source: ntrip/trunk/BNC/src/PPP/pppSatObs.cpp@ 9221

Last change on this file since 9221 was 8998, checked in by stuerze, 4 years ago

minor changes in PPP

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 21.0 KB
Line 
1/* -------------------------------------------------------------------------
2 * BKG NTRIP Client
3 * -------------------------------------------------------------------------
4 *
5 * Class: t_pppSatObs
6 *
7 * Purpose: Satellite observations
8 *
9 * Author: L. Mervart
10 *
11 * Created: 29-Jul-2014
12 *
13 * Changes:
14 *
15 * -----------------------------------------------------------------------*/
16
17
18#include <iostream>
19#include <cmath>
20#include <newmatio.h>
21
22#include "pppSatObs.h"
23#include "bncconst.h"
24#include "pppEphPool.h"
25#include "pppStation.h"
26#include "bncutils.h"
27#include "bncantex.h"
28#include "pppObsPool.h"
29#include "pppClient.h"
30
31using namespace BNC_PPP;
32using namespace std;
33
34// Constructor
35////////////////////////////////////////////////////////////////////////////
36t_pppSatObs::t_pppSatObs(const t_satObs& pppSatObs) {
37 _prn = pppSatObs._prn;
38 _time = pppSatObs._time;
39 _outlier = false;
40 _valid = true;
41 _reference = false;
42 _stecRefSat = 0.0;
43 _stecSat = 0.0;
44 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
45 _obs[ii] = 0;
46 }
47 prepareObs(pppSatObs);
48}
49
50// Destructor
51////////////////////////////////////////////////////////////////////////////
52t_pppSatObs::~t_pppSatObs() {
53 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
54 delete _obs[iFreq];
55 }
56}
57
58//
59////////////////////////////////////////////////////////////////////////////
60void t_pppSatObs::prepareObs(const t_satObs& pppSatObs) {
61
62 _model.reset();
63
64 // Select pseudoranges and phase observations
65 // ------------------------------------------
66 const string preferredAttrib = "G:12&PWCSLXYN G:5&IQX R:12&PC R:3&IQX E:16&BCX E:578&IQX J:1&SLXCZ J:26&SLX J:5&IQX C:IQX I:ABCX S:1&C S:5&IQX";
67
68 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
69 string frqNum = t_frequency::toString(t_frequency::type(iFreq)).substr(1);
70 for (unsigned iPref = 0; iPref < preferredAttrib.length(); iPref++) {
71 string obsType = (preferredAttrib[iPref] == '_') ? frqNum : frqNum + preferredAttrib[iPref];
72 if (_obs[iFreq] == 0) {
73 for (unsigned ii = 0; ii < pppSatObs._obs.size(); ii++) {
74 const t_frqObs* obs = pppSatObs._obs[ii];
75 if (obs->_rnxType2ch == obsType &&
76 obs->_codeValid && obs->_code &&
77 obs->_phaseValid && obs->_phase) {
78 _obs[iFreq] = new t_frqObs(*obs);
79 }
80 }
81 }
82 }
83 }
84
85 // Used frequency types
86 // --------------------
87 _fType1 = t_lc::toFreq(_prn.system(),t_lc::l1);
88 _fType2 = t_lc::toFreq(_prn.system(),t_lc::l2);
89
90 // Check whether all required frequencies available
91 // ------------------------------------------------
92 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
93 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
94 if (tLC == t_lc::GIM || tLC == t_lc::Tz0) {continue;}
95 if (!isValid(tLC)) {
96 _valid = false;
97 return;
98 }
99 }
100
101 // Find Glonass Channel Number
102 // ---------------------------
103 if (_prn.system() == 'R') {
104 _channel = PPP_CLIENT->ephPool()->getChannel(_prn);
105 }
106 else {
107 _channel = 0;
108 }
109
110 // Compute Satellite Coordinates at Time of Transmission
111 // -----------------------------------------------------
112 _xcSat.ReSize(6); _xcSat = 0.0;
113 _vvSat.ReSize(3); _vvSat = 0.0;
114 bool totOK = false;
115 ColumnVector satPosOld(6); satPosOld = 0.0;
116 t_lc::type tLC = isValid(t_lc::cIF) ? t_lc::cIF : t_lc::c1;
117 double prange = obsValue(tLC);
118 for (int ii = 1; ii <= 10; ii++) {
119 bncTime ToT = _time - prange / t_CST::c - _xcSat[3];
120 if (PPP_CLIENT->ephPool()->getCrd(_prn, ToT, _xcSat, _vvSat) != success) {
121 _valid = false;
122 return;
123 }
124 ColumnVector dx = _xcSat - satPosOld;
125 dx[3] *= t_CST::c;
126 if (dx.NormFrobenius() < 1.e-4) {
127 totOK = true;
128 break;
129 }
130 satPosOld = _xcSat;
131 }
132 if (totOK) {
133 _signalPropagationTime = prange / t_CST::c - _xcSat[3];
134 _model._satClkM = _xcSat[3] * t_CST::c;
135 }
136 else {
137 _valid = false;
138 }
139}
140
141//
142////////////////////////////////////////////////////////////////////////////
143void t_pppSatObs::lcCoeff(t_lc::type tLC,
144 map<t_frequency::type, double>& codeCoeff,
145 map<t_frequency::type, double>& phaseCoeff,
146 map<t_frequency::type, double>& ionoCoeff) const {
147
148 codeCoeff.clear();
149 phaseCoeff.clear();
150 ionoCoeff.clear();
151
152 double f1 = t_CST::freq(_fType1, _channel);
153 double f2 = t_CST::freq(_fType2, _channel);
154 double f1GPS = t_CST::freq(t_frequency::G1, 0);
155
156 switch (tLC) {
157 case t_lc::l1:
158 phaseCoeff[_fType1] = 1.0;
159 ionoCoeff [_fType1] = -1.0 * pow(f1GPS, 2) / pow(f1, 2);
160 return;
161 case t_lc::l2:
162 phaseCoeff[_fType2] = 1.0;
163 ionoCoeff [_fType2] = -1.0 * pow(f1GPS, 2) / pow(f2, 2);
164 return;
165 case t_lc::lIF:
166 phaseCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
167 phaseCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
168 return;
169 case t_lc::MW:
170 phaseCoeff[_fType1] = f1 / (f1 - f2);
171 phaseCoeff[_fType2] = -f2 / (f1 - f2);
172 codeCoeff[_fType1] = -f1 / (f1 + f2);
173 codeCoeff[_fType2] = -f2 / (f1 + f2);
174 return;
175 case t_lc::CL:
176 phaseCoeff[_fType1] = 0.5;
177 codeCoeff [_fType1] = 0.5;
178 return;
179 case t_lc::c1:
180 codeCoeff[_fType1] = 1.0;
181 ionoCoeff[_fType1] = pow(f1GPS, 2) / pow(f1, 2);
182 return;
183 case t_lc::c2:
184 codeCoeff[_fType2] = 1.0;
185 ionoCoeff[_fType2] = pow(f1GPS, 2) / pow(f2, 2);
186 return;
187 case t_lc::cIF:
188 codeCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
189 codeCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
190 return;
191 case t_lc::GIM:
192 case t_lc::Tz0:
193 case t_lc::dummy:
194 case t_lc::maxLc:
195 return;
196 }
197}
198
199//
200////////////////////////////////////////////////////////////////////////////
201bool t_pppSatObs::isValid(t_lc::type tLC) const {
202 bool valid = true;
203 obsValue(tLC, &valid);
204 //qDebug() << "tLC: " << tLC << " valid: " << valid;
205 return valid;
206}
207//
208////////////////////////////////////////////////////////////////////////////
209double t_pppSatObs::obsValue(t_lc::type tLC, bool* valid) const {
210
211 double retVal = 0.0;
212 if (valid) *valid = true;
213
214 // Pseudo observations
215 if (tLC == t_lc::GIM) {
216 if (_stecRefSat == 0.0 || _stecSat == 0.0) {
217 if (valid) *valid = false;
218 return 0.0;
219 }
220 else {
221 return _stecRefSat;
222 }
223 }
224
225 if (tLC == t_lc::Tz0) {
226 return _model._tropo0;
227 }
228
229 map<t_frequency::type, double> codeCoeff;
230 map<t_frequency::type, double> phaseCoeff;
231 map<t_frequency::type, double> ionoCoeff;
232 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
233
234 map<t_frequency::type, double>::const_iterator it;
235
236 // Code observations
237 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
238 t_frequency::type tFreq = it->first;
239 if (_obs[tFreq] == 0) {
240 if (valid) *valid = false;
241 return 0.0;
242 }
243 else {
244 retVal += it->second * _obs[tFreq]->_code;
245 }
246 }
247 // Phase observations
248 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
249 t_frequency::type tFreq = it->first;
250 if (_obs[tFreq] == 0) {
251 if (valid) *valid = false;
252 return 0.0;
253 }
254 else {
255 retVal += it->second * _obs[tFreq]->_phase * t_CST::lambda(tFreq, _channel);
256 }
257 }
258 return retVal;
259}
260
261//
262////////////////////////////////////////////////////////////////////////////
263double t_pppSatObs::lambda(t_lc::type tLC) const {
264
265 double f1 = t_CST::freq(_fType1, _channel);
266 double f2 = t_CST::freq(_fType2, _channel);
267
268 if (tLC == t_lc::l1) {
269 return t_CST::c / f1;
270 }
271 else if (tLC == t_lc::l2) {
272 return t_CST::c / f2;
273 }
274 else if (tLC == t_lc::lIF) {
275 return t_CST::c / (f1 + f2);
276 }
277 else if (tLC == t_lc::MW) {
278 return t_CST::c / (f1 - f2);
279 }
280 else if (tLC == t_lc::CL) {
281 return t_CST::c / f1 / 2.0;
282 }
283
284 return 0.0;
285}
286
287//
288////////////////////////////////////////////////////////////////////////////
289double t_pppSatObs::sigma(t_lc::type tLC) const {
290
291 double retVal = 0.0;
292 map<t_frequency::type, double> codeCoeff;
293 map<t_frequency::type, double> phaseCoeff;
294 map<t_frequency::type, double> ionoCoeff;
295 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
296
297 if (tLC == t_lc::GIM) {
298 retVal = OPT->_sigmaGIMdiff * OPT->_sigmaGIMdiff;
299 }
300
301 if (tLC == t_lc::Tz0) {
302 retVal = OPT->_sigmaTz0 * OPT->_sigmaTz0;
303 }
304
305 map<t_frequency::type, double>::const_iterator it;
306 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {//qDebug() << "codeCoeff : " << t_frequency::toString(it->first).c_str() << ": " << it->second;
307 retVal += it->second * it->second * OPT->_sigmaC1 * OPT->_sigmaC1;
308 }
309
310 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {//qDebug() << "phaseCoeff: " << t_frequency::toString(it->first).c_str() << ": " << it->second;
311 retVal += it->second * it->second * OPT->_sigmaL1 * OPT->_sigmaL1;
312 }
313
314 retVal = sqrt(retVal);
315
316 // De-Weight GLONASS and BDS
317 // --------------------------
318 if (_prn.system() == 'R' ||
319 _prn.system() == 'C') {
320 retVal *= 5.0;
321 }
322
323 // Elevation-Dependent Weighting
324 // -----------------------------
325 double cEle = 1.0;
326 if ( (OPT->_eleWgtCode && t_lc::includesCode(tLC)) ||
327 (OPT->_eleWgtPhase && t_lc::includesPhase(tLC)) ) {
328 double eleD = eleSat()*180.0/M_PI;
329 double hlp = fabs(90.0 - eleD);
330 cEle = (1.0 + hlp*hlp*hlp*0.000004);
331 }
332
333 return cEle * retVal;
334}
335
336//
337////////////////////////////////////////////////////////////////////////////
338double t_pppSatObs::maxRes(t_lc::type tLC) const {//qDebug() << "t_pppSatObs::maxRes(t_lc::type tLC)";
339 double retVal = 0.0;
340
341 map<t_frequency::type, double> codeCoeff;
342 map<t_frequency::type, double> phaseCoeff;
343 map<t_frequency::type, double> ionoCoeff;
344 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
345
346 map<t_frequency::type, double>::const_iterator it;
347 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {//qDebug() << "codeCoeff: " << it->first << ": " << it->second;
348 retVal += it->second * it->second * OPT->_maxResC1 * OPT->_maxResC1;
349 }
350 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {//qDebug() << "phaseCoeff: " << it->first << ": " << it->second;
351 retVal += it->second * it->second * OPT->_maxResL1 * OPT->_maxResL1;
352 }
353 if (tLC == t_lc::GIM) {
354 retVal = 3.0 * OPT->_sigmaGIMdiff * OPT->_sigmaGIMdiff;
355 }
356 return sqrt(retVal);
357}
358
359
360//
361////////////////////////////////////////////////////////////////////////////
362t_irc t_pppSatObs::cmpModel(const t_pppStation* station) {
363
364 // Reset all model values
365 // ----------------------
366 _model.reset();
367
368 // Topocentric Satellite Position
369 // ------------------------------
370 ColumnVector rSat = _xcSat.Rows(1,3);
371 ColumnVector rRec = station->xyzApr();
372 ColumnVector rhoV = rSat - rRec;
373 _model._rho = rhoV.NormFrobenius();
374
375 ColumnVector vSat = _vvSat;
376
377 ColumnVector neu(3);
378 xyz2neu(station->ellApr().data(), rhoV.data(), neu.data());
379
380 _model._eleSat = acos(sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / _model._rho);
381 if (neu[2] < 0) {
382 _model._eleSat *= -1.0;
383 }
384 _model._azSat = atan2(neu[1], neu[0]);
385
386 // Satellite Clocks
387 // ----------------
388 _model._satClkM = _xcSat[3] * t_CST::c;
389
390 // Receiver Clocks
391 // ---------------
392 _model._recClkM = station->dClk() * t_CST::c;
393
394 // Sagnac Effect (correction due to Earth rotation)
395 // ------------------------------------------------
396 ColumnVector Omega(3);
397 Omega[0] = 0.0;
398 Omega[1] = 0.0;
399 Omega[2] = t_CST::omega / t_CST::c;
400 _model._sagnac = DotProduct(Omega, crossproduct(rSat, rRec));
401
402 // Antenna Eccentricity
403 // --------------------
404 _model._antEcc = -DotProduct(station->xyzEcc(), rhoV) / _model._rho;
405
406 // Antenna Phase Center Offsets and Variations
407 // -------------------------------------------
408 if (PPP_CLIENT->antex()) {
409 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
410 t_frequency::type frqType = static_cast<t_frequency::type>(ii);
411 bool found;
412 _model._antPCO[ii] = PPP_CLIENT->antex()->rcvCorr(station->antName(), frqType,
413 _model._eleSat, _model._azSat, found);
414 }
415 }
416
417 // Tropospheric Delay
418 // ------------------
419 _model._tropo = t_tropo::delay_saast(rRec, _model._eleSat);
420 _model._tropo0 = t_tropo::delay_saast(rRec, M_PI/2.0);
421
422 // Code Biases
423 // -----------
424 const t_satCodeBias* satCodeBias = PPP_CLIENT->obsPool()->satCodeBias(_prn);
425 if (satCodeBias) {
426 for (unsigned ii = 0; ii < satCodeBias->_bias.size(); ii++) {
427 const t_frqCodeBias& bias = satCodeBias->_bias[ii];
428 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
429 const t_frqObs* obs = _obs[iFreq];
430 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
431 _model._codeBias[iFreq] = bias._value;
432 }
433 }
434 }
435 }
436
437 // Phase Biases
438 // -----------
439 const t_satPhaseBias* satPhaseBias = PPP_CLIENT->obsPool()->satPhaseBias(_prn);
440 double yaw = 0.0;
441 bool ssr = false;
442 if (satPhaseBias) {
443 double dt = station->epochTime() - satPhaseBias->_time;
444 if (satPhaseBias->_updateInt) {
445 dt -= (0.5 * ssrUpdateInt[satPhaseBias->_updateInt]);
446 }
447 yaw = satPhaseBias->_yaw + satPhaseBias->_yawRate * dt;
448 ssr = true;
449 for (unsigned ii = 0; ii < satPhaseBias->_bias.size(); ii++) {
450 const t_frqPhaseBias& bias = satPhaseBias->_bias[ii];
451 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
452 const t_frqObs* obs = _obs[iFreq];
453 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
454 _model._phaseBias[iFreq] = bias._value;
455 }
456 }
457 }
458 }
459
460 // Phase Wind-Up
461 // -------------
462 _model._windUp = station->windUp(_time, _prn, rSat, ssr, yaw, vSat) ;
463
464 // Relativistic effect due to earth gravity
465 // ----------------------------------------
466 double a = rSat.NormFrobenius() + rRec.NormFrobenius();
467 double b = (rSat - rRec).NormFrobenius();
468 double gm = 3.986004418e14; // m3/s2
469 _model._rel = 2 * gm / t_CST::c / t_CST::c * log((a + b) / (a - b));
470
471 // Tidal Correction
472 // ----------------
473 _model._tideEarth = -DotProduct(station->tideDsplEarth(), rhoV) / _model._rho;
474 _model._tideOcean = -DotProduct(station->tideDsplOcean(), rhoV) / _model._rho;
475
476 // Ionospheric Delay
477 // -----------------
478 const t_vTec* vTec = PPP_CLIENT->obsPool()->vTec();
479 bool vTecUsage = true;
480 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
481 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
482 if (tLC == t_lc::cIF || tLC == t_lc::lIF) {
483 vTecUsage = false;
484 }
485 }
486
487 if (vTecUsage && vTec) {
488 double stec = station->stec(vTec, _signalPropagationTime, rSat);
489 double f1GPS = t_CST::freq(t_frequency::G1, 0);
490 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
491 if (OPT->_pseudoObsIono) { // DCMcodeBias, DCMphaseBias
492 // For scaling the slant ionospheric delays the trick is to be consistent with units!
493 // The conversion of TECU into meters requires the frequency of the signal.
494 // Hence, GPS L1 frequency is used for all systems. The same is true for mu_i in lcCoeff().
495 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(f1GPS, 2) * stec;
496 }
497 else { // PPP-RTK
498 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
499 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(t_CST::freq(frqType, _channel), 2) * stec;
500 }
501 }
502 }
503
504 // Set Model Set Flag
505 // ------------------
506 _model._set = true;
507
508 //printModel();
509
510 return success;
511}
512
513//
514////////////////////////////////////////////////////////////////////////////
515void t_pppSatObs::printModel() const {
516
517 LOG.setf(ios::fixed);
518 LOG << "\nMODEL for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "")
519
520 << "======================= " << endl
521 << "PPP STRATEGY : " << OPT->_obsmodelTypeStr.at((int)OPT->_obsModelType).toLocal8Bit().constData()
522 << ((OPT->_pseudoObsIono) ? " with pseudo-observations for STEC" : "") << endl
523 << "RHO : " << setw(12) << setprecision(3) << _model._rho << endl
524 << "ELE : " << setw(12) << setprecision(3) << _model._eleSat * RHO_DEG << endl
525 << "AZI : " << setw(12) << setprecision(3) << _model._azSat * RHO_DEG << endl
526 << "SATCLK : " << setw(12) << setprecision(3) << _model._satClkM << endl
527 << "RECCLK : " << setw(12) << setprecision(3) << _model._recClkM << endl
528 << "SAGNAC : " << setw(12) << setprecision(3) << _model._sagnac << endl
529 << "ANTECC : " << setw(12) << setprecision(3) << _model._antEcc << endl
530 << "TROPO : " << setw(12) << setprecision(3) << _model._tropo << endl
531 << "WINDUP : " << setw(12) << setprecision(3) << _model._windUp << endl
532 << "REL : " << setw(12) << setprecision(3) << _model._rel << endl
533 << "EARTH TIDES : " << setw(12) << setprecision(3) << _model._tideEarth << endl
534 << "OCEAN TIDES : " << setw(12) << setprecision(3) << _model._tideOcean << endl
535 << endl
536 << "FREQUENCY DEPENDENT CORRECTIONS:" << endl
537 << "-------------------------------" << endl;
538 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
539 if (_obs[iFreq]) {
540 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
541 if (_prn.system() == frqStr[0]) {
542 LOG << "PCO : " << frqStr << setw(12) << setprecision(3) << _model._antPCO[iFreq] << endl
543 << "BIAS CODE : " << frqStr << setw(12) << setprecision(3) << _model._codeBias[iFreq] << endl
544 << "BIAS PHASE : " << frqStr << setw(12) << setprecision(3) << _model._phaseBias[iFreq] << endl
545 << "IONO CODEDELAY: " << frqStr << setw(12) << setprecision(3) << _model._ionoCodeDelay[iFreq]<< endl;
546 }
547 }
548 }
549}
550
551//
552////////////////////////////////////////////////////////////////////////////
553void t_pppSatObs::printObsMinusComputed() const {
554// TODO: cout should be LOG
555 cout.setf(ios::fixed);
556 cout << "\nOBS-COMP for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "") << endl
557 << "========================== " << endl;
558 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
559 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
560 cout << "OBS-CMP " << setw(4) << t_lc::toString(tLC) << ": " << _prn.toString() << " "
561 << setw(12) << setprecision(3) << obsValue(tLC) << " "
562 << setw(12) << setprecision(3) << cmpValue(tLC) << " "
563 << setw(12) << setprecision(3) << obsValue(tLC) - cmpValue(tLC) << endl;
564 }
565}
566
567
568//
569////////////////////////////////////////////////////////////////////////////
570double t_pppSatObs::cmpValueForBanc(t_lc::type tLC) const {
571 return cmpValue(tLC) - _model._rho - _model._sagnac - _model._recClkM;
572}
573
574//
575////////////////////////////////////////////////////////////////////////////
576double t_pppSatObs::cmpValue(t_lc::type tLC) const {
577 double cmpValue;
578
579 if (!isValid(tLC)) {
580 cmpValue = 0.0;
581 }
582 else if (tLC == t_lc::GIM) {
583 cmpValue = _stecSat;
584 }
585 else if (tLC == t_lc::Tz0) {
586 cmpValue = _model._tropo0;
587 }
588 else {
589 // Non-Dispersive Part
590 // -------------------
591 double nonDisp = _model._rho
592 + _model._recClkM - _model._satClkM
593 + _model._sagnac + _model._antEcc + _model._tropo
594 + _model._tideEarth + _model._tideOcean + _model._rel;
595
596 // Add Dispersive Part
597 // -------------------
598 double dispPart = 0.0;
599 map<t_frequency::type, double> codeCoeff;
600 map<t_frequency::type, double> phaseCoeff;
601 map<t_frequency::type, double> ionoCoeff;
602 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
603 map<t_frequency::type, double>::const_iterator it;
604 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
605 t_frequency::type tFreq = it->first;
606 dispPart += it->second * (_model._antPCO[tFreq] - _model._codeBias[tFreq]);
607 if (OPT->PPPRTK) {
608 dispPart += it->second * (_model._ionoCodeDelay[tFreq]);
609 }
610 }
611 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
612 t_frequency::type tFreq = it->first;
613 dispPart += it->second * (_model._antPCO[tFreq] - _model._phaseBias[tFreq] +
614 _model._windUp * t_CST::lambda(tFreq, _channel));
615 if (OPT->PPPRTK) {
616 dispPart += it->second * (- _model._ionoCodeDelay[tFreq]);
617 }
618 }
619 cmpValue = nonDisp + dispPart;
620 }
621
622 return cmpValue;
623}
624
625//
626////////////////////////////////////////////////////////////////////////////
627void t_pppSatObs::setRes(t_lc::type tLC, double res) {
628 _res[tLC] = res;
629}
630
631//
632////////////////////////////////////////////////////////////////////////////
633double t_pppSatObs::getRes(t_lc::type tLC) const {
634 map<t_lc::type, double>::const_iterator it = _res.find(tLC);
635 if (it != _res.end()) {
636 return it->second;
637 }
638 else {
639 return 0.0;
640 }
641}
642
643//
644////////////////////////////////////////////////////////////////////////////
645void t_pppSatObs::setPseudoObsIono(t_frequency::type freq, double stecRefSat) {
646 _stecSat = _model._ionoCodeDelay[freq];
647 _stecRefSat = stecRefSat;
648}
649
650
651//
652////////////////////////////////////////////////////////////////////////////
653void t_pppSatObs::setPseudoObsTropo() {
654 _tropo0 = _model._tropo0;
655}
Note: See TracBrowser for help on using the repository browser.