source: ntrip/trunk/BNC/src/PPP/pppSatObs.cpp@ 9303

Last change on this file since 9303 was 9303, checked in by stuerze, 3 years ago

minor changes

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 21.0 KB
Line 
1/* -------------------------------------------------------------------------
2 * BKG NTRIP Client
3 * -------------------------------------------------------------------------
4 *
5 * Class: t_pppSatObs
6 *
7 * Purpose: Satellite observations
8 *
9 * Author: L. Mervart
10 *
11 * Created: 29-Jul-2014
12 *
13 * Changes:
14 *
15 * -----------------------------------------------------------------------*/
16
17
18#include <iostream>
19#include <cmath>
20#include <newmatio.h>
21
22#include "pppSatObs.h"
23#include "bncconst.h"
24#include "pppEphPool.h"
25#include "pppStation.h"
26#include "bncutils.h"
27#include "bncantex.h"
28#include "pppObsPool.h"
29#include "pppClient.h"
30
31using namespace BNC_PPP;
32using namespace std;
33
34// Constructor
35////////////////////////////////////////////////////////////////////////////
36t_pppSatObs::t_pppSatObs(const t_satObs& pppSatObs) {
37 _prn = pppSatObs._prn;
38 _time = pppSatObs._time;
39 _outlier = false;
40 _valid = true;
41 _reference = false;
42 _stecRefSat = 0.0;
43 _stecSat = 0.0;
44 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
45 _obs[ii] = 0;
46 }
47 prepareObs(pppSatObs);
48}
49
50// Destructor
51////////////////////////////////////////////////////////////////////////////
52t_pppSatObs::~t_pppSatObs() {
53 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
54 delete _obs[iFreq];
55 }
56}
57
58//
59////////////////////////////////////////////////////////////////////////////
60void t_pppSatObs::prepareObs(const t_satObs& pppSatObs) {
61
62 _model.reset();
63
64 // Select pseudoranges and phase observations
65 // ------------------------------------------
66 const string preferredAttrib = "G:12&PWCSLXYN G:5&IQX R:12&PC R:3&IQX E:16&BCX E:578&IQX J:1&SLXCZ J:26&SLX J:5&IQX C:IQX I:ABCX S:1&C S:5&IQX";
67
68 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
69 string frqNum = t_frequency::toString(t_frequency::type(iFreq)).substr(1);
70 for (unsigned iPref = 0; iPref < preferredAttrib.length(); iPref++) {
71 string obsType = (preferredAttrib[iPref] == '_') ? frqNum : frqNum + preferredAttrib[iPref];
72 if (_obs[iFreq] == 0) {
73 for (unsigned ii = 0; ii < pppSatObs._obs.size(); ii++) {
74 const t_frqObs* obs = pppSatObs._obs[ii];
75 if (obs->_rnxType2ch == obsType &&
76 obs->_codeValid && obs->_code &&
77 obs->_phaseValid && obs->_phase) {
78 _obs[iFreq] = new t_frqObs(*obs);
79 }
80 }
81 }
82 }
83 }
84
85 // Used frequency types
86 // --------------------
87 _fType1 = t_lc::toFreq(_prn.system(),t_lc::l1);
88 _fType2 = t_lc::toFreq(_prn.system(),t_lc::l2);
89
90 // Check whether all required frequencies available
91 // ------------------------------------------------
92 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
93 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
94 if (tLC == t_lc::GIM || tLC == t_lc::Tz0) {continue;}
95 if (!isValid(tLC)) {
96 _valid = false;
97 return;
98 }
99 }
100
101 // Find Glonass Channel Number
102 // ---------------------------
103 if (_prn.system() == 'R') {
104 _channel = PPP_CLIENT->ephPool()->getChannel(_prn);
105 }
106 else {
107 _channel = 0;
108 }
109
110 // Compute Satellite Coordinates at Time of Transmission
111 // -----------------------------------------------------
112 _xcSat.ReSize(6); _xcSat = 0.0;
113 _vvSat.ReSize(3); _vvSat = 0.0;
114 bool totOK = false;
115 ColumnVector satPosOld(6); satPosOld = 0.0;
116 t_lc::type tLC = isValid(t_lc::cIF) ? t_lc::cIF : t_lc::c1;
117 double prange = obsValue(tLC);
118 for (int ii = 1; ii <= 10; ii++) {
119 bncTime ToT = _time - prange / t_CST::c - _xcSat[3];
120 if (PPP_CLIENT->ephPool()->getCrd(_prn, ToT, _xcSat, _vvSat) != success) {
121 _valid = false;
122 return;
123 }
124 ColumnVector dx = _xcSat - satPosOld;
125 dx[3] *= t_CST::c;
126 if (dx.NormFrobenius() < 1.e-4) {
127 totOK = true;
128 break;
129 }
130 satPosOld = _xcSat;
131 }
132 if (totOK) {
133 _signalPropagationTime = prange / t_CST::c - _xcSat[3];
134 _model._satClkM = _xcSat[3] * t_CST::c;
135 }
136 else {
137 _valid = false;
138 }
139}
140
141//
142////////////////////////////////////////////////////////////////////////////
143void t_pppSatObs::lcCoeff(t_lc::type tLC,
144 map<t_frequency::type, double>& codeCoeff,
145 map<t_frequency::type, double>& phaseCoeff,
146 map<t_frequency::type, double>& ionoCoeff) const {
147
148 codeCoeff.clear();
149 phaseCoeff.clear();
150 ionoCoeff.clear();
151
152 double f1 = t_CST::freq(_fType1, _channel);
153 double f2 = t_CST::freq(_fType2, _channel);
154 double f1GPS = t_CST::freq(t_frequency::G1, 0);
155
156 switch (tLC) {
157 case t_lc::l1:
158 phaseCoeff[_fType1] = 1.0;
159 ionoCoeff [_fType1] = -1.0 * pow(f1GPS, 2) / pow(f1, 2);
160 return;
161 case t_lc::l2:
162 phaseCoeff[_fType2] = 1.0;
163 ionoCoeff [_fType2] = -1.0 * pow(f1GPS, 2) / pow(f2, 2);
164 return;
165 case t_lc::lIF:
166 phaseCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
167 phaseCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
168 return;
169 case t_lc::MW:
170 phaseCoeff[_fType1] = f1 / (f1 - f2);
171 phaseCoeff[_fType2] = -f2 / (f1 - f2);
172 codeCoeff[_fType1] = -f1 / (f1 + f2);
173 codeCoeff[_fType2] = -f2 / (f1 + f2);
174 return;
175 case t_lc::CL:
176 phaseCoeff[_fType1] = 0.5;
177 codeCoeff [_fType1] = 0.5;
178 return;
179 case t_lc::c1:
180 codeCoeff[_fType1] = 1.0;
181 ionoCoeff[_fType1] = pow(f1GPS, 2) / pow(f1, 2);
182 return;
183 case t_lc::c2:
184 codeCoeff[_fType2] = 1.0;
185 ionoCoeff[_fType2] = pow(f1GPS, 2) / pow(f2, 2);
186 return;
187 case t_lc::cIF:
188 codeCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
189 codeCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
190 return;
191 case t_lc::GIM:
192 case t_lc::Tz0:
193 case t_lc::dummy:
194 case t_lc::maxLc:
195 return;
196 }
197}
198
199//
200////////////////////////////////////////////////////////////////////////////
201bool t_pppSatObs::isValid(t_lc::type tLC) const {
202 bool valid = true;
203 obsValue(tLC, &valid);
204 //qDebug() << "tLC: " << tLC << " valid: " << valid;
205 return valid;
206}
207//
208////////////////////////////////////////////////////////////////////////////
209double t_pppSatObs::obsValue(t_lc::type tLC, bool* valid) const {
210
211 double retVal = 0.0;
212 if (valid) *valid = true;
213
214 // Pseudo observations
215 if (tLC == t_lc::GIM) {
216 if (_stecRefSat == 0.0 || _stecSat == 0.0) {
217 if (valid) *valid = false;
218 return 0.0;
219 }
220 else {
221 return _stecRefSat;
222 }
223 }
224
225 if (tLC == t_lc::Tz0) {
226 return _model._tropo0;
227 }
228
229 map<t_frequency::type, double> codeCoeff;
230 map<t_frequency::type, double> phaseCoeff;
231 map<t_frequency::type, double> ionoCoeff;
232 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
233
234 map<t_frequency::type, double>::const_iterator it;
235
236 // Code observations
237 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
238 t_frequency::type tFreq = it->first;
239 if (_obs[tFreq] == 0) {
240 if (valid) *valid = false;
241 return 0.0;
242 }
243 else {
244 retVal += it->second * _obs[tFreq]->_code;
245 }
246 }
247 // Phase observations
248 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
249 t_frequency::type tFreq = it->first;
250 if (_obs[tFreq] == 0) {
251 if (valid) *valid = false;
252 return 0.0;
253 }
254 else {
255 retVal += it->second * _obs[tFreq]->_phase * t_CST::lambda(tFreq, _channel);
256 }
257 }
258 return retVal;
259}
260
261//
262////////////////////////////////////////////////////////////////////////////
263double t_pppSatObs::lambda(t_lc::type tLC) const {
264
265 double f1 = t_CST::freq(_fType1, _channel);
266 double f2 = t_CST::freq(_fType2, _channel);
267
268 if (tLC == t_lc::l1) {
269 return t_CST::c / f1;
270 }
271 else if (tLC == t_lc::l2) {
272 return t_CST::c / f2;
273 }
274 else if (tLC == t_lc::lIF) {
275 return t_CST::c / (f1 + f2);
276 }
277 else if (tLC == t_lc::MW) {
278 return t_CST::c / (f1 - f2);
279 }
280 else if (tLC == t_lc::CL) {
281 return t_CST::c / f1 / 2.0;
282 }
283
284 return 0.0;
285}
286
287//
288////////////////////////////////////////////////////////////////////////////
289double t_pppSatObs::sigma(t_lc::type tLC) const {
290
291 double retVal = 0.0;
292 map<t_frequency::type, double> codeCoeff;
293 map<t_frequency::type, double> phaseCoeff;
294 map<t_frequency::type, double> ionoCoeff;
295 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
296
297 if (tLC == t_lc::GIM) {
298 retVal = OPT->_sigmaGIM * OPT->_sigmaGIM;
299 }
300
301 if (tLC == t_lc::Tz0) {
302 retVal = OPT->_sigmaTz0 * OPT->_sigmaTz0;
303 }
304
305 map<t_frequency::type, double>::const_iterator it;
306 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {//qDebug() << "codeCoeff : " << t_frequency::toString(it->first).c_str() << ": " << it->second;
307 retVal += it->second * it->second * OPT->_sigmaC1 * OPT->_sigmaC1;
308 }
309
310 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {//qDebug() << "phaseCoeff: " << t_frequency::toString(it->first).c_str() << ": " << it->second;
311 retVal += it->second * it->second * OPT->_sigmaL1 * OPT->_sigmaL1;
312 }
313
314 retVal = sqrt(retVal);
315
316 // De-Weight GLONASS and BDS
317 // --------------------------
318 if (_prn.system() == 'R' ||
319 _prn.system() == 'C') {
320 retVal *= 5.0;
321 }
322
323 // Elevation-Dependent Weighting
324 // -----------------------------
325 double cEle = 1.0;
326 if ( (OPT->_eleWgtCode && t_lc::includesCode(tLC)) ||
327 (OPT->_eleWgtPhase && t_lc::includesPhase(tLC)) ) {
328 double eleD = eleSat()*180.0/M_PI;
329 double hlp = fabs(90.0 - eleD);
330 cEle = (1.0 + hlp*hlp*hlp*0.000004);
331 }
332
333 return cEle * retVal;
334}
335
336//
337////////////////////////////////////////////////////////////////////////////
338double t_pppSatObs::maxRes(t_lc::type tLC) const {//qDebug() << "t_pppSatObs::maxRes(t_lc::type tLC)";
339 double retVal = 0.0;
340
341 map<t_frequency::type, double> codeCoeff;
342 map<t_frequency::type, double> phaseCoeff;
343 map<t_frequency::type, double> ionoCoeff;
344 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
345
346 map<t_frequency::type, double>::const_iterator it;
347 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {//qDebug() << "codeCoeff: " << it->first << ": " << it->second;
348 retVal += it->second * it->second * OPT->_maxResC1 * OPT->_maxResC1;
349 }
350 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {//qDebug() << "phaseCoeff: " << it->first << ": " << it->second;
351 retVal += it->second * it->second * OPT->_maxResL1 * OPT->_maxResL1;
352 }
353 if (tLC == t_lc::GIM) {
354 retVal = 3.0 * OPT->_sigmaGIM * OPT->_sigmaGIM;
355 }
356 if (tLC == t_lc::Tz0) {
357 retVal = 3.0 * OPT->_sigmaTz0 * OPT->_sigmaTz0;
358 }
359 return sqrt(retVal);
360}
361
362
363//
364////////////////////////////////////////////////////////////////////////////
365t_irc t_pppSatObs::cmpModel(const t_pppStation* station) {
366
367 // Reset all model values
368 // ----------------------
369 _model.reset();
370
371 // Topocentric Satellite Position
372 // ------------------------------
373 ColumnVector rSat = _xcSat.Rows(1,3);
374 ColumnVector rRec = station->xyzApr();
375 ColumnVector rhoV = rSat - rRec;
376 _model._rho = rhoV.NormFrobenius();
377
378 ColumnVector vSat = _vvSat;
379
380 ColumnVector neu(3);
381 xyz2neu(station->ellApr().data(), rhoV.data(), neu.data());
382
383 _model._eleSat = acos(sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / _model._rho);
384 if (neu[2] < 0) {
385 _model._eleSat *= -1.0;
386 }
387 _model._azSat = atan2(neu[1], neu[0]);
388
389 // Satellite Clocks
390 // ----------------
391 _model._satClkM = _xcSat[3] * t_CST::c;
392
393 // Receiver Clocks
394 // ---------------
395 _model._recClkM = station->dClk() * t_CST::c;
396
397 // Sagnac Effect (correction due to Earth rotation)
398 // ------------------------------------------------
399 ColumnVector Omega(3);
400 Omega[0] = 0.0;
401 Omega[1] = 0.0;
402 Omega[2] = t_CST::omega / t_CST::c;
403 _model._sagnac = DotProduct(Omega, crossproduct(rSat, rRec));
404
405 // Antenna Eccentricity
406 // --------------------
407 _model._antEcc = -DotProduct(station->xyzEcc(), rhoV) / _model._rho;
408
409 // Antenna Phase Center Offsets and Variations
410 // -------------------------------------------
411 if (PPP_CLIENT->antex()) {
412 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
413 t_frequency::type frqType = static_cast<t_frequency::type>(ii);
414 bool found;
415 _model._antPCO[ii] = PPP_CLIENT->antex()->rcvCorr(station->antName(), frqType,
416 _model._eleSat, _model._azSat, found);
417 }
418 }
419
420 // Tropospheric Delay
421 // ------------------
422 _model._tropo = t_tropo::delay_saast(rRec, _model._eleSat);
423 _model._tropo0 = t_tropo::delay_saast(rRec, M_PI/2.0);
424
425 // Code Biases
426 // -----------
427 const t_satCodeBias* satCodeBias = PPP_CLIENT->obsPool()->satCodeBias(_prn);
428 if (satCodeBias) {
429 for (unsigned ii = 0; ii < satCodeBias->_bias.size(); ii++) {
430 const t_frqCodeBias& bias = satCodeBias->_bias[ii];
431 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
432 const t_frqObs* obs = _obs[iFreq];
433 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
434 _model._codeBias[iFreq] = bias._value;
435 }
436 }
437 }
438 }
439
440 // Phase Biases
441 // -----------
442 const t_satPhaseBias* satPhaseBias = PPP_CLIENT->obsPool()->satPhaseBias(_prn);
443 double yaw = 0.0;
444 bool ssr = false;
445 if (satPhaseBias) {
446 double dt = station->epochTime() - satPhaseBias->_time;
447 if (satPhaseBias->_updateInt) {
448 dt -= (0.5 * ssrUpdateInt[satPhaseBias->_updateInt]);
449 }
450 yaw = satPhaseBias->_yaw + satPhaseBias->_yawRate * dt;
451 ssr = true;
452 for (unsigned ii = 0; ii < satPhaseBias->_bias.size(); ii++) {
453 const t_frqPhaseBias& bias = satPhaseBias->_bias[ii];
454 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
455 const t_frqObs* obs = _obs[iFreq];
456 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
457 _model._phaseBias[iFreq] = bias._value;
458 }
459 }
460 }
461 }
462
463 // Phase Wind-Up
464 // -------------
465 _model._windUp = station->windUp(_time, _prn, rSat, ssr, yaw, vSat) ;
466
467 // Relativistic effect due to earth gravity
468 // ----------------------------------------
469 double a = rSat.NormFrobenius() + rRec.NormFrobenius();
470 double b = (rSat - rRec).NormFrobenius();
471 double gm = 3.986004418e14; // m3/s2
472 _model._rel = 2 * gm / t_CST::c / t_CST::c * log((a + b) / (a - b));
473
474 // Tidal Correction
475 // ----------------
476 _model._tideEarth = -DotProduct(station->tideDsplEarth(), rhoV) / _model._rho;
477 _model._tideOcean = -DotProduct(station->tideDsplOcean(), rhoV) / _model._rho;
478
479 // Ionospheric Delay
480 // -----------------
481 const t_vTec* vTec = PPP_CLIENT->obsPool()->vTec();
482 bool vTecUsage = true;
483 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
484 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
485 if (tLC == t_lc::cIF || tLC == t_lc::lIF) {
486 vTecUsage = false;
487 }
488 }
489
490 if (vTecUsage && vTec) {
491 double stec = station->stec(vTec, _signalPropagationTime, rSat);
492 double f1GPS = t_CST::freq(t_frequency::G1, 0);
493 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
494 if (OPT->_pseudoObsIono) { // DCMcodeBias, DCMphaseBias
495 // For scaling the slant ionospheric delays the trick is to be consistent with units!
496 // The conversion of TECU into meters requires the frequency of the signal.
497 // Hence, GPS L1 frequency is used for all systems. The same is true for mu_i in lcCoeff().
498 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(f1GPS, 2) * stec;
499 }
500 else { // PPP-RTK
501 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
502 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(t_CST::freq(frqType, _channel), 2) * stec;
503 }
504 }
505 }
506
507 // Set Model Set Flag
508 // ------------------
509 _model._set = true;
510
511 //printModel();
512
513 return success;
514}
515
516//
517////////////////////////////////////////////////////////////////////////////
518void t_pppSatObs::printModel() const {
519
520 LOG.setf(ios::fixed);
521 LOG << "\nMODEL for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "")
522
523 << "======================= " << endl
524 << "PPP STRATEGY : " << OPT->_obsmodelTypeStr.at((int)OPT->_obsModelType).toLocal8Bit().constData()
525 << ((OPT->_pseudoObsIono) ? " with pseudo-observations for STEC" : "") << endl
526 << "RHO : " << setw(12) << setprecision(3) << _model._rho << endl
527 << "ELE : " << setw(12) << setprecision(3) << _model._eleSat * RHO_DEG << endl
528 << "AZI : " << setw(12) << setprecision(3) << _model._azSat * RHO_DEG << endl
529 << "SATCLK : " << setw(12) << setprecision(3) << _model._satClkM << endl
530 << "RECCLK : " << setw(12) << setprecision(3) << _model._recClkM << endl
531 << "SAGNAC : " << setw(12) << setprecision(3) << _model._sagnac << endl
532 << "ANTECC : " << setw(12) << setprecision(3) << _model._antEcc << endl
533 << "TROPO : " << setw(12) << setprecision(3) << _model._tropo << endl
534 << "WINDUP : " << setw(12) << setprecision(3) << _model._windUp << endl
535 << "REL : " << setw(12) << setprecision(3) << _model._rel << endl
536 << "EARTH TIDES : " << setw(12) << setprecision(3) << _model._tideEarth << endl
537 << "OCEAN TIDES : " << setw(12) << setprecision(3) << _model._tideOcean << endl
538 << endl
539 << "FREQUENCY DEPENDENT CORRECTIONS:" << endl
540 << "-------------------------------" << endl;
541 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
542 if (_obs[iFreq]) {
543 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
544 if (_prn.system() == frqStr[0]) {
545 LOG << "PCO : " << frqStr << setw(12) << setprecision(3) << _model._antPCO[iFreq] << endl
546 << "BIAS CODE : " << frqStr << setw(12) << setprecision(3) << _model._codeBias[iFreq] << endl
547 << "BIAS PHASE : " << frqStr << setw(12) << setprecision(3) << _model._phaseBias[iFreq] << endl
548 << "IONO CODEDELAY: " << frqStr << setw(12) << setprecision(3) << _model._ionoCodeDelay[iFreq]<< endl;
549 }
550 }
551 }
552}
553
554//
555////////////////////////////////////////////////////////////////////////////
556void t_pppSatObs::printObsMinusComputed() const {
557// TODO: cout should be LOG
558 cout.setf(ios::fixed);
559 cout << "\nOBS-COMP for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "") << endl
560 << "========================== " << endl;
561 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
562 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
563 cout << "OBS-CMP " << setw(4) << t_lc::toString(tLC) << ": " << _prn.toString() << " "
564 << setw(12) << setprecision(3) << obsValue(tLC) << " "
565 << setw(12) << setprecision(3) << cmpValue(tLC) << " "
566 << setw(12) << setprecision(3) << obsValue(tLC) - cmpValue(tLC) << endl;
567 }
568}
569
570
571//
572////////////////////////////////////////////////////////////////////////////
573double t_pppSatObs::cmpValueForBanc(t_lc::type tLC) const {
574 return cmpValue(tLC) - _model._rho - _model._sagnac - _model._recClkM;
575}
576
577//
578////////////////////////////////////////////////////////////////////////////
579double t_pppSatObs::cmpValue(t_lc::type tLC) const {
580 double cmpValue;
581
582 if (!isValid(tLC)) {
583 cmpValue = 0.0;
584 }
585 else if (tLC == t_lc::GIM) {
586 cmpValue = _stecSat;
587 }
588 else if (tLC == t_lc::Tz0) {
589 cmpValue = _model._tropo0;
590 }
591 else {
592 // Non-Dispersive Part
593 // -------------------
594 double nonDisp = _model._rho
595 + _model._recClkM - _model._satClkM
596 + _model._sagnac + _model._antEcc + _model._tropo
597 + _model._tideEarth + _model._tideOcean + _model._rel;
598
599 // Add Dispersive Part
600 // -------------------
601 double dispPart = 0.0;
602 map<t_frequency::type, double> codeCoeff;
603 map<t_frequency::type, double> phaseCoeff;
604 map<t_frequency::type, double> ionoCoeff;
605 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
606 map<t_frequency::type, double>::const_iterator it;
607 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
608 t_frequency::type tFreq = it->first;
609 dispPart += it->second * (_model._antPCO[tFreq] - _model._codeBias[tFreq]);
610 if (OPT->PPPRTK) {
611 dispPart += it->second * (_model._ionoCodeDelay[tFreq]);
612 }
613 }
614 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
615 t_frequency::type tFreq = it->first;
616 dispPart += it->second * (_model._antPCO[tFreq] - _model._phaseBias[tFreq] +
617 _model._windUp * t_CST::lambda(tFreq, _channel));
618 if (OPT->PPPRTK) {
619 dispPart += it->second * (- _model._ionoCodeDelay[tFreq]);
620 }
621 }
622 cmpValue = nonDisp + dispPart;
623 }
624
625 return cmpValue;
626}
627
628//
629////////////////////////////////////////////////////////////////////////////
630void t_pppSatObs::setRes(t_lc::type tLC, double res) {
631 _res[tLC] = res;
632}
633
634//
635////////////////////////////////////////////////////////////////////////////
636double t_pppSatObs::getRes(t_lc::type tLC) const {
637 map<t_lc::type, double>::const_iterator it = _res.find(tLC);
638 if (it != _res.end()) {
639 return it->second;
640 }
641 else {
642 return 0.0;
643 }
644}
645
646//
647////////////////////////////////////////////////////////////////////////////
648void t_pppSatObs::setPseudoObsIono(t_frequency::type freq, double stecRefSat) {
649 _stecSat = _model._ionoCodeDelay[freq];
650 _stecRefSat = stecRefSat;
651}
652
653
654//
655////////////////////////////////////////////////////////////////////////////
656void t_pppSatObs::setPseudoObsTropo() {
657 _tropo0 = _model._tropo0;
658}
Note: See TracBrowser for help on using the repository browser.