;
720 QMapIterator<QString, t_prnStat> it(_obsStat._prnStat);
721 while (it.hasNext()) {
722 it.next();
723 const t_prnStat& prnStat = it.value();
724 numObs += prnStat._numObs;
725 }
726 *_log << "# Obs.: " << numObs << endl;
727
728 _log->flush();
729}
Note: See TracBrowser for help on using the repository browser.