source: ntrip/trunk/BNC/src/rinex/reqcanalyze.cpp@ 4693

Last change on this file since 4693 was 4693, checked in by mervart, 12 years ago
File size: 20.3 KB
Line 
1// Part of BNC, a utility for retrieving decoding and
2// converting GNSS data streams from NTRIP broadcasters.
3//
4// Copyright (C) 2007
5// German Federal Agency for Cartography and Geodesy (BKG)
6// http://www.bkg.bund.de
7// Czech Technical University Prague, Department of Geodesy
8// http://www.fsv.cvut.cz
9//
10// Email: euref-ip@bkg.bund.de
11//
12// This program is free software; you can redistribute it and/or
13// modify it under the terms of the GNU General Public License
14// as published by the Free Software Foundation, version 2.
15//
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25/* -------------------------------------------------------------------------
26 * BKG NTRIP Client
27 * -------------------------------------------------------------------------
28 *
29 * Class: t_reqcAnalyze
30 *
31 * Purpose: Analyze RINEX Files
32 *
33 * Author: L. Mervart
34 *
35 * Created: 11-Apr-2012
36 *
37 * Changes:
38 *
39 * -----------------------------------------------------------------------*/
40
41#include <iostream>
42#include <iomanip>
43#include <qwt_plot_renderer.h>
44
45#include "reqcanalyze.h"
46#include "bncapp.h"
47#include "bncsettings.h"
48#include "reqcedit.h"
49#include "bncutils.h"
50#include "bncpostprocess.h"
51#include "graphwin.h"
52#include "polarplot.h"
53#include "availplot.h"
54#include "eleplot.h"
55#include "dopplot.h"
56
57using namespace std;
58
59const double SLIPTRESH = 5.0; // cycle-slip threshold (meters)
60
61// Constructor
62////////////////////////////////////////////////////////////////////////////
63t_reqcAnalyze::t_reqcAnalyze(QObject* parent) : QThread(parent) {
64
65 bncSettings settings;
66
67 _logFileName = settings.value("reqcOutLogFile").toString(); expandEnvVar(_logFileName);
68 _logFile = 0;
69 _log = 0;
70 _obsFileNames = settings.value("reqcObsFile").toString().split(",", QString::SkipEmptyParts);
71 _navFileNames = settings.value("reqcNavFile").toString().split(",", QString::SkipEmptyParts);
72
73 _currEpo = 0;
74
75 connect(this, SIGNAL(dspSkyPlot(const QString&,
76 const QByteArray&,
77 QVector<t_polarPoint*>*,
78 const QByteArray&,
79 QVector<t_polarPoint*>*,
80 const QByteArray&, double)),
81 this, SLOT(slotDspSkyPlot(const QString&,
82 const QByteArray&,
83 QVector<t_polarPoint*>*,
84 const QByteArray&,
85 QVector<t_polarPoint*>*,
86 const QByteArray&, double)));
87
88 connect(this, SIGNAL(dspAvailPlot(const QString&, const QByteArray&)),
89 this, SLOT(slotDspAvailPlot(const QString&, const QByteArray&)));
90}
91
92// Destructor
93////////////////////////////////////////////////////////////////////////////
94t_reqcAnalyze::~t_reqcAnalyze() {
95 for (int ii = 0; ii < _rnxObsFiles.size(); ii++) {
96 delete _rnxObsFiles[ii];
97 }
98 for (int ii = 0; ii < _ephs.size(); ii++) {
99 delete _ephs[ii];
100 }
101 delete _log; _log = 0;
102 delete _logFile; _logFile = 0;
103 bncApp* app = (bncApp*) qApp;
104 if ( app->mode() != bncApp::interactive) {
105 app->exit(0);
106 }
107}
108
109//
110////////////////////////////////////////////////////////////////////////////
111void t_reqcAnalyze::slotDspSkyPlot(const QString& fileName,
112 const QByteArray& title1,
113 QVector<t_polarPoint*>* data1,
114 const QByteArray& title2,
115 QVector<t_polarPoint*>* data2,
116 const QByteArray& scaleTitle,
117 double maxValue) {
118
119 bncApp* app = dynamic_cast<bncApp*>(qApp);
120 if (app->GUIenabled()) {
121
122 if (maxValue == 0.0) {
123 if (data1) {
124 for (int ii = 0; ii < data1->size(); ii++) {
125 double val = data1->at(ii)->_value;
126 if (maxValue < val) {
127 maxValue = val;
128 }
129 }
130 }
131 if (data2) {
132 for (int ii = 0; ii < data2->size(); ii++) {
133 double val = data2->at(ii)->_value;
134 if (maxValue < val) {
135 maxValue = val;
136 }
137 }
138 }
139 }
140
141 QwtInterval scaleInterval(0.0, maxValue);
142
143 QVector<QWidget*> plots;
144 if (data1) {
145 t_polarPlot* plot1 = new t_polarPlot(QwtText(title1), scaleInterval,
146 app->mainWindow());
147 plot1->addCurve(data1);
148 plots << plot1;
149 }
150 if (data2) {
151 t_polarPlot* plot2 = new t_polarPlot(QwtText(title2), scaleInterval,
152 app->mainWindow());
153 plot2->addCurve(data2);
154 plots << plot2;
155 }
156
157 t_graphWin* graphWin = new t_graphWin(0, fileName, plots,
158 &scaleTitle, &scaleInterval);
159
160 graphWin->show();
161
162 bncSettings settings;
163 QString dirName = settings.value("reqcPlotDir").toString();
164 if (!dirName.isEmpty()) {
165 QByteArray ext = scaleTitle.isEmpty() ? "_S.png" : "_M.png";
166 graphWin->savePNG(dirName, ext);
167 }
168 }
169}
170
171//
172////////////////////////////////////////////////////////////////////////////
173void t_reqcAnalyze::run() {
174
175 // Open Log File
176 // -------------
177 _logFile = new QFile(_logFileName);
178 if (_logFile->open(QIODevice::WriteOnly | QIODevice::Text)) {
179 _log = new QTextStream();
180 _log->setDevice(_logFile);
181 }
182
183 // Initialize RINEX Observation Files
184 // ----------------------------------
185 t_reqcEdit::initRnxObsFiles(_obsFileNames, _rnxObsFiles, _log);
186
187 // Read Ephemerides
188 // ----------------
189 t_reqcEdit::readEphemerides(_navFileNames, _ephs);
190
191 // Loop over all RINEX Files
192 // -------------------------
193 for (int ii = 0; ii < _rnxObsFiles.size(); ii++) {
194 analyzeFile(_rnxObsFiles[ii]);
195 }
196
197 // Exit
198 // ----
199 emit finished();
200 deleteLater();
201}
202
203//
204////////////////////////////////////////////////////////////////////////////
205void t_reqcAnalyze::analyzeFile(t_rnxObsFile* obsFile) {
206
207 if (_log) {
208 *_log << "\nAnalyze File\n"
209 << "------------\n"
210 << "File: " << obsFile->fileName().toAscii().data() << endl;
211 }
212
213 _allObsMap.clear();
214 _availDataMap.clear();
215
216 // A priori Coordinates
217 // --------------------
218 ColumnVector xyzSta = obsFile->xyz();
219
220 // Loop over all Epochs
221 // --------------------
222 try {
223 unsigned iEpo = 0;
224 while ( (_currEpo = obsFile->nextEpoch()) != 0) {
225
226 if (iEpo == 0) {
227 _obsStat._startTime = _currEpo->tt;
228 _obsStat._antennaName = obsFile->antennaName();
229 _obsStat._markerName = obsFile->markerName();
230 _obsStat._receiverType = obsFile->receiverType();
231 _obsStat._interval = obsFile->interval();
232 }
233 _obsStat._endTime = _currEpo->tt;
234
235 // Loop over all satellites
236 // ------------------------
237 for (unsigned iObs = 0; iObs < _currEpo->rnxSat.size(); iObs++) {
238 const t_rnxObsFile::t_rnxSat& rnxSat = _currEpo->rnxSat[iObs];
239 t_obs obs;
240 t_postProcessing::setObsFromRnx(obsFile, _currEpo, rnxSat, obs);
241
242 if (obs.satSys == 'R') {
243 // TODO: set channel number
244 }
245
246 QString prn = QString("%1%2").arg(obs.satSys)
247 .arg(obs.satNum, 2, 10, QChar('0'));
248
249 _allObsMap[prn].addObs(obs);
250
251 _obsStat._prnStat[prn]._numObs += 1;
252 }
253
254 prepareObsStat(iEpo, obsFile->interval(), xyzSta);
255 iEpo++;
256
257 } // while (_currEpo)
258 }
259 catch (QString str) {
260 if (_log) {
261 *_log << "Exception " << str << endl;
262 }
263 else {
264 qDebug() << str;
265 }
266 return;
267 }
268
269 // Analyze the Multipath
270 // ---------------------
271 QVector<t_polarPoint*>* dataMP1 = new QVector<t_polarPoint*>;
272 QVector<t_polarPoint*>* dataMP2 = new QVector<t_polarPoint*>;
273 QVector<t_polarPoint*>* dataSNR1 = new QVector<t_polarPoint*>;
274 QVector<t_polarPoint*>* dataSNR2 = new QVector<t_polarPoint*>;
275
276 QMutableMapIterator<QString, t_allObs> it(_allObsMap);
277 while (it.hasNext()) {
278 it.next();
279 QString prn = it.key();
280 preparePlotData(prn, xyzSta, obsFile->interval(),
281 dataMP1, dataMP2, dataSNR1, dataSNR2);
282 }
283
284 emit dspSkyPlot(obsFile->fileName(), "MP1", dataMP1, "MP2", dataMP2,
285 "Meters", 2.0);
286
287 emit dspSkyPlot(obsFile->fileName(), "SNR1", dataSNR1, "SNR2", dataSNR2,
288 "", 9.0);
289
290 QFileInfo fileInfo(obsFile->fileName());
291 QByteArray title = fileInfo.fileName().toAscii();
292
293 emit dspAvailPlot(obsFile->fileName(), title);
294
295 printReport();
296}
297
298//
299////////////////////////////////////////////////////////////////////////////
300void t_reqcAnalyze::t_allObs::addObs(const t_obs& obs) {
301
302 t_oneObs* newObs = new t_oneObs(obs.GPSWeek, obs.GPSWeeks);
303 bool okFlag = false;
304
305 // Availability and Slip Flags
306 // ---------------------------
307 double L1 = obs.measdata("L1", 3.0);
308 if (L1 != 0) {
309 newObs->_hasL1 = true;
310 }
311 double L2 = obs.measdata("L2", 3.0);
312 if (L2 != 0) {
313 newObs->_hasL2 = true;
314 }
315 if (obs.slipL1) {
316 newObs->_slipL1 = true;
317 }
318 if (obs.slipL2) {
319 newObs->_slipL2 = true;
320 }
321
322 // Compute the Multipath
323 // ----------------------
324 if (L1 != 0.0 && L2 != 0.0) {
325 double f1 = t_CST::f1(obs.satSys, obs.slotNum);
326 double f2 = t_CST::f2(obs.satSys, obs.slotNum);
327
328 L1 = L1 * t_CST::c / f1;
329 L2 = L2 * t_CST::c / f2;
330
331 double P1 = obs.measdata("C1", 3.0);
332 if (P1 != 0.0) {
333 newObs->_MP1 = P1 - L1 - 2.0*f2*f2/(f1*f1-f2*f2) * (L1 - L2);
334 okFlag = true;
335 }
336 double P2 = obs.measdata("C2", 3.0);
337 if (P2 != 0.0) {
338 newObs->_MP2 = P2 - L2 - 2.0*f1*f1/(f1*f1-f2*f2) * (L1 - L2);
339 okFlag = true;
340 }
341 }
342
343 // Signal-to-Noise
344 // ---------------
345 double S1 = obs.measdata("S1", 3.0);
346 if (S1 != 0.0) {
347 newObs->_SNR1 = floor(S1/6);
348 if (newObs->_SNR1 > 9.0) {
349 newObs->_SNR1 = 9.0;
350 }
351 if (newObs->_SNR1 < 1.0) {
352 newObs->_SNR1 = 1.0;
353 }
354 okFlag = true;
355 }
356 else {
357 if (obs.snrL1 > 0) {
358 newObs->_SNR1 = obs.snrL1;
359 okFlag = true;
360 }
361 }
362 double S2 = obs.measdata("S2", 3.0);
363 if (S2 != 0.0) {
364 newObs->_SNR2 = floor(S2/6);
365 if (newObs->_SNR2 > 9.0) {
366 newObs->_SNR2 = 9.0;
367 }
368 if (newObs->_SNR2 < 1.0) {
369 newObs->_SNR2 = 1.0;
370 }
371 okFlag = true;
372 }
373 else {
374 if (obs.snrL2 > 0) {
375 newObs->_SNR2 = obs.snrL2;
376 okFlag = true;
377 }
378 }
379
380 // Remember the Observation
381 // ------------------------
382 if (okFlag) {
383 _oneObsVec << newObs;
384 }
385 else {
386 delete newObs;
387 }
388}
389
390//
391////////////////////////////////////////////////////////////////////////////
392void t_reqcAnalyze::prepareObsStat(unsigned iEpo, double obsInterval,
393 const ColumnVector& xyzSta) {
394 const int sampl = int(30.0 / obsInterval);
395 if (iEpo % sampl == 0) {
396 double mjdX24 = _currEpo->tt.mjddec() * 24.0;
397 if (iEpo != 0) {
398 _obsStat._mjdX24 << mjdX24;
399 _obsStat._numSat << _obsStat._numSat.last();
400 _obsStat._PDOP << _obsStat._PDOP.last();
401 }
402 _obsStat._mjdX24 << mjdX24;
403 _obsStat._numSat << _currEpo->rnxSat.size();
404 _obsStat._PDOP << cmpDOP(xyzSta);
405 }
406}
407
408//
409////////////////////////////////////////////////////////////////////////////
410void t_reqcAnalyze::preparePlotData(const QString& prn,
411 const ColumnVector& xyzSta,
412 double obsInterval,
413 QVector<t_polarPoint*>* dataMP1,
414 QVector<t_polarPoint*>* dataMP2,
415 QVector<t_polarPoint*>* dataSNR1,
416 QVector<t_polarPoint*>* dataSNR2) {
417
418 const int chunkStep = int( 30.0 / obsInterval); // chunk step (30 sec)
419 const int numEpo = int(600.0 / obsInterval); // # epochs in one chunk (10 min)
420
421 t_allObs& allObs = _allObsMap[prn];
422
423 // Loop over all Chunks of Data
424 // ----------------------------
425 for (int chunkStart = 0; chunkStart + numEpo < allObs._oneObsVec.size();
426 chunkStart += chunkStep) {
427
428 // Chunk-Specific Variables
429 // ------------------------
430 bncTime currTime;
431 bncTime prevTime;
432 bncTime chunkStartTime;
433 double mjdX24 = 0.0;
434 bool availL1 = false;
435 bool availL2 = false;
436 bool gapL1 = false;
437 bool gapL2 = false;
438 bool slipL1 = false;
439 bool slipL2 = false;
440 bool slipMP = false;
441 double meanMP1 = 0.0;
442 double meanMP2 = 0.0;
443 double minSNR1 = 0.0;
444 double minSNR2 = 0.0;
445 double aziDeg = 0.0;
446 double zenDeg = 0.0;
447 bool zenFlag = false;
448
449 // Loop over all Epochs within one Chunk of Data
450 // ---------------------------------------------
451 for (int ii = 0; ii < numEpo; ii++) {
452 int iEpo = chunkStart + ii;
453 const t_oneObs* oneObs = allObs._oneObsVec[iEpo];
454
455 currTime.set(oneObs->_GPSWeek, oneObs->_GPSWeeks);
456
457 // Compute the Azimuth and Zenith Distance
458 // ---------------------------------------
459 if (ii == 0) {
460 chunkStartTime = currTime;
461 mjdX24 = chunkStartTime.mjddec() * 24.0;
462
463 if (xyzSta.size()) {
464 t_eph* eph = 0;
465 for (int ie = 0; ie < _ephs.size(); ie++) {
466 if (_ephs[ie]->prn() == prn) {
467 eph = _ephs[ie];
468 break;
469 }
470 }
471
472 if (eph) {
473 double xSat, ySat, zSat, clkSat;
474 eph->position(oneObs->_GPSWeek, oneObs->_GPSWeeks,
475 xSat, ySat, zSat, clkSat);
476
477 double rho, eleSat, azSat;
478 topos(xyzSta(1), xyzSta(2), xyzSta(3),
479 xSat, ySat, zSat, rho, eleSat, azSat);
480
481 aziDeg = azSat * 180.0/M_PI;
482 zenDeg = 90.0 - eleSat * 180.0/M_PI;
483 zenFlag = true;
484 }
485 }
486 }
487
488 // Check Interval
489 // --------------
490 if (prevTime.valid()) {
491 double dt = currTime - prevTime;
492 if (dt != obsInterval) {
493 gapL1 = true;
494 gapL2 = true;
495 }
496 }
497 prevTime = currTime;
498
499 // Check L1 and L2 availability
500 // ----------------------------
501 if (oneObs->_hasL1) {
502 availL1 = true;
503 }
504 else {
505 gapL1 = true;
506 }
507 if (oneObs->_hasL2) {
508 availL2 = true;
509 }
510 else {
511 gapL2 = true;
512 }
513
514 // Check Minimal Signal-to-Noise Ratio
515 // -----------------------------------
516 if ( oneObs->_SNR1 > 0 && (minSNR1 == 0 || minSNR1 > oneObs->_SNR1) ) {
517 minSNR1 = oneObs->_SNR1;
518 }
519 if ( oneObs->_SNR2 > 0 && (minSNR2 == 0 || minSNR2 > oneObs->_SNR2) ) {
520 minSNR2 = oneObs->_SNR2;
521 }
522
523 // Check Slip Flags
524 // ----------------
525 if (oneObs->_slipL1) {
526 slipL1 = true;
527 }
528 if (oneObs->_slipL2) {
529 slipL2 = true;
530 }
531
532 // Check Slip Threshold
533 // --------------------
534 if (ii > 0) {
535 double diff1 = oneObs->_MP1 - allObs._oneObsVec[iEpo-1]->_MP1;
536 double diff2 = oneObs->_MP2 - allObs._oneObsVec[iEpo-1]->_MP2;
537 if (fabs(diff1) > SLIPTRESH || fabs(diff2) > SLIPTRESH) {
538 slipMP = true;
539 }
540 }
541
542 meanMP1 += oneObs->_MP1;
543 meanMP2 += oneObs->_MP2;
544 }
545
546 // Availability Plot Data
547 // ----------------------
548 if (availL1) {
549 if (slipL1) {
550 _availDataMap[prn]._L1slip << mjdX24;
551 }
552 else if (gapL1) {
553 _availDataMap[prn]._L1gap << mjdX24;
554 }
555 else {
556 _availDataMap[prn]._L1ok << mjdX24;
557 }
558 }
559 if (availL2) {
560 if (slipL2) {
561 _availDataMap[prn]._L2slip << mjdX24;
562 }
563 else if (gapL2) {
564 _availDataMap[prn]._L2gap << mjdX24;
565 }
566 else {
567 _availDataMap[prn]._L2ok << mjdX24;
568 }
569 }
570 if (zenFlag) {
571 _availDataMap[prn]._eleTim << mjdX24;
572 _availDataMap[prn]._eleDeg << 90.0 - zenDeg;
573 }
574
575 // Signal-to-Noise Ration Plot Data
576 // --------------------------------
577 (*dataSNR1) << (new t_polarPoint(aziDeg, zenDeg, minSNR1));
578 (*dataSNR2) << (new t_polarPoint(aziDeg, zenDeg, minSNR2));
579
580 // Compute the Multipath
581 // ---------------------
582 if (!slipMP) {
583 meanMP1 /= numEpo;
584 meanMP2 /= numEpo;
585 double MP1 = 0.0;
586 double MP2 = 0.0;
587 for (int ii = 0; ii < numEpo; ii++) {
588 int iEpo = chunkStart + ii;
589 const t_oneObs* oneObs = allObs._oneObsVec[iEpo];
590 double diff1 = oneObs->_MP1 - meanMP1;
591 double diff2 = oneObs->_MP2 - meanMP2;
592 MP1 += diff1 * diff1;
593 MP2 += diff2 * diff2;
594 }
595 MP1 = sqrt(MP1 / (numEpo-1));
596 MP2 = sqrt(MP2 / (numEpo-1));
597 (*dataMP1) << (new t_polarPoint(aziDeg, zenDeg, MP1));
598 (*dataMP2) << (new t_polarPoint(aziDeg, zenDeg, MP2));
599 }
600 }
601}
602
603//
604////////////////////////////////////////////////////////////////////////////
605void t_reqcAnalyze::slotDspAvailPlot(const QString& fileName,
606 const QByteArray& title) {
607
608 if (dynamic_cast<bncApp*>(qApp)->GUIenabled()) {
609
610 t_availPlot* plotA = new t_availPlot(0, &_availDataMap);
611 plotA->setTitle(title);
612
613 t_elePlot* plotZ = new t_elePlot(0, &_availDataMap);
614
615 t_dopPlot* plotD = new t_dopPlot(0, &_obsStat);
616
617 QVector<QWidget*> plots;
618 plots << plotA << plotZ << plotD;
619 t_graphWin* graphWin = new t_graphWin(0, fileName, plots, 0, 0);
620
621 int ww = QFontMetrics(graphWin->font()).width('w');
622 graphWin->setMinimumSize(120*ww, 40*ww);
623
624 graphWin->show();
625
626 bncSettings settings;
627 QString dirName = settings.value("reqcPlotDir").toString();
628 if (!dirName.isEmpty()) {
629 QByteArray ext = "_A.png";
630 graphWin->savePNG(dirName, ext);
631 }
632 }
633}
634
635// Compute Dilution of Precision
636////////////////////////////////////////////////////////////////////////////
637double t_reqcAnalyze::cmpDOP(const ColumnVector& xyzSta) const {
638
639 if (xyzSta.size() != 3) {
640 return 0.0;
641 }
642
643 unsigned nSat = _currEpo->rnxSat.size();
644
645 if (nSat < 4) {
646 return 0.0;
647 }
648
649 Matrix AA(nSat, 4);
650
651 unsigned nSatUsed = 0;
652 for (unsigned iSat = 0; iSat < nSat; iSat++) {
653
654 const t_rnxObsFile::t_rnxSat& rnxSat = _currEpo->rnxSat[iSat];
655
656 QString prn = QString("%1%2").arg(rnxSat.satSys)
657 .arg(rnxSat.satNum, 2, 10, QChar('0'));
658
659 t_eph* eph = 0;
660 for (int ie = 0; ie < _ephs.size(); ie++) {
661 if (_ephs[ie]->prn() == prn) {
662 eph = _ephs[ie];
663 break;
664 }
665 }
666 if (eph) {
667 ++nSatUsed;
668 ColumnVector xSat(3);
669 double clkSat;
670 eph->position(_currEpo->tt.gpsw(), _currEpo->tt.gpssec(),
671 xSat(1), xSat(2), xSat(3), clkSat);
672 ColumnVector dx = xSat - xyzSta;
673 double rho = dx.norm_Frobenius();
674 AA(nSatUsed,1) = dx(1) / rho;
675 AA(nSatUsed,2) = dx(2) / rho;
676 AA(nSatUsed,3) = dx(3) / rho;
677 AA(nSatUsed,4) = 1.0;
678 }
679 }
680
681 if (nSatUsed < 4) {
682 return 0.0;
683 }
684
685 AA = AA.Rows(1, nSatUsed);
686
687 SymmetricMatrix QQ;
688 QQ << AA.t() * AA;
689 QQ = QQ.i();
690
691 return sqrt(QQ.trace());
692}
693
694// Finish the report
695////////////////////////////////////////////////////////////////////////////
696void t_reqcAnalyze::printReport() {
697
698 if (!_log) {
699 return;
700 }
701
702 *_log << "Marker name: " << _obsStat._markerName << endl
703 << "Receiver: " << _obsStat._receiverType << endl
704 << "Antenna: " << _obsStat._antennaName << endl
705 << "Start time: " << _obsStat._startTime.datestr().c_str() << ' '
706 << _obsStat._startTime.timestr().c_str() << endl
707 << "End time: " << _obsStat._endTime.datestr().c_str() << ' '
708 << _obsStat._endTime.timestr().c_str() << endl
709 << "Interval: " << _obsStat._interval << endl
710 << "# Sat.: " << _obsStat._prnStat.size() << endl;
711
712 int numObs = 0;
713 QMapIterator<QString, t_prnStat> it(_obsStat._prnStat);
714 while (it.hasNext()) {
715 it.next();
716 const t_prnStat& prnStat = it.value();
717 numObs += prnStat._numObs;
718 }
719 *_log << "# Obs.: " << numObs << endl;
720
721 _log->flush();
722}
Note: See TracBrowser for help on using the repository browser.