- Timestamp:
- Jan 5, 2018, 4:16:06 PM (7 years ago)
- Location:
- trunk/BNC/src
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/BNC/src/bncabout.html
r7810 r8238 27 27 E-Mail: <a><u>igs-ip@bkg.bund.de</u></a>.<br> 28 28 <br> 29 Copyright © 2005-201 6Bundesamt for Cartography and Geodesy (BKG), Frankfurt, Germany29 Copyright © 2005-2018 Bundesamt for Cartography and Geodesy (BKG), Frankfurt, Germany -
trunk/BNC/src/bnchelp.html
r8205 r8238 1 <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1"> 1 <!doctype html> 2 <html lang="en"> 3 <head> 4 <meta charset="utf-8"/> 5 <meta name="viewport" content="width=device-width, initial-scale=1.0"/> 6 <title>BKG Ntrip Client | Help</title> 7 </head> 8 9 <body> 2 10 <p><img src="IMG/screenshot43.png"/></p> 3 11 … … 5 13 Version 2.13</h3> 6 14 7 <p> 8 Georg Weber<sup>(1)</sup>, Leoš Mervart<sup>(2)</sup>, Andrea Stürze<sup>(1)</sup>, Axel Rülke<sup>(1)</sup>, Dirk Stöcker<sup>(3)</sup> 15 <p>Georg Weber<sup>(1)</sup>, Leoš Mervart<sup>(2)</sup>, Andrea Stürze<sup>(1)</sup>, Axel Rülke<sup>(1)</sup>, Dirk Stöcker<sup>(3)</sup></p> 16 9 17 <p> 10 18 <sup>(1) Federal Agency for Cartography and Geodesy (BKG), Frankfurt, Germany</sup><br> 11 19 <sup>(2) Czech Technical University (CTU), Department of Geomatics, Prague, Czech Republic</sup><br> 12 20 <sup>(3) Alberding GmbH, Wildau, Germany</sup> 13 <br><br> 21 </p> 22 <br> 23 14 24 <b>Copyright</b><br> 15 25 ©<sup> </sup> 2005-2016 Federal Agency for Cartography and Geodesy (BKG), Frankfurt, Germany … … 25 35 <br><br> 26 36 27 <b>Table of <a name="contents">Contents</b><br><br> 28 <b>1.</b> <a href=#genInstruction><b>General Information</b></a><br><br> 29 1.1 <a href=#introPurpose>Purpose</a><br> 30 1.2 <a href=#introSystem>Supported GNSS</a><br> 31 1.3 <a href=#introFlow>Data Flow</a><br> 32 1.4 <a href=#introHandling>Handling</a><br> 33 1.5 <a href=#introInst>Installation</a><br> 34 1.5.1 <a href=#introCompile>Compilation</a><br> 35 1.6 <a href=#introConf>Configuration</a><br> 36 1.6.1 <a href=#introExamples>Examples</a><br> 37 1.7 <a href=#introLimit>Limitations</a><br> 38 1.8 <a href=#introLBack>Looking Back</a><br><br> 39 <b>2.</b> <a href=#optsettings><b>Settings Details</b></a><br><br> 40 2.1 <a href=#topmenu><b>Top Menu Bar</b></a><br> 41 2.1.1 <a href=#file>File</a><br> 42 2.1.2 <a href=#help>Help</a><br> 43 2.2 <a href=#network><b>Network</b></a><br> 44 2.2.1 <a href=#proxy>Proxy</a><br> 45 2.2.2 <a href=#ssl>SSL</a><br> 46 2.3 <a href=#general><b>General</b></a><br> 47 2.3.1 <a href=#genlog>Logfile</a><br> 48 2.3.2 <a href=#genapp>Append Files</a><br> 49 2.3.3 <a href=#genconf>Reread Configuration</a><br> 50 2.3.4 <a href=#genstart>Auto Start</a><br> 51 2.3.5 <a href=#rawout>Raw Output File</a><br> 52 2.4 <a href=#rinex><b>RINEX Observations</b></a><br> 53 2.4.1 <a href=#rnxname>Filenames</a><br> 54 2.4.2 <a href=#rnxdir>Directory</a><br> 55 2.4.3 <a href=#rnxinterval>File Interval</a><br> 56 2.4.4 <a href=#rnxsample>Sampling</a><br> 57 2.4.5 <a href=#rnxskl>Skeleton Extension</a><br> 58 2.4.6 <a href=#sklMandat>Skeleton Mandatory</a><br> 59 2.4.7 <a href=#rnxscript>Script</a><br> 60 2.4.8 <a href=#rnxvers2>Version 2</a><br> 61 2.4.9 <a href=#rnxvers3>Version 3</a><br> 62 2.4.10 <a href=#rnxvers3File>Version 3 Filenames</a><br> 63 2.5 <a href=#ephemeris><b>RINEX Ephemeris</b></a><br> 64 2.5.1 <a href=#ephdir>Directory</a><br> 65 2.5.2 <a href=#ephint>Interval</a><br> 66 2.5.3 <a href=#ephport>Port</a><br> 67 2.5.4 <a href=#ephvers>Version</a><br> 68 2.5.5 <a href=#ephversFile>Version 3 Filenames</a><br> 69 2.6 <a href=#reqc><b>RINEX Editing & QC</b></a><br> 70 2.6.1 <a href=#reqcact>Action</a><br> 71 2.6.2 <a href=#reqcinp>Input Files</a><br> 72 2.6.3 <a href=#reqcout>Output Files</a><br> 73 2.6.4 <a href=#reqclog>Logfiles</a><br> 74 2.6.5 <a href=#reqcplots>Plots for Signals</a><br> 75 2.6.6 <a href=#reqcdir>Directory for Plots</a><br> 76 2.6.7 <a href=#reqcedit>Set Edit Options</a><br> 77 2.6.8 <a href=#reqccommand>Command Line, No Window</a><br> 78 2.7 <a href=#sp3comp><b>SP3 Comparison</b></a><br> 79 2.7.1 <a href=#sp3input>Input SP3 Files</a><br> 80 2.7.2 <a href=#sp3exclude>Exclude Satellites</a><br> 81 2.7.3 <a href=#sp3log>Logfile</a><br> 82 2.8 <a href=#correct><b>Broadcast Corrections</b></a><br> 83 2.8.1 <a href=#corrdir>Directory, ASCII</a><br> 84 2.8.2 <a href=#corrint>Interval</a><br> 85 2.8.3 <a href=#corrport>Port</a><br> 86 2.8.4 <a href=#corrwait>Wait for Full Corr Epoch</a><br> 87 2.9 <a href=#syncout><b>Feed Engine</b></a><br> 88 2.9.1 <a href=#syncport>Port</a><br> 89 2.9.2 <a href=#syncwait>Wait for Full Obs Epoch</a><br> 90 2.9.3 <a href=#syncsample>Sampling</a><br> 91 2.9.4 <a href=#syncfile>File</a><br> 92 2.9.5 <a href=#syncuport>Port (unsynchronized)</a><br> 93 2.10 <a href=#serial><b>Serial Output</b></a><br> 94 2.10.1 <a href=#sermount>Mountpoint</a><br> 95 2.10.2 <a href=#serport>Port Name</a><br> 96 2.10.3 <a href=#serbaud>Baud Rate</a><br> 97 2.10.4 <a href=#serflow>Flow Control</a><br> 98 2.10.5 <a href=#serparity>Parity</a><br> 99 2.10.6 <a href=#serdata>Data Bits</a><br> 100 2.10.7 <a href=#serstop>Stop Bits</a><br> 101 2.10.8 <a href=#serauto>NMEA</a><br> 102 2.10.9 <a href=#serfile>File</a><br> 103 2.10.10 <a href=#serheight>Height</a><br> 104 2.10.11 <a href=#sersampl>Sampling</a><br> 37 <p> 38 <b>Table of Contents</b><br><br> 39 <b>1.</b> <a href="#genInstruction"><b>General Information</b></a><br><br> 40 1.1 <a href="#introPurpose">Purpose</a><br> 41 1.2 <a href="#introSystem">Supported GNSS</a><br> 42 1.3 <a href="#introFlow">Data Flow</a><br> 43 1.4 <a href="#introHandling">Handling</a><br> 44 1.5 <a href="#introInst">Installation</a><br> 45 1.5.1 <a href="#introCompile">Compilation</a><br> 46 1.6 <a href="#introConf">Configuration</a><br> 47 1.6.1 <a href="#introExamples">Examples</a><br> 48 1.7 <a href="#introLimit">Limitations</a><br> 49 1.8 <a href="#introLBack">Looking Back</a><br><br> 50 <b>2.</b> <a href="#optsettings"><b>Settings Details</b></a><br><br> 51 2.1 <a href="#topmenu"><b>Top Menu Bar</b></a><br> 52 2.1.1 <a href="#file">File</a><br> 53 2.1.2 <a href="#help">Help</a><br> 54 2.2 <a href="#network"><b>Network</b></a><br> 55 2.2.1 <a href="#proxy">Proxy</a><br> 56 2.2.2 <a href="#ssl">SSL</a><br> 57 2.3 <a href="#general"><b>General</b></a><br> 58 2.3.1 <a href="#genlog">Logfile</a><br> 59 2.3.2 <a href="#genapp">Append Files</a><br> 60 2.3.3 <a href="#genconf">Reread Configuration</a><br> 61 2.3.4 <a href="#genstart">Auto Start</a><br> 62 2.3.5 <a href="#rawout">Raw Output File</a><br> 63 2.4 <a href="#rinex"><b>RINEX Observations</b></a><br> 64 2.4.1 <a href="#rnxname">Filenames</a><br> 65 2.4.2 <a href="#rnxdir">Directory</a><br> 66 2.4.3 <a href="#rnxinterval">File Interval</a><br> 67 2.4.4 <a href="#rnxsample">Sampling</a><br> 68 2.4.5 <a href="#rnxskl">Skeleton Extension</a><br> 69 2.4.6 <a href="#sklMandat">Skeleton Mandatory</a><br> 70 2.4.7 <a href="#rnxscript">Script</a><br> 71 2.4.8 <a href="#rnxvers2">Version 2</a><br> 72 2.4.9 <a href="#rnxvers3">Version 3</a><br> 73 2.4.10 <a href="#rnxvers3File">Version 3 Filenames</a><br> 74 2.5 <a href="#ephemeris"><b>RINEX Ephemeris</b></a><br> 75 2.5.1 <a href="#ephdir">Directory</a><br> 76 2.5.2 <a href="#ephint">Interval</a><br> 77 2.5.3 <a href="#ephport">Port</a><br> 78 2.5.4 <a href="#ephvers">Version</a><br> 79 2.5.5 <a href="#ephversFile">Version 3 Filenames</a><br> 80 2.6 <a href="#reqc"><b>RINEX Editing & QC</b></a><br> 81 2.6.1 <a href="#reqcact">Action</a><br> 82 2.6.2 <a href="#reqcinp">Input Files</a><br> 83 2.6.3 <a href="#reqcout">Output Files</a><br> 84 2.6.4 <a href="#reqclog">Logfiles</a><br> 85 2.6.5 <a href="#reqcplots">Plots for Signals</a><br> 86 2.6.6 <a href="#reqcdir">Directory for Plots</a><br> 87 2.6.7 <a href="#reqcedit">Set Edit Options</a><br> 88 2.6.8 <a href="#reqccommand">Command Line, No Window</a><br> 89 2.7 <a href="#sp3comp"><b>SP3 Comparison</b></a><br> 90 2.7.1 <a href="#sp3input">Input SP3 Files</a><br> 91 2.7.2 <a href="#sp3exclude">Exclude Satellites</a><br> 92 2.7.3 <a href="#sp3log">Logfile</a><br> 93 2.8 <a href="#correct"><b>Broadcast Corrections</b></a><br> 94 2.8.1 <a href="#corrdir">Directory, ASCII</a><br> 95 2.8.2 <a href="#corrint">Interval</a><br> 96 2.8.3 <a href="#corrport">Port</a><br> 97 2.8.4 <a href="#corrwait">Wait for Full Corr Epoch</a><br> 98 2.9 <a href="#syncout"><b>Feed Engine</b></a><br> 99 2.9.1 <a href="#syncport">Port</a><br> 100 2.9.2 <a href="#syncwait">Wait for Full Obs Epoch</a><br> 101 2.9.3 <a href="#syncsample">Sampling</a><br> 102 2.9.4 <a href="#syncfile">File</a><br> 103 2.9.5 <a href="#syncuport">Port (unsynchronized)</a><br> 104 2.10 <a href="#serial"><b>Serial Output</b></a><br> 105 2.10.1 <a href="#sermount">Mountpoint</a><br> 106 2.10.2 <a href="#serport">Port Name</a><br> 107 2.10.3 <a href="#serbaud">Baud Rate</a><br> 108 2.10.4 <a href="#serflow">Flow Control</a><br> 109 2.10.5 <a href="#serparity">Parity</a><br> 110 2.10.6 <a href="#serdata">Data Bits</a><br> 111 2.10.7 <a href="#serstop">Stop Bits</a><br> 112 2.10.8 <a href="#serauto">NMEA</a><br> 113 2.10.9 <a href="#serfile">File</a><br> 114 2.10.10 <a href="#serheight">Height</a><br> 115 2.10.11 <a href="#sersampl">Sampling</a><br> 105 116 2.11 <a href=#advnote><b>Outages</b></a><br> 106 117 2.11.1. <a href=#obsrate>Observation Rate</a><br> … … 226 237 3.4 <a href=#abbrev>Abbreviations</a> 227 238 </p> 228 229 230 <p><b>List of Figures</b><br><br> 239 <br> 240 241 <p> 242 <b>List of Figures</b><br> 231 243 <table> 232 <tr><td><b>Fig. </b></td><td><b>Title</b></td><td><b>Chapter</b></td></tr>233 <tr><td>1</td><td>Flowchart, BNC connected to a GNSS rover for Precise Point Positioning</b></td><td>1.3</td></tr>234 <tr><td>2</td><td>Flowchart, BNC converting RTCM streams to RINEX batches</td><td>1.3</td></tr>235 <tr><td>3</td><td>Flowchart, BNC feeding a real-time GNSS engine and uploading encoded Broadcast Corrections</td><td>1.3</td></tr>236 <tr><td>4</td><td>Flowchart, BNC combining Broadcast Correction streams</td><td>1.3</td></tr>237 <tr><td>5</td><td>Sections on BNC's main window</td><td>1.4</td></tr>238 <tr><td>6</td><td>Management of configuration options in BNC</td><td>1.6</td></tr>239 <tr><td>7</td><td>BNC's 'Network' panel configured to ignore eventually occurring SSL error messages</td><td>2.2.2</td></tr>240 <tr><td>8</td><td>BNC translating incoming streams to 15 min RINEX Version 3 files</td><td>2.4</td></tr>241 <tr><td>9</td><td>BNC converting Broadcast Ephemeris stream to RINEX Version 3 Navigation files</td><td>2.5.5</td></tr>242 <tr><td>10</td><td>Example for BNC's 'RINEX Editing Options' window</td><td>2.6.7</td></tr>243 <tr><td>11</td><td>Example for RINEX file concatenation with BNC</td><td>2.6.7</td></tr>244 <tr><td>12</td><td>Example for creating RINEX quality check analysis graphics output with BNC</td><td>2.6.7</td></tr>245 <tr><td>13</td><td>Example for satellite availability, elevation and PDOP plots as a result of a RINEX quality check analysis with BNC</td><td>2.6.7</td></tr>246 <tr><td>14</td><td>Sky plot examples for multipath, part of RINEX quality check analysis with BNC</td><td>2.6.7</td></tr>247 <tr><td>15</td><td>Sky plot examples for signal-to-noise ratio, part of RINEX quality check analysis with BNC</td><td>2.6.7</td></tr>248 <tr><td>16</td><td>Example for comparing two SP3 files with satellite orbit and clock data using BNC</td><td>2.7.3</td></tr>249 <tr><td>17</td><td>Example for pulling, saving and output of Broadcast Corrections using BNC</td><td>2.8.3</td></tr>250 <tr><td>18</td><td>Synchronized BNC output via IP port to feed a GNSS real-time engine</td><td>2.9</td></tr>251 <tr><td>19</td><td>Flowcharts, BNC forwarding a stream to a serially connected receiver; sending NMEA sentences is mandatory for VRS streams</td><td>2.10</td></tr>252 <tr><td>20</td><td>BNC pulling a VRS stream to feed a serially connected RTK rover</td><td>2.10</td></tr>253 <tr><td>21</td><td>RTCM message numbers, latencies and observation types logged by BNC</td><td>2.12</td></tr>254 <tr><td>22</td><td>Real-time Precise Point Positioning with BNC, PPP Panel 1</td><td>2.13.1</td></tr>255 <tr><td>23</td><td>Precise Point Positioning with BNC, PPP Panel 2, using RTKPLOT for visualization</td><td>2.13.2</td></tr>256 <tr><td>24</td><td>Precise Point Positioning with BNC, PPP Panel 3</td><td>2.13.3</td></tr>257 <tr><td>25</td><td>Precise Point Positioning with BNC in 'Quick-Start' mode, PPP Panel 4</td><td>2.13.3.8</td></tr>258 <tr><td>26</td><td>Track of positions from BNC with Google Maps in background</td><td>2.13.4.3</td></tr>259 <tr><td>27</td><td>Example for background map from Google Maps and OpenStreetMap (OSM) resources</td><td>2.13.4.3.1</td></tr>260 <tr><td>28</td><td>BNC combining Broadcast Correction streams</td><td>2.14</td></tr>261 <tr><td>29</td><td>INTERNAL' PPP with BNC using a combination of Broadcast Corrections</td><td>2.14</td></tr>262 <tr><td>30</td><td>Setting BNC's Custom Transformation Parameters window, example for 'ITRF2008->GDA94'</td><td>2.15.3</td></tr>263 <tr><td>31</td><td>BNC producing Broadcast Corrections from incoming precise orbits and clocks and uploading them to an Ntrip Broadcaster</td><td>2.15.11</td></tr>264 <tr><td>32</td><td>BNC uploading a combined Broadcast Correction stream</td><td>2.15.11</td></tr>265 <tr><td>33</td><td>BNC producing Broadcast Ephemeris stream from globally distributed RTCM streams; upload in RTCM format to an Ntrip Broadcaster</td><td>2.16.3</td></tr>266 <tr><td>34</td><td>Bandwidth consumption of RTCM streams received by BNC</td><td>2.18.2</td></tr>267 <tr><td>35</td><td>Latency of RTCM streams received by BNC</td><td>2.18.3</td></tr>268 <tr><td>36</td><td>Example for time series plot of displacements produced by BNC</td><td>2.18.4</td></tr>269 <tr><td>37</td><td>Steam input communication links accepted by BNC</td><td>2.19</td></tr>270 <tr><td>38</td><td>BNC's 'Select Broadcaster' table</td><td>2.19.1.1.2</td></tr>271 <tr><td>39</td><td>Broadcaster source-table shown by BNC</td><td>2.19.1.1.4</td></tr>272 <tr><td>40</td><td>Stream distribution map shown by BNC as derived from Ntrip Broadcaster source-table</td><td>2.19.1.1.6</td></tr>273 <tr><td>41</td><td>BNC configuration for pulling a stream via serial port</td><td>2.19.1.4</td></tr>244 <tr><td><b>Fig. </b></td><td><b>Title</b></td><td><b>Chapter</b></td></tr> 245 <tr><td>1</td><td>Flowchart, BNC connected to a GNSS rover for Precise Point Positioning</td><td>1.3</td></tr> 246 <tr><td>2</td><td>Flowchart, BNC converting RTCM streams to RINEX batches</td><td>1.3</td></tr> 247 <tr><td>3</td><td>Flowchart, BNC feeding a real-time GNSS engine and uploading encoded Broadcast Corrections</td><td>1.3</td></tr> 248 <tr><td>4</td><td>Flowchart, BNC combining Broadcast Correction streams</td><td>1.3</td></tr> 249 <tr><td>5</td><td>Sections on BNC's main window</td><td>1.4</td></tr> 250 <tr><td>6</td><td>Management of configuration options in BNC</td><td>1.6</td></tr> 251 <tr><td>7</td><td>BNC's 'Network' panel configured to ignore eventually occurring SSL error messages</td><td>2.2.2</td></tr> 252 <tr><td>8</td><td>BNC translating incoming streams to 15 min RINEX Version 3 files</td><td>2.4</td></tr> 253 <tr><td>9</td><td>BNC converting Broadcast Ephemeris stream to RINEX Version 3 Navigation files</td><td>2.5.5</td></tr> 254 <tr><td>10</td><td>Example for BNC's 'RINEX Editing Options' window</td><td>2.6.7</td></tr> 255 <tr><td>11</td><td>Example for RINEX file concatenation with BNC</td><td>2.6.7</td></tr> 256 <tr><td>12</td><td>Example for creating RINEX quality check analysis graphics output with BNC</td><td>2.6.7</td></tr> 257 <tr><td>13</td><td>Example for satellite availability, elevation and PDOP plots as a result of a RINEX quality check analysis with BNC</td><td>2.6.7</td></tr> 258 <tr><td>14</td><td>Sky plot examples for multipath, part of RINEX quality check analysis with BNC</td><td>2.6.7</td></tr> 259 <tr><td>15</td><td>Sky plot examples for signal-to-noise ratio, part of RINEX quality check analysis with BNC</td><td>2.6.7</td></tr> 260 <tr><td>16</td><td>Example for comparing two SP3 files with satellite orbit and clock data using BNC</td><td>2.7.3</td></tr> 261 <tr><td>17</td><td>Example for pulling, saving and output of Broadcast Corrections using BNC</td><td>2.8.3</td></tr> 262 <tr><td>18</td><td>Synchronized BNC output via IP port to feed a GNSS real-time engine</td><td>2.9</td></tr> 263 <tr><td>19</td><td>Flowcharts, BNC forwarding a stream to a serially connected receiver; sending NMEA sentences is mandatory for VRS streams</td><td>2.10</td></tr> 264 <tr><td>20</td><td>BNC pulling a VRS stream to feed a serially connected RTK rover</td><td>2.10</td></tr> 265 <tr><td>21</td><td>RTCM message numbers, latencies and observation types logged by BNC</td><td>2.12</td></tr> 266 <tr><td>22</td><td>Real-time Precise Point Positioning with BNC, PPP Panel 1</td><td>2.13.1</td></tr> 267 <tr><td>23</td><td>Precise Point Positioning with BNC, PPP Panel 2, using RTKPLOT for visualization</td><td>2.13.2</td></tr> 268 <tr><td>24</td><td>Precise Point Positioning with BNC, PPP Panel 3</td><td>2.13.3</td></tr> 269 <tr><td>25</td><td>Precise Point Positioning with BNC in 'Quick-Start' mode, PPP Panel 4</td><td>2.13.3.8</td></tr> 270 <tr><td>26</td><td>Track of positions from BNC with Google Maps in background</td><td>2.13.4.3</td></tr> 271 <tr><td>27</td><td>Example for background map from Google Maps and OpenStreetMap (OSM) resources</td><td>2.13.4.3.1</td></tr> 272 <tr><td>28</td><td>BNC combining Broadcast Correction streams</td><td>2.14</td></tr> 273 <tr><td>29</td><td>INTERNAL' PPP with BNC using a combination of Broadcast Corrections</td><td>2.14</td></tr> 274 <tr><td>30</td><td>Setting BNC's Custom Transformation Parameters window, example for 'ITRF2008->GDA94'</td><td>2.15.3</td></tr> 275 <tr><td>31</td><td>BNC producing Broadcast Corrections from incoming precise orbits and clocks and uploading them to an Ntrip Broadcaster</td><td>2.15.11</td></tr> 276 <tr><td>32</td><td>BNC uploading a combined Broadcast Correction stream</td><td>2.15.11</td></tr> 277 <tr><td>33</td><td>BNC producing Broadcast Ephemeris stream from globally distributed RTCM streams; upload in RTCM format to an Ntrip Broadcaster</td><td>2.16.3</td></tr> 278 <tr><td>34</td><td>Bandwidth consumption of RTCM streams received by BNC</td><td>2.18.2</td></tr> 279 <tr><td>35</td><td>Latency of RTCM streams received by BNC</td><td>2.18.3</td></tr> 280 <tr><td>36</td><td>Example for time series plot of displacements produced by BNC</td><td>2.18.4</td></tr> 281 <tr><td>37</td><td>Steam input communication links accepted by BNC</td><td>2.19</td></tr> 282 <tr><td>38</td><td>BNC's 'Select Broadcaster' table</td><td>2.19.1.1.2</td></tr> 283 <tr><td>39</td><td>Broadcaster source-table shown by BNC</td><td>2.19.1.1.4</td></tr> 284 <tr><td>40</td><td>Stream distribution map shown by BNC as derived from Ntrip Broadcaster source-table</td><td>2.19.1.1.6</td></tr> 285 <tr><td>41</td><td>BNC configuration for pulling a stream via serial port</td><td>2.19.1.4</td></tr> 274 286 </table> 275 287 </p> 288 <br> 276 289 277 290 <p><b>List of Tables</b><br><br> 278 291 <table> 279 <tr><td><b>Tab. </b></td><td><b>Title</b></td><td><b>Chapter</b></td></tr>280 <tr><td>1</td><td>Status of RTCM Version 3 message implementations in BNC supporting various GNSS systems</td><td>1.2</td></tr>281 <tr><td>2</td><td>Contents and format of synchronized output of observations feeding a GNSS engine</td><td>2.9</td></tr>292 <tr><td><b>Tab. </b></td><td><b>Title</b></td><td><b>Chapter</b></td></tr> 293 <tr><td>1</td><td>Status of RTCM Version 3 message implementations in BNC supporting various GNSS systems</td><td>1.2</td></tr> 294 <tr><td>2</td><td>Contents and format of synchronized output of observations feeding a GNSS engine</td><td>2.9</td></tr> 282 295 </table> 283 296 </p> 284 297 285 <p><h3>1. <a name="genInstruction">General Information</h3></p> 286 <p> 287 The BKG Ntrip Client (BNC) is a program for simultaneously retrieving, decoding, converting and processing or analyzing real-time GNSS data streams applying the 'Networked Transport of RTCM via Internet Protocol' (Ntrip) standard. It has been developed within the framework of the IAG sub-commission for Europe (EUREF) and the International GNSS Service (IGS). Although meant to be a real-time tool, it comes with some post processing functionality. It can be used for data coming from Ntrip Broadcasters like 288 <ul> 289 <li><u>http://www.euref-ip.net/home</u></li> 290 <li><u>http://www.igs-ip.net/home</u></li> 291 <li><u>http://products.igs-ip.net/home</u></li> 292 <li><u>http://mgex.igs-ip.net/home</u> </li> 298 <p><h3 id="genInstruction">1. General Information</h3></p> 299 <p> 300 The BKG Ntrip Client (BNC) is a program for simultaneously retrieving, decoding, converting and processing or 301 analyzing real-time GNSS data streams applying the 'Networked Transport of RTCM via Internet Protocol' (Ntrip) standard. 302 It has been developed within the framework of the IAG sub-commission for Europe (EUREF) and the International GNSS 303 Service (IGS). Although meant to be a real-time tool, it comes with some post processing functionality. It can be used 304 for data coming from Ntrip Broadcasters like 305 <ul> 306 <li><a href="http://www.euref-ip.net/home" target="_blank">http://www.euref-ip.net/home</a></li> 307 <li><a href="http://www.igs-ip.net/home" target="_blank">http://www.igs-ip.net/home</a></li> 308 <li><a href="http://products.igs-ip.net/home" target="_blank">http://products.igs-ip.net/home</a></li> 309 <li><a href="http://mgex.igs-ip.net/home" target="_blank">http://mgex.igs-ip.net/home</a></li> 293 310 </ul> 294 311 or similar caster installation. … … 296 313 297 314 <p> 298 BNC has been written under GNU General Public License (GPL). Source code is available from Subversion software archive <u>http://software.rtcm-ntrip.org/svn/trunk/BNC</u>. Precompiled binaries of BNC are available for MS Windows, Linux, and Mac OS X systems. They can be downloaded from <u>http://igs.bkg.bund.de/ntrip/download</u>. 315 BNC has been written under GNU General Public License (GPL). Source code is available from Subversion software archive 316 <a href="http://software.rtcm-ntrip.org/svn/trunk/BNC" target="_blank">http://software.rtcm-ntrip.org/svn/trunk/BNC</a>. 317 Precompiled binaries of BNC are available for MS Windows, Linux, and Mac OS X systems. They can be downloaded from 318 <a href="http://igs.bkg.bund.de/ntrip/download" target="_blank">http://igs.bkg.bund.de/ntrip/download</a>. 299 319 </p> 300 320 <p> … … 307 327 <pre> 308 328 Federal Agency for Cartography and Geodesy (BKG) 309 c/o Dr. Axel Rülke329 c/o Andrea Stuerze 310 330 Department of Geodesy, Section Satellite Navigation 311 331 Frankfurt, Germany 312 [a xel.ruelke@bkg.bund.de]332 [andrea.stuerze@bkg.bund.de] 313 333 </pre> 314 334 … … 324 344 325 345 <p> 326 Prof. Mervart started working on BNC in 2005. His sole responsibility for writing the program code ended February 2015. In March 2015, Dipl.-Ing. Andrea Stürze took over the responsibility for maintaining and further developing BNC's source code. 346 Prof. Mervart started working on BNC in 2005. His sole responsibility for writing the program code ended February 2015. 347 In March 2015, Dipl.-Ing. Andrea Stürze took over the responsibility for maintaining and 348 further developing BNC's source code. 327 349 </p> 328 350 329 351 <p> 330 352 <b>Documentation</b><br><br> 331 BNC provides context-sensitive help (<i>What's This</i>) related to specific objects. It furthermore comes with the here presented documentation, available as part of the software and as a PDF file. Responsible for offline documentation as well as online documentation at <u>http://software.rtcm-ntrip.org/export/HEAD/ntrip/trunk/BNC/src/bnchelp.html</u> and the example configurations is Dr. Georg Weber. 332 </p> 333 334 <p> 335 Note that some figures presented in this documentation may show screenshots from earlier versions of BNC. If so, there is either no relevant change compared to the current appearance of the program or no change at all. 353 BNC provides context-sensitive help (<i>What's This</i>) related to specific objects. It furthermore comes with the 354 here presented documentation, available as part of the software and as a PDF file. Responsible for offline 355 documentation as well as online documentation at 356 <a href="http://software.rtcm-ntrip.org/export/HEAD/ntrip/trunk/BNC/src/bnchelp.html" 357 target="_blank">http://software.rtcm-ntrip.org/export/HEAD/ntrip/trunk/BNC/src/bnchelp.html</a> and the example 358 configurations is Dr. Georg Weber. 359 </p> 360 361 <p> 362 Note that some figures presented in this documentation may show screenshots from earlier versions of BNC. 363 If so, there is either no relevant change compared to the current appearance of the program or no change at all. 336 364 </p> 337 365 … … 351 379 <b>Acknowledgements</b><br> 352 380 <ul> 353 <li> 354 Oliver Montenbruck, German Space Operations Center, DLR, Oberpfaffenhofen, Germany published a RTCM Version 2 decoder unter GNU GPL which has been integrated in BNC. 355 </li> 356 <li> 357 Thomas Yan, Australian NSW Land and Property Information, proofread earlier versions of BNC's Help Contents. Up to Version 2.11 he also provides builds of BNC for Mac OS X systems. 358 </li> 359 Scott Glazier, OmniSTAR Australia, has been helpful in finding BNC bugs in version 1.5. 360 </li> 361 <li> 362 James Perlt, BKG, helped fixing bugs and redesigned BNC's main window in version 1.5. 363 </li> 364 <li> 365 Andre Hauschild, German Space Operations Center, DLR, revised the RTCM Version 2 decoder. 366 </li> 367 <li> 368 Zdenek Lukes, Czech Technical University Prague, Department of Geodesy, extended the RTCM Version 2 decoder to handle message types 3, 20, 21, and 22 and added the loss of lock indicator. 369 </li> 370 <li> 371 Jan Dousa, Geodetic Observatory Pecny, Czech Republic, helped with fixing bugs in version 2.5. 372 </li> 373 <li> 374 Denis Laurichesse, Centre National d'Etudes Spatiales (CNES), suggested synchronizing observations and clock corrections to reduce high frequency noise in PPP solutions. 375 </li> 376 <li> 377 Lennard Huisman, Kadaster Netherlands, and Rolf Dach, Astronomical Institute University of Bern, assisted in handling satellite clocks in transformations from ITRF to regional reference frames. 378 </li> 379 </ul> 380 </p> 381 382 <p><h4>1.1 <a name="introPurpose">Purpose</h4></p> 383 384 <p> 385 Promoting Open RTCM Standards for streaming GNSS data over the Internet has been a major aspect in developing BNC as Open Source real-time software. Basically, the tool enables the test, validation and further evolution of new RTCM messages for precise satellite navigation. With high-level source code at hand, it also allows university education to catch up with comprehensive state-of-the-art positioning and potentially contributes fresh ideas which are free from any licensing. 381 <li>Oliver Montenbruck, German Space Operations Center, DLR, Oberpfaffenhofen, Germany published a RTCM Version 2 decoder 382 unter GNU GPL which has been integrated in BNC.</li> 383 <li>Thomas Yan, Australian NSW Land and Property Information, proofread earlier versions of BNC's Help Contents. 384 Up to Version 2.11 he also provides builds of BNC for Mac OS X systems.</li> 385 <li>Scott Glazier, OmniSTAR Australia, has been helpful in finding BNC bugs in version 1.5.</li> 386 <li>James Perlt, BKG, helped fixing bugs and redesigned BNC's main window in version 1.5.</li> 387 <li>Andre Hauschild, German Space Operations Center, DLR, revised the RTCM Version 2 decoder.</li> 388 <li>Zdenek Lukes, Czech Technical University Prague, Department of Geodesy, extended the RTCM Version 2 decoder to handle 389 message types 3, 20, 21, and 22 and added the loss of lock indicator.</li> 390 <li>Jan Dousa, Geodetic Observatory Pecny, Czech Republic, helped with fixing bugs in version 2.5.</li> 391 <li>Denis Laurichesse, Centre National d'Etudes Spatiales (CNES), suggested synchronizing observations and clock 392 corrections to reduce high frequency noise in PPP solutions.</li> 393 <li>Lennard Huisman, Kadaster Netherlands, and Rolf Dach, Astronomical Institute University of Bern, assisted in handling 394 satellite clocks in transformations from ITRF to regional reference frames.</li> 395 </ul> 396 </p> 397 398 <p><h4 id="introPurpose">1.1 Purpose</h4></p> 399 400 <p> 401 Promoting Open RTCM Standards for streaming GNSS data over the Internet has been a major aspect in developing BNC as 402 Open Source real-time software. Basically, the tool enables the test, validation and further evolution of new RTCM 403 messages for precise satellite navigation. With high-level source code at hand, it also allows university education 404 to catch up with comprehensive state-of-the-art positioning and potentially contributes fresh ideas which are free 405 from any licensing. 386 406 </p> 387 407 388 408 <p> BNC was designed to serve the following purposes: 389 409 <ul> 390 <li>Retrieve real-time GNSS data streams available through Ntrip transport protocol;</li> 391 <li>Retrieve real-time GNSS data streams via TCP directly from an IP address without using the Ntrip transport protocol;</li> 392 <li>Retrieve real-time GNSS data streams from a local UDP or serial port without using the Ntrip transport protocol;</li> 393 <li>Plot stream distribution map from Ntrip Broadcaster source-tables;</li> 394 <li>Generate RINEX Observation and Navigation files to support near real-time GNSS post processing applications;</li> 395 <li>Edit or concatenate RINEX files or carry out RINEX Quality Checks (QC);</li> 396 <li>Convert RINEX Version 2 to RINEX Version 3 and vice versa;</li> 397 <li>Compare SP3 files containing satellite orbit and clock data;</li> 398 <li>Generate orbit and clock corrections to Broadcast Ephemeris through an IP port to</li> 399 <ul> 400 <li>support real-time Precise Point Positioning on GNSS rovers;</li> 401 <li>support the (outside) combination of such streams as coming simultaneously from various correction providers;</li> 402 </ul> 403 <li>Generate ephemeris and synchronized or unsynchronized observations epoch by epoch through an IP port to support real-time GNSS network engines;</li> 404 <li>Feed a stream into a GNSS receiver via serial communication link;</li> 405 <li>Monitor the performance of a network of real-time GNSS data streams to generate advisory notes in case of outages or corrupted streams;</li> 406 <li>Scan RTCM streams for incoming antenna information, observation types, message types and repetition rates and latencies and GLONASS slot numbers and frequency channels;</li> 407 <li>Carry out real-time Precise Point Positioning to determine GNSS rover positions;</li> 408 <li>Enable multi-station Precise Point Positioning for simultaneous processing of observations from a whole network of receivers;</li> 409 <li>Plot positions derived via PPP from RTCM streams or RINEX files on maps from Google Map or OpenStreetMap;</li> 410 <li>Simultaneously process several Broadcast Correction streams to produce, encode and upload combined Broadcast Corrections;</li> 411 412 <li>Estimate real-time tropospheric zenith path delays and save them in SINEX troposphere file format;</li> 413 414 <li>Read GNSS orbits and clocks in a plain ASCII format from an IP port. They can be produced by a real-time GNSS engine such as RTNET and should be referenced to the IGS Earth-Centered-Earth-Fixed (ECEF) reference system. BNC will then</li> 415 <ul> 416 <li>Convert the IGS Earth-Centered-Earth-Fixed orbits and clocks into Broadcast Corrections with radial, along-track and out-of-plane components;</li> 417 <li>Upload Broadcast Corrections as an RTCM Version 3 stream to an Ntrip Broadcaster;</li> 418 <li>Refer the orbit and clock corrections to a specific reference system;</li> 419 <li>Log the Broadcast Corrections as Clock RINEX files for further processing using other tools than BNC;</li> 420 <li>Log the Broadcast Corrections as SP3 files for further processing using other tools than BNC;</li> 421 </ul> 422 <li>Upload a Broadcast Ephemeris stream in RTCM Version 3 format;</li> 410 <li>Retrieve real-time GNSS data streams available through Ntrip transport protocol</li> 411 <li>Retrieve real-time GNSS data streams via TCP directly from an IP address without using the Ntrip transport protocol</li> 412 <li>Retrieve real-time GNSS data streams from a local UDP or serial port without using the Ntrip transport protocol</li> 413 <li>Plot stream distribution map from Ntrip Broadcaster source-tables</li> 414 <li>Generate RINEX Observation and Navigation files to support near real-time GNSS post processing applications</li> 415 <li>Edit or concatenate RINEX files or carry out RINEX Quality Checks (QC)</li> 416 <li>Convert RINEX Version 2 to RINEX Version 3 and vice versa</li> 417 <li>Compare SP3 files containing satellite orbit and clock data</li> 418 <li>Generate orbit and clock corrections to Broadcast Ephemeris through an IP port to</li> 419 <ul> 420 <li>support real-time Precise Point Positioning on GNSS rovers</li> 421 <li>support the (outside) combination of such streams as coming simultaneously from various correction providers</li> 422 </ul> 423 <li>Generate ephemeris and synchronized or unsynchronized observations epoch by epoch through an IP port to support real-time GNSS network engines</li> 424 <li>Feed a stream into a GNSS receiver via serial communication link</li> 425 <li>Monitor the performance of a network of real-time GNSS data streams to generate advisory notes in case of outages or corrupted streams</li> 426 <li>Scan RTCM streams for incoming antenna information, observation types, message types and repetition rates and latencies and GLONASS slot numbers and frequency channels</li> 427 <li>Carry out real-time Precise Point Positioning to determine GNSS rover positions</li> 428 <li>Enable multi-station Precise Point Positioning for simultaneous processing of observations from a whole network of receivers</li> 429 <li>Plot positions derived via PPP from RTCM streams or RINEX files on maps from Google Map or OpenStreetMap</li> 430 <li>Simultaneously process several Broadcast Correction streams to produce, encode and upload combined Broadcast Corrections</li> 431 <li>Estimate real-time tropospheric zenith path delays and save them in SINEX troposphere file format</li> 432 <li>Read GNSS orbits and clocks in a plain ASCII format from an IP port. They can be produced by a real-time GNSS engine such as RTNET and should be referenced to the IGS Earth-Centered-Earth-Fixed (ECEF) reference system. BNC will then</li> 433 <ul> 434 <li>Convert the IGS Earth-Centered-Earth-Fixed orbits and clocks into Broadcast Corrections with radial, along-track and out-of-plane components</li> 435 <li>Upload Broadcast Corrections as an RTCM Version 3 stream to an Ntrip Broadcaster</li> 436 <li>Refer the orbit and clock corrections to a specific reference system</li> 437 <li>Log the Broadcast Corrections as Clock RINEX files for further processing using other tools than BNC</li> 438 <li>Log the Broadcast Corrections as SP3 files for further processing using other tools than BNC</li> 439 </ul> 440 <li>Upload a Broadcast Ephemeris stream in RTCM Version 3 format;</li> 423 441 </ul> 424 442 </p> … … 429 447 <p> 430 448 <ul> 431 <li>RTCM Version 2 message types;</li>432 <li>RTCM Version 3 'conventional' message types;</li>433 <li>RTCM Version 3 message types for Broadcast Ephemeris;</li>434 <li>RTCM Version 3 'State Space Representation' (SSR) messages;</li>435 <li>RTCM Version 3 'Multiple Signal Messages' (MSM) and 'High Precision Multiple Signal Messages' (HP MSM);</li>436 <li>RTNET, a plain ASCII format defined within BNC to receive orbits and clocks from a serving GNSS engine. 449 <li>RTCM Version 2 message types</li> 450 <li>RTCM Version 3 'conventional' message types</li> 451 <li>RTCM Version 3 message types for Broadcast Ephemeris</li> 452 <li>RTCM Version 3 'State Space Representation' (SSR) messages</li> 453 <li>RTCM Version 3 'Multiple Signal Messages' (MSM) and 'High Precision Multiple Signal Messages' (HP MSM)</li> 454 <li>RTNET, a plain ASCII format defined within BNC to receive orbits and clocks from a serving GNSS engine 437 455 </ul> 438 456 </p> … … 443 461 <p> 444 462 <ul> 445 <li>RINEX Version 2.11 & 3.03, Receiver Independent Exchange format for observations, navigation and meteorological data;</li> 446 <li>SINEX Version 2.10, Solution Independent Exchange format for station position and velocity solutions;</li> 447 <li>SINEX TRO Draft Version 2.00, Troposphere Solution Independent Exchange format for zenith path delay products;</li> 448 <li>SP3 Version c format for orbit solutions;</li> 449 <li>Clock RINEX Version 3.02 format for station and satellite clock solutions;</li> 450 <li>ANTEX Version 1.4, Antenna Exchange format for Antenna Phase Center variations;</li> 451 <li>NMEA Version 0813, National Marine Electronics Association format for satellite navigation data;</li> 452 </ul> 453 </p> 454 455 <p> 456 Note that BNC allows to by-pass decoding and conversion algorithms for incoming streams, leaves whatever is received untouched to save it in files or output it through local TCP/IP port. 457 </p> 458 459 <p><h4>1.2 <a name="introSystem">Supported GNSS</h4></p> 460 <p> 461 BNC is permanently completed to finally support all existing GNSS systems throughout all features of the program. The table below shows in detail which GNSS systems are supported so far by particular applications when using the latest BNC version. Application areas named here are: 462 <ul> 463 <li>Decoding of RTCM or RTNET streams</li> 464 <li>RINEX and SP3 file input and output</li> 465 <li>Encoding of SSR and ephemeris messages</li> 466 <li>Upload of SSR and ephemeris messages</li> 467 <li>PPP (Precise Point Positioning)</li> 468 <li>Combining/merging SSR or ephemeris messages from various real-time sources</li> 463 <li>RINEX Version 2.11 & 3.03, Receiver Independent Exchange format for observations, navigation and meteorological data</li> 464 <li>SINEX Version 2.10, Solution Independent Exchange format for station position and velocity solutions</li> 465 <li>SINEX TRO Draft Version 2.00, Troposphere Solution Independent Exchange format for zenith path delay products</li> 466 <li>SP3 Version c format for orbit solutions</li> 467 <li>Clock RINEX Version 3.02 format for station and satellite clock solutions</li> 468 <li>ANTEX Version 1.4, Antenna Exchange format for Antenna Phase Center variations</li> 469 <li>NMEA Version 0813, National Marine Electronics Association format for satellite navigation data</li> 470 </ul> 471 </p> 472 473 <p> 474 Note that BNC allows to by-pass decoding and conversion algorithms for incoming streams, leaves whatever is received 475 untouched to save it in files or output it through local TCP/IP port. 476 </p> 477 478 <p><h4 id="introSystem">1.2 Supported GNSS</h4></p> 479 <p> 480 BNC is permanently completed to finally support all existing GNSS systems throughout all features of the program. 481 The table below shows in detail which GNSS systems are supported so far by particular applications when using the 482 latest BNC version. Application areas named here are: 483 <ul> 484 <li>Decoding of RTCM or RTNET streams</li> 485 <li>RINEX and SP3 file input and output</li> 486 <li>Encoding of SSR and ephemeris messages</li> 487 <li>Upload of SSR and ephemeris messages</li> 488 <li>PPP (Precise Point Positioning)</li> 489 <li>Combining/merging SSR or ephemeris messages from various real-time sources</li> 469 490 </ul> 470 491 The table indicates if a message implementation in BNC could so far only be based on a 'RTCM Proposal'. 471 492 </p> 472 <p> <u>Table 1:</u>Status of RTCM Version 3 message implementations in BNC supporting various GNSS systems</p>493 <p>Table 1: Status of RTCM Version 3 message implementations in BNC supporting various GNSS systems</p> 473 494 <p></p> 474 495 <table border="1" rules="rows" frame="box" bgcolor="#FFF5EE" style="font-size:13"> … … 551 572 <br> 552 573 553 <p><h4>1.3 <a name="introFlow">Data Flow</h4></p> 554 555 <p> 556 BNC can be used in different contexts with varying data flows. Typical real-time communication follows the Ntrip protocol over TCP/IP (probably via SSL), RTSP/RTP or UDP, plain TCP/IP protocol, or serial communication links. Stream content could be observations, ephemeris, satellite orbit/clock products or NMEA sentences. 557 </p> 558 <p> 559 The first of the following figures shows a flow chart of BNC connected to a GNSS receiver providing observations via serial or TCP communication link for the purpose of Precise Point Positioning. The second figure shows the conversion of RTCM streams to RINEX files. The third figure shows a flow chart of BNC feeding a real-time GNSS engine which estimates precise orbits and clocks. BNC is used in this scenario to encode correctors to RTCM Version 3 and upload them to an Ntrip Broadcaster. The fourth figure shows BNC combining several Broadcast Correction streams to disseminate the combination product while saving results in SP3 and Clock RINEX files. 574 <p><h4 id="introFlow">1.3 Data Flow</h4></p> 575 576 <p> 577 BNC can be used in different contexts with varying data flows. Typical real-time communication follows the Ntrip protocol 578 over TCP/IP (probably via SSL), RTSP/RTP or UDP, plain TCP/IP protocol, or serial communication links. 579 Stream content could be observations, ephemeris, satellite orbit/clock products or NMEA sentences. 580 </p> 581 <p> 582 The first of the following figures shows a flow chart of BNC connected to a GNSS receiver providing observations via 583 serial or TCP communication link for the purpose of Precise Point Positioning. The second figure shows the conversion 584 of RTCM streams to RINEX files. The third figure shows a flow chart of BNC feeding a real-time GNSS engine which 585 estimates precise orbits and clocks. BNC is used in this scenario to encode correctors to RTCM Version 3 and upload 586 them to an Ntrip Broadcaster. The fourth figure shows BNC combining several Broadcast Correction streams to 587 disseminate the combination product while saving results in SP3 and Clock RINEX files. 560 588 </p> 561 589 <p><img src="IMG/screenshot10.png"/></p> 562 <p> <u>Figure 1:</u>Flowchart, BNC connected to a GNSS rover for Precise Point Positioning</p>590 <p>Figure 1: Flowchart, BNC connected to a GNSS rover for Precise Point Positioning</p> 563 591 564 592 <p> 565 593 </p> 566 594 <p><img src="IMG/screenshot01.png"/></p> 567 <p> <u>Figure 2:</u>Flowchart, BNC converting RTCM streams to RINEX batches</p>595 <p>Figure 2: Flowchart, BNC converting RTCM streams to RINEX batches</p> 568 596 569 597 <p> 570 598 </p> 571 599 <p><img src="IMG/screenshot02.png"/></p> 572 <p> <u>Figure 3:</u>Flowchart, BNC feeding a real-time GNSS engine and uploading encoded Broadcast Corrections</p>600 <p>Figure 3: Flowchart, BNC feeding a real-time GNSS engine and uploading encoded Broadcast Corrections</p> 573 601 574 602 <p> 575 603 </p> 576 604 <p><img src="IMG/screenshot19.png"/></p> 577 <p> <u>Figure 4:</u>Flowchart, BNC combining Broadcast Correction streams</p>578 579 <p><h4 >1.4 <a name="introHandling">Handling</h4></p>605 <p>Figure 4: Flowchart, BNC combining Broadcast Correction streams</p> 606 607 <p><h4 id="introHandling">1.4 Handling</h4></p> 580 608 <p> 581 609 Although BNC is mainly a real-time tool to be operated online, it can be run offline 582 610 <ul> 583 <li>To simulate real-time observation situations for debugging purposes;</li> 584 <li>For post processing purposes.</li> 585 </ul> 586 Furthermore, apart from its regular window mode, BNC can be run as a batch/background job in a 'no window' mode, using processing options from a previously saved configuration or from command line. 587 </p> 611 <li>To simulate real-time observation situations for debugging purposes;</li> 612 <li>For post processing purposes.</li> 613 </ul> 614 Furthermore, apart from its regular window mode, BNC can be run as a batch/background job in a 'no window' mode, 615 using processing options from a previously saved configuration or from command line. 616 </p> 617 588 618 <p> 589 619 Unless it runs offline, BNC 590 620 </p> 591 621 <ul> 592 <li>Requires access to the Internet with a minimum of about 2 to 6 kbits/sec per stream depending on the stream format and the number of visible satellites. You need to make sure that the connection can sustain the required bandwidth;</li> 593 <li>Requires the clock of the host computer to be properly synchronized;</li> 594 <li>Has the capacity to retrieve hundreds of GNSS data streams simultaneously. Please be aware that such usage may incur a heavy load on the Ntrip Broadcaster side depending on the number of streams requested. We recommend limiting the number of streams where possible to avoid unnecessary workload.</li> 595 </ul> 596 </p> 597 598 <p> 599 The main window of BNC shows a 'Top menu bar' section, a 'Settings' sections with panels to set processing options, a 'Streams' section, a section for 'Log' tabs, and a 'Bottom menu bar' section, see figure below. 622 <li>Requires access to the Internet with a minimum of about 2 to 6 kbits/sec per stream depending on the stream 623 format and the number of visible satellites. You need to make sure that the connection can sustain the required bandwidth;</li> 624 <li>Requires the clock of the host computer to be properly synchronized;</li> 625 <li>Has the capacity to retrieve hundreds of GNSS data streams simultaneously. Please be aware that such usage may 626 incur a heavy load on the Ntrip Broadcaster side depending on the number of streams requested. We recommend 627 limiting the number of streams where possible to avoid unnecessary workload.</li> 628 </ul> 629 </p> 630 631 <p> 632 The main window of BNC shows a 'Top menu bar' section, a 'Settings' sections with panels to set processing options, 633 a 'Streams' section, a section for 'Log' tabs, and a 'Bottom menu bar' section, see figure below. 600 634 </p> 601 635 <p><img src="IMG/screenshot09.png"/></p> 602 <p> <u>Figure 5:</u>Sections on BNC's main window</p>636 <p>Figure 5: Sections on BNC's main window</p> 603 637 604 638 <p> … … 611 645 612 646 <p> 613 The usual handling of BNC is that you first select a number of streams ('Add Stream'). Any stream configured to BNC shows up on the 'Streams' canvas in the middle of BNC's main window. You then go through BNC's various configuration panels to set a combination of input, processing and output options before you start the program ('Start'). Most configuration panels are dedicated to a certain function of BNC. If the first option field on such a configuration panel is empty, the affected functionality is deactivated. 614 </p> 615 616 <p> 617 Records of BNC's activities are shown in the 'Log' tab which is part of the 'Log' canvas. The bandwidth consumption per stream, the latency of incoming observations, and a PPP time series for coordinate displacements are also part of that canvas and shown in the 'Throughput', 'Latency' and 'PPP Plot' tabs. 618 </p> 619 620 <p> 621 Configuration options are usually first set using BNC's Graphical User Interface (GUI), then saved in a configuration file. For routine operations in batch mode all of BNC's configuration options can be extracted from the configuration file and applied using the program's Command Line Interface (CLI). 622 </p> 623 624 <p><h4>1.5 <a name="introInst">Installation</h4></p> 625 <p> 626 Precompiled builds of BNC are available for MS Windows, Linux, and Mac OS X systems. They can be downloaded for installation from <u>http://igs.bkg.bund.de/ntrip/download</u>. Please ensure that you always use the latest released version of the program. 627 </p> 628 <p> 629 <u>MS Windows Build:</u> A dynamically compiled shared library build for Mircrosoft Windows systems is provided as Microsoft Installer (MSI) file. MSI files are used for installation, storage, and removal of programs. The BNC files are contained in a MSI package, which is used with the program's client-side installer service, an .EXE file, to open and install the program. We used the MinGW Version 4.4.0 compiler to create BNC for Windows. After installation your 'bnc.exe' file shows up e.g. under 'All Programs'. 630 </p> 631 632 <p> 633 <u>Linux Build:</u> Static library and shared library builds for BNC are provided for a selection of Linux distributions. Download the ZIP archive for a version which fits to your Linux system, unzip the archive and run the included BNC binary. A static build would be sufficient in case you <u>do not want</u> BNC to plot PPP results with Google Map (GM) or OpenStreetMap (OSM) maps in the background. GM/OSM usage requires BNC builds from shared libraries. 634 </p> 635 636 <p> 637 <u>Mac OS X Build:</u> 638 A shared library 'Disk iMaGe' (DMG) file is provided for BNC on OS X systems; it also comes in a ZIP archive. The DMG file format is used in the Mac for distributing software. Mac install packages appear as a virtual disk drive. After download, when the DMG file icon is double clicked, the virtual drive is 'mounted' on the desktop. Install BNC by dragging the 'bnc.app' icon to your '/Applications' folder. To start BNC, double click on '/Applications/bnc.app'. You could also start BNC via Command Line Interface (CLI) using command '/Applications/bnc.app/Contents/MacOS/bnc'. 639 </p> 640 641 <p><h4>1.5.1 <a name="introCompile">Compilation</h4></p> 642 643 <p> 644 BNC has been written as Open Source and published under GNU General Public License (GPL). The latest source code can be checked out from Subversion repository <u>http://software.rtcm-ntrip.org/svn/trunk/BNC</u>. A ZIP archive available from <u>http://igs.bkg.bund.de/ntrip/download</u> provides the source code for BNC Version 2.12.0, developed using Qt Version 4.8.5. 645 </p> 646 <p>The following describes how you can produce your own builds of BNC on MS Windows, Linux, and Mac systems. It is likely that BNC can also be compiled on other systems where a GNU compiler and Qt Version 4.8.5 or any later version is installed. 647 The usual handling of BNC is that you first select a number of streams ('Add Stream'). Any stream configured to BNC 648 shows up on the 'Streams' canvas in the middle of BNC's main window. You then go through BNC's various configuration 649 panels to set a combination of input, processing and output options before you start the program ('Start'). 650 Most configuration panels are dedicated to a certain function of BNC. If the first option field on such a configuration 651 panel is empty, the affected functionality is deactivated. 652 </p> 653 654 <p> 655 Records of BNC's activities are shown in the 'Log' tab which is part of the 'Log' canvas. The bandwidth consumption 656 per stream, the latency of incoming observations, and a PPP time series for coordinate displacements are also part 657 of that canvas and shown in the 'Throughput', 'Latency' and 'PPP Plot' tabs. 658 </p> 659 660 <p> 661 Configuration options are usually first set using BNC's Graphical User Interface (GUI), then saved in a configuration 662 file. For routine operations in batch mode all of BNC's configuration options can be extracted from the configuration 663 file and applied using the program's Command Line Interface (CLI). 664 </p> 665 666 <p><h4 id="introInst">1.5 Installation</h4></p> 667 <p> 668 Precompiled builds of BNC are available for MS Windows, Linux, and Mac OS X systems. They can be downloaded for 669 installation from <a href="http://igs.bkg.bund.de/ntrip/download" target="_blank">http://igs.bkg.bund.de/ntrip/download</a>. 670 Please ensure that you always use the latest released 671 version of the program. 672 </p> 673 <p> 674 <b>MS Windows Build:</b> A dynamically compiled shared library build for Mircrosoft Windows systems is provided as 675 Microsoft Installer (MSI) file. MSI files are used for installation, storage, and removal of programs. 676 The BNC files are contained in a MSI package, which is used with the program's client-side installer service, 677 an .EXE file, to open and install the program. We used the MinGW Version 4.4.0 compiler to create BNC for Windows. 678 After installation your 'bnc.exe' file shows up e.g. under 'All Programs'. 679 </p> 680 681 <p> 682 <b>Linux Build:</b> Static library and shared library builds for BNC are provided for a selection of Linux distributions. 683 Download the ZIP archive for a version which fits to your Linux system, unzip the archive and run the included BNC binary. 684 A static build would be sufficient in case you do not want BNC to plot PPP results with Google Map (GM) or 685 OpenStreetMap (OSM) maps in the background. GM/OSM usage requires BNC builds from shared libraries. 686 </p> 687 688 <p> 689 <b>Mac OS X Build:</b> 690 A shared library 'Disk iMaGe' (DMG) file is provided for BNC on OS X systems; it also comes in a ZIP archive. The DMG 691 file format is used in the Mac for distributing software. Mac install packages appear as a virtual disk drive. After 692 download, when the DMG file icon is double clicked, the virtual drive is 'mounted' on the desktop. Install BNC by 693 dragging the 'bnc.app' icon to your <i>'/Applications'</i> folder. To start BNC, double click on <i>'/Applications/bnc.app'</i>. 694 You could also start BNC via Command Line Interface (CLI) using command <i>'/Applications/bnc.app/Contents/MacOS/bnc'</i>. 695 </p> 696 697 <p><h4 id="introCompile">1.5.1 Compilation</h4></p> 698 699 <p> 700 BNC has been written as Open Source and published under GNU General Public License (GPL). The latest source code can 701 be checked out from Subversion repository <a href="http://software.rtcm-ntrip.org/svn/trunk/BNC" 702 target="_blank">http://software.rtcm-ntrip.org/svn/trunk/BNC</a>. A ZIP archive available from 703 <a href="http://igs.bkg.bund.de/ntrip/download" target="_blank">http://igs.bkg.bund.de/ntrip/download</a> 704 provides the source code. 705 </p> 706 <p>The following describes how you can produce your own builds of BNC on MS Windows, Linux, and Mac systems. 707 It is likely that BNC can also be compiled on other systems where a GNU compiler and Qt Version 4.8 or any later 708 version is installed. 647 709 </p> 648 710 649 711 <p><b>Static versus Shared Libraries</b><br> 650 You can produce static or shared library builds of BNC. <u>Static</u> builds are sufficient in case you do not want BNC to produce track maps on top of Google Map (GM) or OpenStreetMap (OSM). GM/OSM usage would require the QtWebKit library which can only be part of BNC builds from <u>shared</u> Qt libraries. Hence, having a shared library Qt installation available is a precondition for producing a shared library build of BNC. 712 You can produce static or shared library builds of BNC. <b>Static</b> builds are sufficient in case you do not want 713 BNC to produce track maps on top of Google Map (GM) or OpenStreetMap (OSM). GM/OSM usage would require the 714 QtWebKit library which can only be part of BNC builds from <b>shared</b> Qt libraries. Hence, having a shared library 715 Qt installation available is a precondition for producing a shared library build of BNC. 651 716 </p> 652 717 … … 655 720 </p> 656 721 657 <ol type=f> 658 <li>Supposing that 'Secure Socket Layer (SSL)' is not available on you system, you should install OpenSSL libraries in C:\OpenSSL-Win32. They are available e.g. from <u>http://igs.bkg.bund.de/root_ftp/NTRIP/software/Win32OpenSSL-1_0_1e.exe</u>. See <u>http://slproweb.com/products/Win32OpenSSL.html</u> for other SSL resources. Ignore possibly occurring comments about missing components during installation.</li> 659 660 <li>Download MinGW compiler Version 4.4.0 e.g. from <u>http://igs.bkg.bund.de/root_ftp/NTRIP/software/MinGW-gcc440_1.zip</u></li> 661 662 <li>Unzip the ZIP archive and move its contents to a directory C:\MinGW. Now you can do either (4) or (5, 6, 8, 9, 10). Following (4) is suggested.</li> 663 664 <li>Download file 'qt-win-opensource-4.8.5-mingw.exe' (317 MB) e.g. from <u>https://download.qt.io/archive/qt/4.8/4.8.5/</u>. Execute this file to install a pre-compiled shared Qt library.</li> 665 666 <li>Download file 'qt-everywhere-opensource-src-4.8.5.zip' (269 MB) e.g. from <u>https://download.qt.io/archive/qt/4.8/4.8.5/</u></li> 667 668 <li>Unzip the ZIP archive and move the contents of the contained directory into a directory C:\Qt\4.8.5.</li> 722 <ol type="1"> 723 <li>Supposing that 'Secure Socket Layer (SSL)' is not available on you system, you should install OpenSSL libraries 724 in C:\OpenSSL-Win32. They are available e.g. from <a href="http://igs.bkg.bund.de/root_ftp/NTRIP/software/Win32OpenSSL-1_0_1e.exe" 725 target="_blank">http://igs.bkg.bund.de/root_ftp/NTRIP/software/Win32OpenSSL-1_0_1e.exe</a>. 726 See <a href="http://slproweb.com/products/Win32OpenSSL.html" target="_blank">http://slproweb.com/products/Win32OpenSSL.html</a> 727 for other SSL resources. Ignore possibly occurring comments about missing components during installation.</li> 728 729 <li>Download MinGW compiler Version 4.4.0 e.g. from <a href="http://igs.bkg.bund.de/root_ftp/NTRIP/software/MinGW-gcc440_1.zip" target="_blank">http://igs.bkg.bund.de/root_ftp/NTRIP/software/MinGW-gcc440_1.zip</a></li> 730 731 <li>Unzip the ZIP archive and move its contents to a directory <i>C:\MinGW</i>. Now you can do either (4) or (5, 6, 8, 9, 10). Following (4) is suggested.</li> 732 733 <li>Download file 'qt-win-opensource-4.8.5-mingw.exe' (317 MB) e.g. from <a href="https://download.qt.io/archive/qt/4.8/4.8.5/" 734 target="_blank">https://download.qt.io/archive/qt/4.8/4.8.5/</a>. Execute this file to install a pre-compiled shared Qt library.</li> 735 736 <li>Download file 'qt-everywhere-opensource-src-4.8.5.zip' (269 MB) e.g. from 737 <a href="https://download.qt.io/archive/qt/4.8/4.8.5/" target="_blank">https://download.qt.io/archive/qt/4.8/4.8.5/</a></li> 738 739 <li>Unzip the ZIP archive and move the contents of the contained directory into a directory <i>C:\Qt\4.8.5</i>.</li> 669 740 670 741 <li>Create somewhere a file QtEnv.bat with the following content: … … 690 761 Should you want to reconfiguring Qt following steps (8)-(10) you first need to clean the previous configuration using command 'mingw32-make confclean'. Run command 'mingw32-make clean' to delete previously compiled source code.</li> 691 762 692 <li>Download latest BNC from SVN repository <u>http://software.rtcm-ntrip.org/svn/trunk/BNC.</u></li> 763 <li>Download latest BNC from SVN repository <a href="http://software.rtcm-ntrip.org/svn/trunk/BNC" 764 target="_blank">http://software.rtcm-ntrip.org/svn/trunk/BNC</a>.</li> 693 765 694 766 <li>Open command line window and execute file QtEnv.bat, see (7)</li> … … 710 782 711 783 <p> 712 Steps (11)-(15) can be repeated whenever a BNC update becomes available. Running bnc.exe on a windows system requires (1) when using the NTRIP Version 2s option for stream transfer over TLS/SSL. 784 Steps (11)-(15) can be repeated whenever a BNC update becomes available. Running bnc.exe on a windows system 785 requires (1) when using the NTRIP Version 2s option for stream transfer over TLS/SSL. 713 786 </p> 714 787 … … 719 792 720 793 <p> 721 Download file 'qt-everywhere-opensource-src-4.8.5.tar.gz' (230 MB) available from <u>https://download.qt.io/archive/qt/4.8/4.8.5/</u>. Unzip file, extract tar archive and change to directory 'qt-everywhere-opensource-src-4.8.5'. Run commands 794 Download file 'qt-everywhere-opensource-src-4.8.5.tar.gz' (230 MB) available from <a href="https://download.qt.io/archive/qt/4.8/4.8.5/" 795 target="_blank">https://download.qt.io/archive/qt/4.8/4.8.5/</a>. Unzip file, extract tar archive and change to 796 directory 'qt-everywhere-opensource-src-4.8.5'. Run commands 722 797 <pre> 723 798 ./configure -fast -webkit -nomake examples -nomake tutorial … … 729 804 730 805 <p> 731 Qt will be installed into directory /usr/local/Trolltech/Qt-4.8.5. To reconfigure, run 'gmake confclean' and 'configure'. Note that the '-prefix' option allows you to specify a directory for saving the Qt libraries. This ensures that you do not run into conflicts with other 732 Qt installations on your host. Note further that the following two lines<pre> 806 Qt will be installed into directory <i>/usr/local/Trolltech/Qt-4.8.5</i>. To reconfigure, run 'gmake confclean' and 'configure'. 807 Note that the '-prefix' option allows you to specify a directory for saving the Qt libraries. This ensures that you do not run 808 into conflicts with other Qt installations on your host. Note further that the following two lines<pre> 733 809 export QTDIR="/usr/local/Trolltech/Qt-4.8.5" 734 810 export PATH="$QTDIR/bin:$PATH"</pre> … … 737 813 </p> 738 814 <p> 739 To compile the BNC program, you first download the source code from SVN repository <u>http://software.rtcm-ntrip.org/svn/trunk/BNC</u>. Go to directory BNC and run the following commands: <pre> 815 To compile the BNC program, you first download the source code from SVN repository <a href="http://software.rtcm-ntrip.org/svn/trunk/BNC" 816 target="_blank">http://software.rtcm-ntrip.org/svn/trunk/BNC</a>. Go to directory BNC and run the following commands: <pre> 740 817 qmake bnc.pro 741 818 make … … 747 824 748 825 <u>Xcode and Qt Installation</u><br> 749 Xcode and Qt are required to compile BNC on OS X. Both tools are freely available. Xcode can be downloaded from the App Store or the Apple Developer Connection website. Once installed, run Xcode, go to 'Preferences->Downloads' and install the Command Line Tools component. Qt can be downloaded from the Qt Project website. We suggest installing version 4.8.4 or higher. The Qt libraries for Mac can be downloaded from <u>http://www.qt.io/download</u>. Once downloaded, mount the disk image, run the Qt.mpkg package and follow instructions from the installation wizard. 826 Xcode and Qt are required to compile BNC on OS X. Both tools are freely available. Xcode can be downloaded from the 827 App Store or the Apple Developer Connection website. Once installed, run Xcode, go to 'Preferences->Downloads' and install the Command Line Tools component. Qt can be downloaded from the Qt Project website. We suggest installing version 4.8.4 or higher. The Qt libraries for Mac can be downloaded from <u>http://www.qt.io/download</u>. Once downloaded, mount the disk image, run the Qt.mpkg package and follow instructions from the installation wizard. 750 828 </p> 751 829 752 830 <p> 753 831 <u>Compiling BNC</u><br> 754 The version of qmake supplied in the Qt binary package is configured to use the macx-xcode specification. This can be overridden with the '-spec macx-g++' option which makes it possible to use qmake to create a Makefile to be used by 'make'. 832 The version of qmake supplied in the Qt binary package is configured to use the macx-xcode specification. 833 This can be overridden with the '-spec macx-g++' option which makes it possible to use qmake to create a Makefile to 834 be used by 'make'. 755 835 </p> 756 836 <p> … … 760 840 make 761 841 </pre> 762 Refer to the following webpage for further information: < u>http://doc.qt.io/qt-4.8/qmake-platform-notes.html</u>.842 Refer to the following webpage for further information: <a href="http://doc.qt.io/qt-4.8/qmake-platform-notes.html" target="_blank">http://doc.qt.io/qt-4.8/qmake-platform-notes.html</a>. 763 843 </p> 764 844 765 845 <p> 766 846 <u>Bundle Deployment</u><br> 767 When distributing BNC it is necessary to bundle in all related Qt resources in the package. The Mac Deployment Tool has been designed to automate the process of creating a deployable application bundle that contains the Qt libraries as private frameworks. To use it, issue the following commands where bnc.app is located. 847 When distributing BNC it is necessary to bundle in all related Qt resources in the package. The Mac Deployment Tool 848 has been designed to automate the process of creating a deployable application bundle that contains the Qt libraries 849 as private frameworks. To use it, issue the following commands where bnc.app is located. 768 850 <pre> 769 851 macdeployqt bnc.app -dmg 770 852 </pre> 771 Refer to the following webpage for further information: <u>http://doc.qt.io/qt-4.8/deployment-mac.html</u>. 772 </p> 773 <p> 774 Once a DMG file for BNC is created, you can double click it and install BNC by dragging the 'bnc.app' icon to your 'Applications' folder. To start BNC, double click on '/Aplications/bnc.app'. 775 </p> 776 777 <p><h4>1.6 <a name="introConf">Configuration</h4></p> 778 <p> 779 As a default, configuration files for running BNC on Unix/Linux/Mac OS X systems are saved in directory '${HOME}/.config/BKG'. On Windows systems, they are typically saved in directory 'C:/Documents and Settings/Username/.config/BKG'. The default configuration filename is 'BNC.bnc'.</p> 780 <p> 781 The default filename 'BNC.bnc' can be changed and the file content can easily be edited. On graphical user interfaces it is possible to Drag & Drop a configuration file icon to start BNC (not on Mac OS X systems). It is also possible to start and configure BNC via command line. Some configuration options can be changed on-the-fly. See annexed 'Command Line Help' for a complete set of configuration options. 853 Refer to the following webpage for further information: <a href="http://doc.qt.io/qt-4.8/deployment-mac.html" 854 target="_blank">http://doc.qt.io/qt-4.8/deployment-mac.html</a>. 855 </p> 856 <p> 857 Once a DMG file for BNC is created, you can double click it and install BNC by dragging the 'bnc.app' icon to your 858 'Applications' folder. To start BNC, double click on '/Aplications/bnc.app'. 859 </p> 860 861 <p><h4 id="introConf">1.6 Configuration</h4></p> 862 <p> 863 As a default, configuration files for running BNC on Unix/Linux/Mac OS X systems are saved in directory 864 '${HOME}/.config/BKG'. On Windows systems, they are typically saved in directory 'C:/Documents and Settings/Username/.config/BKG'. 865 The default configuration filename is 'BNC.bnc'.</p> 866 <p> 867 The default filename 'BNC.bnc' can be changed and the file content can easily be edited. On graphical user interfaces 868 it is possible to Drag & Drop a configuration file icon to start BNC (not on Mac OS X systems). 869 It is also possible to start and configure BNC via command line. Some configuration options can be changed on-the-fly. 870 See annexed 'Command Line Help' for a complete set of configuration options. 782 871 </p> 783 872 … … 786 875 </p> 787 876 788 <ol type= b>789 <li>GUI, input fields level</li>790 <li>Active configuration level</li>791 <li>Configuration file, disk level</li>877 <ol type="1"> 878 <li>GUI, input fields level</li> 879 <li>Active configuration level</li> 880 <li>Configuration file, disk level</li> 792 881 </ol> 793 882 794 883 <p><img src="IMG/screenshot31.png"/></p> 795 <p> <u>Figure 6:</u>Management of configuration options in BNC:<br>884 <p>Figure 6: Management of configuration options in BNC:<br> 796 885 <table> 797 886 <tr><td> </td><td>Left:</td><td>BNC in graphics mode; active configuration options are introduced through GUI input fields and finally saved on disk</td></tr> … … 803 892 Configuration options are usually specified using GUI input fields (1) after launching BNC. When hitting the 'Start' button, configuration options are transferred one level down to become BNC's active configuration (2), allowing the program to begin its operation. Pushing the 'Stop' button ends data processing so that the user can finally terminate BNC through 'File'->'Quit'->'Save Options' which saves processing options in a configuration file to disk (3). It is important to understand that: 804 893 <ul> 805 <li>Active configuration options (2) are independent from GUI input fields and configuration file content.</li> 806 <li>Hence changing configuration options at GUI level (1) while BNC is already processing data does not influence a running job.</li> 807 <li>Editing configuration options at disk level (3) while BNC is already processing data does also not influence a running job. However, there are two exceptions which force BNC to update certain active options on-the-fly:</li> 808 <ul> 809 <li>Pushing the 'Reread & Save Configuration' button lets BNC immediately reread its configuration from GUI input fields to make them active configuration options. Then BNC saves them on disk.</li> 810 <li>Specifying the 'Reread configuration' option lets BNC reread its configuration from disk at pre-defined intervals.</li> 811 </ul> 812 <li>A specific BNC configuration can be started in 'no window' mode from scratch without a configuration file if options for the active configuration level (2) are provided via command line.</li> 813 </ul> 814 </p> 815 816 <p><h4>1.6.1 <a name="introExamples">Examples</h4></p> 817 818 <p> 819 BNC comes with a number of configuration examples which can be used on all operating systems. Copy the complete directory 'Example_Configs' which comes with the software to your disc. It includes sub-directories 'Input' and 'Output'. There are several ways to start BNC using one of the example configurations: 820 </p> 821 <ul> 822 <li> 823 On graphical systems (except for Mac systems), you may use the computer mouse to 'drag' a configuration file icon and 'drop' it on top of BNC's program icon. 894 <li>Active configuration options (2) are independent from GUI input fields and configuration file content.</li> 895 <li>Hence changing configuration options at GUI level (1) while BNC is already processing data does not influence a running job.</li> 896 <li>Editing configuration options at disk level (3) while BNC is already processing data does also not influence a running job. However, there are two exceptions which force BNC to update certain active options on-the-fly:</li> 897 <ul> 898 <li>Pushing the 'Reread & Save Configuration' button lets BNC immediately reread its configuration from GUI input fields to make them active configuration options. Then BNC saves them on disk.</li> 899 <li>Specifying the 'Reread configuration' option lets BNC reread its configuration from disk at pre-defined intervals.</li> 900 </ul> 901 <li>A specific BNC configuration can be started in 'no window' mode from scratch without a configuration file if options for the active configuration level (2) are provided via command line.</li> 902 </ul> 903 </p> 904 905 <p><h4 id="introExamples">1.6.1 Examples</h4></p> 906 907 <p> 908 BNC comes with a number of configuration examples which can be used on all operating systems. 909 Copy the complete directory 'Example_Configs' which comes with the software to your disc. It includes sub-directories 910 'Input' and 'Output'. There are several ways to start BNC using one of the example configurations: 911 </p> 912 <ul> 913 <li>On graphical systems (except for Mac systems), you may use the computer mouse to 'drag' a configuration file icon and 'drop' it on top of BNC's program icon.</li> 914 <li>You could also start BNC using a command line for naming a specific configuration file (suggested e.g. for Mac systems):<br> 915 /Applications/bnc.app/Contents/MacOS/bnc --conf <configFileName></li> 916 <li>On non-graphical systems or when running BNC in batch mode in the background you may start the program using a command line with a configuration file option in '<u>n</u>o <u>w</u>indow' mode (example for Windows systems):<br> 917 bnc.exe --conf <configFileName> --nw</li> 918 </ul> 919 <p> 920 Although it's not a must, we suggest that you always create BNC configuration files with filename extension '.bnc'. 921 </p> 922 923 <p> 924 We furthermore suggest for convenience reasons that you configure your system to automatically start BNC when you double-click a file with the filename extension '.bnc'. The following describes what to do on MS Windows systems to associate the BNC program to such configuration files: 925 </p> 926 927 <ol type="1"> 928 <li>Right-click a file that has the extension '.bnc' and then click 'Open'. If the 'Open' command is not available, click 'Open With' or double-click the file.</li> 929 <li>Windows displays a dialog box that says that the system cannot open this file. The dialog box offers several options for selecting a program.</li> 930 <li>Click 'Select the program from a list', and then click 'OK'.</li> 931 <li>The 'Open With' dialog box is displayed. Click 'Browse', locate and then click the BNC program, and then click 'Open'.</li> 932 <li>Click to select the 'Always use the selected program to open this kind of file' check box.</li> 933 <li>Click 'OK'.</li> 934 </ol> 935 936 <p> 937 Some of the presented example configurations contain a user ID 'Example' with a password 'Configs' for accessing a few 938 GNSS streams from public Ntrip Broadcasters. This free generic account is arranged for convenience reasons only. 939 Please be so kind as to replace the generic account details as well as the place holder's 'User' and 'Pass' by the 940 personal user ID and password you receive following an online registration through <a href="http://register.rtcm-ntrip.org" target="_blank">http://register.rtcm-ntrip.org</a>. 941 </p> 942 943 <p> 944 Note that the account for an Ntrip Broadcaster is usually limited to pulling a specified maximum number of streams at the same time. As running some of the example configurations requires pulling several streams, it is suggested to make sure that you do not exceed your account's limits. 945 </p> 946 947 <p> 948 Make also sure that sub-directories 'Input' and 'Output' which are part of the example configurations exist on your system or adjust the affected example configuration options according to your needs. 949 </p> 950 951 <p> 952 Some BNC options require Antenna Phase Center variations as made available from IGS through so-called ANTEX files at <a href="ftp://igs.org/pub/station/general" target="_blank">ftp://igs.org/pub/station/general</a>. 953 An example ANTEX file 'igs14.atx' is part of the BNC package for convenience. 954 </p> 955 956 <p> 957 The example configurations assume that no proxy protects your BNC host. Should a proxy be operated in front of BNC then 958 you need to introduce its name or IP and port number in the 'Network' panel. 959 </p> 960 961 <p> 962 <b>(A) Working with Configuration Files</b><br><br> 963 You should be able to run all configuration file examples without changing contained options. However, configuration 964 'Upload.bnc' is an exception because it requires an input stream from a connected network engine. 965 </p> 966 967 <ol type="1"> 968 <li>Configuration File 'RinexObs.bnc'<br> 969 Purpose: Convert RTCM streams to RINEX Observation files. The configuration pulls streams from Ntrip 970 Broadcasters using Ntrip Version 1 to generate 15min 1Hz RINEX Version 3 Observation files. 971 See <a href="http://igs.bkg.bund.de/ntrip/observations" target="_blank">http://igs.bkg.bund.de/ntrip/observations</a> for observation 972 stream resources. 824 973 </li> 825 <li>826 You could also start BNC using a command line for naming a specific configuration file (suggested e.g. for Mac systems):<br>827 /Applications/bnc.app/Contents/MacOS/bnc --conf <configFileName>828 </li>829 <li>830 On non-graphical systems or when running BNC in batch mode in the background you may start the program using a command line with a configuration file option in '<u>n</u>o <u>w</u>indow' mode (example for Windows systems):<br>831 bnc.exe --conf <configFileName> --nw832 </li>833 </ul>834 <p>835 Although it's not a must, we suggest that you always create BNC configuration files with filename extension '.bnc'.836 </p>837 838 <p>839 We furthermore suggest for convenience reasons that you configure your system to automatically start BNC when you double-click a file with the filename extension '.bnc'. The following describes what to do on MS Windows systems to associate the BNC program to such configuration files:840 </p>841 842 <ol type=b>843 <li>Right-click a file that has the extension '.bnc' and then click 'Open'. If the 'Open' command is not available, click 'Open With' or double-click the file.</li>844 <li>Windows displays a dialog box that says that the system cannot open this file. The dialog box offers several options for selecting a program.</li>845 <li>Click 'Select the program from a list', and then click 'OK'.</li>846 <li>The 'Open With' dialog box is displayed. Click 'Browse', locate and then click the BNC program, and then click 'Open'.</li>847 <li>Click to select the 'Always use the selected program to open this kind of file' check box.</li>848 <li>Click 'OK'.</li>849 </ol>850 851 <p>852 Some of the presented example configurations contain a user ID 'Example' with a password 'Configs' for accessing a few GNSS streams from public Ntrip Broadcasters. This free generic account is arranged for convenience reasons only. Please be so kind as to replace the generic account details as well as the place holder's 'User' and 'Pass' by the personal user ID and password you receive following an online registration through <u>http://register.rtcm-ntrip.org</u>.853 </p>854 855 <p>856 Note that the account for an Ntrip Broadcaster is usually limited to pulling a specified maximum number of streams at the same time. As running some of the example configurations requires pulling several streams, it is suggested to make sure that you do not exceed your account's limits.857 </p>858 859 <p>860 Make also sure that sub-directories 'Input' and 'Output' which are part of the example configurations exist on your system or adjust the affected example configuration options according to your needs.861 </p>862 863 <p>864 Some BNC options require Antenna Phase Center variations as made available from IGS through so-called ANTEX files at <u>ftp://igs.org/pub/station/general</u>. An example ANTEX file 'igs14.atx' is part of the BNC package for convenience.865 </p>866 867 <p>868 The example configurations assume that no proxy protects your BNC host. Should a proxy be operated in front of BNC then you need to introduce its name or IP and port number in the 'Network' panel.869 </p>870 871 <p>872 <b>(A) Working with Configuration Files</b><br><br>873 You should be able to run all configuration file examples without changing contained options. However, configuration 'Upload.bnc' is an exception because it requires an input stream from a connected network engine.874 </p>875 <ol type=b>876 877 <li>Configuration File 'RinexObs.bnc'<br>878 Purpose: Convert RTCM streams to879 RINEX Observation files. The configuration pulls streams from Ntrip880 Broadcasters using Ntrip Version 1 to generate 15min 1Hz RINEX Version 3881 Observation files. See <u>http://igs.bkg.bund.de/ntrip/observations</u> for observation882 stream resources.883 </li><br>884 974 885 975 <li>Configuration File 'RinexEph.bnc'<br> 886 976 Purpose: Convert a RTCM stream 887 with navigation messages to RINEX Navigation files. The configuration 888 pulls a RTCM Version 3 stream with Broadcast Ephemeris coming from the 889 real-time EUREF and IGS networks and saves hourly RINEX Version 3 Navigation 890 files. See <u>http://igs.bkg.bund.de/ntrip/ephemeris</u> for further real-time 891 Broadcast Ephemeris resources. 892 </li><br> 977 with navigation messages to RINEX Navigation files. The configuration pulls a RTCM Version 3 stream with Broadcast 978 Ephemeris coming from the real-time EUREF and IGS networks and saves hourly RINEX Version 3 Navigation files. 979 See <a href="http://igs.bkg.bund.de/ntrip/ephemeris" target="_blank">http://igs.bkg.bund.de/ntrip/ephemeris</a> 980 for further real-time Broadcast Ephemeris resources. 981 </li> 893 982 894 983 <li>Configuration File 'BrdcCorr.bnc'<br> 895 Purpose: Save Broadcast Corrections from RTCM 896 SSR messages in hourly plain ASCII files. See 897 <u>http://igs.bkg.bund.de/ntrip/orbits</u> for various real-time IGS or EUREF 898 orbit/clock correction products. 899 </li><br> 984 Purpose: Save Broadcast Corrections from RTCM SSR messages in hourly plain ASCII files. 985 See <a href="http://igs.bkg.bund.de/ntrip/orbits" target="_blank">http://igs.bkg.bund.de/ntrip/orbits</a> 986 for various real-time IGS or EUREF orbit/clock correction products. 987 </li> 900 988 901 989 <li>Configuration File 'RinexConcat.bnc'<br> 902 Purpose: Concatenate several RINEX Version 3 files to 903 produce one compiled file and edit the marker name in the file header. The 904 sampling interval is set to 30 seconds. See section 'RINEX Editing & QC' in the 905 documentation for examples on how to call BNC from command line in 'no window' 906 mode for RINEX file editing, concatenation and quality check. 907 </li><br> 990 Purpose: Concatenate several RINEX Version 3 files to produce one compiled file and edit the marker name in the file 991 header. The sampling interval is set to 30 seconds. See section 'RINEX Editing & QC' in the documentation for 992 examples on how to call BNC from command line in 'no window' mode for RINEX file editing, concatenation and quality check. 993 </li> 908 994 909 995 <li>Configuration File 'RinexQC.bnc'<br> 910 Purpose: Check the quality of a RINEX Version 3 911 file by means of a multipath analysis. Results are saved on disk in terms of a 912 plot in PNG format. See section 'RINEX Editing & QC' in the documentation for 913 examples on how to call BNC from command line in 'no window' mode for RINEX 914 file editing, concatenation and quality check. 915 </li><br> 996 Purpose: Check the quality of a RINEX Version 3 file by means of a multipath analysis. Results are saved on disk in terms of a 997 plot in PNG format. See section 'RINEX Editing & QC' in the documentation for examples on how to call BNC from command 998 line in 'no window' mode for RINEX file editing, concatenation and quality check. 999 </li> 916 1000 917 1001 <li>Configuration File 'RTK.bnc'<br> 918 Purpose: Feed a serially connected receiver with 919 observations from a nearby reference station for conventional RTK. The stream is 920 scanned for RTCM messages. Message type numbers and latencies of incoming 921 observations are reported in BNC's logfile. 922 </li><br> 1002 Purpose: Feed a serially connected receiver with observations from a nearby reference station for conventional RTK. 1003 The stream is scanned for RTCM messages. Message type numbers and latencies of incoming observations are reported in BNC's logfile. 1004 </li> 923 1005 924 1006 <li>Configuration File 'FeedEngine.bnc'<br> 925 Purpose: Feed a real-time GNSS engine with 926 observations from remote reference stations. The configuration pulls a single 927 stream from an Ntrip Broadcaster. You could also pull 928 several streams from different casters. Incoming observations are decoded, 929 synchronized, output through a local IP port and also saved into a file. Failure 930 and recovery thresholds are specified to inform about outages. 931 </li><br> 1007 Purpose: Feed a real-time GNSS engine with observations from remote reference stations. The configuration pulls a single 1008 stream from an Ntrip Broadcaster. You could also pull several streams from different casters. Incoming observations are decoded, 1009 synchronized, output through a local IP port and also saved into a file. Failure and recovery thresholds are specified 1010 to inform about outages. 1011 </li> 932 1012 933 1013 <li>Configuration File 'PPP.bnc'<br> 934 Purpose: Precise Point Positioning from 935 observations of a rover receiver. The configuration reads RTCM Version 3 936 observations, a Broadcast Ephemeris stream and a stream with Broadcast 937 Corrections. Positions are saved in the logfile. 938 </li><br> 1014 Purpose: Precise Point Positioning from observations of a rover receiver. The configuration reads RTCM Version 3 1015 observations, a Broadcast Ephemeris stream and a stream with Broadcast Corrections. Positions are saved in the logfile. 1016 </li> 939 1017 940 1018 <li>Configuration File 'PPPNet.bnc'<br> 941 Purpose: Precise 942 Point Positioning for several rovers or receivers from an entire network of 943 reference stations in one BNC job. The possible maximum number of PPP solutions 944 per job depends on the processing power of the hosting computer. This example 945 configuration reads two RTCM Version 3 observation streams, a Broadcast 946 Ephemeris stream and a stream with Broadcast Corrections. PPP Results for the 947 two stations are saved in PPP logfiles. 948 </li><br> 1019 Purpose: Precise Point Positioning for several rovers or receivers from an entire network of reference stations in one 1020 BNC job. The possible maximum number of PPP solutions per job depends on the processing power of the hosting computer. 1021 This example configuration reads two RTCM Version 3 observation streams, a Broadcast Ephemeris stream and a stream 1022 with Broadcast Corrections. PPP Results for the two stations are saved in PPP logfiles. 1023 </li> 949 1024 950 1025 <li>Configuration File 'PPPQuickStart.bnc'<br> 951 Purpose: Precise Point Positioning in Quick-Start 952 mode from observations of a static receiver with precisely known position. The 953 configuration reads RTCM Version 3 observations, Broadcast Corrections and a 954 Broadcast Ephemeris stream. Positions are saved in NMEA format on disc. 955 They are also output through IP port for real-time visualization with tools 1026 Purpose: Precise Point Positioning in Quick-Start mode from observations of a static receiver with precisely known 1027 position. The configuration reads RTCM Version 3 observations, Broadcast Corrections and a Broadcast Ephemeris stream. 1028 Positions are saved in NMEA format on disc. They are also output through IP port for real-time visualization with tools 956 1029 like RTKPLOT. Positions are saved in the logfile. 957 </li> <br>1030 </li> 958 1031 959 1032 <li>Configuration File 'PPPPostProc.bnc'<br> … … 964 1037 logfile and contains coordinates derived over time following the 965 1038 implemented PPP filter algorithm. 966 </li> <br>1039 </li> 967 1040 968 1041 <li>Configuration File 'PPPGoogleMaps.bnc'<br> … … 973 1046 this is not a real-time application, it requires the BNC host to be connected 974 1047 to the Internet. Specify a computation speed, then hit button 'Open Map' 975 to open the track map, then hit 'Start' to visualize receiver positions 976 on top of GM/OSM maps. 977 </li><br> 1048 to open the track map, then hit 'Start' to visualize receiver positions on top of GM/OSM maps. 1049 </li> 978 1050 979 1051 <li>Configuration File 'SPPQuickStartGal.bnc'<br> 980 1052 Purpose: Single Point Positioning in Quick-Start mode from observations of a static 981 1053 receiver with quite precisely known position. 982 The configuration uses GPS, GLONASS and Galileo observations and a Broadcast 983 Ephemeris stream. 984 </li><br> 1054 The configuration uses GPS, GLONASS and Galileo observations and a Broadcast Ephemeris stream. 1055 </li> 985 1056 986 1057 <li>Configuration File 'SaveSp3.bnc'<br> … … 990 1061 producing SP3 requires an ANTEX file because SP3 file content should be 991 1062 referred to CoM. 992 </li> <br>1063 </li> 993 1064 994 1065 <li>Configuration File 'Sp3ETRF2000PPP.bnc'<br> … … 1000 1071 precisely known ETRF2000 position allows comparing an 'INTERNAL' PPP solution 1001 1072 with a known ETRF2000 reference coordinate. 1002 </li> <br>1073 </li> 1003 1074 1004 1075 <li>Configuration File 'Upload.bnc'<br> … … 1011 1082 Antenna Phase Center (APC) and reference system IGS14. Orbits are saved on disk 1012 1083 in SP3 format and clocks are saved in Clock RINEX format. 1013 </li> <br>1084 </li> 1014 1085 1015 1086 <li>Configuration File 'Combi.bnc'<br> … … 1021 1092 Center of Mass (CoM). Its reference system is IGS14. Orbits are saved in SP3 1022 1093 format (referred to CoM) and clocks in Clock RINEX format. 1023 </li> <br>1094 </li> 1024 1095 1025 1096 <li>Configuration File 'CombiPPP.bnc'<br> … … 1029 1100 coordinates. This allows a continuous quality check of the combination product 1030 1101 through observing coordinate displacements. 1031 </li> <br>1102 </li> 1032 1103 1033 1104 <li>Configuration File 'UploadEph.bnc'<br> … … 1036 1107 encoded to RTCM Version 3 format and uploaded for the purpose of providing 1037 1108 a Broadcast Ephemeris stream with an update rate of 5 seconds. 1038 </li> <br>1109 </li> 1039 1110 1040 1111 <li>Configuration File 'CompareSp3.bnc'<br> … … 1043 1114 satellite R18 are excluded from this comparison. Comparison results are saved 1044 1115 in a logfile. 1045 </li> <br>1116 </li> 1046 1117 1047 1118 <li>Configuration File 'Empty.bnc'<br> … … 1052 1123 </ol> 1053 1124 <b>(B) Working with Command Line configuration options</b><br><br> 1054 The following configuration examples make use of BNC's 'Command Line Interface' (CLI). Configuration options are exclusively specified via command line. No configuration file is used. Examples are provided as shell scripts for a Linux system. They call BNC in 'no window' batch mode (command line option -nw). The scripts expect 'Example_Configs' to be the current working directory. 1125 The following configuration examples make use of BNC's 'Command Line Interface' (CLI). Configuration options are 1126 exclusively specified via command line. No configuration file is used. Examples are provided as shell scripts 1127 for a Linux system. They call BNC in 'no window' batch mode (command line option -nw). The scripts expect 1128 'Example_Configs' to be the current working directory. 1055 1129 1056 1130 <ol start="22"> … … 1060 1134 'Xvfb' is operated while producing plot files in PNG format. BNC is offline. All 1061 1135 results are saved on disk. 1062 </li> <br>1136 </li> 1063 1137 1064 1138 <li>Shell Script 'RinexConcat.sh'<br> … … 1066 1140 several RINEX Version 3 files to produce one compiled file and edit the marker 1067 1141 name in the file header. The sampling interval is set to 30 seconds. 1068 </li> <br>1142 </li> 1069 1143 1070 1144 <li>Shell Script 'RinexEph.sh'<br> … … 1073 1147 pulls a RTCM Version 3 stream with Broadcast Ephemeris coming from the 1074 1148 real-time EUREF and IGS networks and saves hourly RINEX Version 3 Navigation 1075 files. BNC runs online until it's terminated after 10 seconds. See 1076 <u>http://igs.bkg.bund.de/ntrip/ephemeris</u> for further real-time Broadcast 1077 Ephemeris resources. 1078 </li><br> 1149 files. BNC runs online until it's terminated after 10 seconds. See <a href="http://igs.bkg.bund.de/ntrip/ephemeris" 1150 target="_blank">http://igs.bkg.bund.de/ntrip/ephemeris</a> for further real-time Broadcast Ephemeris resources. 1151 </li> 1079 1152 1080 1153 <li>Shell Script 'ScanLate.sh'<br> … … 1083 1156 reported every 10 seconds. BNC runs online until it's terminated after 20 1084 1157 seconds. 1085 </li> <br>1158 </li> 1086 1159 1087 1160 <li>Shell Script 'RinexObs.sh'<br> … … 1089 1162 streams to RINEX Observation files. The configuration pulls streams from two 1090 1163 Ntrip Broadcasters using Ntrip Version 1 to generate 15min 1Hz RINEX Version 3 1091 Observation files. See < u>http://igs.bkg.bund.de/ntrip/observations</u> for1164 Observation files. See <a href="http://igs.bkg.bund.de/ntrip/observations" target="_blank">http://igs.bkg.bund.de/ntrip/observations</a> for 1092 1165 observation stream resources. BNC runs online until it's terminated after 30 1093 1166 seconds. … … 1103 1176 </li> 1104 1177 </ol> 1105 1106 </p> 1107 1108 <p><h4>1.7 <a name="introLimit">Limitations</h4></p> 1178 </p> 1179 1180 <p><h4 id="introLimit">1.7 Limitations</h4></p> 1109 1181 <ul> 1110 1182 <li> 1111 In Qt-based desktop environments (like KDE) on Unix/Linux platforms it may happen that you experience a crash of BNC at startup even when running the program in the background using the '-nw' option. This is a known bug most likely resulting from an incompatibility of Qt libraries in the environment and in BNC. Entering the command 'unset SESSION_MANAGER' before running BNC may help as a work-around. 1183 In Qt-based desktop environments (like KDE) on Unix/Linux platforms it may happen that you experience a crash of BNC at startup 1184 even when running the program in the background using the '-nw' option. This is a known bug most likely resulting 1185 from an incompatibility of Qt libraries in the environment and in BNC. Entering the command 'unset SESSION_MANAGER' 1186 before running BNC may help as a work-around. 1112 1187 </li> 1113 1188 … … 1122 1197 </li> 1123 1198 <li> 1124 EUREF as well as IGS adhere to an open data policy. Streams are made available through Ntrip Broadcasters at <u>www.euref-ip.net</u>, <u>www.igs-ip.net</u>, <u>products.igs-ip.net</u>, and <u>mgex.igs-ip.net</u> free of charge to anyone for any purpose. There is no indication up until now how many users will need to be supported simultaneously. The given situation may develop in such a way that it might become difficult to serve all registered users at the same times. In cases where limited resources on the Ntrip Broadcaster side (software restrictions, bandwidth limitation etc.) dictates, first priority in stream provision will be given to stream providers followed by re-broadcasting activities and real-time analysis centers while access to others might be temporarily denied. 1199 EUREF as well as IGS adhere to an open data policy. Streams are made available through Ntrip Broadcasters at 1200 <a href="http://www.euref-ip.net/home" target="_blank">http://www.euref-ip.net/home</a>, 1201 <a href="http://www.igs-ip.net/home" target="_blank">http://www.igs-ip.net/home</a>, 1202 <a href="http://products.igs-ip.net/home" target="_blank">http://products.igs-ip.net/home</a> and 1203 <a href="http://mgex.igs-ip.net/home" target="_blank">http://mgex.igs-ip.net/home</a> 1204 free of charge to anyone for any purpose. There is no indication up until now how many users will need to be supported simultaneously. The given situation may develop in such a way that it might become difficult to serve all registered users at the same times. In cases where limited resources on the Ntrip Broadcaster side (software restrictions, bandwidth limitation etc.) dictates, first priority in stream provision will be given to stream providers followed by re-broadcasting activities and real-time analysis centers while access to others might be temporarily denied. 1125 1205 </li> 1126 1206 <li> … … 1132 1212 </ul> 1133 1213 1134 <p><h4 >1.8 <a name="introLBack">Looking Back</h4></p>1214 <p><h4 id="introLBack">Looking Back</h4></p> 1135 1215 <p> 1136 1216 A basic function of BNC is streaming GNSS data over the open Internet using the Ntrip transport protocol. Employing IP streaming for satellite positioning goes back to the beginning of our century. Wolfgang Rupprecht has been the first person who developed TCP/IP server software under the acronym of DGPS-IP (Rupprecht 2000) and published it under GNU General Public License (GPL). While connecting marine beacon receivers to PCs with permanent access to the Internet he transmitted DGPS corrections in an RTCM format to support Differential GPS positioning over North America. With approximately 200 bits/sec the bandwidth requirement for disseminating beacon data was comparatively small. Each stream was transmitted over a unique combination of IP address and port. Websites informed about existing streams and corresponding receiver positions. … … 1143 1223 </p> 1144 1224 <p> 1145 With the advent of Ntrip as an open streaming standard, BKG's interest turned towards taking advantage from free real-time access to GNSS observations. International Associations such as the IAG Reference Frame Sub Commissions for Africa (AFREF), Asia & Pacific (APREF), Europe (EUREF), North America (NAREF) Latin America & Caribbean (SIRGAS), and the International GNSS Service (IGS) maintain continental or even global GNSS networks with the majority of modern receivers supporting Ntrip stream upload. Through operating BKG's NtripCaster software, these networks became extremely valuable sources of real-time GNSS information. In 2005, this was the starting point for developing the 'BKG Ntrip Client' (BNC) as a multi-stream Open Source NtripClient that allows pulling hundreds of streams simultaneously from any number of NtripCaster installations world-wide. Decoding incoming RTCM streams and output observations epoch by epoch via IP port to feed a real-time GNSS network engine became BNC's first and foremost ability (Weber and Mervart 2009). Converting decoded streams to short high-rate RINEX files to assist near real-time applications became a welcome by-product right from the start of this development. 1225 With the advent of Ntrip as an open streaming standard, BKG's interest turned towards taking advantage from free 1226 real-time access to GNSS observations. International Associations such as the IAG Reference Frame Sub Commissions 1227 for Africa (AFREF), Asia & Pacific (APREF), Europe (EUREF), North America (NAREF) Latin America & Caribbean (SIRGAS), 1228 and the International GNSS Service (IGS) maintain continental or even global GNSS networks with the majority of modern 1229 receivers supporting Ntrip stream upload. Through operating BKG's NtripCaster software, these networks became extremely 1230 valuable sources of real-time GNSS information. In 2005, this was the starting point for developing the 1231 'BKG Ntrip Client' (BNC) as a multi-stream Open Source NtripClient that allows pulling hundreds of streams 1232 simultaneously from any number of NtripCaster installations world-wide. Decoding incoming RTCM streams and output 1233 observations epoch by epoch via IP port to feed a real-time GNSS network engine became BNC's first and foremost 1234 ability (Weber and Mervart 2009). Converting decoded streams to short high-rate RINEX files to assist near real-time 1235 applications became a welcome by-product right from the start of this development. 1146 1236 </p> 1147 1237 <p> … … 1156 1246 </p> 1157 1247 <p> 1158 In February 2014 the overall responsibility at BKG for the concept and realization of BNC was handed over from Georg Weber to Axel R ülke. He is in charge now for guiding the application and further evolution of the software in view of appearing new satellite navigation systems and services.1159 </p> 1160 1161 <p><h3 >2. <a name="optsettings">Settings Details</h3></p>1248 In February 2014 the overall responsibility at BKG for the concept and realization of BNC was handed over from Georg Weber to Axel Rülke. He is in charge now for guiding the application and further evolution of the software in view of appearing new satellite navigation systems and services. 1249 </p> 1250 1251 <p><h3 id="optsettings">2. Settings Details</h3></p> 1162 1252 <p> 1163 1253 The general documentation approach is to create a separate chapter for each processing option in a sequence which follows the layout of BNC's Graphical User Interface (GUI). The advantage is that searching for help by means of the document's Table of Contents (TOC) is quite convenient. A rather comprehensive number of TOC entries is the accepted downside of this approach. … … 1167 1257 </p> 1168 1258 1169 <p><h4 >2.1 <a name="topmenu">Top Menu Bar</h4></p>1259 <p><h4 id="topmenu">2.1 Top Menu Bar</h4></p> 1170 1260 <p> 1171 1261 The top menu bar allows selecting a font for the BNC windows, save configured options, or quit the program execution. It also provides access to the program's documentation. 1172 1262 </p> 1173 1263 1174 <p><h4 >2.1.1 <a name="file">File</h4></p>1264 <p><h4 id="file">2.1.1 File</h4></p> 1175 1265 1176 1266 <p> 1177 1267 The 'File' button lets you 1178 1268 <ul> 1179 <li> Select an appropriate font.<br> 1180 Use smaller font size if the BNC main window exceeds the size of your screen. 1181 </li> 1182 <li> Reread and save selected options in configuration file.<br> 1183 When using 'Reread & Save Configuration' while BNC is already processing data, some configuration options become immediately effective on-the-fly without interrupting uninvolved threads while all of them are saved on disk. See section 'Reread Configuration' for a list of on-the-fly changeable configuration options. 1184 </li> 1185 <li> Quit the BNC program. 1186 </li> 1187 </ul> 1188 </p> 1189 1190 <p><h4>2.1.2 <a name="help">Help</h4></p> 1269 <li>Select an appropriate font.<br> 1270 Use smaller font size if the BNC main window exceeds the size of your screen.</li> 1271 <li>Reread and save selected options in configuration file.<br> 1272 When using 'Reread & Save Configuration' while BNC is already processing data, some configuration options 1273 become immediately effective on-the-fly without interrupting uninvolved threads while all of them are saved on 1274 disk. See section 'Reread Configuration' for a list of on-the-fly changeable configuration options.</li> 1275 <li>Quit the BNC program.</li> 1276 </ul> 1277 </p> 1278 1279 <p><h4 id="help">2.1.2 Help</h4></p> 1191 1280 1192 1281 <p> 1193 1282 The 'Help' button provides access to 1194 1283 <ul> 1195 <li> 1196 Help contents.<br> 1197 You may keep the 'Help Contents' window open while configuring BNC. 1198 </li> 1199 <li> 1200 A 'Flow Chart' showing BNC linked to a real-time GNSS network engine such as RTNET. 1201 </li> 1202 <li> 1203 General information about BNC.<br> 1204 Close the 'About BNC' window to continue working with BNC. 1205 </li> 1206 </ul> 1207 </p> 1208 1209 <p><h4>2.2 <a name="network">Network</h4></p> 1284 <li>Help contents.<br>You may keep the 'Help Contents' window open while configuring BNC.</li> 1285 <li>A 'Flow Chart' showing BNC linked to a real-time GNSS network engine such as RTNET.</li> 1286 <li>General information about BNC.<br>Close the 'About BNC' window to continue working with BNC.</li> 1287 </ul> 1288 </p> 1289 1290 <p><h4 id="network">2.2 Network</h4></p> 1210 1291 <p> 1211 1292 You may need to specify a proxy when running BNC in a protected network. You may also like to use the Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL) cryptographic protocols for secure Ntrip communication over the Internet. 1212 1293 </p> 1213 <p><h4 >2.2.1 <a name="proxy">Proxy - Usage in a protected LAN</h4></p>1294 <p><h4 id="proxy">2.2.1 Proxy - Usage in a protected LAN</h4></p> 1214 1295 <p> 1215 1296 If you are running BNC within a protected Local Area Network (LAN), you might need to use a proxy server to access the Internet. Enter your proxy server IP and port number in case one is operated in front of BNC. If you do not know the IP and port of your proxy server, check the proxy server settings in your Internet browser or ask your network administrator.</p> … … 1218 1299 </p> 1219 1300 1220 <p><h4 >2.2.2 <a name="ssl">SSL - Transport Layer Security</h4></p>1301 <p><h4 id="ssl">2.2.2 SSL - Transport Layer Security</h4></p> 1221 1302 <p>Communication with an Ntrip Broadcaster over Secure Sockets Layer (SSL) as well as the download of RINEX skeleton files when available from HTTPS websites requires the exchange of client and/or server certificates. Specify the path to a directory where you save certificates on your system. You may like to check out <u>http://software.rtcm-ntrip.org/wiki/Certificates</u> for a list of known Ntrip Server certificates. You may also just try communication via SSL to check out whether this is supported by the involved Ntrip Broadcaster. </p> 1222 1303 <p>SSL communication may involve queries coming from the Ntrip Broadcaster or from a HTTPS website hosting RINEX skeletons. Such a query could show up under BNC's 'Log' tab especially when self-signed SSL certificates are used. Example: … … 1239 1320 1240 1321 <p><img src="IMG/screenshot40.png"/></p> 1241 <p> <u>Figure 7:</u>BNC's 'Network' panel configured to ignore eventually occurring SSL error messages</p>1242 1243 <p><h4 >2.3 <a name="general">General</h4></p>1322 <p>Figure 7: BNC's 'Network' panel configured to ignore eventually occurring SSL error messages</p> 1323 1324 <p><h4 id="general">2.3 General</h4></p> 1244 1325 <p> 1245 1326 The following defines general settings for BNC's logfile, file handling, reconfiguration on-the-fly, and auto-start. 1246 1327 </p> 1247 1328 1248 <p><h4 >2.3.1 <a name="genlog">Logfile - optional</h4></p>1329 <p><h4 id="genlog">2.3.1 Logfile - optional</h4></p> 1249 1330 <p> 1250 1331 Records of BNC's activities are shown in the 'Log' tab on the bottom of the main window. These logs can be saved into a file when a valid path is specified in the 'Logfile (full path)' field. The logfile name will automatically be extended by a string '_YYMMDD' for the current date. This leads to series of daily logfiles when running BNC continuously. Message logs cover the communication status between BNC and the Ntrip Broadcaster as well as problems that may occur in the communication link, stream availability, stream delay, stream conversion etc. All times are given in UTC. The default value for 'Logfile (full path)' is an empty option field, meaning that BNC logs will not be saved into a file. … … 1274 1355 </pre> 1275 1356 1276 <p><h4 >2.3.2 <a name="genapp">Append Files - optional</h4></p>1357 <p><h4 id="genapp">2.3.2 Append Files - optional</h4></p> 1277 1358 <p> 1278 1359 When BNC is started, new files are created by default and existing files with the same name will be overwritten. However, users might want to append existing files following a restart of BNC, a system crash or a BNC crash. Tick 'Append files' to continue with existing files and keep what has been recorded so far. Note that option 'Append files' affects all types of files created by BNC. 1279 1360 </p> 1280 1361 1281 <p><h4 >2.3.3 <a name="genconf">Reread Configuration - optional</h4></p>1362 <p><h4 id="genconf">2.3.3 Reread Configuration - optional</h4></p> 1282 1363 <p> 1283 1364 When operating BNC online in 'no window' mode (command line option -nw), some configuration options can nevertheless be changed on-the-fly without interrupting the running process. For that, you force the program to reread parts of its configuration in pre-defined intervals from disk. Select '1 min', '1 hour', or '1 day' to let BNC reread on-the-fly changeable configuration options every full minute, hour, or day. This lets in-between edited options become effective without interrupting uninvolved threads. … … 1289 1370 <p> 1290 1371 <ul> 1291 <li>'mountPoints' to change the selection of streams to be processed, see section 'Streams';</li>1292 <li>'outWait' to change the 'Wait for full obs epoch' option, see section 'Feed Engine';</li>1293 <li>'outSampl' to change the 'Sampling' option, see section 'Feed Engine';</li>1294 <li>'outFile' to change the 'File' name where synchronized observations are saved in plain ASCII format.</li>1295 </ul> 1296 </p> 1297 <p> 1298 </p> 1299 1300 <p><h4 >2.3.4 <a name="genstart">Auto Start - optional</h4></p>1372 <li>'mountPoints' to change the selection of streams to be processed, see section 'Streams'</li> 1373 <li>'outWait' to change the 'Wait for full obs epoch' option, see section 'Feed Engine'</li> 1374 <li>'outSampl' to change the 'Sampling' option, see section 'Feed Engine'</li> 1375 <li>'outFile' to change the 'File' name where synchronized observations are saved in plain ASCII format</li> 1376 </ul> 1377 </p> 1378 <p> 1379 </p> 1380 1381 <p><h4 id="genstart">2.3.4 Auto Start - optional</h4></p> 1301 1382 <p> 1302 1383 You may like to auto-start BNC at startup time in window mode with pre-assigned configuration options. This may be required e.g. immediately after booting your system. Tick 'Auto start' to supersede the usage of the 'Start' button. Make sure that you maintain a link to BNC for that in your Autostart directory (Windows systems) or call BNC in a script below directory /etc/init.d (Unix/Linux/Mac OS X systems). … … 1306 1387 </p> 1307 1388 1308 <p><h4 >2.3.5 <a name="rawout">Raw Output File - optional</h4></p>1389 <p><h4 id="rawout">2.3.5 Raw Output File - optional</h4></p> 1309 1390 <p> 1310 1391 BNC can save all data coming in through various streams in one daily file. The information is recorded in the specified 'Raw output file' in the received order and format. This feature allows a BNC user to run the PPP option offline with observations, Broadcast Corrections, and Broadcast Ephemeris being read from a previously saved file. It supports the offline repetition of a real-time situation for debugging purposes (Record & Replay functionality) and is not meant for post processing. … … 1323 1404 </p> 1324 1405 1325 <p><h4 >2.4 <a name="rinex">RINEX Observations</h4></p>1406 <p><h4 id="rinex">2.4 RINEX Observations</h4></p> 1326 1407 <p> 1327 1408 Observations will be converted to RINEX if they come in either RTCM Version 2 or RTCM Version 3 format. Depending on the RINEX version and incoming RTCM message types, files generated by BNC may contain data from GPS, GLONASS, Galileo, SBAS, QZSS, and/or BDS (BeiDou). In case an observation type is listed in the RINEX header but the corresponding observation is unavailable, its value is set to zero '0.000' or left blank. Note that the 'RINEX TYPE' field in the RINEX Version 3 Observation file header is always set to 'M(MIXED)' or 'Mixed' even if the file only contains data from one system. … … 1349 1430 1350 1431 <p><img src="IMG/screenshot16.png"/></p> 1351 <p> <u>Figure 8:</u>BNC translating incoming observation streams to 15 min RINEX Version 3 Observation files</p>1352 1353 <p><h4 >2.4.1 <a name="rnxname">RINEX Filenames</h4></p>1432 <p>Figure 8: BNC translating incoming observation streams to 15 min RINEX Version 3 Observation files</p> 1433 1434 <p><h4 id="rnxname">2.4.1 RINEX Filenames</h4></p> 1354 1435 <p> 1355 1436 The default for RINEX filenames in BNC follows the convention of RINEX Version 2. However, the software provides options to alternatively follow the filename convention of RINEX Version 3. RINEX Version 2 filenames are derived by BNC from the first 4 characters of the corresponding stream's mountpoint (4-Char Station ID). For example, data from mountpoints FRANKFURT and WETTZELL will have hourly RINEX Observation files named</p> … … 1388 1469 <p> 1389 1470 <table> 1390 <tr><td><b>Filename Parameter </b></td><td><b> # Char.</b></td><td><b> Meaning</b></td></tr>1391 <tr><td>Name</td><td> 9</td><td> Site, station and country code</td></tr>1392 <tr><td>S</td><td> 1</td><td> Data source</td></tr>1393 <tr><td>Start Time</td><td> 11</td><td> YYYYDDDHHMM</td></tr>1394 <tr><td>Period</td><td> 3</td><td> File period</td></tr>1395 <tr><td>Obs. Freq.</td><td> 3</td><td> Observation frequency</td></tr>1396 <tr><td>Content</td><td> 2</td><td> Content type</td></tr>1397 <tr><td>Format</td><td> 3</td><td> File format</td></tr>1398 <tr><td>Compression</td><td> 2-3</td><td> Compression method (optional)</td></tr>1471 <tr><td><b>Filename Parameter </b></td><td><b> # Char.</b></td><td><b> Meaning</b></td></tr> 1472 <tr><td>Name</td><td> 9</td><td> Site, station and country code</td></tr> 1473 <tr><td>S</td><td> 1</td><td> Data source</td></tr> 1474 <tr><td>Start Time</td><td> 11</td><td> YYYYDDDHHMM</td></tr> 1475 <tr><td>Period</td><td> 3</td><td> File period</td></tr> 1476 <tr><td>Obs. Freq.</td><td> 3</td><td> Observation frequency</td></tr> 1477 <tr><td>Content</td><td> 2</td><td> Content type</td></tr> 1478 <tr><td>Format</td><td> 3</td><td> File format</td></tr> 1479 <tr><td>Compression</td><td> 2-3</td><td> Compression method (optional)</td></tr> 1399 1480 </table> 1400 1481 </p> … … 1409 1490 </p> 1410 1491 1411 <p><h4 >2.4.2 <a name="rnxdir">Directory - optional</h4></p>1492 <p><h4 id="rnxdir">2.4.2 Directory - optional</h4></p> 1412 1493 <p> 1413 1494 Here you can specify the path to where the RINEX Observation files will be stored. If the specified directory does not exist, BNC will not create RINEX Observation files. Default value for 'Directory' is an empty option field, meaning that no RINEX Observation files will be written. 1414 1495 </p> 1415 1496 1416 <p><h4 >2.4.3 <a name="rnxinterval">File Interval - mandatory if 'Directory' is set</h4></p>1497 <p><h4 id="rnxinterval">2.4.3 File Interval - mandatory if 'Directory' is set</h4></p> 1417 1498 <p> 1418 1499 Select the length of the RINEX Observation file to be generated. The default value is 15 minutes. 1419 1500 </p> 1420 1501 1421 <p><h4 >2.4.4 <a name="rnxsample">Sampling - mandatory if 'Directory' is set </h4></p>1502 <p><h4 id="rnxsample">2.4.4 Sampling - mandatory if 'Directory' is set </h4></p> 1422 1503 <p> 1423 1504 Select the RINEX Observation sampling interval in seconds. A value of zero '0' tells BNC to store all received epochs into RINEX. This is the default value. 1424 1505 </p> 1425 1506 1426 <p><h4>2.4.5 <a name="rnxskl">Skeleton Extension - optional</h4></p> 1427 <p> 1428 Whenever BNC starts to generate RINEX Observation files (and then once every day at midnight), it first tries to retrieve information needed for RINEX headers from so-called public RINEX header skeleton files which are derived from sitelogs. An HTTP or HTTPS link to a directory containing these skeleton files may be available through data field number 7 of the affected NET record in the source-table. See <u>http://www.epncb.oma.be:80/stations/log/skl/brus.skl</u> for an example of a public RINEX header skeleton file for EPN station Brussels. Note that the download of RINEX skeleton files from HTTPS websites requires the exchange of client and/or server certificates. Clarify 'SSL' options offered through panel 'Network' for details. 1507 <p><h4 id="rnxskl">2.4.5 Skeleton Extension - optional</h4></p> 1508 <p> 1509 Whenever BNC starts to generate RINEX Observation files (and then once every day at midnight), it first tries to 1510 retrieve information needed for RINEX headers from so-called public RINEX header skeleton files which are derived 1511 from sitelogs. An HTTP or HTTPS link to a directory containing these skeleton files may be available through data 1512 field number 7 of the affected NET record in the source-table. 1513 See <a href="http://www.epncb.oma.be:80/stations/log/skl/brus.skl" target="_blank">http://www.epncb.oma.be:80/stations/log/skl/brus.skl</a> 1514 for an example of a public RINEX header skeleton file for EPN station Brussels. Note that the download of RINEX 1515 skeleton files from HTTPS websites requires the exchange of client and/or server certificates. 1516 Clarify 'SSL' options offered through panel 'Network' for details. 1429 1517 </p> 1430 1518 <p> … … 1445 1533 Note the following regulations regarding personal RINEX header skeleton files: 1446 1534 <ul> 1447 <li>If such a file exists in the 'RINEX directory', the corresponding public RINEX header skeleton file is ignored. The RINEX header is generated solely from the content of the personal skeleton.</li> 1448 <li>Personal skeletons should contain a complete first header record of type 1449 <br>- RINEX VERSION / TYPE<br></li> 1450 <li>They should then contain an empty header record of type 1451 <br>- PGM / RUN BY / DATE<br> 1452 BNC will complete this line and include it in the RINEX file header.</li> 1453 <li>They should further contain complete header records of type 1454 <br>- MARKER NAME 1455 <br>- OBSERVER / AGENCY 1456 <br>- REC # / TYPE / VERS 1457 <br>- ANT # / TYPE 1458 <br>- APPROX POSITION XYZ 1459 <br>- ANTENNA: DELTA H/E/N 1460 <br>- WAVELENGTH FACT L1/2 (RINEX Version 2) 1461 <br>- SYS / # / OBS TYPES (for RINEX Version 3 files, will be ignored in Version 2 files)</li> 1462 <li>They may contain any other optional complete header record as defined in the RINEX documentation.</li> 1463 <li>They should also contain an empty header record of type 1464 <br>- # / TYPES OF OBSERV (only RINEX Version 2, will be ignored when in Version 3 files) 1465 <br>BNC will include these lines in the final RINEX file header together with an additional 1466 <br>- COMMENT 1467 <br>line describing the source of the stream.</li> 1468 <li>They should finally contain an empty last header record of type 1469 <br>- END OF HEADER</li> 1470 1471 <li>They must not contain a header record of type 1472 <br>- TIME OF FIRST OBS</li> 1535 <li>If such a file exists in the 'RINEX directory', the corresponding public RINEX header skeleton file is ignored. The RINEX header is generated solely from the content of the personal skeleton.</li> 1536 <li>Personal skeletons should contain a complete first header record of type<br> 1537 - RINEX VERSION / TYPE<br></li> 1538 <li>They should then contain an empty header record of type 1539 <br>- PGM / RUN BY / DATE<br>BNC will complete this line and include it in the RINEX file header.</li> 1540 <li>They should further contain complete header records of type 1541 <br>- MARKER NAME 1542 <br>- OBSERVER / AGENCY 1543 <br>- REC # / TYPE / VERS 1544 <br>- ANT # / TYPE 1545 <br>- APPROX POSITION XYZ 1546 <br>- ANTENNA: DELTA H/E/N 1547 <br>- WAVELENGTH FACT L1/2 (RINEX Version 2) 1548 <br>- SYS / # / OBS TYPES (for RINEX Version 3 files, will be ignored in Version 2 files)</li> 1549 <li>They may contain any other optional complete header record as defined in the RINEX documentation.</li> 1550 <li>They should also contain an empty header record of type 1551 <br>- # / TYPES OF OBSERV (only RINEX Version 2, will be ignored when in Version 3 files) 1552 <br>BNC will include these lines in the final RINEX file header together with an additional 1553 <br>- COMMENT 1554 <br>line describing the source of the stream.</li> 1555 <li>They should finally contain an empty last header record of type 1556 <br>- END OF HEADER</li> 1557 <li>They must not contain a header record of type<br>- TIME OF FIRST OBS</li> 1473 1558 1474 1559 </ul> … … 1503 1588 <p> 1504 1589 1505 <p><h4 >2.4.6 <a name="sklMandat">Skeleton Mandatory - optional</h4></p>1590 <p><h4 id="sklMandat">2.4.6 Skeleton Mandatory - optional</h4></p> 1506 1591 <p> 1507 1592 Tick check box 'Skeleton mandatory' in case you want that RINEX files are only produced when skeleton files are available for BNC. If no skeleton file is available for a particular source, then no RINEX observation file will be produced from the affected stream. … … 1510 1595 </p> 1511 1596 1512 <p><h4 >2.4.7 <a name="rnxscript">Script - optional</h4></p>1597 <p><h4 id="rnxscript">2.4.7 Script - optional</h4></p> 1513 1598 <p> 1514 1599 Whenever a RINEX Observation file is saved, you might want to compress, copy or upload it immediately via FTP. BNC allows you to execute a script/batch file to carry out these operations. To do that, specify the full path to such script/batch file. BNC will pass the RINEX Observation file path to the script as a command line parameter (%1 on Windows systems, $1 on Unix/Linux/Mac OS X systems). … … 1521 1606 </p> 1522 1607 1523 <p><h4 >2.4.8 <a name="rnxvers2">Version 2 - optional</h4></p>1608 <p><h4 id="rnxvers2">2.4.8 Version 2 - optional</h4></p> 1524 1609 <p> 1525 1610 GNSS observation data are generally hold available within BNC according to attributes as defined in RINEX Version 3. These attributes describe the tracking mode or channel when generating the observation signals. Capital letters specifying signal generation attributes are A, B, C, D, I, L, M, N, P, Q, S, W, X, Y, and Z, see RINEX Version 3 documentation. Although RINEX Version 3 with its signal generation attributes is the internal default processing format for BNC, there are two applications where the program is explicitly required to produce data files in RINEX Version 2 format: 1526 <ol type= 1>1611 <ol type="1"> 1527 1612 <li>When saving the content of incoming observation streams in RINEX Version 2 files as described in this section.</li> 1528 1613 <li>When editing or concatenating RINEX 3 files to save them in Version 2 format, see section on 'RINEX Editing & QC'.</li> … … 1557 1642 </p> 1558 1643 1559 <p><h4 >2.4.9 <a name="rnxvers3">Version 3 - optional</h4></p>1644 <p><h4 id="rnxvers3">2.4.9 Version 3 - optional</h4></p> 1560 1645 <p> 1561 1646 The default format for RINEX Observation files is RINEX Version 2.11. Select RINEX 'Version 3' if you would like to save RTCM Version 3 observation streams in RINEX Version 3.03 format. … … 1566 1651 </p> 1567 1652 1568 <p><h4 >2.4.10 <a name="rnxvers3File">Version 3 Filenames - optional</h4></p>1653 <p><h4 id="rnxvers3File">2.4.10 Version 3 Filenames - optional</h4></p> 1569 1654 <p> 1570 1655 Tick check box 'Version 3 filenames' to let BNC create so-called extended filenames following the RINEX Version 3 standard. … … 1573 1658 </p> 1574 1659 1575 <p><h4 >2.5 <a name="ephemeris">RINEX Ephemeris</h4></p>1660 <p><h4 id="ephemeris">2.5 RINEX Ephemeris</h4></p> 1576 1661 <p> 1577 1662 Broadcast Ephemeris can be saved in RINEX Navigation files when received e.g. via RTCM Version 3 message types 1019 (GPS) or 1020 (GLONASS) or 1044 (QZSS) or 1043 (SBAS) or 1045 and 1046 (Galileo) or 63 (BDS/BeiDou, tentative message number). The filename convention follows the details given in section 'RINEX Filenames' except that the first four characters are 'BRDC'. … … 1598 1683 </p> 1599 1684 1600 <p><h4 >2.5.1 <a name="ephdir">Directory - optional</h4></p>1685 <p><h4 id="ephdir">2.5.1 Directory - optional</h4></p> 1601 1686 <p> 1602 1687 Specify a path for saving Broadcast Ephemeris data in RINEX Navigation files. If the specified directory does not exist, BNC will not create RINEX Navigation files. Default value for Ephemeris 'Directory' is an empty option field, meaning that no RINEX Navigation files will be created. 1603 1688 </p> 1604 1689 1605 <p><h4 >2.5.2 <a name="ephint">Interval - mandatory if 'Directory' is set</h4></p>1690 <p><h4 id="ephint">2.5.2 Interval - mandatory if 'Directory' is set</h4></p> 1606 1691 <p> 1607 1692 Select the length of RINEX Navigation files. The default value is '1 day'. 1608 1693 </p> 1609 1694 1610 <p><h4 >2.5.3 <a name="ephport">Port - optional</h4></p>1695 <p><h4 id="ephport">2.5.3 Port - optional</h4></p> 1611 1696 <p> 1612 1697 BNC can output Broadcast Ephemeris in RINEX Version 3 format on your local host (IP 127.0.0.1) through an IP 'Port'. Specify an IP port number to activate this function. The default is an empty option field, meaning that no ASCII ephemeris output via IP port is generated. … … 1616 1701 </p> 1617 1702 1618 <p><h4 >2.5.4 <a name="ephvers">Version - optional</h4></p>1703 <p><h4 id="ephvers">2.5.4 Version - optional</h4></p> 1619 1704 <p> 1620 1705 Default format for RINEX Navigation files containing Broadcast Ephemeris is RINEX Version 2.11. Select 'Version 3' if you want to save the ephemeris data in RINEX Version 3.03 format. … … 1624 1709 </p> 1625 1710 1626 <p><h4 >2.5.5 <a name="ephversFile">Version 3 Filenames - optional</h4></p>1711 <p><h4 id="ephversFile">2.5.5 Version 3 Filenames - optional</h4></p> 1627 1712 <p> 1628 1713 Tick check box 'Version 3 filenames' to let BNC create so-called extended filenames following the RINEX Version 3 standard. … … 1632 1717 1633 1718 <p><img src="IMG/screenshot42.png"/></p> 1634 <p> <u>Figure 9:</u>BNC converting Broadcast Ephemeris stream to RINEX Version 3 Navigation files</p>1635 1636 <p><h4 >2.6 <a name="reqc">RINEX Editing & QC</h4></p>1719 <p>Figure 9: BNC converting Broadcast Ephemeris stream to RINEX Version 3 Navigation files</p> 1720 1721 <p><h4 id="reqc">2.6 RINEX Editing & QC</h4></p> 1637 1722 <p> 1638 1723 Besides stream conversion from RTCM to RINEX, BNC allows editing RINEX files or concatenate their content. RINEX Observation and Navigation files can be handled. BNC can also carry out a RINEX file Quality Check. In summary and besides Stream <u><b>T</b></u>ranslation, this functionality in BNC covers 1639 1724 <ul> 1640 <li>File <u><b>E</b></u>diting and concatenation</li>1641 <li>File <u><b>Q</b></u>uality <u><b>C</b></u>heck</li>1642 <ul>1643 <li>Multipath analysis sky plots</li>1644 <li>Signal-to-noise ratio sky plots</li>1645 <li>Satellite availability plots</li>1646 <li>Satellite elevation plots</li>1647 <li>PDOP plots</li>1648 </ul>1725 <li>File <u><b>E</b></u>diting and concatenation</li> 1726 <li>File <u><b>Q</b></u>uality <u><b>C</b></u>heck</li> 1727 <ul> 1728 <li>Multipath analysis sky plots</li> 1729 <li>Signal-to-noise ratio sky plots</li> 1730 <li>Satellite availability plots</li> 1731 <li>Satellite elevation plots</li> 1732 <li>PDOP plots</li> 1733 </ul> 1649 1734 </ul> 1650 1735 and hence follows UNAVCO's famous TEQC program (see Estey and Meertens 1999). The remarkable thing about BNC in this context is that it supports RINEX Version 3 under GNU General Public License with full GUI support and graphics output. 1651 1736 </p> 1652 1737 1653 <p><h4 >2.6.1 <a name="reqcact">Action - optional</h4></p>1738 <p><h4 id="reqcact">2.6.1 Action - optional</h4></p> 1654 1739 <p>Select an action. Options are 'Edit/Concatenate' and 'Analyze'. 1655 1740 <ul> … … 1659 1744 </p> 1660 1745 1661 <p><h4 >2.6.2 <a name="reqcinp">Input Files - mandatory</h4></p>1746 <p><h4 id="reqcinp">2.6.2 Input Files - mandatory</h4></p> 1662 1747 <p> 1663 1748 Specify full path to input RINEX Observation file(s), and<br> … … 1671 1756 </p> 1672 1757 1673 <p><h4 >2.6.3 <a name="reqcout">Output Files - optional if 'Action' is set to 'Edit/Concatenate'</h4></p>1758 <p><h4 id="reqcout">2.6.3 Output Files - optional if 'Action' is set to 'Edit/Concatenate'</h4></p> 1674 1759 <p> 1675 1760 If 'Edit/Concatenate' is selected, specifying the full path to output RINEX Observation file(s) and specifying the full path to output RINEX Navigation file(s) is optional. Default are empty option fields, meaning that no RINEX files will be saved on disk. 1676 1761 </p> 1677 1762 1678 <p><h4 >2.6.4 <a name="reqclog">Logfile - optional</h4></p>1763 <p><h4 id="reqclog">2.6.4 Logfile - optional</h4></p> 1679 1764 <p> 1680 1765 Specify the name of a logfile to save information on RINEX file Editing/Concatenation or Analysis. Default is an empty option field, meaning that no logfile will be saved. … … 1896 1981 </p> 1897 1982 1898 <p><h4 >2.6.5 <a name="reqcplots">Plots for Signals - mandatory if 'Action' is set to 'Analyze'</h4></p>1983 <p><h4 id="reqcplots">2.6.5 Plots for Signals - mandatory if 'Action' is set to 'Analyze'</h4></p> 1899 1984 <p> 1900 1985 Multipath and signal-to-noise sky plots as well as plots for satellite availability, elevation and PDOP are produced per GNSS system and frequency with the multipath analysis based on CnC observation types (n = band / frequency). The 'Plots for signals' option lets you exactly specify the observation signals to be used for that and also enables the plot production. You can specify the navigation system (C = BDS, E = Galileo, G = GPS, J = QZSS, R = GLONASS, S = SBAS), the frequency, and the tracking mode or channel as defined in RINEX Version 3. Specifications for frequency and tracking mode or channel must be separated by ampersand character '&'. Specifications for each navigation systems must be separated by blank character ' '. The following string is an example for option field 'Plots of signals': … … 1914 1999 </p> 1915 2000 1916 <p><h4 >2.6.6 <a name="reqcdir">Directory for Plots - optional if 'Action' is set to 'Analyze'</h4></p>2001 <p><h4 id="reqcdir">2.6.6 Directory for Plots - optional if 'Action' is set to 'Analyze'</h4></p> 1917 2002 <p> 1918 2003 If 'Analyze' is selected, specifying the path to a directory where plot files will be saved is optional. Filenames will be composed from the RINEX input filename(s) plus suffix 'PNG' to indicate the plot file format in use. Default is an empty option field, meaning that plots will not be saved on disk. 1919 2004 </p> 1920 2005 1921 <p><h4 >2.6.7 <a name="reqcedit">Set Edit Options - mandatory if 'Action' is set to 'Edit/Concatenate'</h4></p>2006 <p><h4 id="reqcedit">2.6.7 Set Edit Options - mandatory if 'Action' is set to 'Edit/Concatenate'</h4></p> 1922 2007 <p>Once the 'Edit/Concatenate' action is selected, you have to 'Set Edit Options'. BNC lets you specify the RINEX version, a signal priority list when mapping RINEX Version 3 to Version 2, the sampling interval, begin and end of file, operator, observation types, comment lines, and marker, antenna, receiver details. Note that some of the specifications for editing and concatenation are only meaningful for RINEX Observation files but not for RINEX Navigation files. 1923 2008 </p> … … 1929 2014 <p> 1930 2015 <ul> 1931 <li>The RINEX Version 2 format ignores signal generation attributes. Therefore, when converting <u>RINEX Version 3 to Version 2</u> Observation files, BNC is forced to somehow map signals with attributes to signals without attributes although this cannot be done in one-to-one correspondence. Hence we introduce a 'Version 2 Signal Priority' list of attributes (characters, forming a string) for mapping Version 3 to Version 2, see details in section 'RINEX Observations/Version 2'. Signal priorities can be specified as equal for all systems, as system specific or as system and frequency specific. For example:</li>1932 <ul>1933 <li>'CWPX_?' (General signal priorities valid for all GNSS)</li>1934 <li>'C:IQX I:ABCX' (System specific signal priorities for BDS and IRNSS)</li>1935 <li>'G:12&PWCSLXYN G:5&IQX R:12&PC R:3&IQX' (System and frequency specific signal priorities)</li>1936 </ul>1937 </p>1938 <p>1939 The default 'Signal priority' list is defined as follows:1940 <ul>1941 <li>'G:12&PWCSLXYN_ G:5&IQX_ R:12&PC_ R:3&IQX_ E:16&BCX_ E:578&IQX_ J:1&SLXCZ_ J:26&SLX_ J:5&IQX_ C:IQX_ I:ABCX_ S:1&C_ S:5&IQX_'</li>1942 </ul>1943 </p>1944 <p>1945 <li>When converting <u>RINEX Version 2 to Version 3</u> Observation files, the tracking mode or channel information in the (last character out of the 3-character) observation code is left blank if unknown. This is a compromise, knowing that it is not in accordance with the RINEX Version 3 documentation.</li>2016 <li>The RINEX Version 2 format ignores signal generation attributes. Therefore, when converting <b>RINEX Version 3 to Version 2</b> Observation files, BNC is forced to somehow map signals with attributes to signals without attributes although this cannot be done in one-to-one correspondence. Hence we introduce a 'Version 2 Signal Priority' list of attributes (characters, forming a string) for mapping Version 3 to Version 2, see details in section 'RINEX Observations/Version 2'. Signal priorities can be specified as equal for all systems, as system specific or as system and frequency specific. For example:</li> 2017 <ul> 2018 <li>'CWPX_?' (General signal priorities valid for all GNSS)</li> 2019 <li>'C:IQX I:ABCX' (System specific signal priorities for BDS and IRNSS)</li> 2020 <li>'G:12&PWCSLXYN G:5&IQX R:12&PC R:3&IQX' (System and frequency specific signal priorities)</li> 2021 </ul> 2022 </p> 2023 <p> 2024 The default 'Signal priority' list is defined as follows: 2025 <ul> 2026 <li>'G:12&PWCSLXYN_ G:5&IQX_ R:12&PC_ R:3&IQX_ E:16&BCX_ E:578&IQX_ J:1&SLXCZ_ J:26&SLX_ J:5&IQX_ C:IQX_ I:ABCX_ S:1&C_ S:5&IQX_'</li> 2027 </ul> 2028 </p> 2029 <p> 2030 <li>When converting <b>RINEX Version 2 to Version 3</b> Observation files, the tracking mode or channel information in the (last character out of the 3-character) observation code is left blank if unknown. This is a compromise, knowing that it is not in accordance with the RINEX Version 3 documentation.</li> 1946 2031 </ul> 1947 2032 </p> … … 1964 2049 1965 2050 <p><img src="IMG/screenshot27.png"/></p> 1966 <p> <u>Figure 10:</u>Example for BNC's 'RINEX Editing Options' window</p>2051 <p>Figure 10: Example for BNC's 'RINEX Editing Options' window</p> 1967 2052 1968 2053 <p><img src="IMG/screenshot25.png"/></p> 1969 <p> <u>Figure 11:</u>Example for RINEX file concatenation with BNC</p>2054 <p>Figure 11: Example for RINEX file concatenation with BNC</p> 1970 2055 1971 2056 <p><img src="IMG/screenshot29.png"/></p> 1972 <p> <u>Figure 12:</u>Example for creating RINEX quality check analysis graphics output with BNC</p>2057 <p>Figure 12: Example for creating RINEX quality check analysis graphics output with BNC</p> 1973 2058 1974 2059 <p><img src="IMG/screenshot30.png"/></p> 1975 <p> <u>Figure 13:</u>Example for satellite availability, elevation and PDOP plots as a result of a RINEX quality check analysis with BNC</p>2060 <p>Figure 13: Example for satellite availability, elevation and PDOP plots as a result of a RINEX quality check analysis with BNC</p> 1976 2061 1977 2062 <p><img src="IMG/screenshot33.png"/></p> 1978 <p> <u>Figure 14:</u>Sky plot examples for multipath, part of RINEX quality check analysis with BNC</p>2063 <p>Figure 14: Sky plot examples for multipath, part of RINEX quality check analysis with BNC</p> 1979 2064 1980 2065 <p><img src="IMG/screenshot34.png"/></p> 1981 <p> <u>Figure 15:</u>Sky plot examples for signal-to-noise ratio, part of RINEX quality check analysis with BNC</p>1982 1983 <p><h4 >2.6.8 <a name="reqccommand">Command Line, No Window - optional</h4></p>2066 <p>Figure 15: Sky plot examples for signal-to-noise ratio, part of RINEX quality check analysis with BNC</p> 2067 2068 <p><h4 id="reqccommand">2.6.8 Command Line, No Window - optional</h4></p> 1984 2069 <p> 1985 2070 BNC applies options from the configuration file but allows updating every one of them on the command line while the content of the configuration file remains unchanged, see section on 'Command Line Options'. Note the following syntax for Command Line Interface (CLI) options: … … 2064 2149 </table> 2065 2150 2066 <p><h4 >2.7 <a name="sp3comp">SP3 Comparison</h4></p>2151 <p><h4 id="sp3comp">2.6.7 SP3 Comparison</h4></p> 2067 2152 <p> 2068 2153 BNC allows to compare the contents of two files with GNSS orbit and clock data in SP3 format. SP3 ASCII files basically contain a list of records over a certain period of time. Each record carries a time tag, the XYZ position of the satellite's Center of Mass at that time and the corresponding satellite clock value. Both SP3 files may contain some records for different epochs. If so, then BNC only compares records for identical epochs. BNC accepts that a specific GNSS system or a specific satellite is only available from one of the SP3 files. Note that BNC does not interpolate orbits when comparing SP3 files. … … 2072 2157 </p> 2073 2158 2074 <p><h4 >2.7.1 <a name="sp3input">Input SP3 Files - optional</h4></p>2159 <p><h4 id="sp3input">2.7.1 Input SP3 Files - optional</h4></p> 2075 2160 <p> 2076 2161 Specify the full paths of two SP3 files, separate them by comma. 2077 2162 </p> 2078 2163 2079 <p><h4 >2.7.2 <a name="sp3exclude">Exclude Satellites - optional</h4></p>2164 <p><h4 id="sp3exclude">2.7.2 Exclude Satellites - optional</h4></p> 2080 2165 <p> 2081 2166 You may want to exclude one or more satellites in your SP3 files from the comparison. Or you may like to exclude all satellites of a specific GNSS system from the comparison. The following are example strings to be entered for excluding satellites from the comparison. 2082 2167 <ul> 2083 <li>G05,G31 (excluding GPS satellites with PRN 5 and 31)</li>2084 <li>G (excluding all GPS satellites)</li>2085 <li>R (excluding all GLONASS satellites)</li>2086 <li>R12,R24 (excluding GLONASS satellites with slot number 12 and 24)</li>2087 <li>G04,G31,R (excluding GPS satellites with PRN 4 and 31 as well as all GLONASS satellites)</li>2168 <li>G05,G31 (excluding GPS satellites with PRN 5 and 31)</li> 2169 <li>G (excluding all GPS satellites)</li> 2170 <li>R (excluding all GLONASS satellites)</li> 2171 <li>R12,R24 (excluding GLONASS satellites with slot number 12 and 24)</li> 2172 <li>G04,G31,R (excluding GPS satellites with PRN 4 and 31 as well as all GLONASS satellites)</li> 2088 2173 </ul> 2089 2174 </p> … … 2092 2177 </p> 2093 2178 2094 <p><h4 >2.7.3 <a name="sp3log">Logfile - mandatory if 'Input SP3 Files' is set</h4></p>2179 <p><h4 id="sp3log">2.7.3 Logfile - mandatory if 'Input SP3 Files' is set</h4></p> 2095 2180 <p> 2096 2181 Specify a logfile name to save results of the SP3 file comparison. … … 2175 2260 2176 2261 <p><img src="IMG/screenshot36.png"/></p> 2177 <p> <u>Figure 16:</u>Example for comparing two SP3 files with satellite orbit and clock data using BNC</p>2178 2179 <p><h4 >2.8 <a name="correct">Broadcast Corrections</h4></p>2262 <p>Figure 16: Example for comparing two SP3 files with satellite orbit and clock data using BNC</p> 2263 2264 <p><h4 id="correct">2.8 Broadcast Corrections</h4></p> 2180 2265 <p> 2181 2266 Differential GNSS and RTK operation using RTCM streams is currently based on corrections and/or raw measurements from single or multiple reference stations. This approach to differential positioning uses 'observation space' information. The representation with the RTCM standard can be called 'Observation Space Representation' (OSR). … … 2188 2273 2189 2274 <ul> 2190 <li>SSR, Step I:</li>2191 <ul>2192 <li>Orbit corrections to Broadcast Ephemeris</li>2193 <li>Clock corrections to Broadcast Ephemeris</li>2194 <li>High-rate clock corrections to Broadcast Ephemeris</li>2195 <li>Combined orbit and clock corrections to Broadcast Ephemeris</li>2196 <li>User Range Accuracy (URA)</li>2197 <li>High Rate User Range Accuracy (HR URA)</li>2198 <li>Code biases</li>2199 </ul>2200 <li>SSR, Step II:</li>2201 <ul>2202 <li>Phase biases</li>2203 <li>Vertical Total Electron Content (VTEC)</li>2204 </ul>2275 <li>SSR, Step I:</li> 2276 <ul> 2277 <li>Orbit corrections to Broadcast Ephemeris</li> 2278 <li>Clock corrections to Broadcast Ephemeris</li> 2279 <li>High-rate clock corrections to Broadcast Ephemeris</li> 2280 <li>Combined orbit and clock corrections to Broadcast Ephemeris</li> 2281 <li>User Range Accuracy (URA)</li> 2282 <li>High Rate User Range Accuracy (HR URA)</li> 2283 <li>Code biases</li> 2284 </ul> 2285 <li>SSR, Step II:</li> 2286 <ul> 2287 <li>Phase biases</li> 2288 <li>Vertical Total Electron Content (VTEC)</li> 2289 </ul> 2205 2290 </ul> 2206 2291 … … 2253 2338 </p> 2254 2339 <ol type="1"> 2255 <li>Special character '>' is the first character in each 'Epoch Record' (as we have it in RINEX Version 3)</li>2256 <li>SSR message or topic descriptor, valid descriptors are:<br>ORBIT, CLOCK, CODE_BIAS, PHASE_BIAS, or VTEC</li>2257 <li>Year, GPS time</li>2258 <li>Month, GPS time</li>2259 <li>Day, GPS time</li>2260 <li>Hour, GPS time</li>2261 <li>Minute, GPS time</li>2262 <li>Second, GPS time</li>2263 <li>SSR message update interval indicator</li>2264 <ul>2265 <li>0 = 1 sec</li>2266 <li>1 = 2 sec</li>2267 <li>2 = 5 sec</li>2268 <li>3 = 10 sec</li>2269 <li>4 = 15 sec</li>2270 <li>5 = 30 sec</li>2271 <li>6 = 60 sec</li>2272 <li>7 = 120 sec</li>2273 <li>8 = 240 sec</li>2274 <li>9 = 300 sec</li>2275 <li>10 = 600 sec</li>2276 <li>11 = 900 sec</li>2277 <li>12 = 1800 sec</li>2278 <li>13 = 3600 sec</li>2279 <li>14 = 7200 sec</li>2280 <li>15 = 10800 sec</li>2281 </ul>2282 <li>Number of following records in this block</li>2283 <li>Mountpoint, source/stream indicator</li>2340 <li>Special character '>' is the first character in each 'Epoch Record' (as we have it in RINEX Version 3)</li> 2341 <li>SSR message or topic descriptor, valid descriptors are:<br>ORBIT, CLOCK, CODE_BIAS, PHASE_BIAS, or VTEC</li> 2342 <li>Year, GPS time</li> 2343 <li>Month, GPS time</li> 2344 <li>Day, GPS time</li> 2345 <li>Hour, GPS time</li> 2346 <li>Minute, GPS time</li> 2347 <li>Second, GPS time</li> 2348 <li>SSR message update interval indicator</li> 2349 <ul> 2350 <li>0 = 1 sec</li> 2351 <li>1 = 2 sec</li> 2352 <li>2 = 5 sec</li> 2353 <li>3 = 10 sec</li> 2354 <li>4 = 15 sec</li> 2355 <li>5 = 30 sec</li> 2356 <li>6 = 60 sec</li> 2357 <li>7 = 120 sec</li> 2358 <li>8 = 240 sec</li> 2359 <li>9 = 300 sec</li> 2360 <li>10 = 600 sec</li> 2361 <li>11 = 900 sec</li> 2362 <li>12 = 1800 sec</li> 2363 <li>13 = 3600 sec</li> 2364 <li>14 = 7200 sec</li> 2365 <li>15 = 10800 sec</li> 2366 </ul> 2367 <li>Number of following records in this block</li> 2368 <li>Mountpoint, source/stream indicator</li> 2284 2369 </ol> 2285 2370 Each of the following 'satellite records' in such a block carries information for one specific satellite. Undefined parameters in the 'satellite records' could be set to zero "0.000". … … 2363 2448 Records in this block provide the following satellite specific information: 2364 2449 <ul> 2365 <li>GNSS Indicator and Satellite Vehicle Pseudo Random Number</li>2366 <li>Number of Code Biases, succeeded by code specific information:</li>2367 <ul>2368 <li>Indicator to specify the signal and tracking mode</li>2369 <li>Code Bias [m]</li>2370 <li>Indicator to specify the signal and tracking mode</li>2371 <li>Code Bias [m]</li>2372 <li>etc.</li>2373 </ul>2450 <li>GNSS Indicator and Satellite Vehicle Pseudo Random Number</li> 2451 <li>Number of Code Biases, succeeded by code specific information:</li> 2452 <ul> 2453 <li>Indicator to specify the signal and tracking mode</li> 2454 <li>Code Bias [m]</li> 2455 <li>Indicator to specify the signal and tracking mode</li> 2456 <li>Code Bias [m]</li> 2457 <li>etc.</li> 2458 </ul> 2374 2459 </ul> 2375 2460 </p> … … 2404 2489 Following records provide satellite specific information: 2405 2490 <ul> 2406 <li>GNSS Indicator and Satellite Vehicle Pseudo Random Number</li>2407 <li>Yaw angle [°], restricted to [0°... 360°]</li>2408 <li>Yaw rate [°/s]</li>2409 <li>Number of phase biases in this record, succeeded by phase specific information:</li>2410 <ul>2411 <li>Signal and tracking mode indicator</li>2412 <li>Phase bias [m]</li>2413 <li>Signal integer indicator</li>2414 <li>Signal wide-lane integer indicator</li>2415 <li>Signal discontinuity counter</li>2416 </ul>2491 <li>GNSS Indicator and Satellite Vehicle Pseudo Random Number</li> 2492 <li>Yaw angle [°], restricted to [0°... 360°]</li> 2493 <li>Yaw rate [°/s]</li> 2494 <li>Number of phase biases in this record, succeeded by phase specific information:</li> 2495 <ul> 2496 <li>Signal and tracking mode indicator</li> 2497 <li>Phase bias [m]</li> 2498 <li>Signal integer indicator</li> 2499 <li>Signal wide-lane integer indicator</li> 2500 <li>Signal discontinuity counter</li> 2501 </ul> 2417 2502 </ul> 2418 2503 </p> … … 2442 2527 The second record in this block provides four parameters: 2443 2528 <ul> 2444 <li>Layer number</li>2445 <li>Maximum degree of spherical harmonics</li>2446 <li>Maximum order of spherical harmonics</li>2447 <li>Height of ionospheric layer [m]</li>2529 <li>Layer number</li> 2530 <li>Maximum degree of spherical harmonics</li> 2531 <li>Maximum order of spherical harmonics</li> 2532 <li>Height of ionospheric layer [m]</li> 2448 2533 </ul> 2449 2534 Subsequent records in this block provide the following information: 2450 2535 <ul> 2451 <li>Spherical harmonic coefficients C and S, sorted by degree and order (0 to maximum)</li>2452 </ul> 2453 </p> 2454 2455 <p><h4 >2.8.1 <a name="corrdir">Directory, ASCII - optional</h4></p>2536 <li>Spherical harmonic coefficients C and S, sorted by degree and order (0 to maximum)</li> 2537 </ul> 2538 </p> 2539 2540 <p><h4 id="corrdir">2.8.1 Directory, ASCII - optional</h4></p> 2456 2541 <p> 2457 2542 Specify a directory for saving Broadcast Corrections in files. If the specified directory does not exist, BNC will not create Broadcast Correction files. Default value for Broadcast Correction 'Directory' is an empty option field, meaning that no Broadcast Correction files will be created. 2458 2543 </p> 2459 2544 2460 <p><h4 >2.8.2 <a name="corrint">Interval - mandatory if 'Directory, ASCII' is set</h4></p>2545 <p><h4 id="corrint">2.8.2 Interval - mandatory if 'Directory, ASCII' is set</h4></p> 2461 2546 <p> 2462 2547 Select the length of the Broadcast Correction files. The default value is '1 day'. 2463 2548 </p> 2464 2549 2465 <p><h4 >2.8.3 <a name="corrport">Port - optional</h4></p>2550 <p><h4 id="corrport">2.8.3 Port - optional</h4></p> 2466 2551 <p> 2467 2552 BNC can output epoch by epoch synchronized Broadcast Corrections in ASCII format on your local host (IP 127.0.0.1) through an IP 'Port'. Specify an IP port number to activate this function. The default is an empty option field, meaning that no Broadcast Correction output via IP port is generated. … … 2539 2624 2540 2625 <p><img src="IMG/screenshot37.png"/></p> 2541 <p> <u>Figure 17:</u>Example for pulling, saving and output of Broadcast Corrections using BNC</p>2542 2543 <p><h4 >2.9 <a name="syncout">Feed Engine</h4></p>2626 <p>Figure 17: Example for pulling, saving and output of Broadcast Corrections using BNC</p> 2627 2628 <p><h4 id="syncout">2.9 Feed Engine</h4></p> 2544 2629 2545 2630 <p> … … 2559 2644 </p> 2560 2645 2561 <p> <u>Table 2:</u>Contents and format of synchronized output of observations feeding a GNSS engine</p>2646 <p>Table 2: Contents and format of synchronized output of observations feeding a GNSS engine</p> 2562 2647 <p> 2563 2648 <table> … … 2576 2661 <tr><td> </td><td> </td><td> </td></tr> 2577 2662 2578 <tr><td>< u>Pseudo-Range Data</u></td><td></td><td></td></tr>2663 <tr><td><b>Pseudo-Range Data</b></td><td></td><td></td></tr> 2579 2664 <tr><td>Observation Code</td><td><b>C</b>1C</td><td>1X,A3</td></tr> 2580 2665 <tr><td>Pseudo-Range Observation</td><td>25394034.112</td><td>1X,F14.3</td></tr> … … 2582 2667 <tr><td> </td><td> </td><td> </td></tr> 2583 2668 2584 <tr><td>< u>Carrier Phase Data</u></td><td></td><td></td></tr>2669 <tr><td><b>Carrier Phase Data</b></td><td></td><td></td></tr> 2585 2670 <tr><td>Observation Code</td><td><b>L</b>1C</td><td>1X,A3</td></tr> 2586 2671 <tr><td>Carrier Phase Observation</td><td>133446552.870</td><td>1X,F14.3</td></tr> … … 2589 2674 <tr><td> </td><td> </td><td> </td></tr> 2590 2675 2591 <tr><td>< u>Doppler Data</u></td><td></td><td></td></tr>2676 <tr><td><b>Doppler Data</b></td><td></td><td></td></tr> 2592 2677 <tr><td>Observation Code</td><td><b>D</b>1C</td><td>1X,A3</td></tr> 2593 2678 <tr><td>Doppler Observation</td><td>-87.977</td><td>1X,F14.3</td></tr> … … 2595 2680 <tr><td> </td><td> </td><td> </td></tr> 2596 2681 2597 <tr><td>< u>Signal Strength</u></td><td></td><td></td></tr>2682 <tr><td><b>Signal Strength</b></td><td></td><td></td></tr> 2598 2683 <tr><td>Observation Code</td><td><b>S</b>2W</td><td>1X,A3</td></tr> 2599 2684 <tr><td>Observed Signal Strength </td><td>34.750</td><td>1X,F8.3</td></tr> … … 2651 2736 </p> 2652 2737 <p><img src="IMG/screenshot12.png"/></p> 2653 <p> <u>Figure 18:</u>Synchronized BNC output via IP port to feed a GNSS real-time engine</p>2654 2655 <p><h4 >2.9.1 <a name="syncport">Port - optional</h4></p>2738 <p>Figure 18: Synchronized BNC output via IP port to feed a GNSS real-time engine</p> 2739 2740 <p><h4 id="syncport">2.9.1 Port - optional</h4></p> 2656 2741 <p> 2657 2742 BNC can produce synchronized observations in ASCII format on your local host (IP 127.0.0.1) through an IP 'Port'. Synchronized means that BNC collects all observation data for a specific epoch, which become available within a certain number of seconds (see 'Wait for Full Obs Epoch' option). It then - epoch by epoch - outputs whatever has been received. The output comes block-wise per stream following the format specified in Table 2. Enter an IP port number here to activate this function. The default is an empty option field, meaning that no synchronized output is generated.</p> 2658 2743 </p> 2659 2744 2660 <p><h4 >2.9.2 <a name="syncwait">Wait for Full Obs Epoch - mandatory if 'Port' is set</h4></p>2745 <p><h4 id="syncwait">2.9.2 Wait for Full Obs Epoch - mandatory if 'Port' is set</h4></p> 2661 2746 <p> 2662 2747 When feeding a real-time GNSS network engine waiting for synchronized observations epoch by epoch, BNC drops whatever is received later than 'Wait for full obs epoch' seconds. A value of 3 to 5 seconds could be an appropriate choice for that, depending on the latency of the incoming streams and the delay acceptable for your real-time GNSS product. Default value for 'Wait for full obs epoch' is 5 seconds. … … 2666 2751 </p> 2667 2752 2668 <p><h4 >2.9.3 <a name="syncsample">Sampling - mandatory if 'File' or 'Port' is set</h4></p>2753 <p><h4 id="syncsample">2.9.3 Sampling - mandatory if 'File' or 'Port' is set</h4></p> 2669 2754 <p> 2670 2755 Select a synchronized observation output sampling interval in seconds. A value of zero '0' tells BNC to send/store all received epochs. This is the default value. 2671 2756 </p> 2672 2757 2673 <p><h4 >2.9.4 <a name="syncfile">File - optional</h4></p>2758 <p><h4 id="syncfile">2.9.4 File - optional</h4></p> 2674 2759 <p> 2675 2760 Specify the full path to a 'File' where synchronized observations are saved in plain ASCII format. The default value is an empty option field, meaning that no ASCII output file is created. … … 2679 2764 </p> 2680 2765 2681 <p><h4 >2.9.5 <a name="syncuport">Port (unsynchronized) - optional</h4></p>2766 <p><h4 id="syncuport">2.9.5 Port (unsynchronized) - optional</h4></p> 2682 2767 <p> 2683 2768 BNC can produce unsynchronized observations from all configured streams in ASCII format on your local host (IP 127.0.0.1) through an IP 'Port'. Unsynchronized means that BNC immediately forwards any received observation to the port. Nevertheless, the output is produced block-wise per stream. Specify an IP port number here to activate this function. The default is an empty option field, meaning that no unsynchronized output is generated. … … 2698 2783 </pre> 2699 2784 2700 <p><h4 >2.10 <a name="serial">Serial Output</h4></p>2785 <p><h4 id="serial">2.10 Serial Output</h4></p> 2701 2786 <p> 2702 2787 You may use BNC to feed a serially connected device like a GNSS receiver. For that, an incoming stream can be forwarded to a serial port. Depending on the stream content, the receiver may use it for Differential GNSS, Precise Point Positioning or any other purpose supported by its firmware. … … 2707 2792 2708 2793 <p><img src="IMG/screenshot35.png"/></p> 2709 <p> <u>Figure 19:</u>Flowcharts, BNC forwarding a stream to a serially connected receiver; sending NMEA sentences is mandatory for VRS streams</p>2794 <p>Figure 19: Flowcharts, BNC forwarding a stream to a serially connected receiver; sending NMEA sentences is mandatory for VRS streams</p> 2710 2795 2711 2796 <p> … … 2714 2799 2715 2800 <p><img src="IMG/screenshot11.png"/></p> 2716 <p> <u>Figure 20:</u>BNC pulling a VRS stream to feed a serially connected RTK rover</p>2717 2718 <p><h4 >2.10.1 <a name="sermount">Mountpoint - optional</h4></p>2801 <p>Figure 20: BNC pulling a VRS stream to feed a serially connected RTK rover</p> 2802 2803 <p><h4 id="sermount">2.10.1 Mountpoint - optional</h4></p> 2719 2804 <p> 2720 2805 Enter a 'Mountpoint' to forward its corresponding stream to a serially connected GNSS receiver. … … 2724 2809 </p> 2725 2810 2726 <p><h4 >2.10.2 <a name="serport">Port Name - mandatory if 'Mountpoint' is set</h4></p>2811 <p><h4 id="serport">2.10.2 Port Name - mandatory if 'Mountpoint' is set</h4></p> 2727 2812 <p> 2728 2813 Enter the serial 'Port name' selected on your host for communication with the serially connected receiver. Valid port names are … … 2741 2826 </p> 2742 2827 2743 <p><h4 >2.10.3 <a name="serbaud">Baud Rate - mandatory if 'Mountpoint' is set</h4></p>2828 <p><h4 id="serbaud">2.10.3 Baud Rate - mandatory if 'Mountpoint' is set</h4></p> 2744 2829 <p> 2745 2830 Select a 'Baud rate' for the serial output link. Note that using a high baud rate is recommended. 2746 2831 </p> 2747 2832 2748 <p><h4 >2.10.4 <a name="serflow">Flow Control - mandatory if 'Mountpoint' is set</h4></p>2833 <p><h4 id="serflow">2.10.4 Flow Control - mandatory if 'Mountpoint' is set</h4></p> 2749 2834 <p> 2750 2835 Select a 'Flow control' for the serial output link. Note that your selection must equal the flow control configured to the serially connected device. Select 'OFF' if you do not know better. 2751 2836 </p> 2752 2837 2753 <p><h4 >2.10.5 <a name="serparity">Parity - mandatory if 'Mountpoint' is set</h4></p>2838 <p><h4 id="serparity">2.10.5 Parity - mandatory if 'Mountpoint' is set</h4></p> 2754 2839 <p> 2755 2840 Select the 'Parity' for the serial output link. Note that parity is often set to 'NONE'. 2756 2841 </p> 2757 2842 2758 <p><h4 >2.10.6 <a name="serdata">Data Bits - mandatory if 'Mountpoint' is set</h4></p>2843 <p><h4 id="serdata">2.10.6 Data Bits - mandatory if 'Mountpoint' is set</h4></p> 2759 2844 <p> 2760 2845 Select the number of 'Data bits' for the serial output link. Note that often '8' data bits are used. 2761 2846 </p> 2762 2847 2763 <p><h4 >2.10.7 <a name="serstop">Stop Bits - mandatory if 'Mountpoint' is set</h4></p>2848 <p><h4 id="serstop">2.10.7 Stop Bits - mandatory if 'Mountpoint' is set</h4></p> 2764 2849 <p> 2765 2850 Select the number of 'Stop bits' for the serial output link. Note that often '1' stop bit is used. 2766 2851 </p> 2767 2852 2768 <p><h4 >2.10.8 <a name="serauto">NMEA - mandatory if 'Mountpoint' is set</h4></p>2853 <p><h4 id="serauto">2.10.8 NMEA - mandatory if 'Mountpoint' is set</h4></p> 2769 2854 <p>The 'NMEA' option supports the so-called 'Virtual Reference Station' (VRS) concept which requires the receiver to send approximate position information to the Ntrip Broadcaster. Select 'no' if you do not want BNC to forward or upload any NMEA sentence to the Ntrip broadcaster in support of VRS. 2770 2855 </p> … … 2776 2861 </p> 2777 2862 2778 <p><h4 >2.10.9 <a name="serfile">File - optional if 'NMEA' is set to 'Auto'</h4></p>2863 <p><h4 id="serfile">2.10.9 File - optional if 'NMEA' is set to 'Auto'</h4></p> 2779 2864 <p>Specify the full path to a file where NMEA sentences coming from your serially connected receiver are saved. Default is an empty option field, meaning that no NMEA sentences will be saved on disk. 2780 2865 </p> 2781 <p><h4 >2.10.10 <a name="serheight">Height - mandatory if 'NMEA' is set to 'Manual'</h4></p>2866 <p><h4 id="serheight">2.10.10 Height - mandatory if 'NMEA' is set to 'Manual'</h4></p> 2782 2867 <p> 2783 2868 Specify an approximate 'Height' above mean sea level in meters for the reference station introduced through 'Mountpoint'. Together with the latitude and longitude from the Ntrip broadcaster source-table, the height information is used to build GGA sentences to be sent to the Ntrip broadcaster. … … 2788 2873 </p> 2789 2874 2790 <p><h4 >2.10.11 <a name="sersampl">Sampling - mandatory if 'NMEA' is set to 'Manual'</h4></p>2875 <p><h4 id="sersampl">2.10.11 Sampling - mandatory if 'NMEA' is set to 'Manual'</h4></p> 2791 2876 <p> 2792 2877 Select a sampling interval in seconds for manual generation and upload of NMEA GGA sentences. … … 2796 2881 </p> 2797 2882 2798 <p><h4 >2.11 <a name="advnote">Outages</h4></p>2883 <p><h4 id="advnote">2.11 Outages</h4></p> 2799 2884 <p> 2800 2885 At any time an incoming stream might become unavailable or corrupted. In such cases, it is important that the BNC operator and/or the stream providers become aware of the situation so that measures can be taken to restore the stream. Furthermore, continuous attempts to decode a corrupted stream can generate unnecessary workload for BNC. Outages and corruptions are handled by BNC as follows: … … 2810 2895 </p> 2811 2896 2812 <p><h4 >2.11.1 <a name="obsrate">Observation Rate - optional</h4></p>2897 <p><h4 id="obsrate">2.11.1 Observation Rate - optional</h4></p> 2813 2898 <p> 2814 2899 BNC can collect all returns (success or failure) coming from a decoder within a certain short time span to then decide whether a stream has an outage or its content is corrupted. This procedure needs a rough a priori estimate of the expected observation rate of the incoming streams.</p><p>An empty option field (default) means that you do not want explicit information from BNC about stream outages and incoming streams that cannot be decoded. 2815 2900 </p> 2816 2901 2817 <p><h4 >2.11.2 <a name="advfail">Failure Threshold - mandatory if 'Observation rate' is set</h4></p>2902 <p><h4 id="advfail">2.11.2 Failure Threshold - mandatory if 'Observation rate' is set</h4></p> 2818 2903 <p> 2819 2904 Event 'Begin_Failure' will be reported if no data is received continuously for longer than the 'Failure threshold' time. Similarly, event 'Begin_Corrupted' will be reported when corrupted data is detected by the decoder continuously for longer than this 'Failure threshold' time. The default value is set to 15 minutes and is recommended as to not inundate users with too many event reports. … … 2823 2908 </p> 2824 2909 2825 <p><h4 >2.11.3 <a name="advreco">Recovery Threshold - mandatory if 'Observation rate' is set</h4></p>2910 <p><h4 id="advreco">2.11.3 Recovery Threshold - mandatory if 'Observation rate' is set</h4></p> 2826 2911 <p> 2827 2912 Once a 'Begin_Failure' or 'Begin_Corrupted' event has been reported, BNC will check when the stream again becomes available or uncorrupted. Event 'End_Failure' or 'End_Corrupted' will be reported as soon as valid observations are detected continuously throughout the 'Recovery threshold' time span. The default value is set to 5 minutes and is recommended as to not inundate users with too many event reports. … … 2831 2916 </p> 2832 2917 2833 <p><h4 >2.11.4 <a name="advscript">Script - optional if 'Observation rate' is set</h4></p>2918 <p><h4 id="advscript">2.11.4 Script - optional if 'Observation rate' is set</h4></p> 2834 2919 <p> 2835 2920 As mentioned before, BNC can trigger a shell script or a batch file to be executed when one of the described events is reported. This script can be used to email an advisory note to network operator or stream providers. To enable this feature, specify the full path to the script or batch file in the 'Script' field. The affected stream's mountpoint and type of event reported ('Begin_Outage', 'End_Outage', 'Begin_Corrupted' or 'End_Corrupted') will then be passed on to the script as command line parameters (%1 and %2 on Windows systems or $1 and $2 on Unix/Linux/Mac OS X systems) together with date and time information. … … 2864 2949 </p> 2865 2950 2866 <p><h4 >2.12 <a name="misc">Miscellaneous</h4></p>2951 <p><h4 id="misc">2.12 Miscellaneous</h4></p> 2867 2952 <p> 2868 2953 This section describes several miscellaneous options which can be applied to a single stream (mountpoint) or to all configured streams. … … 2873 2958 </p> 2874 2959 <p><img src="IMG/screenshot14.png"/></p> 2875 <p> <u>Figure 21:</u>RTCM message numbers, latencies and observation types logged by BNC</p>2876 2877 2878 <p><h4 >2.12.1 <a name="miscmount">Mountpoint - optional </h4></p>2960 <p>Figure 21: RTCM message numbers, latencies and observation types logged by BNC</p> 2961 2962 2963 <p><h4 id="miscmount">2.12.1 Mountpoint - optional </h4></p> 2879 2964 <p> 2880 2965 Specify a mountpoint to apply one or several of the 'Miscellaneous' options to the corresponding stream. Enter 'ALL' if you want to apply these options to all configured streams. An empty option field (default) means that you do not want BNC to apply any of these options. 2881 2966 </p> 2882 2967 2883 <p><h4 >2.12.2 <a name="miscperf">Log Latency - optional </h4></p>2968 <p><h4 id="miscperf">2.12.2 Log Latency - optional </h4></p> 2884 2969 <p> 2885 2970 BNC can average latencies per stream over a certain period of GPS time, the 'Log latency' interval. Mean latencies are calculated from the individual latencies of one (first incoming) observation or Broadcast Correction per second. The mean latencies are then saved in BNC's logfile. Note that computing correct latencies requires the clock of the host computer to be properly synchronized. Note further that visualized latencies from the 'Latency' tab on the bottom of the main window represent individual latencies and not the mean latencies for the logfile. 2886 2971 </p> 2887 2972 <p> 2888 < u>Latency:</u> Latency is defined in BNC by the following equation:2973 <b>Latency:</b> Latency is defined in BNC by the following equation: 2889 2974 </p> 2890 2975 <pre> … … 2896 2981 </pre> 2897 2982 <p> 2898 < u>Statistics:</u> BNC counts the number of GPS seconds covered by at least one observation. It also estimates an observation rate (independent from the a priori specified 'Observation rate') from all observations received throughout the first full 'Log latency' interval. Based on this rate, BNC estimates the number of data gaps when appearing in subsequent intervals.2983 <b>Statistics:</b> BNC counts the number of GPS seconds covered by at least one observation. It also estimates an observation rate (independent from the a priori specified 'Observation rate') from all observations received throughout the first full 'Log latency' interval. Based on this rate, BNC estimates the number of data gaps when appearing in subsequent intervals. 2899 2984 </p> 2900 2985 <p> … … 2909 2994 2910 2995 2911 <p><h4 >2.12.3 <a name="miscscan">Scan RTCM - optional</h4></p>2996 <p><h4 id="miscscan">2.12.3 Scan RTCM - optional</h4></p> 2912 2997 <p> 2913 2998 When configuring a GNSS receiver for RTCM stream generation, the firmware's setup interface may not provide details about RTCM message types and observation types. As reliable information concerning stream content should be available e.g. for Ntrip Broadcaster operators to maintain the broadcaster's source-table, BNC allows to scan RTCM streams for incoming message types and printout some of the contained meta-data. Contained observation types are also printed because such information is required a priori for the conversion of RTCM Version 3 MSM streams to RINEX Version 3 files. The idea for this option arose from 'inspectRTCM', a comprehensive stream analyzing tool written by D. Stöcker. … … 2917 3002 </p> 2918 3003 <ul> 2919 <li>Numbers of incoming message types</li>2920 <li>Antenna Reference Point (ARP) coordinates</li>2921 <li>Antenna Phase Center (APC) coordinates</li>2922 <li>Antenna height above marker</li>2923 <li>Antenna descriptor.</li>3004 <li>Numbers of incoming message types</li> 3005 <li>Antenna Reference Point (ARP) coordinates</li> 3006 <li>Antenna Phase Center (APC) coordinates</li> 3007 <li>Antenna height above marker</li> 3008 <li>Antenna descriptor.</li> 2924 3009 </ul> 2925 3010 In case of RTCM Version 3 streams the output includes 2926 3011 <ul> 2927 <li>RINEX Version 3 Observation types</li>3012 <li>RINEX Version 3 Observation types</li> 2928 3013 </ul> 2929 3014 </p> … … 2944 3029 2945 3030 2946 <p><h4 >2.12.4 <a name="miscport">Port - optional</h4></p>3031 <p><h4 id="miscport">2.12.4 Port - optional</h4></p> 2947 3032 <p> 2948 3033 BNC can output streams related to the above specified 'Mountpoint' through a TCP/IP port of your local host. Enter a port number to activate this function. The stream content remains untouched. BNC does not decode or reformat the data for this output. … … 2956 3041 2957 3042 2958 <p><h4 >2.13 <a name="pppclient">PPP Client</h4></p>3043 <p><h4 id="pppclient">2.13 PPP Client</h4></p> 2959 3044 <p> 2960 3045 BNC can derive coordinates for rover positions following the Precise Point Positioning (PPP) approach. It uses code or code plus phase data from one or more GNSS systems in ionosphere-free linear combinations P3, L3, or P3&L3. Besides pulling streams of observations from a dual frequency GNSS receiver, this 2961 3046 <ul> 2962 <li>Requires pulling in addition a stream carrying satellite orbit and clock corrections to Broadcast Ephemeris in the form of RTCM Version 3 'State Space Representation' (SSR) messages. Note that for BNC these Broadcast Corrections need to be referred to the satellite's Antenna Phase Center (APC). Streams providing such messages are listed on <u>http://igs.bkg.bund.de/ntrip/orbits</u> (Caissy et al. 2012). Stream 'CLK11' on Ntrip Broadcaster 'products.igs-ip.net:2101' is an example.</li>2963 <li>May require pulling a stream carrying Broadcast Ephemeris available as RTCM Version 3 message types 1019, 1020, 1043, 1044, 1045, 1046 and 63 (tentative). This becomes a must only when the stream coming from the receiver does not contain Broadcast Ephemeris or provides them only at very low repetition rate. Streams providing such messages are listed on <u>http://igs.bkg.bund.de/ntrip/ephemeris</u>. Stream 'RTCM3EPH' on caster 'products.igs-ip.net:2101' is an example.</li>3047 <li>Requires pulling in addition a stream carrying satellite orbit and clock corrections to Broadcast Ephemeris in the form of RTCM Version 3 'State Space Representation' (SSR) messages. Note that for BNC these Broadcast Corrections need to be referred to the satellite's Antenna Phase Center (APC). Streams providing such messages are listed on <u>http://igs.bkg.bund.de/ntrip/orbits</u> (Caissy et al. 2012). Stream 'CLK11' on Ntrip Broadcaster 'products.igs-ip.net:2101' is an example.</li> 3048 <li>May require pulling a stream carrying Broadcast Ephemeris available as RTCM Version 3 message types 1019, 1020, 1043, 1044, 1045, 1046 and 63 (tentative). This becomes a must only when the stream coming from the receiver does not contain Broadcast Ephemeris or provides them only at very low repetition rate. Streams providing such messages are listed on <u>http://igs.bkg.bund.de/ntrip/ephemeris</u>. Stream 'RTCM3EPH' on caster 'products.igs-ip.net:2101' is an example.</li> 2964 3049 </ul> 2965 3050 Note that Broadcast Ephemeris parameters pass a plausibility check in BNC which allows to ignore incorrect or outdated ephemeris data when necessary, leaving a note 'WRONG EPHEMERIS' or 'OUTDATED EPHEMERIS' in the logfile. … … 2969 3054 </p> 2970 3055 <ul> 2971 <li>BNC does correct for Solid Earth Tides and Phase Windup.</li>2972 <li>Satellite Antenna Phase Center offsets are corrected.</li>2973 <li>Satellite Antenna Phase Center variations are neglected because this is a small effect usually less than 2 centimeters.</li>2974 <li>Observations can be corrected for a Receiver Antenna Offset and Receiver Antenna Phase Center Variation. Depending on whether or not these corrections are applied, the estimated position is either that of the receiver's Antenna Phase Center or that of the receiver's Antenna Reference Point.</li>2975 <li>Ocean and atmospheric loading is neglected. Atmospheric loading is pretty small. Ocean loading is usually also a small effect but may reach up to about 10 centimeters for coastal stations.</li>2976 <li>Rotational deformation due to polar motion (Polar Tides) is not corrected because this is a small effect usually less than 2 centimeters.</li>3056 <li>BNC does correct for Solid Earth Tides and Phase Windup.</li> 3057 <li>Satellite Antenna Phase Center offsets are corrected.</li> 3058 <li>Satellite Antenna Phase Center variations are neglected because this is a small effect usually less than 2 centimeters.</li> 3059 <li>Observations can be corrected for a Receiver Antenna Offset and Receiver Antenna Phase Center Variation. Depending on whether or not these corrections are applied, the estimated position is either that of the receiver's Antenna Phase Center or that of the receiver's Antenna Reference Point.</li> 3060 <li>Ocean and atmospheric loading is neglected. Atmospheric loading is pretty small. Ocean loading is usually also a small effect but may reach up to about 10 centimeters for coastal stations.</li> 3061 <li>Rotational deformation due to polar motion (Polar Tides) is not corrected because this is a small effect usually less than 2 centimeters.</li> 2977 3062 </ul> 2978 3063 </p> … … 2985 3070 PPP options are specified in BNC through the following four panels. 2986 3071 <ul> 2987 <li>PPP (1): Input and output, specifying real-time or post processing mode and associated data sources</li>2988 <li>PPP (2): Processed stations, specifying sigmas and noise of a priori coordinates and NMEA stream output</li>2989 <li>PPP (3): Processing options, specifying general PPP processing options</li>2990 <li>PPP (4): Plots, specifying visualization through time series and track maps</li>2991 </ul> 2992 </p> 2993 2994 <p><h4 >2.13.1 <a name="pppInp">PPP (1): Input and Output</h4></p>3072 <li>PPP (1): Input and output, specifying real-time or post processing mode and associated data sources</li> 3073 <li>PPP (2): Processed stations, specifying sigmas and noise of a priori coordinates and NMEA stream output</li> 3074 <li>PPP (3): Processing options, specifying general PPP processing options</li> 3075 <li>PPP (4): Plots, specifying visualization through time series and track maps</li> 3076 </ul> 3077 </p> 3078 3079 <p><h4 id="pppInp">2.13.1 PPP (1): Input and Output</h4></p> 2995 3080 <p> 2996 3081 This panel provides options for specifying the input and output streams and files required by BNC for real-time or post processing PPP. … … 2998 3083 2999 3084 <p><img src="IMG/screenshot03.png"/></p> 3000 <p> <u>Figure 22:</u>Real-time Precise Point Positioning with BNC, PPP Panel 1</p>3001 3002 <p><h4 >2.13.1.1 <a name="pppdatasource">Data Source - optional</h4></p>3085 <p>Figure 22: Real-time Precise Point Positioning with BNC, PPP Panel 1</p> 3086 3087 <p><h4 id="pppdatasource">2.13.1.1 Data Source - optional</h4></p> 3003 3088 <p> 3004 3089 Choose between input from 'Real-time Streams' or 'RINEX Files' for PPP with BNC in real-time or post processing mode. … … 3030 3115 </p> 3031 3116 3032 <p><h4 >2.13.1.2 <a name="ppprnxobs">RINEX Observation File - mandatory if 'Data source' is set to 'RINEX Files'</h4></p>3117 <p><h4 id="ppprnxobs">2.13.1.2 RINEX Observation File - mandatory if 'Data source' is set to 'RINEX Files'</h4></p> 3033 3118 <p> 3034 3119 Specify a RINEX Observation file. The file format can be RINEX Version 2 or RINEX Version 3. 3035 3120 </p> 3036 3121 3037 <p><h4 >2.13.1.3 <a name="ppprnxnav">RINEX Navigation File - mandatory if 'Data source' is set to 'RINEX Files'</h4></p>3122 <p><h4 id="ppprnxnav">2.13.1.3 RINEX Navigation File - mandatory if 'Data source' is set to 'RINEX Files'</h4></p> 3038 3123 <p> 3039 3124 Specify a RINEX Navigation file. The file format can be RINEX Version 2 or RINEX Version 3. 3040 3125 </p> 3041 3126 3042 <p><h4 >2.13.1.4 <a name="pppcorrstream">Corrections Stream - optional if 'Data source' is set to 'Real-Time Streams'</h4></p>3127 <p><h4 id="pppcorrstream">2.13.1.4 Corrections Stream - optional if 'Data source' is set to 'Real-Time Streams'</h4></p> 3043 3128 <p> 3044 3129 Specify a Broadcast 'Corrections stream' from the list of selected 'Streams' you are pulling if you want BNC to correct your satellite ephemeris accordingly. Note that the stream's orbit and clock corrections must refer to the satellite Antenna Phase Center (APC). Streams providing such corrections are made available e.g. through the International GNSS Service (IGS) and listed on <u>http://igs.bkg.bund.de/ntrip/orbits</u>. The stream format must be RTCM Version 3 containing so-called SSR messages. Streams 'IGS03' and 'CLK11' supporting GPS plus GLONASS are examples. … … 3048 3133 </p> 3049 3134 3050 <p><h4 >2.13.1.5 <a name="pppcorrfile">Corrections File - optional if 'Data source' is set to 'RINEX Files'</h4></p>3135 <p><h4 id="pppcorrfile">2.13.1.5 Corrections File - optional if 'Data source' is set to 'RINEX Files'</h4></p> 3051 3136 <p> 3052 3137 Specify a Broadcast 'Corrections file' as saved beforehand using BNC. The file content is basically the ASCII representation of a RTCM Version 3 Broadcast Correction (SSR) stream. … … 3056 3141 </p> 3057 3142 3058 <p><h4 >2.13.1.6 <a name="pppantexfile">ANTEX File - optional</h4></p>3143 <p><h4 id="pppantexfile">2.13.1.6 ANTEX File - optional</h4></p> 3059 3144 <p> 3060 3145 IGS provides a file containing absolute phase center corrections for GNSS satellite and receiver antennas in ANTEX format. Entering the full path to such an ANTEX file is required for correcting observations in PPP for Antenna Phase Center offsets and variations. Note that for applying such corrections you need to specify the receiver's antenna name and radome in BNC's 'Coordinates file'. … … 3064 3149 </p> 3065 3150 3066 <p><h4 >2.13.1.7 <a name="pppmarkcoor">Coordinates File - optional </h4></p>3151 <p><h4 id="pppmarkcoor">2.13.1.7 Coordinates File - optional </h4></p> 3067 3152 <p> 3068 3153 Enter the full path to an ASCII file which specifies all observation streams or files from stationary or mobile receivers you possibly may want to process. Specifying a 'Coordinates file' is optional. If it exists, it should contain one record per stream or file with the following parameters separated by blank characters: … … 3070 3155 <p> 3071 3156 <ul> 3072 <li>Input data source, to be specified either through 3073 <ul> 3074 <li>the 'Mountpoint' of an RTCM stream (when in real-time PPP mode), or 3075 </li> 3076 <li>the first four characters of the RINEX observations file (when in post processing PPP mode).</li> 3077 </ul> 3078 Having at least this first parameter in each record is mandatory.</li><br> 3079 <li>Only for static observations from a stationary receiver:<br>Approximate a priori XYZ coordinate [m] of the station's marker; specify '0.0 0.0 0.0' if unknown or when observations come from a mobile receiver.</li><br> 3080 <li>Nort, East and Up component [m] of antenna eccentricity which is the difference between Antenna Reference Point (ARP) and a nearby marker position; when specifying the antenna eccentricity BNC will produce coordinates referring to the marker position and not referring to ARP; specify '0.0 0.0 0.0' if eccentricity is unknown or the ARP itself is understood as the marker.</li><br> 3081 <li>Receiver's antenna name as defined in your ANTEX file (see below); Observations will be corrected for the Antenna Phase Center (APC) offsets and variations, which may result in a reduction of a few centimeters at max; the specified name must consist of 20 characters; add trailing blanks if the antenna name has less than 20 characters; examples:<br><pre> 3157 <li>Input data source, to be specified either through 3158 <ul> 3159 <li>the 'Mountpoint' of an RTCM stream (when in real-time PPP mode), or</li> 3160 <li>the first four characters of the RINEX observations file (when in post processing PPP mode).</li> 3161 </ul> 3162 Having at least this first parameter in each record is mandatory.</li><br> 3163 <li>Only for static observations from a stationary receiver:<br>Approximate a priori XYZ coordinate [m] of the station's marker; specify '0.0 0.0 0.0' if unknown or when observations come from a mobile receiver.</li><br> 3164 <li>Nort, East and Up component [m] of antenna eccentricity which is the difference between Antenna Reference Point (ARP) and a nearby marker position; when specifying the antenna eccentricity BNC will produce coordinates referring to the marker position and not referring to ARP; specify '0.0 0.0 0.0' if eccentricity is unknown or the ARP itself is understood as the marker.</li><br> 3165 <li>Receiver's antenna name as defined in your ANTEX file (see below); Observations will be corrected for the Antenna Phase Center (APC) offsets and variations, which may result in a reduction of a few centimeters at max; the specified name must consist of 20 characters; add trailing blanks if the antenna name has less than 20 characters; examples:<br><pre> 3082 3166 'JPSREGANT_SD_E ' (no radome) 3083 3167 'LEIAT504 NONE' (no radome) 3084 3168 'LEIAR25.R3 LEIT' (radome is LEIT)</pre> 3085 3169 Leave antenna name blank if you do not want to correct observations for APC offsets and variations or if you do not know the antenna name.</li><br> 3086 <li> 3087 Receiver type following the naming convention for IGS equipment as defined in <u>https://igscb.jpl.nasa.gov/igscb/station/general/rcvr_ant.tab</u>. Specifying the receiver type is only required when saving SINEX Troposphere files. In those files it becomes part of the 'SITE/RECEIVER' specifications, see section 'SNX TRO Directory'. 3088 </li>3170 <li>Receiver type following the naming convention for IGS equipment as defined in <a href="https://igscb.jpl.nasa.gov/igscb/station/general/rcvr_ant.tab" target="_blank">https://igscb.jpl.nasa.gov/igscb/station/general/rcvr_ant.tab</a>. 3171 Specifying the receiver type is only required when saving SINEX Troposphere files. In those files it becomes part of the 'SITE/RECEIVER' specifications, see section 3172 'SNX TRO Directory'.</li> 3089 3173 </ul> 3090 3174 </p> … … 3151 3235 </p> 3152 3236 <ul> 3153 <li> Record 'WTZR0' describes a stream from a stationary receiver with known a priori marker coordinate, antenna eccentricity, antenna and radome type and receiver type.</li>3154 <li> Record 'CUT07' describes a stream from a stationary receiver with known a priori marker coordinate, antenna eccentricity and antenna and radome type. The receiver type is unknown.</li>3155 <li> Record 'FFMJ1' describes a stream from a stationary receiver with known a priori marker coordinate and antenna eccentricity but unknown antenna, radome and receiver type.</li>3156 <li> Record 'TITZ1' describes a stream coming from a stationary receiver where an a priori marker coordinate is known but antenna eccentricity, name and radome and receiver type are unknown.</li>3157 <li>The 4-character station ID 'WARN' indicates that a RINEX observations file for post processing PPP is available for station 'WARN' but an a priori marker coordinate as well as antenna eccentricity, name and radome are unknown.</li>3158 <li>Record 'SASS1' stands for a mountpoint where the stream comes from a mobile rover receiver. Hence an a priori coordinate is unknown although antenna eccentricity, name and radome and receiver type are known.</li>3159 </ul> 3160 </p> 3161 3162 <p><h4 >2.13.1.8 <a name="pppv3filename">Version 3 Filenames - optional</h4></p>3237 <li> Record 'WTZR0' describes a stream from a stationary receiver with known a priori marker coordinate, antenna eccentricity, antenna and radome type and receiver type.</li> 3238 <li> Record 'CUT07' describes a stream from a stationary receiver with known a priori marker coordinate, antenna eccentricity and antenna and radome type. The receiver type is unknown.</li> 3239 <li> Record 'FFMJ1' describes a stream from a stationary receiver with known a priori marker coordinate and antenna eccentricity but unknown antenna, radome and receiver type.</li> 3240 <li> Record 'TITZ1' describes a stream coming from a stationary receiver where an a priori marker coordinate is known but antenna eccentricity, name and radome and receiver type are unknown.</li> 3241 <li>The 4-character station ID 'WARN' indicates that a RINEX observations file for post processing PPP is available for station 'WARN' but an a priori marker coordinate as well as antenna eccentricity, name and radome are unknown.</li> 3242 <li>Record 'SASS1' stands for a mountpoint where the stream comes from a mobile rover receiver. Hence an a priori coordinate is unknown although antenna eccentricity, name and radome and receiver type are known.</li> 3243 </ul> 3244 </p> 3245 3246 <p><h4 id="pppv3filename">2.13.1.8 Version 3 Filenames - optional</h4></p> 3163 3247 <p> 3164 3248 Tick 'Version 3 filenames' to let BNC create so-called extended filenames for PPP logfiles, NMEA files and SINEX Troposphere files to follow the RINEX Version 3 standard, see section 'RINEX Filenames' for details. … … 3172 3256 </p> 3173 3257 <table> 3174 <tr><td> CUT018671.nmea</td><td> NMEA filename, suffix 'nmea'</td></tr>3175 <tr><td> CUT018671.ppp</td><td> PPP logfile name, suffix 'ppp'</td></tr>3176 <tr><td> CUT018671J30.tro</td><td> SINEX Troposphere filename, suffix 'tro'</td></tr>3258 <tr><td> CUT018671.nmea</td><td> NMEA filename, suffix 'nmea'</td></tr> 3259 <tr><td> CUT018671.ppp</td><td> PPP logfile name, suffix 'ppp'</td></tr> 3260 <tr><td> CUT018671J30.tro</td><td> SINEX Troposphere filename, suffix 'tro'</td></tr> 3177 3261 </table> 3178 3262 </p> … … 3181 3265 </p> 3182 3266 <table> 3183 <tr><td> CUT000AUS_U_20152920000_01D_01S.nmea</td><td> NMEA filename, suffix 'nmea'</td></tr>3184 <tr><td> CUT000AUS_U_20152920000_01D_01S.ppp</td><td> PPP logfile name, suffix 'ppp'</td></tr>3185 <tr><td> CUT000AUS_U_20152920945_15M_01S.tra</td><td> SINEX Troposphere filename, suffix 'tra'</td></tr>3267 <tr><td> CUT000AUS_U_20152920000_01D_01S.nmea</td><td> NMEA filename, suffix 'nmea'</td></tr> 3268 <tr><td> CUT000AUS_U_20152920000_01D_01S.ppp</td><td> PPP logfile name, suffix 'ppp'</td></tr> 3269 <tr><td> CUT000AUS_U_20152920945_15M_01S.tra</td><td> SINEX Troposphere filename, suffix 'tra'</td></tr> 3186 3270 </table> 3187 3271 </p> 3188 3272 3189 <p><h4 >2.13.1.9 <a name="ppplogfile">Logfile Directory - optional</h4></p>3273 <p><h4 id="ppplogfile">2.13.1.9 Logfile Directory - optional</h4></p> 3190 3274 <p> 3191 3275 Essential PPP results are shown in the 'Log' tab on the bottom of BNC's main window. Depending on the processing options, the following values are presented about once per second (example): … … 3304 3388 Depending on selected processing options you find 'GPS Time' stamps (yyyy-mm-dd_hh:mm:ss.sss) followed by 3305 3389 <ul> 3306 <li>SATNUM: Number of satellites per GNSS,</li>3307 <li>RES: Code and phase residuals for contributing GNSS systems in [m]<br>Given per satellite with cIF/lIF for ionosphere-free linear combination of code/phase observations,</li>3308 <li>CLK: Receiver clock errors in [m], </li>3309 <li>TRP: A priori and correction values of tropospheric zenith delay in [m],3310 <li>OFFGLO: Time offset between GPS time and GLONASS time in [m],3311 <li>OFFGAL: Time offset between GPS time and Galileo time in [m],3312 <li>OFFBDS: Time offset between GPS time and BDS time in [m],3313 <li>AMB: L3 biases, also known as 'floated ambiguities'<br>Given per satellite with 'nEpo' = number of epochs since last ambiguity reset,3314 <li>MOUNTPOINT: Here 'CUT07' with XYZ position in [m] and dN/dE/dU in [m] for North, East, and Up displacements compared to a priori marker coordinates.</li>3390 <li>SATNUM: Number of satellites per GNSS,</li> 3391 <li>RES: Code and phase residuals for contributing GNSS systems in [m]<br>Given per satellite with cIF/lIF for ionosphere-free linear combination of code/phase observations,</li> 3392 <li>CLK: Receiver clock errors in [m], </li> 3393 <li>TRP: A priori and correction values of tropospheric zenith delay in [m], 3394 <li>OFFGLO: Time offset between GPS time and GLONASS time in [m], 3395 <li>OFFGAL: Time offset between GPS time and Galileo time in [m], 3396 <li>OFFBDS: Time offset between GPS time and BDS time in [m], 3397 <li>AMB: L3 biases, also known as 'floated ambiguities'<br>Given per satellite with 'nEpo' = number of epochs since last ambiguity reset, 3398 <li>MOUNTPOINT: Here 'CUT07' with XYZ position in [m] and dN/dE/dU in [m] for North, East, and Up displacements compared to a priori marker coordinates.</li> 3315 3399 </ul> 3316 3400 Estimated parameters are presented together with their formal errors as derived from the implemented filter. The PPP algorithm includes outlier and cycle slip detection. 3317 3401 </p> 3402 3318 3403 <p> 3319 3404 Default value for 'Logfile directory' is an empty option field, meaning that you do not want to save daily PPP logfiles on disk. If a specified directory does not exist, BNC will not create PPP logfiles. 3320 3405 </p> 3321 3406 3322 <p><h4 >2.13.1.10 <a name="pppnmeafile">NMEA Directory - optional</h4></p>3407 <p><h4 id="pppnmeafile">2.13.1.10 NMEA Directory - optional</h4></p> 3323 3408 <p> 3324 3409 You can specify a 'NMEA directory' to save daily NMEA files with Point Positioning results recorded as NMEA sentences. Such sentences are usually generated about once per second with pairs of … … 3326 3411 <p> 3327 3412 <ul> 3328 <li> GPGGA sentences which mainly carry the estimated latitude, longitude, and height values, plus</li>3329 <li> GPRMC sentences which mainly carry date and time information.</li>3413 <li> GPGGA sentences which mainly carry the estimated latitude, longitude, and height values, plus</li> 3414 <li> GPRMC sentences which mainly carry date and time information.</li> 3330 3415 </ul> 3331 3416 </p> … … 3361 3446 </p> 3362 3447 3363 <p><h4 >2.13.1.11 <a name="pppsnxtrofile">SNX TRO Directory - optional</h4></p>3448 <p><h4 id="pppsnxtrofile">2.13.1.11 SNX TRO Directory - optional</h4></p> 3364 3449 <p> 3365 3450 BNC estimates the tropospheric delay according to equation … … 3371 3456 3372 3457 <p> 3373 You can specify a 'SNX TRO Directory' for saving SINEX Troposphere files on disk, see < u>https://igscb.jpl.nasa.gov/igscb/data/format/sinex_tropo.txt</u> for a documentation of the file format. Note that receiver type information for these files must be provided through the coordinates file described in section 'Coordinates file'. The following is an example for a troposphere file content:3458 You can specify a 'SNX TRO Directory' for saving SINEX Troposphere files on disk, see <a href="https://igscb.jpl.nasa.gov/igscb/data/format/sinex_tropo.txt" target="_blank">https://igscb.jpl.nasa.gov/igscb/data/format/sinex_tropo.txt</a> for a documentation of the file format. Note that receiver type information for these files must be provided through the coordinates file described in section 'Coordinates file'. The following is an example for a troposphere file content: 3374 3459 </p> 3375 3460 … … 3435 3520 </p> 3436 3521 3437 <p><h4 >2.13.1.11.1 <a name="pppsnxtrointr">Interval - mandatory if 'SINEX TRO Directory' is set</h4></p>3522 <p><h4 id="pppsnxtrointr">2.13.1.11.1 Interval - mandatory if 'SINEX TRO Directory' is set</h4></p> 3438 3523 <p> 3439 3524 Select the length of SINEX Troposphere files. 3440 3525 </p> 3526 3441 3527 <p> 3442 3528 Default 'Interval' for saving SINEX Troposphere files on disk is '1 day'. 3443 3529 </p> 3444 3530 3445 <p><h4 >2.13.1.11.2 <a name="pppsnxtrosampl">Sampling - mandatory if 'SINEX TRO Directory' is set</h4></p>3531 <p><h4 id="pppsnxtrosampl">2.13.1.11.2 Sampling - mandatory if 'SINEX TRO Directory' is set</h4></p> 3446 3532 <p> 3447 3533 Select a 'Sampling' rate in seconds for saving troposphere parameters. … … 3451 3537 </p> 3452 3538 3453 <p><h4 >2.13.1.11.3 <a name="pppsnxAc">Analysis Center - Mandatory if 'SINEX TRO Directory' is set</h4></p>3539 <p><h4 id="pppsnxAc">2.13.1.11.3 Analysis Center - Mandatory if 'SINEX TRO Directory' is set</h4></p> 3454 3540 <p> 3455 3541 Specify a 3-character abbreviation describing you as the generating Analysis Center (AC) in your SINEX troposphere files. String 'BKG' is an example. 3456 3542 </p> 3457 3543 3458 <p><h4 >2.13.1.11.4 <a name="pppsnxSol">Solution ID - Mandatory if 'SINEX TRO Directory' is set</h4></p>3544 <p><h4 id="pppsnxSol">2.13.1.11.4 Solution ID - Mandatory if 'SINEX TRO Directory' is set</h4></p> 3459 3545 <p> 3460 3546 Specify a 4-character solution ID to allow a distingtion between different solutions per AC. String '0001' is an example. 3461 3547 </p> 3462 3548 3463 <p><h4 >2.13.2 <a name="pppStation">PPP (2): Processed Stations</h4></p>3549 <p><h4 id="pppStation">2.13.2 PPP (2): Processed Stations</h4></p> 3464 3550 3465 3551 <p> 3466 3552 This panel allows to enter parameters specific to each PPP process or thread. Individual sigmas for a priori coordinates and a noise for coordinate variations over time can be introduced. Furthermore, a sigma for model-based troposphere estimates and the corresponding noise for troposphere variations can be specified. Finally, local IP server ports can be defined for output of NMEA streams carrying PPP results. 3467 3553 </p> 3554 3468 3555 <p> 3469 3556 BNC offers to create a table with one line per PPP process or thread to specify station-specific parameters. Hit the 'Add Station' button to create the table or add a new line to it. To remove a line from the table, highlight it by clicking it and hit the 'Delete Station' button. You can also remove multiple lines simultaneously by highlighting them using +Shift or +Ctrl.</p> 3470 3557 </p> 3558 3471 3559 <p> 3472 3560 BNC will simultaneously produce PPP solutions for all stations listed in the 'Station' column of this table. … … 3474 3562 3475 3563 <p><img src="IMG/screenshot17.png"/></p> 3476 <p> <u>Figure 23:</u>Precise Point Positioning with BNC, PPP Panel 2, using RTKPLOT for visualization</p>3477 3478 <p><h4 >2.13.2.1 <a name="pppsite">Station - mandatory</h4></p>3564 <p>Figure 23: Precise Point Positioning with BNC, PPP Panel 2, using RTKPLOT for visualization</p> 3565 3566 <p><h4 id="pppsite">2.13.2.1 Station - mandatory</h4></p> 3479 3567 <p> 3480 3568 Hit the 'Add Station' button, double click on the 'Station' field, then specify an observation's mountpoint from the 'Streams' section or introduce the 4-character Station ID of your RINEX observation file and hit Enter. BNC will only produce PPP solutions for stations listed in this table. 3481 3569 </p> 3482 3570 3483 <p><h4 >2.13.2.2 <a name="pppnehsigma">Sigma North/East/Up - mandatory</h4></p>3571 <p><h4 id="pppnehsigma">2.13.2.2 Sigma North/East/Up - mandatory</h4></p> 3484 3572 <p> 3485 3573 Enter sigmas in meters for the initial coordinate components. A value of 100.0 (default) may be an appropriate choice. However, this value may be significantly smaller (e.g. 0.01) when starting for example from a station with a well-known position in so-called Quick-Start mode. 3486 3574 </p> 3487 3575 3488 <p><h4 >2.13.2.3 <a name="pppnehnoise">Noise North/East/Up - mandatory</h4></p>3576 <p><h4 id="pppnehnoise">2.13.2.3 Noise North/East/Up - mandatory</h4></p> 3489 3577 <p> 3490 3578 Enter a white 'Noise' in meters for estimated coordinate components. A value of 100.0 (default) may be appropriate when considering possible sudden movements of a rover. 3491 3579 </p> 3492 3580 3493 <p><h4 >2.13.2.4 <a name="ppptropsigma">Tropo Sigma - mandatory</h4></p>3581 <p><h4 id="ppptropsigma">2.13.2.4 Tropo Sigma - mandatory</h4></p> 3494 3582 <p> 3495 3583 Enter a sigma in meters for the a priori model based tropospheric delay estimation. A value of 0.1 (default) may be an appropriate choice. 3496 3584 </p> 3497 3585 3498 <p><h4 >2.13.2.5 <a name="ppptropnoise">Tropo Noise - mandatory</h4></p>3586 <p><h4 id="ppptropnoise">2.13.2.5 Tropo Noise - mandatory</h4></p> 3499 3587 <p> 3500 3588 Enter a white 'Noise' in meters per second to describe the expected variation of the tropospheric effect. Supposing 1Hz observation data, a value of 3e-6 (default) would mean that the tropospheric effect may vary for 3600 * 3e-6 = 0.01 meters per hour. 3501 3589 </p> 3502 3590 3503 <p><h4 >2.13.2.6 <a name="pppnmeaport">NMEA Port - optional</h4></p>3591 <p><h4 id="pppnmeaport">2.13.2.6 NMEA Port - optional</h4></p> 3504 3592 Specify the IP port number of a local port where Point Positioning results become available as NMEA sentences. The default value for 'NMEA Port' is an empty option field, meaning that BNC does not provide NMEA sentences via IP port. Note that NMEA file output and NMEA IP port output are the same. 3505 3593 </p> 3506 3594 <p> 3507 Note also that Tomoji Takasu has written a program named RTKPLOT for visualizing NMEA sentences from IP ports or files. It is available from < u>http://www.rtklib.com</u> and compatible with the NMEA file and port output of BNC's 'PPP' client option.3508 </p> 3509 <p> 3510 Furthermore, NASA's 'World Wind' software (see < u>http://worldwindcentral.com/wiki/NASA_World_Wind_Download</u>) can be used for real-time visualization of positions provided through BNC's NMEA IP output port. You need the 'GPS Tracker' plug-in available from <u>http://worldwindcentral.com/wiki/GPS_Tracker</u> for that. The 'Word Wind' map resolution is not meant for showing centimeter level details.3511 </p> 3512 3513 <p><h4 >2.13.3 <a name="pppOptions">PPP (3): Processing Options</h4></p>3595 Note also that Tomoji Takasu has written a program named RTKPLOT for visualizing NMEA sentences from IP ports or files. It is available from <a href="http://www.rtklib.com" target="_blank">http://www.rtklib.com</a> and compatible with the NMEA file and port output of BNC's 'PPP' client option. 3596 </p> 3597 <p> 3598 Furthermore, NASA's 'World Wind' software (see <a href="http://worldwindcentral.com/wiki/NASA_World_Wind_Download" target="_blank">http://worldwindcentral.com/wiki/NASA_World_Wind_Download</a>) can be used for real-time visualization of positions provided through BNC's NMEA IP output port. You need the 'GPS Tracker' plug-in available from <a href="http://worldwindcentral.com/wiki/GPS_Tracker" target="_blank">http://worldwindcentral.com/wiki/GPS_Tracker</a> for that. The 'Word Wind' map resolution is not meant for showing centimeter level details. 3599 </p> 3600 3601 <p><h4 id="pppOptions">2.13.3 PPP (3): Processing Options</h4></p> 3514 3602 <p>BNC allows using various Point Positioning processing options depending on the capability of the involved receiver and the application in mind. You can introduce specific sigmas for code and phase observations as well as for a priori coordinates and troposphere estimates. You could also carry out your PPP solution in Quick-Start mode or enforce BNC to restart a solution if the length of an outage exceeds a certain threshold. 3515 3603 </p> … … 3519 3607 3520 3608 <p><img src="IMG/screenshot18.png"/></p> 3521 <p> <u>Figure 24:</u>Precise Point Positioning with BNC, PPP Panel 3</p>3522 3523 <p><h4 >2.13.3.1 <a name="ppplinecombi">Linear Combinations - mandatory</h4></p>3609 <p>Figure 24: Precise Point Positioning with BNC, PPP Panel 3</p> 3610 3611 <p><h4 id="ppplinecombi">2.13.3.1 Linear Combinations - mandatory</h4></p> 3524 3612 <p> 3525 3613 <p> … … 3528 3616 <p> 3529 3617 <ul> 3530 <li>Selecting 'P3' means that you request BNC to use code data and the so-called P3 ionosphere-free linear combinations of code observations.</li> 3531 <li>'L3' means that you request BNC to use phase data and the so-called L3 ionosphere-free linear combinations of phase observations.</li> 3532 <li>'P3&L3' means that you request BNC to use both, code and phase data and the so-called P3 and L3 ionosphere-free linear combinations of code and phase observations. 3533 </li> 3618 <li>Selecting 'P3' means that you request BNC to use code data and the so-called P3 ionosphere-free linear combinations of code observations.</li> 3619 <li>'L3' means that you request BNC to use phase data and the so-called L3 ionosphere-free linear combinations of phase observations.</li> 3620 <li>'P3&L3' means that you request BNC to use both, code and phase data and the so-called P3 and L3 ionosphere-free linear combinations of code and phase observations.</li> 3534 3621 </ul> 3535 3622 </p> … … 3539 3626 </p> 3540 3627 3541 <p><h4 >2.13.3.2 <a name="pppcodeobs">Code Observations - mandatory</h4></p>3542 < /p>3628 <p><h4 id="pppcodeobs">2.13.3.2 Code Observations - mandatory</h4></p> 3629 <p> 3543 3630 Enter a 'Sigma C1' for C1 code observations in meters. The bigger the sigma you enter, the less the contribution of C1 code observations to a PPP solution based on a combination of code and phase data. '2.0' meters is likely to be an appropriate choice. 3544 3631 </p> … … 3548 3635 3549 3636 3550 <p><h4 >2.13.3.3 <a name="pppphaseobs">Phase Observations - mandatory</h4></p>3637 <p><h4 id="pppphaseobs">2.13.3.3 Phase Observations - mandatory</h4></p> 3551 3638 <p> 3552 3639 Enter a 'Sigma L1' for L1 phase observations in meters. The bigger the sigma you enter, the less the contribution of L1 phase observations to a PPP solutions based on a combination of code and phase data. '0.01' meters is likely to be an appropriate choice. … … 3559 3646 As the convergence characteristic of a PPP solution can be influenced by the ratio of sigmas for code and phase, you may like to introduce sigmas which differ from the default values. 3560 3647 <ul> 3561 <li>Introducing a smaller sigma (higher accuracy) for code observations or a bigger sigma for phase observations leads to better results shortly after program start. However, it may take more time until you finally get the best possible solution.</li>3562 <li>Introducing a bigger sigma (lower accuracy) for code observations or a smaller sigma for phase observations may lead to less accurate results shortly after program start and thus a prolonged period of convergence but could provide better positions in the long run.</li>3563 </ul> 3564 </p> 3565 3566 <p><h4 >2.13.3.4 <a name="pppeleweight">Elevation Dependent Weighting - mandatory</h4></p>3648 <li>Introducing a smaller sigma (higher accuracy) for code observations or a bigger sigma for phase observations leads to better results shortly after program start. However, it may take more time until you finally get the best possible solution.</li> 3649 <li>Introducing a bigger sigma (lower accuracy) for code observations or a smaller sigma for phase observations may lead to less accurate results shortly after program start and thus a prolonged period of convergence but could provide better positions in the long run.</li> 3650 </ul> 3651 </p> 3652 3653 <p><h4 id="pppeleweight">2.13.3.4 Elevation Dependent Weighting - mandatory</h4></p> 3567 3654 <p> 3568 3655 BNC allows elevation dependent weighting when processing GNSS observations. A weight function … … 3582 3669 </p> 3583 3670 3584 <p><h4 >2.13.3.5 <a name="pppminobs">Minimum Number of Observations - mandatory</h4></p>3671 <p><h4 id="pppminobs">2.13.3.5 Minimum Number of Observations - mandatory</h4></p> 3585 3672 <p> 3586 3673 Select the minimum number of observations you want to use per epoch. The minimum for parameter 'Min # of Obs' is 4. This is also the default. 3587 3674 </p> 3588 3675 3589 <p><h4 >2.13.3.6 <a name="pppmineleva">Minimum Elevation - mandatory</h4></p>3676 <p><h4 id="pppmineleva">2.13.3.6 Minimum Elevation - mandatory</h4></p> 3590 3677 <p> 3591 3678 Select a minimum for satellite elevation angles. Selecting '10 deg' for option 'Min Elevation' may be an appropriate choice. … … 3595 3682 </p> 3596 3683 3597 <p><h4 >2.13.3.7 <a name="pppwaitclockcorr">Wait for Clock Corrections - optional</h4></p>3684 <p><h4 id="pppwaitclockcorr">2.13.3.7 Wait for Clock Corrections - optional</h4></p> 3598 3685 <p> 3599 3686 Specifying 'no' for option 'Wait for clock corr.' means that BNC processes each epoch of data immediately after its arrival using satellite clock corrections available at that time. A non-zero value means that epochs of data are buffered and the processing of each epoch is postponed until satellite clock corrections not older than 'Wait for clock corr.' seconds are available. Specifying a value of half the update rate of the clock corrections (e.g. 5 sec) may be appropriate. Note that this causes an additional delay of the PPP solutions in the amount of half of the update rate. … … 3606 3693 </p> 3607 3694 3608 <p><h4 >2.13.3.8 <a name="pppseeding">Seeding - optional if a priori coordinates specified in 'Coordinates file'</h4></p>3695 <p><h4 id="pppseeding">2.13.3.8 Seeding - optional if a priori coordinates specified in 'Coordinates file'</h4></p> 3609 3696 <p> 3610 3697 Enter the length of a startup period in seconds for which you want to fix the PPP solution to a known position, see option 'Coordinates file'. Constraining a priori coordinates is done in BNC through setting their white 'Noise' temporarily to zero. 3611 3698 </p> 3612 3699 <p> 3613 This so-called < u>Quick-Start</u> option allows the PPP solutions to rapidly converge after startup. It requires that the antenna remains unmoved on the known position throughout the defined period. A value of '60' seconds is likely to be an appropriate choice for 'Seeding'. Default is an empty option field, meaning that you do not want BNC to start in Quick-Start mode.3700 This so-called <b>Quick-Start</b> option allows the PPP solutions to rapidly converge after startup. It requires that the antenna remains unmoved on the known position throughout the defined period. A value of '60' seconds is likely to be an appropriate choice for 'Seeding'. Default is an empty option field, meaning that you do not want BNC to start in Quick-Start mode. 3614 3701 <p> 3615 3702 You may need to create your own reference coordinate beforehand through running BNC for an hour in normal mode before applying the 'Seeding' option. Do not forget to introduce realistic North/East/Up sigmas under panel 'PPP (2)' corresponding to the coordinate's precision. … … 3617 3704 3618 3705 <p> 3619 'Seeding' has also a function for <u>bridging gaps</u> in PPP solutions from failures caused e.g. by longer lasting outages. Should the time span between two consecutive solutions exceed the limit of 60 seconds (maximum solution gap, hard-wired), the algorithm fixes the latest derived coordinate for a period of 'Seeding' seconds. This option avoids time-consuming reconvergences and makes especially sense for stationary operated receivers where convergence can be enforced because a good approximation for the receiver position is known. 3706 'Seeding' has also a function for <b>bridging gaps</b> in PPP solutions from failures caused e.g. by longer lasting 3707 outages. Should the time span between two consecutive solutions exceed the limit of 60 seconds (maximum solution gap, 3708 hard-wired), the algorithm fixes the latest derived coordinate for a period of 'Seeding' seconds. This option avoids 3709 time-consuming reconvergences and makes especially sense for stationary operated receivers where convergence can be 3710 enforced because a good approximation for the receiver position is known. 3620 3711 </p> 3621 3712 … … 3625 3716 3626 3717 <p><img src="IMG/screenshot22.png"/></p> 3627 <p><u>Figure 25:</u> Precise Point Positioning with BNC in 'Quick-Start' mode, PPP Panel 4</p> 3628 3629 <p><h4>2.13.4 <a name="pppPlots">PPP (4): Plots</h4></p> 3630 <p> 3631 This panel presents options for visualizing PPP results as a time series plot or as a track map with PPP tracks on top of OSM or Google maps. 3632 </p> 3633 3634 <p><h4>2.13.4.1 <a name="ppptimeseries">PPP Plot - optional</h4></p> 3635 <p> 3636 PPP time series of North (red), East (green) and Up (blue) displacements will be plotted under the 'PPP Plot' tab when a 'Mountpoint' is specified. Values will be referred to an XYZ reference coordinate (if specified, see 'Coordinates file'). The sliding PPP time series window will cover the period of the latest 5 minutes. 3718 <p>Figure 25: Precise Point Positioning with BNC in 'Quick-Start' mode, PPP Panel 4</p> 3719 3720 <p><h4 id="pppPlots">2.13.4 PPP (4): Plots</h4></p> 3721 <p> 3722 This panel presents options for visualizing PPP results as a time series plot or as a track map with PPP tracks on top 3723 of OSM or Google maps. 3724 </p> 3725 3726 <p><h4 id="ppptimeseries">2.13.4.1 PPP Plot - optional</h4></p> 3727 <p> 3728 PPP time series of North (red), East (green) and Up (blue) displacements will be plotted under the 'PPP Plot' tab when 3729 a 'Mountpoint' is specified. Values will be referred to an XYZ reference coordinate (if specified, see 3730 'Coordinates file'). The sliding PPP time series window will cover the period of the latest 5 minutes. 3637 3731 </p> 3638 3732 <p> … … 3640 3734 </p> 3641 3735 3642 <p><h4>2.13.4.2 <a name="pppaudioresp">Audio Response - optional</h4></p> 3643 <p> 3644 For natural hazard prediction and monitoring landslides, it may be appropriate to generate audio alerts. For that you can specify an 'Audio response' threshold in meters. A beep is produced by BNC whenever a horizontal PPP coordinate component differs by more than the threshold value from the specified marker coordinate. 3736 <p><h4 id="pppaudioresp">2.13.4.2 Audio Response - optional</h4></p> 3737 <p> 3738 For natural hazard prediction and monitoring landslides, it may be appropriate to generate audio alerts. For that 3739 you can specify an 'Audio response' threshold in meters. A beep is produced by BNC whenever a horizontal PPP coordinate 3740 component differs by more than the threshold value from the specified marker coordinate. 3645 3741 </p> 3646 3742 <p> … … 3648 3744 </p> 3649 3745 3650 <p><h4>2.13.4.3 <a name="ppptrackmap">Track Map - optional</h4></p> 3651 <p> 3652 You may like to track your rover position using Google Maps or OpenStreetMap as a background map. Track maps can be produced with BNC in 'Real-time Streams' mode or in 'RINEX Files' post processing mode with data coming from files. 3653 </p> 3654 <p> 3655 Even when in 'RINEX Files' post processing mode, you should not forget to go online with your host and specify a proxy under the 'Network' panel if that is operated in front of BNC. 3746 <p><h4 id="ppptrackmap">2.13.4.3 Track Map - optional</h4></p> 3747 <p> 3748 You may like to track your rover position using Google Maps or OpenStreetMap as a background map. Track maps can be 3749 produced with BNC in 'Real-time Streams' mode or in 'RINEX Files' post processing mode with data coming from files. 3750 </p> 3751 <p> 3752 Even when in 'RINEX Files' post processing mode, you should not forget to go online with your host and specify a 3753 proxy under the 'Network' panel if that is operated in front of BNC. 3656 3754 </p> 3657 3755 <p> … … 3660 3758 3661 3759 <p><img src="IMG/screenshot32.png"/></p> 3662 <p> <u>Figure 26:</u>Track of positions from BNC with Google Maps in background</p>3663 3664 <p><h4 >2.13.4.3.1 <a name="pppmaptype">Google/OSM - mandatory before pushing 'Open Map'</h4></p>3760 <p>Figure 26: Track of positions from BNC with Google Maps in background</p> 3761 3762 <p><h4 id="pppmaptype">2.13.4.3.1 Google/OSM - mandatory before pushing 'Open Map'</h4></p> 3665 3763 <p> 3666 3764 Select either 'Google' or 'OSM' as the background map for your rover positions. … … 3668 3766 3669 3767 <p><img src="IMG/screenshot41.png"/></p> 3670 <p> <u>Figure 27:</u>Example for background map from Google Maps and OpenStreetMap (OSM)</p>3671 3672 <p><h4 >2.13.4.4 <a name="pppdotprop">Dot-properties - mandatory before pushing 'Open Map'</h4></p>3768 <p>Figure 27: Example for background map from Google Maps and OpenStreetMap (OSM)</p> 3769 3770 <p><h4 id="pppdotprop">2.13.4.4 Dot-properties - mandatory before pushing 'Open Map'</h4></p> 3673 3771 <p> 3674 3772 PPP tracks are presented on maps through plotting one colored dot per observation epoch. 3675 3773 </p> 3676 3774 3677 <p><h4>2.13.4.4.1 <a name="pppdotsize">Size - mandatory before pushing 'Open Map'</h4></p> 3678 <p> 3679 Specify the size of dots showing the rover position. A dot size of '3' may be appropriate. The maximum possible dot size is '10'. An empty option field or a size of '0' would mean that you do not want BNC to show the rover's track on the map. 3680 </p> 3681 3682 <p><h4>2.13.4.4.2 <a name="pppdotcolor">Color - mandatory before pushing 'Open Map'</h4></p> 3775 <p><h4 id="pppdotsize">2.13.4.4.1 Size - mandatory before pushing 'Open Map'</h4></p> 3776 <p> 3777 Specify the size of dots showing the rover position. A dot size of '3' may be appropriate. The maximum possible dot 3778 size is '10'. An empty option field or a size of '0' would mean that you do not want BNC to show the rover's track 3779 on the map. 3780 </p> 3781 3782 <p><h4 id="pppdotcolor">2.13.4.4.2 Color - mandatory before pushing 'Open Map'</h4></p> 3683 3783 <p> 3684 3784 Select the color of dots showing the rover track. 3685 3785 </p> 3686 3786 3687 <p><h4>2.13.4.5 <a name="pppspeed">Post Processing Speed - mandatory before pushing 'Open Map'</h4></p> 3688 <p> 3689 With BNC in PPP 'RINEX File' post processing mode, you can specify the speed of computations as appropriate for visualization. Note that you can adjust 'Post-processing speed' on-the-fly while BNC is already processing your observations. 3690 </p> 3691 3692 <p><h4>2.14 <a name="combi">Combine Corrections</h4></p> 3693 <p> 3694 BNC allows processing several orbit and clock correction streams in real-time to produce, encode, upload and save a combination of Broadcast Corrections from various providers. All corrections must refer to satellite Antenna Phase Centers (APC). It is so far only the satellite clock corrections which are combined by BNC while orbit corrections in the combination product as well as product update rates are just taken over from one of the incoming Broadcast Correction streams. Combining only clock corrections using a fixed orbit reference imposes the potential to introduce some analysis inconsistencies. We may therefore eventually consider improvements on this approach. The clock combination can be based either on a plain 'Single-Epoch' or on a Kalman 'Filter' approach. 3695 </p> 3696 <p> 3697 In the Kalman Filter approach, satellite clocks estimated by individual Analyses Centers (ACs) are used as pseudo observations within the adjustment process. Each observation is modeled as a linear function (actually a simple sum) of three estimated parameters: AC specific offset, satellite specific offset common to all ACs, and the actual satellite clock correction, which represents the result of the combination. These three parameter types differ in their statistical properties. The satellite clock offsets are assumed to be static parameters while AC specific and satellite specific offsets are stochastic parameters affected by white noise. 3698 </p> 3699 <p> 3700 The solution is regularized by a set of minimal constraints. In case of a change of the 'SSR Provider ID', 'SSR Solution ID', or 'IOD SSR' (see section 'Upload Corrections'), the satellite clock offsets belonging to the corresponding analysis center are reset in the adjustment. 3701 </p> 3787 <p><h4 id="pppspeed">2.13.4.5 Post Processing Speed - mandatory before pushing 'Open Map'</h4></p> 3788 <p> 3789 With BNC in PPP 'RINEX File' post processing mode, you can specify the speed of computations as appropriate for 3790 visualization. Note that you can adjust 'Post-processing speed' on-the-fly while BNC is already processing your observations. 3791 </p> 3792 3793 <p><h4 id="combi">2.14 Combine Corrections</h4></p> 3794 <p> 3795 BNC allows processing several orbit and clock correction streams in real-time to produce, encode, upload and save a 3796 combination of Broadcast Corrections from various providers. All corrections must refer to satellite 3797 Antenna Phase Centers (APC). It is so far only the satellite clock corrections which are combined by BNC while orbit 3798 corrections in the combination product as well as product update rates are just taken over from one of the incoming 3799 Broadcast Correction streams. Combining only clock corrections using a fixed orbit reference imposes the potential 3800 to introduce some analysis inconsistencies. We may therefore eventually consider improvements on this approach. 3801 The clock combination can be based either on a plain 'Single-Epoch' or on a Kalman 'Filter' approach. 3802 </p> 3803 3804 <p> 3805 In the Kalman Filter approach, satellite clocks estimated by individual Analyses Centers (ACs) are used as pseudo 3806 observations within the adjustment process. Each observation is modeled as a linear function (actually a simple sum) 3807 of three estimated parameters: AC specific offset, satellite specific offset common to all ACs, and the actual satellite 3808 clock correction, which represents the result of the combination. These three parameter types differ in their statistical 3809 properties. The satellite clock offsets are assumed to be static parameters while AC specific and satellite specific 3810 offsets are stochastic parameters affected by white noise. 3811 </p> 3812 3813 <p> 3814 The solution is regularized by a set of minimal constraints. In case of a change of the 'SSR Provider ID', 3815 'SSR Solution ID', or 'IOD SSR' (see section 'Upload Corrections'), the satellite clock offsets belonging to the 3816 corresponding analysis center are reset in the adjustment. 3817 </p> 3818 3702 3819 <p> 3703 3820 Removing the AC-dependent biases as well as possible is a major issue with clock combinations. Since they vary in time, it can be tricky to do this. Otherwise, there will be artificial jumps in the combined clock stream if one or more AC contributions drop out for certain epochs. Here the Kalman Filter approach is expected to do better than the Single-Epoch approach. … … 3706 3823 In view of IGS real-time products, the 'Combine Corrections' functionality has been integrated in BNC (Weber and Mervart 2010) because 3707 3824 <ul> 3708 <li>The software with its Graphic User Interface and range of supported Operating Systems represents a perfect platform to process many Broadcast Correction streams in parallel;</li> 3709 <li>Outages of single AC product streams can be mitigated through merging several incoming streams into a combined product;</li> 3710 <li>Generating a combination product from several AC products allows detecting and rejecting outliers;</li> 3711 <li>A Combination Center (CC) can operate BNC to globally disseminate a combination product via Ntrip broadcast;</li> 3712 <li>An individual AC could prefer to disseminate a stream combined from primary and backup IT resources to reduce outages;</li> 3713 <li>It enables a BNC PPP user to follow his own preference in combining streams from individual ACs for Precise Point Positioning;</li> 3714 <li>It allows an instantaneous quality control of the combination process not only in the time domain but also in the space domain; this can be done by direct application of the combined stream in a PPP solution even without prior upload to an Ntrip Broadcaster;</li> 3715 <li>It provides the means to output SP3 and Clock RINEX files containing precise orbit and clock information for further processing using other tools than BNC.</li> 3716 </ul> 3717 </p> 3718 <p> 3719 Note that the combination process requires real-time access to Broadcast Ephemeris. Therefore, in addition to the orbit and clock correction streams BNC must pull a stream carrying Broadcast Ephemeris in the form of RTCM Version 3 messages. Stream 'RTCM3EPH' on caster <u>products.igs-ip.net</u> is an example for that. Note further that BNC will ignore incorrect or outdated Broadcast Ephemeris data when necessary, leaving a note 'WRONG EPHEMERIS' or 'OUTDATED EPHEMERIS' in the logfile. 3825 <li>The software with its Graphic User Interface and range of supported Operating Systems represents a perfect platform to process many Broadcast Correction streams in parallel;</li> 3826 <li>Outages of single AC product streams can be mitigated through merging several incoming streams into a combined product;</li> 3827 <li>Generating a combination product from several AC products allows detecting and rejecting outliers;</li> 3828 <li>A Combination Center (CC) can operate BNC to globally disseminate a combination product via Ntrip broadcast;</li> 3829 <li>An individual AC could prefer to disseminate a stream combined from primary and backup IT resources to reduce outages;</li> 3830 <li>It enables a BNC PPP user to follow his own preference in combining streams from individual ACs for Precise Point Positioning;</li> 3831 <li>It allows an instantaneous quality control of the combination process not only in the time domain but also in the space domain; this can be done by direct application of the combined stream in a PPP solution even without prior upload to an Ntrip Broadcaster;</li> 3832 <li>It provides the means to output SP3 and Clock RINEX files containing precise orbit and clock information for further processing using other tools than BNC.</li> 3833 </ul> 3834 </p> 3835 3836 <p> 3837 Note that the combination process requires real-time access to Broadcast Ephemeris. Therefore, in addition to the orbit 3838 and clock correction streams BNC must pull a stream carrying Broadcast Ephemeris in the form of RTCM Version 3 messages. 3839 Stream 'RTCM3EPH' on caster <a href="http://products.igs-ip.net" target="_blank">http://products.igs-ip.net</a> is an example for that. Note further that BNC will ignore incorrect 3840 or outdated Broadcast Ephemeris data when necessary, leaving a note 'WRONG EPHEMERIS' or 'OUTDATED EPHEMERIS' in the logfile. 3720 3841 </p> 3721 3842 … … 3731 3852 </p> 3732 3853 <p> 3733 The following recursive algorithm is used to detect orbit outliers in the Kalman Filter combination when Broadcast Corrections are provided by several ACs: 3734 <br> 3735 Step 1: We do not produce a combination for a certain satellite if only one AC provides corrections for it. 3736 <br> 3737 Step 2: A mean satellite position is calculated as the average of positions from all ACs. 3738 <br> 3739 Step 3: For each AC and satellite, the 3D distance between individual and mean satellite position is calculated. 3740 <br> 3741 Step 4: We find the greatest difference between AC specific and mean satellite positions. 3742 <br> 3743 Step 5: If that is less than a threshold, the conclusion is that we do not have an outlier and can proceed to the next epoch. 3744 <br> 3854 The following recursive algorithm is used to detect orbit outliers in the Kalman Filter combination when Broadcast Corrections are provided by several ACs:<br> 3855 Step 1: We do not produce a combination for a certain satellite if only one AC provides corrections for it.<br> 3856 Step 2: A mean satellite position is calculated as the average of positions from all ACs.<br> 3857 Step 3: For each AC and satellite, the 3D distance between individual and mean satellite position is calculated.<br> 3858 Step 4: We find the greatest difference between AC specific and mean satellite positions.<br> 3859 Step 5: If that is less than a threshold, the conclusion is that we do not have an outlier and can proceed to the next epoch.<br> 3745 3860 Step 6: If that is greater than a threshold, then corrections of the affiliated AC are ignored for the affected epoch and the outlier detection restarts with step 1. 3746 3861 </p> 3862 3747 3863 <p> 3748 3864 The following screenshot shows an example setup of BNC when combining Broadcast Correction streams CLK11, CLK21, CLK91, and CLK80. … … 3750 3866 3751 3867 <p><img src="IMG/screenshot20.png"/></p> 3752 <p> <u>Figure 28:</u>BNC combining Broadcast Correction streams</p>3868 <p>Figure 28: BNC combining Broadcast Correction streams</p> 3753 3869 <p></p> 3754 3870 <p> 3755 3871 Note that BNC can produce an internal PPP solution from combined Broadcast Corrections. For that you have to specify the keyword 'INTERNAL' as 'Corrections stream' in the PPP (1) panel. The following example combines correction streams IGS01 and IGS02 and simultaneously carries out a PPP solution with observations from stream FFMJ1 to allow monitoring the quality of the combination product in the space domain. 3756 3872 </p> 3873 3757 3874 <p><img src="IMG/screenshot23.png"/></p> 3758 <p> <u>Figure 29:</u>'INTERNAL' PPP with BNC using a combination of Broadcast Corrections</p>3759 3760 <p><h4 >2.14.1 <a name="combimounttab">Combine Corrections Table - optional</h4></p>3875 <p>Figure 29: 'INTERNAL' PPP with BNC using a combination of Broadcast Corrections</p> 3876 3877 <p><h4 id="combimounttab">2.14.1 Combine Corrections Table - optional</h4></p> 3761 3878 <p> 3762 3879 Hit the 'Add Row' button, double click on the 'Mountpoint' field, enter a Broadcast Correction mountpoint from the 'Streams' section and hit Enter. Then double click on the 'AC Name' field to enter your choice of an abbreviation for the Analysis Center (AC) providing the Antenna Phase Center (APC) related correction stream. Finally, double click on the 'Weight' field to enter a weight to be applied to this stream in the combination. 3763 3880 </p> 3881 3764 3882 <p> 3765 3883 The sequence of entries in the 'Combine Corrections' table is not of importance. Note that the orbit information in the final combination stream is just copied from one of the incoming streams. The stream used for providing the orbits may vary over time: if the orbit-providing stream has an outage then BNC switches to the next remaining stream for getting hold of the orbit information.</p> … … 3767 3885 It is possible to specify only one Broadcast Ephemeris correction stream in the 'Combine Corrections' table. Instead of combining corrections from several sources, BNC will then merge the single corrections stream with Broadcast Ephemeris to allow saving results in SP3 and/or Clock RINEX format when specified accordingly under the 'Upload Corrections' panel. Note that in such a BNC application you must not pull more than one Broadcast Ephemeris correction stream even if a second stream would provide the same corrections from a backup caster. 3768 3886 </p> 3887 3769 3888 <p> 3770 3889 Default is an empty 'Combine Corrections' table, meaning that you do not want BNC to combine orbit and clock correction streams. 3771 3890 </p> 3772 3891 3773 <p><h4 >2.14.1.1 <a name="combiadd">Add Row, Delete - optional</h4></p>3892 <p><h4 id="combiadd">2.14.1.1 Add Row, Delete - optional</h4></p> 3774 3893 <p> 3775 3894 Hit 'Add Row' button to add another row to the 'Combine Corrections' table or hit the 'Delete' button to delete the highlighted row(s). 3776 3895 </p> 3777 3896 3778 <p><h4 >2.14.1.2 <a name="combimethod">Method - mandatory if 'Combine Corrections' table is populated</h4></p>3897 <p><h4 id="combimethod">2.14.1.2 Method - mandatory if 'Combine Corrections' table is populated</h4></p> 3779 3898 <p> 3780 3899 Select a clock combination method. Available options are Kalman 'Filter' and 'Single-Epoch. It is suggested to use the Kalman Filter approach in case the combined stream of Broadcast Corrections is intended for Precise Point Positioning. 3781 3900 </p> 3782 3901 3783 <p><h4 >2.14.1.3 <a name="combimax">Maximal Residuum - mandatory if 'Combine Corrections' table is populated</h4></p>3902 <p><h4 id="combimax">2.14.1.3 Maximal Residuum - mandatory if 'Combine Corrections' table is populated</h4></p> 3784 3903 3785 3904 <p>BNC combines all incoming clocks according to specified weights. Individual clock estimates that differ by more than 'Maximal Residuum' meters from the average of all clocks will be ignored.<p> … … 3787 3906 <p>Default is a 'Maximal Residuum' of 999.0 meters.</p> 3788 3907 3789 <p><h4 >2.14.1.4 <a name="combismpl">Sampling - mandatory if 'Combine Corrections' table is populated</h4></p>3908 <p><h4 id="combismpl">2.14.1.4 Sampling - mandatory if 'Combine Corrections' table is populated</h4></p> 3790 3909 <p>Specify a combination sampling interval. Orbit and clock corrections will be produced following that interval. A value of 10 sec may be an appropriate choice.</p> 3791 3910 3792 <p><h4 >2.14.1.5 <a name="combiGLO">Use GLONASS - optional</h4></p>3911 <p><h4 id="combiGLO">2.14.1.5 Use GLONASS - optional</h4></p> 3793 3912 <p> 3794 3913 You may tick the 'Use GLONASS' option in case you want to produce a GPS plus GLONASS combination and both systems are supported by the Broadcast Correction streams participating in the combination. 3795 3914 </p> 3796 3915 3797 <p><h4>2.15 <a name="upclk">Upload Corrections</h4></p> 3798 <p> 3799 BNC can upload streams carrying orbit and clock corrections to Broadcast Ephemeris in radial, along-track and out-of-plane components if they are<ol type=a> 3800 <li> 3801 either generated by BNC as a combination of several individual Broadcast Correction streams coming from an number of real-time Analysis Centers (ACs), see section 'Combine Corrections',</li> 3802 <li> 3803 or generated by BNC while the program receives an ASCII stream of precise satellite orbits and clocks via IP port from a connected real-time GNSS engine. Such a stream would be expected in a plain ASCII format and the associated 'decoder' string would have to be 'RTNET', see format description below. </li> 3916 <p><h4 id="upclk">2.15 Upload Corrections</h4></p> 3917 <p> 3918 BNC can upload streams carrying orbit and clock corrections to Broadcast Ephemeris in radial, along-track and out-of-plane components if they are 3919 <ol type="a"> 3920 <li>either generated by BNC as a combination of several individual Broadcast Correction streams coming from an number of real-time Analysis Centers (ACs), see section 'Combine Corrections',</li> 3921 <li>or generated by BNC while the program receives an ASCII stream of precise satellite orbits and clocks via IP port from a connected real-time GNSS engine. Such a stream would be expected in a plain ASCII format and the associated 'decoder' string would have to be 'RTNET', see format description below. </li> 3804 3922 </ol> 3805 3923 The procedure taken by BNC to generate the orbit and clock corrections to Broadcast Ephemeris and upload them to an Ntrip Broadcaster is as follow: 3806 3924 <ul> 3807 <li>Continuously receive up-to-date Broadcast Ephemeris carrying approximate orbits and clocks for all satellites. Read new Broadcast Ephemeris immediately whenever they become available. This information may come via a stream of RTCM messages generated from another BNC instance.</li>3925 <li>Continuously receive up-to-date Broadcast Ephemeris carrying approximate orbits and clocks for all satellites. Read new Broadcast Ephemeris immediately whenever they become available. This information may come via a stream of RTCM messages generated from another BNC instance.</li> 3808 3926 </ul> 3809 3927 Then, epoch by epoch: 3810 3928 <ul> 3811 <li>Continuously receive the best available orbit and clock estimates for all satellites in XYZ Earth-Centered-Earth-Fixed IGS14 reference system. Receive them every epoch in plain ASCII format as provided by a real-time GNSS engine such as RTNET or generate them following a combination approach. </li>3812 <li>Calculate XYZ coordinates from Broadcast Ephemeris orbits.</li>3813 <li>Calculate differences dX,dY,dZ between Broadcast Ephemeris and IGS14 orbits.</li>3814 <li>Transform these differences into radial, along-track and out-of-plane corrections to Broadcast Ephemeris orbits.</li>3815 <li>Calculate corrections to Broadcast Ephemeris clocks as differences between Broadcast Ephemeris clocks and IGS14 clocks.</li>3816 <li>Encode Broadcast Ephemeris orbit and clock corrections in RTCM Version 3 format.</li>3817 <li>Upload Broadcast Correction stream to Ntrip Broadcaster.</li>3929 <li>Continuously receive the best available orbit and clock estimates for all satellites in XYZ Earth-Centered-Earth-Fixed IGS14 reference system. Receive them every epoch in plain ASCII format as provided by a real-time GNSS engine such as RTNET or generate them following a combination approach. </li> 3930 <li>Calculate XYZ coordinates from Broadcast Ephemeris orbits.</li> 3931 <li>Calculate differences dX,dY,dZ between Broadcast Ephemeris and IGS14 orbits.</li> 3932 <li>Transform these differences into radial, along-track and out-of-plane corrections to Broadcast Ephemeris orbits.</li> 3933 <li>Calculate corrections to Broadcast Ephemeris clocks as differences between Broadcast Ephemeris clocks and IGS14 clocks.</li> 3934 <li>Encode Broadcast Ephemeris orbit and clock corrections in RTCM Version 3 format.</li> 3935 <li>Upload Broadcast Correction stream to Ntrip Broadcaster.</li> 3818 3936 </ul> 3819 3937 <p> 3820 3938 The orbit and clock corrections to Broadcast Ephemeris are usually referred to the latest set of broadcast messages, which are generally also received in real-time by a GNSS rover. However, the use of the latest broadcast message is delayed for a period of 60 seconds, measured from the time of complete reception of ephemeris and clock parameters, in order to accommodate rover applications to obtain the same set of broadcast orbital and clock parameters. This procedure is recommended in the RTCM SSR standard. 3821 3939 </p> 3822 </p> 3940 3941 <p> 3823 3942 Because the stream delivery process may put a significant load on the communication link between BNC and the real-time GNSS engine, it is recommended to run both programs on the same host. However, doing so is not compulsory. 3824 3943 </p> … … 3826 3945 The usual handling of BNC when uploading a stream with Broadcast Corrections is that you first specify Broadcast Ephemeris and Broadcast Correction streams. You then specify an Ntrip Broadcaster for stream upload before you start the program. 3827 3946 </p> 3947 3828 3948 <p> 3829 3949 <u>'RTNET' Stream Format</u><br> … … 3833 3953 Below you find an example for the 'RTNET' ASCII format coming from a real-time GNSS engine. Each epoch begins with an asterisk character followed by the time as year, month, day of month, hour, minute and second. Subsequent records can provide 3834 3954 </p> 3835 <p> 3836 <ul> 3837 <li>Satellite specific parameters </li> 3838 </ul> 3839 </p> 3955 3956 <p> 3957 <ul> 3958 <li>Satellite specific parameters </li> 3959 </ul> 3960 </p> 3961 3840 3962 <p> 3841 3963 A set of parameters can be defined for each satellite as follows: … … 3846 3968 The following satellite specific keys and values are currently specified for that in BNC:<br><br> 3847 3969 <table> 3848 <tr><td><i>Key </i></td><td><i>Values</i></td></tr>3849 <tr><td>APC</td><td>Satellite Antenna Phase Center coordinates in meters</td></tr>3850 <tr><td>Clk</td><td>Satellite clock correction in meters, relativistic correction applied like in broadcast clocks</td></tr>3851 <tr><td>Vel</td><td>Satellite velocity in meters per second</td></tr>3852 <tr><td>CoM</td><td>Satellite Center of Mass coordinates in meters</td></tr>3853 <tr><td>CodeBias</td><td>Satellite Code Biases in meters with two characters for frequency and tracking mode per bias as defined in RINEX 3 and preceded by total number of biases</td></tr>3854 <tr><td>YawAngle</td><td>Satellite Yaw Angle in radian, restricted to be in [0, 2π] which shall be used for the computation of phase wind-up correction</td></tr>3855 <tr><td>YawRate</td><td>Satellite Yaw Rate in radian per second which is the rate of Yaw Angle</td></tr>3856 <tr><td>PhaseBias</td><td>Satellite Phase Biases in meters with two characters for frequency and tracking mode per bias as defined in RINEX 3, preceded by total number of biases and followed by Signal Integer Indicator, Signals Wilde-Lane Integer Indicator as well as Signal Discontinuity Counter</td></tr>3970 <tr><td><i>Key </i></td><td><i>Values</i></td></tr> 3971 <tr><td>APC</td><td>Satellite Antenna Phase Center coordinates in meters</td></tr> 3972 <tr><td>Clk</td><td>Satellite clock correction in meters, relativistic correction applied like in broadcast clocks</td></tr> 3973 <tr><td>Vel</td><td>Satellite velocity in meters per second</td></tr> 3974 <tr><td>CoM</td><td>Satellite Center of Mass coordinates in meters</td></tr> 3975 <tr><td>CodeBias</td><td>Satellite Code Biases in meters with two characters for frequency and tracking mode per bias as defined in RINEX 3 and preceded by total number of biases</td></tr> 3976 <tr><td>YawAngle</td><td>Satellite Yaw Angle in radian, restricted to be in [0, 2π] which shall be used for the computation of phase wind-up correction</td></tr> 3977 <tr><td>YawRate</td><td>Satellite Yaw Rate in radian per second which is the rate of Yaw Angle</td></tr> 3978 <tr><td>PhaseBias</td><td>Satellite Phase Biases in meters with two characters for frequency and tracking mode per bias as defined in RINEX 3, preceded by total number of biases and followed by Signal Integer Indicator, Signals Wilde-Lane Integer Indicator as well as Signal Discontinuity Counter</td></tr> 3857 3979 </table> 3858 3980 <p> 3859 3981 <ul> 3860 <li> Non-satellite specific parameters3982 <li> Non-satellite specific parameters 3861 3983 </ul> 3862 3984 </p> … … 3868 3990 3869 3991 </pre> 3992 3870 3993 <p> 3871 3994 </ul> 3872 3995 The following non-satellite specific keys and values are currently specified in BNC:<br><br> 3873 3996 <table> 3874 <tr><td><i>Key </i></td><td><i>Values</i></td></tr>3875 <tr><td>IND</td><td>Stands for phase bias information and is followed by Dispersive Bias Consistency Indicator and MW Consistency Indicator</td></tr>3876 <tr><td>VTEC</td><td>Stands for Vertical TEC information and is followed by Update Interval and Number of Ionospheric Layers</td></tr>3997 <tr><td><i>Key </i></td><td><i>Values</i></td></tr> 3998 <tr><td>IND</td><td>Stands for phase bias information and is followed by Dispersive Bias Consistency Indicator and MW Consistency Indicator</td></tr> 3999 <tr><td>VTEC</td><td>Stands for Vertical TEC information and is followed by Update Interval and Number of Ionospheric Layers</td></tr> 3877 4000 </table> 3878 4001 <br> 3879 4002 If key VTEC is specified, a data set for each layer contains within its first line the Layers Number, followed by Maximum Degree, Maximum Order and Layer Height. After that, Cosine and Sinus Spherical Harmonic Coefficients will follow, one block each. 3880 4003 </p> 4004 3881 4005 <p> 3882 4006 Because each keyword is associated to a certain number of values, an 'old' BNC could be operated with an incoming 'new' RTNET stream containing so far unknown keys - they would just be skipped in BNC. 3883 4007 </p> 4008 3884 4009 <p> 3885 4010 Example for 'RTNET' stream content and format: 3886 4011 </p> 4012 3887 4013 <p> 3888 4014 <pre> … … 3905 4031 </pre> 3906 4032 </p> 4033 3907 4034 <p> 3908 4035 Note that the end of an epoch in the incoming stream is indicated by an ASCII string 'EOE' (for End Of Epoch). 3909 4036 </p> 4037 3910 4038 <p> 3911 4039 When using clocks from Broadcast Ephemeris (with or without applied corrections) or clocks from SP3 files, it may be important to understand that they are not corrected for the conventional periodic relativistic effect. Chapter 10 of the IERS Conventions 2003 mentions that the conventional periodic relativistic correction to the satellite clock (to be added to the broadcast clock) is computed as … … 3916 4044 </p> 3917 4045 3918 <p><h4 >2.15.1 <a name="upadd">Add, Delete Row - optional</h4></p>4046 <p><h4 id="upadd">2.15.1 Add, Delete Row - optional</h4></p> 3919 4047 <p>Hit 'Add Row' button to add a row to the stream 'Upload Table' or hit the 'Delete' button to delete the highlighted row(s). 3920 4048 </p> 4049 3921 4050 <p> 3922 4051 Having an empty 'Upload Table' is default and means that you do not want BNC to upload orbit and clock correction streams to any Ntrip Broadcaster. 3923 4052 </p> 3924 4053 3925 <p><h4 >2.15.2 <a name="uphost">Host, Port, Mountpoint, Password - optional</h4></p>4054 <p><h4 id="uphost">2.15.2 Host, Port, Mountpoint, Password - optional</h4></p> 3926 4055 3927 4056 <p>Specify the domain name or IP number of an Ntrip Broadcaster for uploading the stream. Furthermore, specify the caster's listening IP port, an upload mountpoint and an upload password. Note that Ntrip Broadcasters are often configured to provide access through more than one port, usually ports 80 and 2101. If you experience communication problems on port 80, you should try to use the alternative port(s). 3928 4057 </p> 4058 3929 4059 <p> 3930 4060 BNC uploads a stream to the Ntrip Broadcaster by referring to a dedicated mountpoint that has been set by its operator. Specify the mountpoint based on the details you received for your stream from the operator. It is often a 4-character ID (capital letters) plus an integer number.</p> … … 3934 4064 </p> 3935 4065 3936 <p><h4 >2.15.3 <a name="upsystem">System - mandatory if 'Host' is set</h4></p>4066 <p><h4 id="upsystem">2.15.3 System - mandatory if 'Host' is set</h4></p> 3937 4067 <p> 3938 4068 BNC allows configuring several Broadcast Correction streams for upload so that they refer to different reference systems and different Ntrip Broadcasters. You may use this functionality for parallel support of a backup Ntrip Broadcaster or for simultaneous support of various regional reference systems. Available options for transforming orbit and clock corrections to specific target reference systems are 3939 4069 <p> 3940 4070 <ul> 3941 <li>IGS14 which stands for the GNSS-based IGS realization of the International Terrestrial Reference Frame 2014 (ITRF2014), and</li>3942 <li>ETRF2000 which stands for the European Terrestrial Reference Frame 2000 adopted by EUREF, and</li>3943 <li>NAD83 which stands for the North American Datum 1983 as adopted for the U.S.A., and</li>3944 <li>GDA2020 which stands for the Geodetic Datum Australia 2020 as adopted for Australia, and</li>3945 <li>SIRGAS2000 which stands for the Geodetic Datum adopted for Brazil, and</li>3946 <li>DREF91 which stands for the Geodetic Datum adopted for Germany, and</li>3947 <li>'Custom' which allows a transformation of Broadcast Corrections from the IGS14 system to any other system through specifying up to 14 Helmert Transformation Parameters.</li>4071 <li>IGS14 which stands for the GNSS-based IGS realization of the International Terrestrial Reference Frame 2014 (ITRF2014), and</li> 4072 <li>ETRF2000 which stands for the European Terrestrial Reference Frame 2000 adopted by EUREF, and</li> 4073 <li>NAD83 which stands for the North American Datum 1983 as adopted for the U.S.A., and</li> 4074 <li>GDA2020 which stands for the Geodetic Datum Australia 2020 as adopted for Australia, and</li> 4075 <li>SIRGAS2000 which stands for the Geodetic Datum adopted for Brazil, and</li> 4076 <li>DREF91 which stands for the Geodetic Datum adopted for Germany, and</li> 4077 <li>'Custom' which allows a transformation of Broadcast Corrections from the IGS14 system to any other system through specifying up to 14 Helmert Transformation Parameters.</li> 3948 4078 </ul> 3949 4079 </p> … … 3958 4088 where s is the transformation scale, c is the speed of light, and ρ are the topocentric distance between an (approximate) center of the transformation's validity area and the satellite. 3959 4089 </p> 4090 3960 4091 <p> 3961 4092 From a theoretical point of view, this kind of approximation leads to inconsistencies between orbits and clocks and is therefore not allowed (Huisman et al. 2012). However, it has been proved that resulting errors in Precise Point Positioning are on millimeter level for horizontal components and below one centimeter for height components. … … 3963 4094 3964 4095 <p> 3965 < u>IGS14:</u> As the orbits and clocks coming from real-time GNSS engine are expected to be in the IGS14 system, no transformation is carried out if this option is selected.3966 </p> 3967 3968 <p> 3969 < u>ETRF2000:</u> The formulas for the transformation 'ITRF2008->ETRF2000' are taken from 'Claude Boucher and Zuheir Altamimi 2008: Specifications for reference frame fixing in the analysis of EUREF GPS campaign', see <u>http://etrs89.ensg.ign.fr/memo-V8.pdf</u>. The following 14 Helmert Transformation Parameters were introduced:4096 <b>IGS14:</b> As the orbits and clocks coming from real-time GNSS engine are expected to be in the IGS14 system, no transformation is carried out if this option is selected. 4097 </p> 4098 4099 <p> 4100 <b>ETRF2000:</b> The formulas for the transformation 'ITRF2008->ETRF2000' are taken from 'Claude Boucher and Zuheir Altamimi 2008: Specifications for reference frame fixing in the analysis of EUREF GPS campaign', see <u>http://etrs89.ensg.ign.fr/memo-V8.pdf</u>. The following 14 Helmert Transformation Parameters were introduced: 3970 4101 </p> 3971 4102 <p> … … 3991 4122 3992 4123 <p> 3993 < u>NAD83:</u> Formulas for the transformation 'ITRF2008->NAD83' are taken from 'Chris Pearson, Richard Snay 2013: Introducing HTDP 3.1 to transform coordinates across time and spatial reference frames', GPS Solutions, January 2013, Volume 17, Issue 1, pp 1-15.4124 <b>NAD83:</b> Formulas for the transformation 'ITRF2008->NAD83' are taken from 'Chris Pearson, Richard Snay 2013: Introducing HTDP 3.1 to transform coordinates across time and spatial reference frames', GPS Solutions, January 2013, Volume 17, Issue 1, pp 1-15. 3994 4125 </p> 3995 4126 <p> … … 4015 4146 4016 4147 <p> 4017 < u>GDA2020:</u> The formulas for the transformation 'ITRF2014->GDA2020' were provided via personal communication from Ryan Ruddick: 'Geocentric Datum of Australia 2020, Interim Release Note Version 1.01, Intergovernmental Committee on Surveying and Mapping (ICSM), Permanent Committee on Geodesy (PCG), 03 March 2017'.4148 <b>GDA2020:</b> The formulas for the transformation 'ITRF2014->GDA2020' were provided via personal communication from Ryan Ruddick: 'Geocentric Datum of Australia 2020, Interim Release Note Version 1.01, Intergovernmental Committee on Surveying and Mapping (ICSM), Permanent Committee on Geodesy (PCG), 03 March 2017'. 4018 4149 </p> 4019 4150 <p> … … 4038 4169 4039 4170 <p> 4040 < u>SIRGAS2000:</u> The formulas for the transformation 'IGb14->SIRGAS2000' were provided via personal communication from CGED-Coordenacao de Geodesia, IBGE/DGC - Diretoria de Geociencias, Brazil.</u>.4171 <b>SIRGAS2000:</b> The formulas for the transformation 'IGb14->SIRGAS2000' were provided via personal communication from CGED-Coordenacao de Geodesia, IBGE/DGC - Diretoria de Geociencias, Brazil.</u>. 4041 4172 </p> 4042 4173 <p> … … 4061 4192 4062 4193 <p> 4063 < u>DREF91:</u> 'Referenzkoordinaten fuer SAPOS, Empfehlungen der Projektgruppe SAPOS-Koordinatenmonitoring 2008', Personal communication with Peter Franke, BKG, Germany. The following 14 Helmert Transformation Parameters were introduced:4194 <b>DREF91:</b> 'Referenzkoordinaten fuer SAPOS, Empfehlungen der Projektgruppe SAPOS-Koordinatenmonitoring 2008', Personal communication with Peter Franke, BKG, Germany. The following 14 Helmert Transformation Parameters were introduced: 4064 4195 </p> 4065 4196 <p> … … 4085 4216 4086 4217 <p> 4087 < u>Custom:</u> Feel free to specify your own 14 Helmert Transformation parameters for transformations from IGS14/ITRF2014 into your own target system.4218 <b>Custom:</b> Feel free to specify your own 14 Helmert Transformation parameters for transformations from IGS14/ITRF2014 into your own target system. 4088 4219 </p> 4089 4220 4090 4221 <p><img src="IMG/screenshot38.png"/></p> 4091 <p> <u>Figure 30:</u>Setting BNC's Custom Transformation Parameters window, example for 'ITRF2014->GDA94'</p>4092 4093 <p><h4 >2.15.4 <a name="upcom">Center of Mass - optional</h4></p>4222 <p>Figure 30: Setting BNC's Custom Transformation Parameters window, example for 'ITRF2014->GDA94'</p> 4223 4224 <p><h4 id="upcom">2.15.4 Center of Mass - optional</h4></p> 4094 4225 <p> 4095 4226 BNC allows to either refer Broadcast Corrections to the satellite's Center of Mass (CoM) or to the satellite's Antenna Phase Center (APC). By default, corrections refer to APC. Tick 'Center of Mass' to refer uploaded corrections to CoM. 4096 4227 </p> 4097 4228 4098 <p><h4 >2.15.5 <a name="upsp3">SP3 File - optional</h4></p>4229 <p><h4 id="upsp3">2.15.5 SP3 File - optional</h4></p> 4099 4230 <p>Specify a path for saving the generated orbit corrections as SP3 orbit files. If the specified directory does not exist, BNC will not create SP3 orbit files. The following is a path example for a Linux system: 4100 4231 … … 4107 4238 Default is an empty option field, meaning that you do not want BNC to save the uploaded stream content in daily SP3 files. 4108 4239 </p> 4240 4109 4241 <p> 4110 4242 As a SP3 file content should be referred to the satellites' Center of Mass (CoM) while Broadcast Corrections are referred to the satellites' APC, an offset has to be applied which is available from an IGS ANTEX file (see option 'ANTEX File' below). Hence, you should specify the 'ANTEX File' path there if you want to save the stream content in SP3 format. If you do not specify an 'ANTEX File' path, the SP3 file content will be referred to the satellites APCs. 4111 4243 </p> 4244 4112 4245 <p> 4113 4246 The filenames for the daily SP3 files follow the convention for SP3 filenames. The first three characters of each filename are set to 'BNC'. Note that clocks in the SP3 orbit files are not corrected for the conventional periodic relativistic effect. 4114 4247 </p> 4248 4115 4249 <p> 4116 4250 In case the 'Combine Corrections' table contains only one Broadcast Correction stream, BNC will merge that stream with Broadcast Ephemeris to save results in files specified here through SP3 and/or Clock RINEX file path. In such a case you have to define only the SP3 and Clock RINEX file path and no further option in the 'Upload Corrections' table. … … 4121 4255 </p> 4122 4256 4123 <p><h4 >2.15.6 <a name="uprinex">RNX File - optional</h4></p>4257 <p><h4 id="uprinex">2.15.6 RNX File - optional</h4></p> 4124 4258 <p> 4125 4259 The clock corrections generated by BNC for upload can be logged in Clock RINEX format. The file naming follows the RINEX convention. … … 4132 4266 Note that '${GPSWD}' produces the GPS Week and Day number in the filename. 4133 4267 </p> 4268 4134 4269 <p> 4135 4270 Note further that clocks in the Clock RINEX files are not corrected for the conventional periodic relativistic effect. 4136 4271 </p> 4137 4272 4138 <p><h4 >2.15.7 <a name="pidsidiod">PID, SID, IOD - optional</h4></p>4273 <p><h4 id="pidsidiod">2.15.7 PID, SID, IOD - optional</h4></p> 4139 4274 <p> 4140 4275 When applying Broadcast Ephemeris corrections in a PPP algorithm or in a combination of several correction streams, it is important for the client software to receive information on the continuity of discontinuity of the stream contents. Here you can specify three ID's to describe the contents of your Broadcast Ephemeris correction stream when it is uploaded. 4141 4276 <ul> 4142 <li>A 'SSR Provider ID' is issued by RTCM SC-104 on request to identify a SSR service (see e.g. <u>http://software.rtcm-ntrip.org/wiki/SSRProvider</u>). This ID is globally unique. Values vary in the range of 0-65535. Values in the range of 0-255 are reserved for experimental services.</li>4143 <li>A provider may generate several Broadcast Ephemeris correction streams with different contents. The 'SSR Solution ID' indicates different SSR services of one SSR provider. Values vary in the range of 0-15.</li>4144 <li>A change of the 'IOD SSR' is used to indicate a change in the SSR generating configuration which may be relevant for the rover. Values vary in the range of 0-15.</li>4145 </ul> 4146 </p> 4147 4148 <p><h4 >2.15.8 <a name="upinter">Interval - mandatory if 'Upload Table' entries specified</h4></p>4277 <li>A 'SSR Provider ID' is issued by RTCM SC-104 on request to identify a SSR service (see e.g. <u>http://software.rtcm-ntrip.org/wiki/SSRProvider</u>). This ID is globally unique. Values vary in the range of 0-65535. Values in the range of 0-255 are reserved for experimental services.</li> 4278 <li>A provider may generate several Broadcast Ephemeris correction streams with different contents. The 'SSR Solution ID' indicates different SSR services of one SSR provider. Values vary in the range of 0-15.</li> 4279 <li>A change of the 'IOD SSR' is used to indicate a change in the SSR generating configuration which may be relevant for the rover. Values vary in the range of 0-15.</li> 4280 </ul> 4281 </p> 4282 4283 <p><h4 id="upinter">2.15.8 Interval - mandatory if 'Upload Table' entries specified</h4></p> 4149 4284 <p> 4150 4285 Select the length of Clock RINEX files and SP3 Orbit files. The default value is 1 day. 4151 4286 </p> 4152 4287 4153 <p><h4 >2.15.9 <a name="upclksmpl">Sampling</h4></p>4288 <p><h4 id="upclksmpl">2.15.9 Sampling</h4></p> 4154 4289 <p>BNC requires an orbit corrections sampling interval for the stream to be uploaded and sampling intervals for SP3 and Clock RINEX files. The outgoing stream's clock correction sampling interval follows that of incoming corrections and is therefore nothing to be specified here.</p> 4155 4290 4156 <p><h4 >2.15.9.1 <a name="upclkorb">Orbits (Orb) - mandatory if 'Upload Table' entries specified</h4></p>4291 <p><h4 id="upclkorb">2.15.9.1 Orbits (Orb) - mandatory if 'Upload Table' entries specified</h4></p> 4157 4292 <p>Select the stream's orbit correction sampling interval in seconds. A value of 60 sec may be appropriate.</p> 4158 4293 <p> A value of zero '0' tells BNC to upload all orbit correction samples coming in from the real-time GNSS engine along with the clock correction samples to produce combined orbit and clock corrections to Broadcast Ephemeris (1060 for GPS, 1066 for GLONASS). … … 4161 4296 Configuration examples: 4162 4297 </p> 4163 Let us suppose a real-time network engine supporting BNC every <u>5 sec</u> with GPS Broadcast Corrections for orbits, clocks and code biases in 'RTNET' stream format. 4164 <ul> 4165 <li>With 'Sampling Orb' set to '0' BNC will produce</li> 4166 <ul> 4167 <li>Every 5 sec a 1059 message for GPS code biases,</li> 4168 <li>Every 5 sec a 1060 message for combined orbit and clock corrections to GPS Broadcast Ephemeris.</li> 4298 Let us suppose a real-time network engine supporting BNC every <b>5 sec</b> with GPS Broadcast Corrections for orbits, clocks and code biases in 'RTNET' stream format. 4299 <ul> 4300 <li>With 'Sampling Orb' set to '0' BNC will produce</li> 4301 <ul> 4302 <li>Every 5 sec a 1059 message for GPS code biases,</li> 4303 <li>Every 5 sec a 1060 message for combined orbit and clock corrections to GPS Broadcast Ephemeris.</li> 4304 </ul> 4305 <br> 4306 <li>With 'Sampling Orb' set to '5' BNC will produce</li> 4307 <ul> 4308 <li>Every 5 sec a 1057 message for GPS orbit corrections to Broadcast Ephemeris,</li> 4309 <li>Every 5 sec a 1058 message for GPS clock corrections to Broadcast Ephemeris,</li> 4310 <li>Every 5 sec a 1059 message for GPS code biases.</li> 4311 </ul> 4312 <br> 4313 <li>With 'Sampling Orb' set to '10' BNC will produce</li> 4314 <ul> 4315 <li>Every 10 sec a 1057 message for GPS orbit corrections to Broadcast Ephemeris,</li> 4316 <li>Every 5 sec a 1058 message for GPS clock corrections to Broadcast Ephemeris,</li> 4317 <li>Every 5 sec a 1059 message for GPS code biases.</li> 4318 </ul> 4169 4319 </ul> 4170 4320 <br> 4171 <li>With 'Sampling Orb' set to '5' BNC will produce</li> 4172 <ul> 4173 <li>Every 5 sec a 1057 message for GPS orbit corrections to Broadcast Ephemeris,</li> 4174 <li>Every 5 sec a 1058 message for GPS clock corrections to Broadcast Ephemeris,</li> 4175 <li>Every 5 sec a 1059 message for GPS code biases.</li> 4176 </ul> 4177 <br> 4178 <li>With 'Sampling Orb' set to '10' BNC will produce</li> 4179 <ul> 4180 <li>Every 10 sec a 1057 message for GPS orbit corrections to Broadcast Ephemeris,</li> 4181 <li>Every 5 sec a 1058 message for GPS clock corrections to Broadcast Ephemeris,</li> 4182 <li>Every 5 sec a 1059 message for GPS code biases.</li> 4183 </ul> 4184 </ul> 4185 <br> 4186 Note that only when specifying a value of zero '0' (default) for 'Sampling Orb', BNC produces <u>combined</u> orbit and clock correction messages. 4187 <p><h4>2.15.9.2 <a name="upclksp3">SP3 - mandatory if 'SP3 File' is specified</h4></p> 4321 Note that only when specifying a value of zero '0' (default) for 'Sampling Orb', BNC produces <b>combined</b> orbit and clock correction messages. 4322 <p><h4 id="upclksp3">2.15.9.2 SP3 - mandatory if 'SP3 File' is specified</h4></p> 4188 4323 <p>Select the SP3 orbit file sampling interval in minutes. A value of 15 min may be appropriate. A value of zero '0' tells BNC to store all available samples into SP3 orbit files.</p> 4189 4324 4190 <p><h4 >2.15.9.3 <a name="upclkrnx">RINEX (RNX) - mandatory if 'RNX File' is specified</h4></p>4325 <p><h4 id="upclkrnx">2.15.9.3 RINEX (RNX) - mandatory if 'RNX File' is specified</h4></p> 4191 4326 <p>Select the Clock RINEX file sampling interval in seconds. A value of 10 sec may be appropriate. A value of zero '0' tells BNC to store all available samples into Clock RINEX files.</p> 4192 4327 4193 <p><h4 >2.15.10 <a name="upcustom">Custom Trafo - optional if 'Upload Table' entries specified</h4></p>4328 <p><h4 id="upcustom">2.15.10 Custom Trafo - optional if 'Upload Table' entries specified</h4></p> 4194 4329 <p>Hit 'Custom Trafo' to specify your own 14 parameter Helmert Transformation instead of selecting a predefined transformation through 'System' button.</p> 4195 4330 4196 <p><h4 >2.15.11 <a name="upantex">ANTEX File - mandatory if 'SP3 File' is specified</h4></p>4331 <p><h4 id="upantex">2.15.11 ANTEX File - mandatory if 'SP3 File' is specified</h4></p> 4197 4332 <p> 4198 4333 IGS provides a file containing absolute phase center variations for GNSS satellite and receiver antennas in ANTEX format. Entering the full path to such an ANTEX file is required here for referring the SP3 file content to the satellite's Center of Mass (CoM). If you do not specify an ANTEX file, the SP3 file will contain orbit information which is referred to Antenna Phase Center (APC) instead of CoM. … … 4202 4337 </p> 4203 4338 <p><img src="IMG/screenshot26.png"/></p> 4204 <p> <u>Figure 31:</u>BNC producing Broadcast Corrections from incoming precise orbits and clocks and uploading them to an Ntrip Broadcaster</p>4339 <p>Figure 31: BNC producing Broadcast Corrections from incoming precise orbits and clocks and uploading them to an Ntrip Broadcaster</p> 4205 4340 <p> 4206 4341 The following screenshot shows the encoding and uploading of several Broadcast Ephemeris correction streams combined from streams CLK11, CLK21, CLK80, and CLK91. Combined streams are uploaded to different Ntrip Broadcasters and referred to different reference systems. One of the uploaded streams is locally saved in SP3 and Clock RINEX format. Different SSR Provider IDs, SSR Solution IDs and Issue of Data IDs are specified. Required Broadcast Ephemeris are received via stream 'RTCM3EPH'. 4207 4342 </p> 4208 4343 <p><img src="IMG/screenshot21.png"/></p> 4209 <p> <u>Figure 32:</u>BNC uploading a combined Broadcast Correction stream</p>4344 <p>Figure 32: BNC uploading a combined Broadcast Correction stream</p> 4210 4345 <p></p> 4211 4346 4212 <p><h4 >2.16 <a name="upeph">Upload Ephemeris</h4></p>4213 <p> 4214 BNC can generate streams carrying only Broadcast Ephemeris in RTCM Version 3 format and upload them to an Ntrip Broadcaster. This can be done for individual satellite systems or for all satellite systems, specifying the parameter ‘System’for each stream.4347 <p><h4 id="upeph">2.16 Upload Ephemeris</h4></p> 4348 <p> 4349 BNC can generate streams carrying only Broadcast Ephemeris in RTCM Version 3 format and upload them to an Ntrip Broadcaster. This can be done for individual satellite systems or for all satellite systems, specifying the parameter âSystemâ for each stream. 4215 4350 </p> 4216 4351 … … 4228 4363 A note 'OUTDATED EPHEMERIS' will be given in the logfile and the data will be disregarded when necessary. 4229 4364 </p> 4365 4230 4366 <p> 4231 4367 Furthermore, received Broadcast Ephemeris parameters pass through a plausibility check in BNC which allows to ignore incorrect ephemeris data when necessary, leaving a note 'WRONG EPHEMERIS' in the logfile. 4232 4368 </p> 4233 4369 4234 <p><h4 >2.16.1 <a name="brdcserver">Host & Port - optional</h4></p>4370 <p><h4 id="brdcserver">2.16.1 Host & Port - optional</h4></p> 4235 4371 <p> 4236 4372 Specify the 'Host' IP number or URL of an Ntrip Broadcaster to upload the stream. An empty option field means that you do not want to upload Broadcast Ephemeris. … … 4240 4376 </p> 4241 4377 4242 <p><h4 >2.16.2 <a name="brdcmount">Mountpoint & Password - mandatory if 'Host' is set</h4></p>4378 <p><h4 id="brdcmount">2.16.2 Mountpoint & Password - mandatory if 'Host' is set</h4></p> 4243 4379 <p> 4244 4380 BNC uploads a stream to the Ntrip Broadcaster by referring it to a dedicated mountpoint that has been set by its operator. Specify the mountpoint based on the details you received for your stream from the operator. It is often a 4-character ID (capital letters) plus an integer number.</p> … … 4246 4382 </p> 4247 4383 4248 <p><h4 >2.16.3 <a name="brdcsmpl">Sampling - mandatory if 'Host' is set</h4></p>4384 <p><h4 id="brdcsmpl">2.16.3 Sampling - mandatory if 'Host' is set</h4></p> 4249 4385 Select the Broadcast Ephemeris repetition interval in seconds. Default is '5', meaning that a complete set of Broadcast Ephemeris is uploaded every 5 seconds. 4250 4386 </p> 4251 4387 4252 4388 <p><img src="IMG/screenshot28.png"/></p> 4253 <p> <u>Figure 33:</u>BNC producing a Broadcast Ephemeris stream from navigation messages of globally distributed RTCM streams and uploading them in RTCM Version 3 format to an Ntrip Broadcaster</p>4254 4255 <p><h4 >2.17 <a name="streams">Streams Canvas</h4></p>4389 <p>Figure 33: BNC producing a Broadcast Ephemeris stream from navigation messages of globally distributed RTCM streams and uploading them in RTCM Version 3 format to an Ntrip Broadcaster</p> 4390 4391 <p><h4 id="streams">2.17 Streams Canvas</h4></p> 4256 4392 <p> 4257 4393 Each stream on an Ntrip Broadcaster (and consequently on BNC) is defined using a unique source ID called mountpoint. An Ntrip Client like BNC accesses the desired stream by referring to its mountpoint. Information about streams and their mountpoints is available through the source-table maintained by the Ntrip Broadcaster. … … 4261 4397 Streams selected for retrieval are listed under the 'Streams' canvas on BNC's main window. The list provides the following information either extracted from source-table(s) produced by the Ntrip Broadcasters or introduced by BNC's user: 4262 4398 </p> 4399 4263 4400 <p> 4264 4401 <table> 4265 <tr><td>'resource loader' </td><td>Ntrip Broadcaster URL and port, or<br>TCP/IP host and port, or<br>UDP port, or<br>Serial input port specification.</td></tr>4266 <tr><td>'mountpoint' </td><td>Mountpoint introduced by Ntrip Broadcaster, or<br>Mountpoint introduced by BNC's user.</td></tr>4267 <tr><td>'decoder' </td><td>Name of decoder used to handle the incoming stream content according to its format; editable.</td></tr>4268 <tr><td>'lat' </td><td>Approximate latitude of reference station, in degrees, north; editable if 'nmea' = 'yes'.</td></tr>4269 <tr><td>'long' </td><td>Approximate longitude of reference station, in degrees, east; editable if 'nmea' = 'yes'.</td></tr>4270 <tr><td>'nmea' </td><td>Indicates whether or not streaming needs to be initiated by BNC through sending NMEA-GGA message carrying position coordinates in 'lat' and 'long'.</td></tr>4271 <tr><td>'ntrip' </td><td>Selected Ntrip transport protocol version (1, 2, 2s, R, or U), or<br>'N' for TCP/IP streams without Ntrip, or<br>'UN' for UDP streams without Ntrip, or<br>'S' for serial input streams without Ntrip.</td></tr>4272 <tr><td>'bytes' </td><td>Number of bytes received.4402 <tr><td>'resource loader' </td><td>Ntrip Broadcaster URL and port, or<br>TCP/IP host and port, or<br>UDP port, or<br>Serial input port specification.</td></tr> 4403 <tr><td>'mountpoint' </td><td>Mountpoint introduced by Ntrip Broadcaster, or<br>Mountpoint introduced by BNC's user.</td></tr> 4404 <tr><td>'decoder' </td><td>Name of decoder used to handle the incoming stream content according to its format; editable.</td></tr> 4405 <tr><td>'lat' </td><td>Approximate latitude of reference station, in degrees, north; editable if 'nmea' = 'yes'.</td></tr> 4406 <tr><td>'long' </td><td>Approximate longitude of reference station, in degrees, east; editable if 'nmea' = 'yes'.</td></tr> 4407 <tr><td>'nmea' </td><td>Indicates whether or not streaming needs to be initiated by BNC through sending NMEA-GGA message carrying position coordinates in 'lat' and 'long'.</td></tr> 4408 <tr><td>'ntrip' </td><td>Selected Ntrip transport protocol version (1, 2, 2s, R, or U), or<br>'N' for TCP/IP streams without Ntrip, or<br>'UN' for UDP streams without Ntrip, or<br>'S' for serial input streams without Ntrip.</td></tr> 4409 <tr><td>'bytes' </td><td>Number of bytes received. 4273 4410 </table> 4274 4411 </p> 4275 4412 4276 <p><h4>2.17.1 <a name="streamedit">Edit Streams</h4></p> 4277 <ul> 4278 <li> 4279 BNC automatically allocates one of its internal decoders to a stream based on the stream's 'format' and 'format-details' as given in the source-table. However, there might be cases where you need to override the automatic selection due to an incorrect source-table for example. BNC allows users to manually select the required decoder by editing the decoder string. Double click on the 'decoder' field, enter your preferred decoder and then hit Enter. Accepted decoder strings are 'RTCM_2.x', 'RTCM_3.x' and 'RTNET'. 4280 </li> 4281 <li> 4282 In case you need to log the raw data as it is, BNC allows users to by-pass its decoders and directly save the input in daily logfiles. To do this, specify the decoder string as 'ZERO'. The generated filenames are created from the characters of the streams mountpoints plus two-digit numbers each for year, month, and day. Example: Setting the 'decoder' string for mountpoint WTZZ0 to 'ZERO' and running BNC on March 29, 2007 would save raw data in a file named WTZZ0_070329. 4283 </li> 4284 <li> 4285 BNC can also retrieve streams from virtual reference stations (VRS). To initiate these streams, an approximate rover position needs to be sent in NMEA format to the Ntrip Broadcaster. In return, a user-specific data stream is generated, typically by Network RTK software. VRS streams are indicated by a 'yes' in the source-table as well as in the 'nmea' column on the 'Streams' canvas in BNC's main window. They are customized exactly to the latitude and longitude transmitted to the Ntrip Broadcaster via NMEA GGA sentences. 4286 <br>If NMEA GGA sentences are not coming from a serially connected GNSS rover, BNC simulates them from the default latitude and longitude of the source-table as shown in the 'lat' and 'long' columns on the 'Streams' canvas. However, in many cases you would probably want to change these defaults according to your requirement. Double-click on 'lat' and 'long' fields, enter the values you wish to send and then hit Enter. The format is in positive north latitude degrees (e.g. for northern hemisphere: 52.436, for southern hemisphere: -24.567) and eastern longitude degrees (example: 358.872 or -1.128). Only streams with a 'yes' in their 'nmea' column can be edited. The position should preferably be a point within the VRS service area of the network. RINEX files generated from these streams will contain an additional COMMENT line in the header beginning with 'NMEA' showing the 'lat' and 'long' used. 4287 <br>Note that when running BNC in a Local Area Network (LAN), NMEA strings may be blocked by a proxy server, firewall or virus scanner when not using the Ntrip Version 2 transport protocol. 4288 </li> 4289 </ul> 4290 4291 <p><h4>2.17.2 <a name="streamdelete">Delete Stream</h4></p> 4413 <p><h4 id="streamedit">2.17.1 Edit Streams</h4></p> 4414 <ul> 4415 <li>BNC automatically allocates one of its internal decoders to a stream based on the stream's 'format' and 'format-details' as given in the source-table. However, there might be cases where you need to override the automatic selection due to an incorrect source-table for example. BNC allows users to manually select the required decoder by editing the decoder string. Double click on the 'decoder' field, enter your preferred decoder and then hit Enter. Accepted decoder strings are 'RTCM_2.x', 'RTCM_3.x' and 'RTNET'.</li> 4416 <li>In case you need to log the raw data as it is, BNC allows users to by-pass its decoders and directly save the input in daily logfiles. To do this, specify the decoder string as 'ZERO'. The generated filenames are created from the characters of the streams mountpoints plus two-digit numbers each for year, month, and day. Example: Setting the 'decoder' string for mountpoint WTZZ0 to 'ZERO' and running BNC on March 29, 2007 would save raw data in a file named WTZZ0_070329.</li> 4417 <li>BNC can also retrieve streams from virtual reference stations (VRS). To initiate these streams, an approximate rover position needs to be sent in NMEA format to the Ntrip Broadcaster. In return, a user-specific data stream is generated, typically by Network RTK software. VRS streams are indicated by a 'yes' in the source-table as well as in the 'nmea' column on the 'Streams' canvas in BNC's main window. They are customized exactly to the latitude and longitude transmitted to the Ntrip Broadcaster via NMEA GGA sentences.<br> 4418 If NMEA GGA sentences are not coming from a serially connected GNSS rover, BNC simulates them from the default latitude and longitude of the source-table as shown in the 'lat' and 'long' columns on the 'Streams' canvas. However, in many cases you would probably want to change these defaults according to your requirement. Double-click on 'lat' and 'long' fields, enter the values you wish to send and then hit Enter. The format is in positive north latitude degrees (e.g. for northern hemisphere: 52.436, for southern hemisphere: -24.567) and eastern longitude degrees (example: 358.872 or -1.128). Only streams with a 'yes' in their 'nmea' column can be edited. The position should preferably be a point within the VRS service area of the network. RINEX files generated from these streams will contain an additional COMMENT line in the header beginning with 'NMEA' showing the 'lat' and 'long' used.<br> 4419 Note that when running BNC in a Local Area Network (LAN), NMEA strings may be blocked by a proxy server, firewall or virus scanner when not using the Ntrip Version 2 transport protocol.</li> 4420 </ul> 4421 4422 <p><h4 id="streamdelete">2.17.2 Delete Stream</h4></p> 4292 4423 <p> 4293 4424 To remove a stream from the 'Streams' canvas in the main window, highlight it by clicking on it and hit the 'Delete Stream' button. You can also remove multiple streams simultaneously by highlighting them using +Shift or +Ctrl.</p> 4294 4425 4295 <p><h4 >2.17.3 <a name="streamconf">Reconfigure Stream Selection On-the-fly</h4></p>4426 <p><h4 id="streamconf">2.17.3 Reconfigure Stream Selection On-the-fly</h4></p> 4296 4427 <p> 4297 4428 The streams selection can be changed on-the-fly without interrupting uninvolved threads in the running BNC process. 4298 4429 </p> 4299 <p> 4300 <u>Window mode:</u> Hit 'Reread & Save Configuration' while BNC is in window mode and already processing data to let changes of your stream selection immediately become effective. 4301 <p> 4302 <u>No window mode:</u> When operating BNC online in 'no window' mode (command line option -nw), you force BNC to reread its 'mountPoints' configuration option from disk at pre-defined intervals. Select '1 min', '1 hour', or '1 day' as 'Reread configuration' option to reread the 'mountPoints' option every full minute, hour, or day. This lets a 'mountPoints' option edited in between in the configuration file become effective without terminating uninvolved threads. See section 'Configuration Examples' for configuration file examples and section 'Reread Configuration' for a list of other on-the-fly changeable options. 4303 </p> 4304 4305 <p><h4>2.18 <a name="logs">Logging Canvas</h4></p> 4430 4431 <p> 4432 <b>Window mode:</b> Hit 'Reread & Save Configuration' while BNC is in window mode and already processing data to let changes of your stream selection immediately become effective. 4433 <p> 4434 <b>No window mode:</b> When operating BNC online in 'no window' mode (command line option -nw), you force BNC to reread its 'mountPoints' configuration option from disk at pre-defined intervals. Select '1 min', '1 hour', or '1 day' as 'Reread configuration' option to reread the 'mountPoints' option every full minute, hour, or day. This lets a 'mountPoints' option edited in between in the configuration file become effective without terminating uninvolved threads. See section 'Configuration Examples' for configuration file examples and section 'Reread Configuration' for a list of other on-the-fly changeable options. 4435 </p> 4436 4437 <p><h4 id="logs">2.18 Logging Canvas</h4></p> 4306 4438 <p> 4307 4439 The 'Logging Canvas' above the bottom menu bar on the main window labeled 'Log', 'Throughput', 'Latency', and 'PPP Plot' provides control of BNC's activities. Tabs are available for continuously showing logfile content, for a plot controlling the bandwidth consumption, a plot showing stream latencies, and for time series plots of PPP results. 4308 4440 </p> 4309 <p><h4>2.18.1 <a name="logfile">Log</h4></p> 4441 4442 <p><h4 id="logfile">2.18.1 Log</h4></p> 4310 4443 <p> 4311 4444 Records of BNC's activities are shown in the 'Log' tab. They can be saved into a file when a valid path is specified in the 'Logfile (full path)' field. 4312 4445 </p> 4313 4446 4314 <p><h4 >2.18.2 <a name="throughput">Throughput</h4></p>4447 <p><h4 id="throughput">2.18.2 Throughput</h4></p> 4315 4448 <p> 4316 4449 The bandwidth consumption per stream is shown in the 'Throughput' tab in bits per second (bps) or kilobits per second (kbps). The following figure shows an example for the bandwidth consumption of incoming streams. … … 4318 4451 4319 4452 <p><img src="IMG/screenshot08.png"/></p> 4320 <p> <u>Figure 34:</u>Bandwidth consumption of RTCM streams received by BNC</p>4321 4322 <p><h4 >2.18.3 <a name="latency">Latency</h4></p>4453 <p>Figure 34: Bandwidth consumption of RTCM streams received by BNC</p> 4454 4455 <p><h4 id="latency">2.18.3 Latency</h4></p> 4323 4456 <p> 4324 4457 The latency of observations in each incoming stream is shown in the 'Latency' tab in milliseconds or seconds. Streams not carrying observations (e.g. those providing only Broadcast Ephemeris messages) or having an outage are not considered here and shown in red color. Note that the calculation of correct latencies requires the clock of the host computer to be properly synchronized. The next figure shows an example for the latency of incoming streams. … … 4326 4459 4327 4460 <p><img src="IMG/screenshot07.png"/></p> 4328 <p> <u>Figure 35:</u>Latency of RTCM streams received by BNC</p>4329 4330 <p><h4 >2.18.4 <a name="ppptab">PPP Plot</h4></p>4461 <p>Figure 35: Latency of RTCM streams received by BNC</p> 4462 4463 <p><h4 id="ppptab">2.18.4 PPP Plot</h4></p> 4331 4464 <p> 4332 4465 Precise Point Positioning time series of North (red), East (green) and Up (blue) coordinate components are shown in the 'PPP Plot' tab when a 'Mountpoint' option is defined under PPP (4). Values are referred to a priori reference coordinates. The time as given in format [hh:mm] refers to GPS Time. The sliding PPP time series window covers a period of 5 minutes. Note that it may take up to 30 seconds or more until the first PPP solutions becomes available. The following figure shows the screenshot of a PPP time series plot of North, East and Up coordinate displacements. … … 4334 4467 4335 4468 <p><img src="IMG/screenshot13.png"/></p> 4336 <p> <u>Figure 36:</u>Example for time series plot of displacements produced by BNC</p>4337 4338 <p><h4 >2.19 <a name="bottom">Bottom Menu Bar</h4></p>4469 <p>Figure 36: Example for time series plot of displacements produced by BNC</p> 4470 4471 <p><h4 id="bottom">2.19 Bottom Menu Bar</h4></p> 4339 4472 <p> 4340 4473 The bottom menu bar allows to add or delete streams to or from BNC's configuration and to start or stop it. It also provides access to BNC's online help function. The 'Add Stream' button opens a window that allows users to select one of several input communication links, see figure below. … … 4342 4475 4343 4476 <p><img src="IMG/screenshot06.png"/></p> 4344 <p> <u>Figure 37:</u>Steam input communication links accepted by BNC</p>4345 4346 <p><h4 >2.19.1 <a name="streamadd">Add Stream</h4></p>4477 <p>Figure 37: Steam input communication links accepted by BNC</p> 4478 4479 <p><h4 id="streamadd">2.19.1 Add Stream</h4></p> 4347 4480 <p> 4348 4481 Button 'Add Stream' allows you to pull streams either from an Ntrip Broadcaster or from a TCP/IP port, UPD port, or serial port. 4349 4482 </p> 4350 4483 4351 <p><h4 >2.19.1.1 <a name="streamcaster">Add Stream - Coming from Caster</h4></p>4484 <p><h4 id="streamcaster">2.19.1.1 Add Stream - Coming from Caster</h4></p> 4352 4485 4353 4486 <p> … … 4355 4488 </p> 4356 4489 4357 <p><h4 >2.19.1.1.1 <a name="streamhost">Caster Host and Port - mandatory</h4></p>4490 <p><h4 id="streamhost">2.19.1.1.1 Caster Host and Port - mandatory</h4></p> 4358 4491 <p> 4359 4492 Enter the Ntrip Broadcaster host IP and port number. Note that EUREF and IGS operate Ntrip Broadcasters at <u>http://www.euref-ip.net/home</u>, <u>http://www.igs-ip.net/home</u>, <u>http://products.igs-ip.net/home</u> and <u>http://mgex.igs-ip.net/home</u>. 4360 4493 </p> 4361 4494 4362 <p><h4 >2.19.1.1.2 <a name="streamtable">Casters Table - optional</h4></p>4495 <p><h4 id="streamtable">2.19.1.1.2 Casters Table - optional</h4></p> 4363 4496 <p> 4364 4497 It may be that you are not sure about your Ntrip Broadcaster's host and port number or you are interested in other broadcaster installations operated elsewhere. Hit 'Show' for a table of known broadcasters maintained at <u>www.rtcm-ntrip.org/home</u>. A window opens which allows selecting a broadcaster for stream retrieval, see figure below. 4365 4498 </p> 4366 </p> 4499 4367 4500 <p><img src="IMG/screenshot04.png"/></p> 4368 4501 4369 <p> <u>Figure 38:</u>BNC's 'Select Broadcaster' table</p>4370 4371 <p><h4 >2.19.1.1.3 <a name="streamuser">User and Password - mandatory for protected streams</h4></p>4502 <p>Figure 38: BNC's 'Select Broadcaster' table</p> 4503 4504 <p><h4 id="streamuser">2.19.1.1.3 User and Password - mandatory for protected streams</h4></p> 4372 4505 <p> 4373 4506 Streams on Ntrip Broadcasters may be protected. Enter a valid 'User' ID and 'Password' for access to protected streams. Accounts are usually provided per Ntrip Broadcaster through a registration procedure. Register through <u>http://register.rtcm-ntrip.org</u> for access to protected streams from EUREF and IGS. 4374 4507 </p> 4375 4508 4376 <p><h4 >2.19.1.1.4 <a name="gettable">Get Table</h4></p>4509 <p><h4 id="gettable">2.19.1.1.4 Get Table</h4></p> 4377 4510 <p> 4378 4511 Use the 'Get Table' button to download the source-table from the Ntrip Broadcaster. Pay attention to data fields 'format' and 'format-details'. Keep in mind that BNC can only decode and convert streams that come in RTCM Version 2, RTCM Version 3, or RTNET format. For access to observations, Broadcast Ephemeris and Broadcast Corrections in RTCM format, streams must contain a selection of appropriate message types as listed in the Annex, cf. data field 'format-details' for available message types and their repetition rates in brackets. Note that in order to produce RINEX Navigation files, RTCM Version 3 streams containing message types 1019 (GPS) and 1020 (GLONASS) and 1043 (SBAS) and 1044 (QZSS) and 1045, 1046 (Galileo) and 63 (BDS/BeiDou, tentative message number) are required. Select your streams line by line, use +Shift and +Ctrl when necessary. The figure below provides an example source-table. 4379 4512 </p> 4513 4380 4514 <p> 4381 4515 The content of data field 'nmea' tells you whether a stream retrieval needs to be initiated by BNC through sending an NMEA-GGA message carrying approximate position coordinates (Virtual Reference Station, VRS). 4382 4516 </p> 4517 4383 4518 <p> 4384 4519 Hit 'OK' to return to the main window. If you wish, you can click on 'Add Stream' and repeat the process of retrieving streams from different casters. 4385 4520 </p> 4521 4386 4522 <p><img src="IMG/screenshot05.png"/></p> 4387 <p> <u>Figure 39:</u>Broadcaster source-table shown by BNC</p>4388 4389 <p><h4 >2.19.1.1.5 <a name="ntripv">Ntrip Version - mandatory</h4></p>4523 <p>Figure 39: Broadcaster source-table shown by BNC</p> 4524 4525 <p><h4 id="ntripv">2.19.1.1.5 Ntrip Version - mandatory</h4></p> 4390 4526 <p> 4391 4527 Some limitations and deficiencies of the Ntrip Version 1 stream transport protocol are solved in Ntrip Version 2. Improvements mainly concern a full HTTP compatibility in view of requirements coming from proxy servers. Version 2 is backwards compatible to Version 1. Options implemented in BNC are: … … 4394 4530 <p> 4395 4531 <table> 4396 <tr></tr>4397 <tr><td><b>Option </b></td><td><b>Meaning</b></td></tr>4398 <tr><td> 1</td><td>Ntrip Version 1, TCP/IP</td></tr>4399 <tr><td> 2</td><td>Ntrip Version 2 in TCP/IP mode</td></tr>4400 <tr><td> 2s</td><td>Ntrip Version 2 in TCP/IP mode via SSL</td></tr>4401 <tr><td> R</td><td>Ntrip Version 2 in RTSP/RTP mode</td></tr>4402 <tr><td> U</td><td>Ntrip Version 2 in UDP mode</td></tr>4532 <tr></tr> 4533 <tr><td><b>Option </b></td><td><b>Meaning</b></td></tr> 4534 <tr><td> 1</td><td>Ntrip Version 1, TCP/IP</td></tr> 4535 <tr><td> 2</td><td>Ntrip Version 2 in TCP/IP mode</td></tr> 4536 <tr><td> 2s</td><td>Ntrip Version 2 in TCP/IP mode via SSL</td></tr> 4537 <tr><td> R</td><td>Ntrip Version 2 in RTSP/RTP mode</td></tr> 4538 <tr><td> U</td><td>Ntrip Version 2 in UDP mode</td></tr> 4403 4539 </table> 4404 4540 </p> … … 4416 4552 </p> 4417 4553 4418 <p><h4 >2.19.1.1.6 <a name="castermap">Map - optional</h4></p>4554 <p><h4 id="castermap">2.19.1.1.6 Map - optional</h4></p> 4419 4555 <p> 4420 4556 Button 'Map' opens a window to show a distribution map of the caster's streams. You may like to zoom in or out using the mouse. Left button: draw a rectangle to zoom, right button: zoom out, middle button: zoom back. … … 4422 4558 4423 4559 <p><img src="IMG/screenshot24.png"/></p> 4424 <p> <u>Figure 40:</u>Stream distribution map shown by BNC as derived from Ntrip Broadcaster source-table</p>4425 4426 <p><h4 >2.19.1.2 <a name="streamip">Add Stream - Coming from TCP/IP Port</h4></p>4560 <p>Figure 40: Stream distribution map shown by BNC as derived from Ntrip Broadcaster source-table</p> 4561 4562 <p><h4 id="streamip">2.19.1.2 Add Stream - Coming from TCP/IP Port</h4></p> 4427 4563 <p> 4428 4564 Button 'Add Stream' > 'Coming from TCP/IP Port' allows to retrieve streams via TCP directly from an IP address without using the Ntrip transport protocol. For that you: 4429 4565 <ul> 4430 <li>Enter the IP address of the stream providing host.</li>4431 <li>Enter the IP port number of the stream providing host.</li>4432 <li>Specify a mountpoint. Recommended is a 4-character station ID. Example: FFMJ</li>4433 <li>Specify the stream format. Available options are 'RTCM_2', 'RTCM_3', 'RTNET', and 'ZERO'.</li>4434 <li>Enter the approximate latitude of the stream providing rover in degrees. Example: 45.32.</li>4435 <li>Enter the approximate longitude of the stream providing rover in degrees. Example: -15.20.</li>4566 <li>Enter the IP address of the stream providing host.</li> 4567 <li>Enter the IP port number of the stream providing host.</li> 4568 <li>Specify a mountpoint. Recommended is a 4-character station ID. Example: FFMJ</li> 4569 <li>Specify the stream format. Available options are 'RTCM_2', 'RTCM_3', 'RTNET', and 'ZERO'.</li> 4570 <li>Enter the approximate latitude of the stream providing rover in degrees. Example: 45.32.</li> 4571 <li>Enter the approximate longitude of the stream providing rover in degrees. Example: -15.20.</li> 4436 4572 </ul> 4437 4573 </p> … … 4439 4575 Streams directly received from a TCP/IP port show up with an 'N' for 'No Ntrip' in the 'Streams' canvas on BNC's main window. Latitude and longitude are to be entered just for informal reasons. 4440 4576 <p> 4577 4441 4578 </p> 4442 4579 Note that this option works only if no proxy server is involved in the communication link. 4443 4580 </p> 4444 4581 4445 <p><h4 >2.19.1.3 <a name="streamudp">Add Stream - Coming from UDP Port</h4></p>4582 <p><h4 id="streamudp">2.19.1.3 Add Stream - Coming from UDP Port</h4></p> 4446 4583 <p> 4447 4584 Button 'Add Stream' > 'Coming from UDP Port' allows to pick up streams arriving directly at one of the local host's UDP ports without using the Ntrip transport protocol. For that you: 4448 4585 <ul> 4449 <li>Enter the local port number where the UDP stream arrives.</li>4450 <li>Specify a mountpoint. Recommended is a 4-character station ID. Example: FFMJ</li>4451 <li>Specify the stream format. Available options are 'RTCM_2', 'RTCM_3', 'RTNET', and 'ZERO'.</li>4452 <li>Enter the approximate latitude of the stream providing rover in degrees. Example: 45.32.</li>4453 <li>Enter the approximate longitude of the stream providing rover in degrees. Example: -15.20.</li>4586 <li>Enter the local port number where the UDP stream arrives.</li> 4587 <li>Specify a mountpoint. Recommended is a 4-character station ID. Example: FFMJ</li> 4588 <li>Specify the stream format. Available options are 'RTCM_2', 'RTCM_3', 'RTNET', and 'ZERO'.</li> 4589 <li>Enter the approximate latitude of the stream providing rover in degrees. Example: 45.32.</li> 4590 <li>Enter the approximate longitude of the stream providing rover in degrees. Example: -15.20.</li> 4454 4591 </ul> 4455 4592 </p> … … 4458 4595 <p> 4459 4596 4460 <p><h4 >2.19.1.4 <a name="streamser">Add Stream - Coming from Serial Port</h4></p>4597 <p><h4 id="streamser">2.19.1.4 Add Stream - Coming from Serial Port</h4></p> 4461 4598 <p> 4462 4599 Button 'Add Stream' > 'Coming from Serial Port' allows to retrieve streams from a GNSS receiver via serial port without using the Ntrip transport protocol. For that you: 4463 4600 <ul> 4464 <li>Specify a mountpoint. Recommended is a 4-character station ID. Example: FFMJ</li>4465 <li>Specify the stream format. Available options are 'RTCM_2', 'RTCM_3', 'RTNET', and 'ZERO'.</li>4466 <li>Enter the approximate latitude of the stream providing receiver in degrees. Example: 45.32.</li>4467 <li>Enter the approximate longitude of the stream providing receiver in degrees. Example: -15.20.</li>4468 <li>Enter the serial 'Port name' selected on your host for communication with the receiver. Valid port names are4601 <li>Specify a mountpoint. Recommended is a 4-character station ID. Example: FFMJ</li> 4602 <li>Specify the stream format. Available options are 'RTCM_2', 'RTCM_3', 'RTNET', and 'ZERO'.</li> 4603 <li>Enter the approximate latitude of the stream providing receiver in degrees. Example: 45.32.</li> 4604 <li>Enter the approximate longitude of the stream providing receiver in degrees. Example: -15.20.</li> 4605 <li>Enter the serial 'Port name' selected on your host for communication with the receiver. Valid port names are 4469 4606 <pre> 4470 4607 Windows: COM1, COM2 … … 4477 4614 </pre> 4478 4615 </li> 4479 <li>Select a 'Baud rate' for the serial input. Note that using a high baud rate is recommended.</li> 4480 <li>Select the number of 'Data bits' for the serial input. Note that often '8' data bits are used.</li> 4481 <li>Select the 'Parity' for the serial input. Note that parity is often set to 'NONE'.</li> 4482 <li>Select the number of 'Stop bits' for the serial input. Note that often '1' stop bit is used.</li> 4483 <li>Select a 'Flow control' for the serial link. Select 'OFF' if you do not know better.</li> 4484 </ul> 4485 </p> 4616 <li>Select a 'Baud rate' for the serial input. Note that using a high baud rate is recommended.</li> 4617 <li>Select the number of 'Data bits' for the serial input. Note that often '8' data bits are used.</li> 4618 <li>Select the 'Parity' for the serial input. Note that parity is often set to 'NONE'.</li> 4619 <li>Select the number of 'Stop bits' for the serial input. Note that often '1' stop bit is used.</li> 4620 <li>Select a 'Flow control' for the serial link. Select 'OFF' if you do not know better.</li> 4621 </ul> 4622 </p> 4623 4486 4624 <p> 4487 4625 When selecting one of the serial communication options listed above, make sure that you pick those configured to the serially connected GNSS receiver. … … 4496 4634 </p> 4497 4635 <p><img src="IMG/screenshot15.png"/></p> 4498 <p> <u>Figure 41:</u>BNC configuration for pulling a stream via serial port</p>4499 4500 <p><h4 >2.19.2 <a name="streamsdelete">Delete Stream</h4></p>4636 <p>Figure 41: BNC configuration for pulling a stream via serial port</p> 4637 4638 <p><h4 id="streamsdelete">2.19.2 Delete Stream</h4></p> 4501 4639 <p> 4502 4640 Button 'Delete Stream' allows you to delete streams previously selected for retrieval as listed under the 'Streams' canvas on BNC's main window. 4503 4641 </p> 4504 4642 4505 <p><h4 >2.19.3 <a name="streamsmap">Map</h4></p>4643 <p><h4 id="streamsmap">2.19.3 Map</h4></p> 4506 4644 <p> 4507 4645 Button 'Map' opens a window to show a distribution map of the streams selected for retrieval as listed under the 'Streams' canvas. You may like to zoom in or out using the mouse. Left button: draw a rectangle to zoom, right button: zoom out, middle button: zoom back. 4508 4646 </p> 4509 4647 4510 <p><h4 >2.19.4 <a name="start">Start</h4></p>4648 <p><h4 id="start">2.19.4 Start</h4></p> 4511 4649 <p> 4512 4650 Hit 'Start' to start retrieving, decoding or converting GNSS data streams in real-time. Note that 'Start' generally forces BNC to begin with fresh RINEX files which might overwrite existing files when necessary unless option 'Append files' is ticked. 4513 4651 </p> 4514 4652 4515 <p><h4 >2.19.5 <a name="stop">Stop</h4></p>4653 <p><h4 id="stop">2.19.5 Stop</h4></p> 4516 4654 <p> 4517 4655 Hit the 'Stop' button in order to stop BNC. 4518 4656 </p> 4519 4657 4520 <p><h4 >2.19.6 <a name="contexthelp">Help? = Shift+F1</h4></p>4658 <p><h4 id="contexthelp">2.19.6 Help? = Shift+F1</h4></p> 4521 4659 <p> 4522 4660 BNC comes with a <i>What's This</i> help system providing information about its functionality and usage. Short descriptions are available for any widget and program option. Focus to the relevant object and press Shift+F1 to request help information. A help text appears immediately; it disappears as soon as the user does something else. The dialogs on some operating systems may provide a '?' button that users can click; click the relevant widget to pop up the help text. 4523 4661 </p> 4524 4662 4525 <p><h4 >2.20 <a name="cmd">Command Line Options</h4></p>4663 <p><h4 id="cmd">2.20 Command Line Options</h4></p> 4526 4664 <p> 4527 4665 Command line options are available to run BNC in 'no window' mode or let it read previously recorded input offline from one or several files for debugging or post processing purposes. It is also possible to introduce a specific configuration filename instead of using the default filename 'BNC.bnc'. The self-explaining content of the configuration file can easily be edited. 4528 4666 </p> 4667 4529 4668 <p> 4530 4669 In addition to reading processing options from the involved configuration file, BNC can optionally read any configuration option from command line. Running BNC with command line option 'help' 4531 4670 </p> 4671 4532 4672 <p> 4533 4673 Example:<br><br> 4534 4674 bnc --help (MS Windows: bnc.exe --help | more) 4535 4675 </p> 4676 4536 4677 <p> 4537 4678 provides a list of all available command line options. 4538 4679 </p> 4539 4680 4540 <p><h4 >2.20.1 <a name="cmdVersion">Version - optional</h4></p>4681 <p><h4 id="cmdVersion">2.20.1 Version - optional</h4></p> 4541 4682 <p> 4542 4683 Command line option '--version' lets BNC print its version number. 4543 4684 </p> 4685 4544 4686 <p> 4545 4687 Example:<br><br> … … 4547 4689 </p> 4548 4690 4549 <p><h4 >2.20.2 <a name="cmdDisplay">Display - optional</h4></p>4691 <p><h4 id="cmdDisplay">2.20.2 Display - optional</h4></p> 4550 4692 <p> 4551 4693 On systems which support graphics, command line option '--display' forces BNC to present the BNC window on the specified display. 4552 4694 </p> 4695 4553 4696 <p> 4554 4697 Example:<br><br> … … 4556 4699 </p> 4557 4700 4558 <p><h4 >2.20.3 <a name="nw">No Window Mode - optional</h4></p>4701 <p><h4 id="nw">2.20.3 No Window Mode - optional</h4></p> 4559 4702 <p> 4560 4703 Apart from its regular windows mode, BNC can be started on all systems as a batch job with command line option '-nw'. BNC will then run in 'no window' mode, using processing options from its configuration file on disk. Terminate BNC using Windows Task Manager when running it in 'no window' mode on Windows systems. 4561 4704 </p> 4705 4562 4706 <p> 4563 4707 Example:<br><br> 4564 4708 bnc.exe --nw 4565 4709 </p> 4710 4566 4711 <p> 4567 4712 It is obvious that BNC requires graphics support when started in interactive … … 4590 4735 </pre> 4591 4736 4592 <p><h4 >2.20.4 <a name="post">File Mode - optional</h4></p>4737 <p><h4 id="post">2.20.4 File Mode - optional</h4></p> 4593 4738 <p> 4594 4739 Although BNC is primarily a real-time online tool, for debugging purposes it can be run offline to read data from a file previously saved through option 'Raw output file' (Record & Replay functionality). Enter the following command line option for that 4595 4740 </p> 4741 4596 4742 <p> 4597 4743 --file <<u>inputFileName</u>> … … 4601 4747 ./bnc --file /home/user/raw.output_110301 4602 4748 </p> 4749 4603 4750 <p> 4604 4751 Note that when running BNC offline, it will use options for file saving, interval, sampling, PPP etc. from its configuration file. 4605 4752 </p> 4753 4606 4754 <p>Note further that option '--file' forces BNC to apply the '-nw' option for running in 'no window' mode. 4607 4755 </p> 4608 4756 4609 <p><h4 >2.20.5 <a name="conffile">Configuration File - optional</h4></p>4757 <p><h4 id="conffile">2.20.5 Configuration File - optional</h4></p> 4610 4758 The default configuration filename is 'BNC.bnc'. You may change this name at startup time using command line option '--conf <<u>confFileName</u>>'. This allows running several BNC jobs in parallel on the same host using different sets of configuration options. <u>confFileName</u> stands either for the full path to a configuration file or just for a filename. If you introduce only a filename, the corresponding file will be saved in the current working directory from where BNC is started. 4611 4759 </p> 4760 4612 4761 <p> 4613 4762 Example:<br><br> 4614 4763 ./bnc --conf MyConfig.bnc 4615 4764 </p> 4765 4616 4766 <p> 4617 4767 This leads to a BNC job using configuration file 'MyConfig.bnc'. The configuration file will be saved in the current working directory. 4618 4768 </p> 4619 4769 4620 <p><h4 >2.20.6 <a name="confopt">Configuration Options - optional</h4></p>4770 <p><h4 id="confopt">2.20.6 Configuration Options - optional</h4></p> 4621 4771 <p> 4622 4772 BNC applies options from the configuration file but allows updating every one of them on the command line while the content of the configuration file remains unchanged. Note the following syntax for Command Line Interface (CLI) options: 4623 4773 </p> 4774 4624 4775 <p> 4625 4776 --key <keyName> <keyValue> 4626 4777 </p> 4778 4627 4779 <p> 4628 4780 Parameter <keyName> stands for the key name of an option contained in the configuration file and <keyValue> stands for the value you want to assign to it. The following is a syntax example for a complete command line: 4629 4781 </p> 4782 4630 4783 <p> 4631 4784 bnc --nw --conf <confFileName> --key <keyName1> <keyValue1> --key <keyName2> <keyValue2> ... 4632 4785 </p> 4786 4633 4787 <p> 4634 4788 Configuration options which are part of the configuration files PPP section must be prefixed by 'PPP/'. As an example, option 'minObs' from the PPP section of the BNC configuration file would be specified as 'PPP/minObs' on a command line. 4635 4789 </p> 4790 4636 4791 <p> 4637 4792 Values for configuration options can be introduced via command line exactly as they show up in the configuration file. However, any value containing one or more blank characters must be enclosed by quotation marks when specified on command line. 4638 4793 </p> 4639 4794 4640 <p><h3 >3. <a name="annex">Annex</h3></p>4641 4642 <p><h4 >3.1 <a name="rtcm">RTCM Standards</h4></p>4795 <p><h3 id="annex">3. Annex</h3></p> 4796 4797 <p><h4 id="rtcm">3.1 RTCM Standards</h4></p> 4643 4798 4644 4799 <p> … … 4648 4803 </p> 4649 4804 4650 <p><h4 >3.1.1 <a name="ntrip1">Ntrip Version 1</h4></p>4805 <p><h4 id="ntrip1">3.1.1 Ntrip Version 1</h4></p> 4651 4806 4652 4807 <p> … … 4665 4820 Ntrip is an open none-proprietary protocol. Major characteristics of Ntrip's dissemination technique are: 4666 4821 <ul> 4667 <li>Based on the popular HTTP streaming standard; comparatively easy to implement when having limited client and server platform resources available;</li>4668 <li>Application not limited to one particular plain or coded stream content; ability to distribute any kind of GNSS data;</li>4669 <li>Potential to support mass usage; disseminating hundreds of streams simultaneously for thousands of users possible when applying modified Internet Radio broadcasting software;</li>4670 <li>Considering security needs; stream providers and users do not necessarily get into contact, streams often not blocked by firewalls or proxy servers protecting Local Area Networks;</li>4671 <li>Enables streaming over mobile IP networks because of using TCP/IP.</li>4822 <li>Based on the popular HTTP streaming standard; comparatively easy to implement when having limited client and server platform resources available;</li> 4823 <li>Application not limited to one particular plain or coded stream content; ability to distribute any kind of GNSS data;</li> 4824 <li>Potential to support mass usage; disseminating hundreds of streams simultaneously for thousands of users possible when applying modified Internet Radio broadcasting software;</li> 4825 <li>Considering security needs; stream providers and users do not necessarily get into contact, streams often not blocked by firewalls or proxy servers protecting Local Area Networks;</li> 4826 <li>Enables streaming over mobile IP networks because of using TCP/IP.</li> 4672 4827 </ul> 4673 4828 </p> … … 4687 4842 </p> 4688 4843 4689 <p><h4 >3.1.2 <a name="ntrip2">Ntrip Version 2</h4></p>4844 <p><h4 id="ntrip2">3.1.2 Ntrip Version 2</h4></p> 4690 4845 4691 4846 <p> … … 4694 4849 4695 4850 <ul> 4696 <li>Cleared and fixed design problems and HTTP protocol violations;</li>4697 <li>Replaced nonstandard directives;</li>4698 <li>Chunked transfer encoding;</li>4699 <li>Improvements in header records;</li>4700 <li>Source-table filtering;</li>4701 <li>RTSP communication.</li>4851 <li>Cleared and fixed design problems and HTTP protocol violations;</li> 4852 <li>Replaced nonstandard directives;</li> 4853 <li>Chunked transfer encoding;</li> 4854 <li>Improvements in header records;</li> 4855 <li>Source-table filtering;</li> 4856 <li>RTSP communication.</li> 4702 4857 </ul> 4703 4858 … … 4705 4860 </p> 4706 4861 4707 <p><h4 >3.1.3 <a name="rtcm2">RTCM Version 2</h4></p>4862 <p><h4 id="rtcm2">3.1.3 RTCM Version 2</h4></p> 4708 4863 <p> 4709 4864 Transmitting GNSS carrier phase data can be done through RTCM Version 2 messages. Please note that only RTCM Version 2.2 and 2.3 streams may include GLONASS data. Messages that may be of interest here are: … … 4711 4866 4712 4867 <ul> 4713 <li> 4714 Type 1 message is the range correction message and is the primary message in code-phase differential positioning (DGPS). It is computed in the base receiver by computing the error in the range measurement for each tracked SV. 4715 </li> 4716 <li> 4717 Type 2 message is automatically generated when a new set of satellite ephemeris is downloaded to the base receiver. It is the computed difference between the old ephemeris and the new ephemeris. Type 2 messages are used when the base station is transmitting Type 1 messages. 4718 </li> 4719 <li> 4720 Type 3 and 22 messages are the base station position and the antenna offset. Type 3 and 22 are used in RTK processing to perform antenna reduction. 4721 </li> 4722 <li> 4723 Type 6 message is a null frame filler message that is provided for data links that require continuous transmission of data, even if there are no corrections to send. As many Type 6 messages are sent as required to fill in the gap between two correction messages (type 1). Message 6 is not sent in burst mode. 4724 </li> 4725 <li> 4726 Type 9 message serves the same purpose as Type 1, but does not require a complete satellite set. As a result, Type 9 messages require a more stable clock than a station transmitting Type 1 's, because the satellite corrections have different time references. 4727 </li> 4728 <li> 4729 Type 16 message is simply a text message entered by the user that is transmitted from the base station to the rover. It is used with code-phase differential. 4730 </li> 4731 <li> 4732 Type 18 and 20 messages are RTK uncorrected carrier phase data and carrier phase corrections. 4733 </li> 4734 <li> 4735 Type 19 and 21 messages are the uncorrected pseudo-range measurements and pseudo-range corrections used in RTK. 4736 </li> 4737 <li> 4738 Type 23 message provides the information on the antenna type used on the reference station. 4739 </li> 4740 <li> 4741 Type 24 message carries the coordinates of the installed antenna's ARP in the GNSS coordinate system coordinates. 4742 </li> 4743 </ul> 4744 4745 <p><h4>3.1.4 <a name="rtcm3">RTCM Version 3</h4></p> 4868 <li>Type 1 message is the range correction message and is the primary message in code-phase differential positioning (DGPS). It is computed in the base receiver by computing the error in the range measurement for each tracked SV.</li> 4869 <li>Type 2 message is automatically generated when a new set of satellite ephemeris is downloaded to the base receiver. It is the computed difference between the old ephemeris and the new ephemeris. Type 2 messages are used when the base station is transmitting Type 1 messages.</li> 4870 <li>Type 3 and 22 messages are the base station position and the antenna offset. Type 3 and 22 are used in RTK processing to perform antenna reduction.</li> 4871 <li>Type 6 message is a null frame filler message that is provided for data links that require continuous transmission of data, even if there are no corrections to send. As many Type 6 messages are sent as required to fill in the gap between two correction messages (type 1). Message 6 is not sent in burst mode.</li> 4872 <li>Type 9 message serves the same purpose as Type 1, but does not require a complete satellite set. As a result, Type 9 messages require a more stable clock than a station transmitting Type 1 's, because the satellite corrections have different time references.</li> 4873 <li>Type 16 message is simply a text message entered by the user that is transmitted from the base station to the rover. It is used with code-phase differential.</li> 4874 <li>Type 18 and 20 messages are RTK uncorrected carrier phase data and carrier phase corrections.</li> 4875 <li>Type 19 and 21 messages are the uncorrected pseudo-range measurements and pseudo-range corrections used in RTK.</li> 4876 <li>Type 23 message provides the information on the antenna type used on the reference station.</li> 4877 <li>Type 24 message carries the coordinates of the installed antenna's ARP in the GNSS coordinate system coordinates.</li> 4878 </ul> 4879 4880 <p><h4 id="rtcm3">3.1.4 RTCM Version 3</h4></p> 4746 4881 <p> 4747 4882 RTCM Version 3 has been developed as a more efficient alternative to RTCM Version 2. Service providers and vendors have asked for a standard that would be more efficient, easy to use, and more easily adaptable to new situations. The main complaint was that the Version 2 parity scheme was wasteful of bandwidth. Another complaint was that the parity is not independent from word to word. Still another was that even with so many bits devoted to parity, the actual integrity of the message was not as high as it should be. Plus, 30-bit words are awkward to handle. The Version 3 standard is intended to correct these weaknesses. 4748 4883 </p> 4884 4749 4885 <p> 4750 4886 RTCM Version 3 defines a number of message types. Messages that may be of interest here are: 4751 4887 <ul> 4752 <li>Type 1001, GPS L1 code and phase.</li> 4753 <li>Type 1002, GPS L1 code and phase and ambiguities and carrier-to-noise ratio.</li> 4754 <li>Type 1003, GPS L1 and L2 code and phase.</li> 4755 <li>Type 1004, GPS L1 and L2 code and phase and ambiguities and carrier-to-noise ratio.</li> 4756 <li>Type 1005, Station coordinates XYZ for antenna reference point.</li> 4757 <li>Type 1006, Station coordinates XYZ for antenna reference point and antenna height.</li> 4758 <li>Type 1007, Antenna descriptor and ID.</li> 4759 <li>Type 1008, Antenna serial number.</li> 4760 <li>Type 1009, GLONASS L1 code and phase.</li> 4761 <li>Type 1010, GLONASS L1 code and phase and ambiguities and carrier-to-noise ratio.</li> 4762 <li>Type 1011, GLONASS L1 and L2 code and phase.</li> 4763 <li>Type 1012, GLONASS L1 and L2 code and phase and ambiguities and carrier-to-noise ratio.</li> 4764 <li>Type 1013, Modified Julian Date, leap second, configured message types and interval.</li> 4765 <li>Type 1014 and 1017, Network RTK (MAK) messages.</li> 4766 <li>Type 1019, GPS ephemeris.</li> 4767 <li>Type 1020, GLONASS ephemeris.</li> 4768 <li>Type 1043, SBAS ephemeris.</li> 4769 <li>Type 1044, QZSS ephemeris.</li> 4770 <li>Type 1045, Galileo F/NAV ephemeris.</li> 4771 <li>Type 1046, Galileo I/NAV ephemeris.</li> 4772 <li>Type 63, BeiDou ephemeris, tentative.</li> 4773 <li>Type 4088 and 4095, Proprietary messages. 4774 </li> 4888 <li>Type 1001, GPS L1 code and phase.</li> 4889 <li>Type 1002, GPS L1 code and phase and ambiguities and carrier-to-noise ratio.</li> 4890 <li>Type 1003, GPS L1 and L2 code and phase.</li> 4891 <li>Type 1004, GPS L1 and L2 code and phase and ambiguities and carrier-to-noise ratio.</li> 4892 <li>Type 1005, Station coordinates XYZ for antenna reference point.</li> 4893 <li>Type 1006, Station coordinates XYZ for antenna reference point and antenna height.</li> 4894 <li>Type 1007, Antenna descriptor and ID.</li> 4895 <li>Type 1008, Antenna serial number.</li> 4896 <li>Type 1009, GLONASS L1 code and phase.</li> 4897 <li>Type 1010, GLONASS L1 code and phase and ambiguities and carrier-to-noise ratio.</li> 4898 <li>Type 1011, GLONASS L1 and L2 code and phase.</li> 4899 <li>Type 1012, GLONASS L1 and L2 code and phase and ambiguities and carrier-to-noise ratio.</li> 4900 <li>Type 1013, Modified Julian Date, leap second, configured message types and interval.</li> 4901 <li>Type 1014 and 1017, Network RTK (MAK) messages.</li> 4902 <li>Type 1019, GPS ephemeris.</li> 4903 <li>Type 1020, GLONASS ephemeris.</li> 4904 <li>Type 1043, SBAS ephemeris.</li> 4905 <li>Type 1044, QZSS ephemeris.</li> 4906 <li>Type 1045, Galileo F/NAV ephemeris.</li> 4907 <li>Type 1046, Galileo I/NAV ephemeris.</li> 4908 <li>Type 63, BeiDou ephemeris, tentative.</li> 4909 <li>Type 4088 and 4095, Proprietary messages.</li> 4775 4910 </ul> 4776 4911 </p> … … 4779 4914 The following are so-called 'State Space Representation' (SSR) messages: 4780 4915 <ul> 4781 <li>Type 1057, GPS orbit corrections to Broadcast Ephemeris</li>4782 <li>Type 1058, GPS clock corrections to Broadcast Ephemeris</li>4783 <li>Type 1059, GPS code biases</li>4784 <li>Type 1060, Combined orbit and clock corrections to GPS Broadcast Ephemeris</li>4785 <li>Type 1061, GPS User Range Accuracy (URA)</li>4786 <li>Type 1062, High-rate GPS clock corrections to Broadcast Ephemeris<br><br></li>4787 4788 <li>Type 1063, GLONASS orbit corrections to Broadcast Ephemeris</li>4789 <li>Type 1064, GLONASS clock corrections to Broadcast Ephemeris</li>4790 <li>Type 1065, GLONASS code biases</li>4791 <li>Type 1066, Combined orbit and clock corrections to GLONASS Broadcast Ephemeris</li>4792 <li>Type 1067, GLONASS User Range Accuracy (URA)</li>4793 <li>Type 1068, High-rate GLONASS clock corrections to Broadcast Ephemeris<br><br></li>4794 4795 <li>Type 1240, Galileo orbit corrections to Broadcast Ephemeris</li>4796 <li>Type 1241, Galileo clock corrections to Broadcast Ephemeris</li>4797 <li>Type 1242, Galileo code biases</li>4798 <li>Type 1243, Combined orbit and clock corrections to Galileo Broadcast Ephemeris</li>4799 <li>Type 1244, Galileo User Range Accuracy (URA)</li>4800 <li>Type 1245, High-rate Galileo clock corrections to Broadcast Ephemeris<br><br></li>4801 4802 <li>Type 1246, QZSS orbit corrections to Broadcast Ephemeris</li>4803 <li>Type 1247, QZSS clock corrections to Broadcast Ephemeris</li>4804 <li>Type 1248, QZSS code biases</li>4805 <li>Type 1249, Combined orbit and clock corrections to QZSS Broadcast Ephemeris</li>4806 <li>Type 1250, QZSS User Range Accuracy (URA)</li>4807 <li>Type 1251, High-rate QZSS clock corrections to Broadcast Ephemeris<br><br></li>4808 4809 <li>Type 1252, SBAS orbit corrections to Broadcast Ephemeris</li>4810 <li>Type 1253, SBAS clock corrections to Broadcast Ephemeris</li>4811 <li>Type 1254, SBAS code biases</li>4812 <li>Type 1255, Combined orbit and clock corrections to SBAS Broadcast Ephemeris</li>4813 <li>Type 1256, SBAS User Range Accuracy (URA)</li>4814 <li>Type 1257, High-rate SBAS clock corrections to Broadcast Ephemeris<br><br></li>4815 4816 <li>Type 1258, BDS orbit corrections to Broadcast Ephemeris</li>4817 <li>Type 1259, BDS clock corrections to Broadcast Ephemeris</li>4818 <li>Type 1260, BDS code biases</li>4819 <li>Type 1261, Combined orbit and clock corrections to BDS Broadcast Ephemeris</li>4820 <li>Type 1262, BDS User Range Accuracy (URA)</li>4821 <li>Type 1263, High-rate BDS clock corrections to Broadcast Ephemeris<br><br></li>4822 4823 <li>Type 1264 SSR Ionosphere VTEC Spherical Harmonics</li>4824 <li>Type 1265 SSR GPS Satellite Phase Bias</li>4825 <li>Type 1266 SSR Satellite GLONASS Phase Bias</li>4826 <li>Type 1267 SSR Satellite Galileo Phase Bias</li>4827 <li>Type 1268 SSR Satellite QZSS Phase Bias</li>4828 <li>Type 1269 SSR Satellite SBAS Phase Bias</li>4829 <li>Type 1270 SSR Satellite BDS Phase Bias</li>4916 <li>Type 1057, GPS orbit corrections to Broadcast Ephemeris</li> 4917 <li>Type 1058, GPS clock corrections to Broadcast Ephemeris</li> 4918 <li>Type 1059, GPS code biases</li> 4919 <li>Type 1060, Combined orbit and clock corrections to GPS Broadcast Ephemeris</li> 4920 <li>Type 1061, GPS User Range Accuracy (URA)</li> 4921 <li>Type 1062, High-rate GPS clock corrections to Broadcast Ephemeris<br><br></li> 4922 4923 <li>Type 1063, GLONASS orbit corrections to Broadcast Ephemeris</li> 4924 <li>Type 1064, GLONASS clock corrections to Broadcast Ephemeris</li> 4925 <li>Type 1065, GLONASS code biases</li> 4926 <li>Type 1066, Combined orbit and clock corrections to GLONASS Broadcast Ephemeris</li> 4927 <li>Type 1067, GLONASS User Range Accuracy (URA)</li> 4928 <li>Type 1068, High-rate GLONASS clock corrections to Broadcast Ephemeris<br><br></li> 4929 4930 <li>Type 1240, Galileo orbit corrections to Broadcast Ephemeris</li> 4931 <li>Type 1241, Galileo clock corrections to Broadcast Ephemeris</li> 4932 <li>Type 1242, Galileo code biases</li> 4933 <li>Type 1243, Combined orbit and clock corrections to Galileo Broadcast Ephemeris</li> 4934 <li>Type 1244, Galileo User Range Accuracy (URA)</li> 4935 <li>Type 1245, High-rate Galileo clock corrections to Broadcast Ephemeris<br><br></li> 4936 4937 <li>Type 1246, QZSS orbit corrections to Broadcast Ephemeris</li> 4938 <li>Type 1247, QZSS clock corrections to Broadcast Ephemeris</li> 4939 <li>Type 1248, QZSS code biases</li> 4940 <li>Type 1249, Combined orbit and clock corrections to QZSS Broadcast Ephemeris</li> 4941 <li>Type 1250, QZSS User Range Accuracy (URA)</li> 4942 <li>Type 1251, High-rate QZSS clock corrections to Broadcast Ephemeris<br><br></li> 4943 4944 <li>Type 1252, SBAS orbit corrections to Broadcast Ephemeris</li> 4945 <li>Type 1253, SBAS clock corrections to Broadcast Ephemeris</li> 4946 <li>Type 1254, SBAS code biases</li> 4947 <li>Type 1255, Combined orbit and clock corrections to SBAS Broadcast Ephemeris</li> 4948 <li>Type 1256, SBAS User Range Accuracy (URA)</li> 4949 <li>Type 1257, High-rate SBAS clock corrections to Broadcast Ephemeris<br><br></li> 4950 4951 <li>Type 1258, BDS orbit corrections to Broadcast Ephemeris</li> 4952 <li>Type 1259, BDS clock corrections to Broadcast Ephemeris</li> 4953 <li>Type 1260, BDS code biases</li> 4954 <li>Type 1261, Combined orbit and clock corrections to BDS Broadcast Ephemeris</li> 4955 <li>Type 1262, BDS User Range Accuracy (URA)</li> 4956 <li>Type 1263, High-rate BDS clock corrections to Broadcast Ephemeris<br><br></li> 4957 4958 <li>Type 1264 SSR Ionosphere VTEC Spherical Harmonics</li> 4959 <li>Type 1265 SSR GPS Satellite Phase Bias</li> 4960 <li>Type 1266 SSR Satellite GLONASS Phase Bias</li> 4961 <li>Type 1267 SSR Satellite Galileo Phase Bias</li> 4962 <li>Type 1268 SSR Satellite QZSS Phase Bias</li> 4963 <li>Type 1269 SSR Satellite SBAS Phase Bias</li> 4964 <li>Type 1270 SSR Satellite BDS Phase Bias</li> 4830 4965 </ul> 4831 4966 </p> … … 4834 4969 The following are so-called 'Multiple Signal Messages' (MSM): 4835 4970 <ul> 4836 <li>Type 1071, Compact GPS pseudo-ranges</li> 4837 <li>Type 1072, Compact GPS carrier phases</li> 4838 <li>Type 1073, Compact GPS pseudo-ranges and carrier phases</li> 4839 <li>Type 1074, Full GPS pseudo-ranges and carrier phases plus signal strength</li> 4840 <li>Type 1075, Full GPS pseudo-ranges, carrier phases, Doppler and signal strength</li> 4841 <li>Type 1076, Full GPS pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 4842 <li>Type 1077, Full GPS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 4843 <li>Type 1081, Compact GLONASS pseudo-ranges</li> 4844 <li>Type 1082, Compact GLONASS carrier phases</li> 4845 <li>Type 1083, Compact GLONASS pseudo-ranges and carrier phases</li> 4846 <li>Type 1084, Full GLONASS pseudo-ranges and carrier phases plus signal strength</li> 4847 <li>Type 1085, Full GLONASS pseudo-ranges, carrier phases, Doppler and signal strength</li> 4848 <li>Type 1086, Full GLONASS pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 4849 <li>Type 1087, Full GLONASS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 4850 <li>Type 1091, Compact Galileo pseudo-ranges</li> 4851 <li>Type 1092, Compact Galileo carrier phases</li> 4852 <li>Type 1093, Compact Galileo pseudo-ranges and carrier phases</li> 4853 <li>Type 1094, Full Galileo pseudo-ranges and carrier phases plus signal strength</li> 4854 <li>Type 1095, Full Galileo pseudo-ranges, carrier phases, Doppler and signal strength</li> 4855 <li>Type 1096, Full Galileo pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 4856 <li>Type 1097, Full Galileo pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 4857 <li>Type 1121, Compact BeiDou pseudo-ranges</li> 4858 <li>Type 1122, Compact BeiDou carrier phases</li> 4859 <li>Type 1123, Compact BeiDou pseudo-ranges and carrier phases</li> 4860 <li>Type 1124, Full BeiDou pseudo-ranges and carrier phases plus signal strength</li> 4861 <li>Type 1125, Full BeiDou pseudo-ranges, carrier phases, Doppler and signal strength</li> 4862 <li>Type 1126, Full BeiDou pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 4863 <li>Type 1127, Full BeiDou pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 4864 <li>Type 1111, Compact QZSS pseudo-ranges</li> 4865 <li>Type 1112, Compact QZSS carrier phases</li> 4866 <li>Type 1113, Compact QZSS pseudo-ranges and carrier phases</li> 4867 <li>Type 1114, Full QZSS pseudo-ranges and carrier phases plus signal strength</li> 4868 <li>Type 1115, Full QZSS pseudo-ranges, carrier phases, Doppler and signal strength</li> 4869 <li>Type 1116, Full QZSS pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 4870 <li>Type 1117, Full QZSS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 4871 4971 <li>Type 1071, Compact GPS pseudo-ranges</li> 4972 <li>Type 1072, Compact GPS carrier phases</li> 4973 <li>Type 1073, Compact GPS pseudo-ranges and carrier phases</li> 4974 <li>Type 1074, Full GPS pseudo-ranges and carrier phases plus signal strength</li> 4975 <li>Type 1075, Full GPS pseudo-ranges, carrier phases, Doppler and signal strength</li> 4976 <li>Type 1076, Full GPS pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 4977 <li>Type 1077, Full GPS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 4978 <li>Type 1081, Compact GLONASS pseudo-ranges</li> 4979 <li>Type 1082, Compact GLONASS carrier phases</li> 4980 <li>Type 1083, Compact GLONASS pseudo-ranges and carrier phases</li> 4981 <li>Type 1084, Full GLONASS pseudo-ranges and carrier phases plus signal strength</li> 4982 <li>Type 1085, Full GLONASS pseudo-ranges, carrier phases, Doppler and signal strength</li> 4983 <li>Type 1086, Full GLONASS pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 4984 <li>Type 1087, Full GLONASS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 4985 <li>Type 1091, Compact Galileo pseudo-ranges</li> 4986 <li>Type 1092, Compact Galileo carrier phases</li> 4987 <li>Type 1093, Compact Galileo pseudo-ranges and carrier phases</li> 4988 <li>Type 1094, Full Galileo pseudo-ranges and carrier phases plus signal strength</li> 4989 <li>Type 1095, Full Galileo pseudo-ranges, carrier phases, Doppler and signal strength</li> 4990 <li>Type 1096, Full Galileo pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 4991 <li>Type 1097, Full Galileo pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 4992 <li>Type 1121, Compact BeiDou pseudo-ranges</li> 4993 <li>Type 1122, Compact BeiDou carrier phases</li> 4994 <li>Type 1123, Compact BeiDou pseudo-ranges and carrier phases</li> 4995 <li>Type 1124, Full BeiDou pseudo-ranges and carrier phases plus signal strength</li> 4996 <li>Type 1125, Full BeiDou pseudo-ranges, carrier phases, Doppler and signal strength</li> 4997 <li>Type 1126, Full BeiDou pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 4998 <li>Type 1127, Full BeiDou pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 4999 <li>Type 1111, Compact QZSS pseudo-ranges</li> 5000 <li>Type 1112, Compact QZSS carrier phases</li> 5001 <li>Type 1113, Compact QZSS pseudo-ranges and carrier phases</li> 5002 <li>Type 1114, Full QZSS pseudo-ranges and carrier phases plus signal strength</li> 5003 <li>Type 1115, Full QZSS pseudo-ranges, carrier phases, Doppler and signal strength</li> 5004 <li>Type 1116, Full QZSS pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 5005 <li>Type 1117, Full QZSS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 4872 5006 </ul> 4873 5007 </p> … … 4876 5010 The following are proposed 'Multiple Signal Messages' (MSM) under discussion for standardization: 4877 5011 <ul> 4878 <li>Type 1101, Compact SBAS pseudo-ranges</li>4879 <li>Type 1102, Compact SBAS carrier phases</li>4880 <li>Type 1103, Compact SBAS pseudo-ranges and carrier phases</li>4881 <li>Type 1104, Full SBAS pseudo-ranges and carrier phases plus signal strength</li>4882 <li>Type 1105, Full SBAS pseudo-ranges, carrier phases, Doppler and signal strength</li>4883 <li>Type 1106, Full SBAS pseudo-ranges and carrier phases plus signal strength (high resolution)</li>4884 <li>Type 1107, Full SBAS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li>4885 </ul> 4886 </p> 4887 4888 <p><h4 >3.2 <a name="confList">Command Line Help</h3></p>5012 <li>Type 1101, Compact SBAS pseudo-ranges</li> 5013 <li>Type 1102, Compact SBAS carrier phases</li> 5014 <li>Type 1103, Compact SBAS pseudo-ranges and carrier phases</li> 5015 <li>Type 1104, Full SBAS pseudo-ranges and carrier phases plus signal strength</li> 5016 <li>Type 1105, Full SBAS pseudo-ranges, carrier phases, Doppler and signal strength</li> 5017 <li>Type 1106, Full SBAS pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 5018 <li>Type 1107, Full SBAS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 5019 </ul> 5020 </p> 5021 5022 <p><h4 id="confList">3.2 Command Line Help</h3></p> 4889 5023 4890 5024 <p> 4891 5025 Command line option '--help' provides a complete list of all configuration parameters which can be specified via BNC's Command Line Interface (CLI). Note that command line options overrule configuration options specified in the configuration file. The following is the output produced when running BNC with command line option '--help': 4892 5026 </p> 5027 4893 5028 <pre> 4894 5029 <b>Usage:</b> … … 5129 5264 CUT07,100.0,100.0,100.0,100.0,100.0,100.0,0.1,3e-6,7778" 5130 5265 </pre> 5131 <p><h4>3.3 <a name="links">Further Reading</h3></p> 5132 5266 <p><h4 id="links">3.3 Further Reading</h3></p> 5267 5268 <b>Links:</b><br> 5133 5269 <table> 5134 <tr></tr> 5135 <tr><td><b>Links</b></td></tr> 5136 <tr><td>Ntrip </td><td><u>http://igs.bkg.bund.de/ntrip/index</u></td></tr> 5137 <tr><td>EUREF-IP Ntrip Broadcaster </td><td><u>http://www.euref-ip.net/home</u></td></tr> 5138 <tr><td>IGS-IP Ntrip Broadcaster </td><td><u>http://www.igs-ip.net/home</u></td></tr> 5139 <tr><td>IGS products Ntrip Broadcaster </td><td><u>http://products.igs-ip.net/home</u></td></tr> 5140 <tr><td>IGS M-GEX Ntrip Broadcaster </td><td><u>http://mgex.igs-ip.net/home</u></td></tr> 5141 <tr><td>IGS Central Bureau Ntrip Broadcaster </td><td><u>http://rt.igs.org</u></td></tr> 5142 <tr><td>IGS Real-time Service </td><td><u>http://rts.igs.org</u></td></tr> 5143 <tr><td>Distribution of IGS-IP streams </td><td><u>http://www.igs.oma.be/real_time/</u></td></tr> 5144 <tr><td>Completeness and latency of IGS-IP data </td><td><u>http://www.igs.oma.be/highrate/</u></td></tr> 5145 <tr><td>Ntrip Broadcaster overview </td><td><u>http://www.rtcm-ntrip.org/home</u></td></tr> 5146 <tr><td>Ntrip Open Source software code </td><td><u>http://software.rtcm-ntrip.org</u></td></tr> 5147 <tr><td>EUREF-IP Project </td><td><u>http://www.epncb.oma.be/euref_IP</u></td></tr> 5148 <tr><td>Real-time IGS Pilot Project </td><td><u>http://www.rtigs.net/pilot</u></td></tr> 5149 <tr><td>Radio Technical Commission<br>for Maritime Services </td><td><u>http://www.rtcm.org</u> 5270 <tr><td>Ntrip </td><td><a href="http://igs.bkg.bund.de/ntrip/index" target="_blank">http://igs.bkg.bund.de/ntrip/index</a></td></tr> 5271 <tr><td>IGS Real-time Service </td><td><a href="http://rts.igs.org" target="_blank">http://rts.igs.org</a></td></tr> 5272 <tr><td>Distribution of IGS-IP streams </td><td><a href="http://www.igs.oma.be/real_time/" target="_blank">http://www.igs.oma.be/real_time/</a></td></tr> 5273 <tr><td>Completeness and latency of IGS-IP data </td><td><a href="http://www.igs.oma.be/highrate/" target="_blank">http://www.igs.oma.be/highrate/</a></td></tr> 5274 <tr><td>Ntrip Broadcaster overview </td><td><a href="http://www.rtcm-ntrip.org/home" target="_blank">http://www.rtcm-ntrip.org/home</a></td></tr> 5275 <tr><td>Ntrip Open Source software code </td><td><a href="http://software.rtcm-ntrip.org" target="_blank">http://software.rtcm-ntrip.org</a></td></tr> 5276 <tr><td>EUREF-IP Project </td><td><a href="http://www.epncb.oma.be/euref_IP" target="_blank">http://www.epncb.oma.be/euref_IP</a></td></tr> 5277 <tr><td>Real-time IGS Pilot Project </td><td><a href="http://www.rtigs.net/pilot" target="_blank">http://www.rtigs.net/pilot</a></td></tr> 5278 <tr><td>Radio Technical Commission for Maritime Services </td><td><a href="http://www.rtcm.org" target="_blank">http://www.rtcm.org</a></td></tr> 5150 5279 </table> 5151 5152 5280 <br> 5281 5282 <b>Publications:</b><br> 5283 <table border="1"> 5284 <tr><td>Caissy, M., L. Agrotis, G. Weber, M. Hernandez-Pajares and U. Hugentobler (2012)</td><td>The International GNSS Real-Time Service. GPS World, June 1, 2012.</td></tr> 5285 5286 <tr><td>Estey, L. H. and C. M. Meertens (1999)</td><td>TEQC: The Multi-Purpose Toolkit for GPS/GLONASS Data. GPS Solutions, Vol. 3, No. 1, pp. 42-49, 1999.</td></tr> 5287 5288 <tr><td>Huisman, L., P. Teunissen and C. Hu (2012)</td><td>GNSS Precise Point Positioning in Regional Reference Frames Using Real-time Broadcast Corrections. Journal of Applied Geodesy, Vol. 6, pp15-23, 2012.</td></tr> 5289 5290 <tr><td>Mervart, L., Z. Lukes, C. Rocken and T. Iwabuchi (2008)</td><td>Precise Point Positioning With Ambiguity Resolution in Real-Time. ION GNSS 2008.</td></tr> 5291 5292 <tr><td>RTCM SC-104 (2011)</td><td>Amendment 1 to RTCM Standard 10410.1 Networked Transport of RTCM via Internet Protocol (Ntrip) - Version 2.0. RTCM Papter 139-2011-SC104-STD, 2011.</td></tr> 5293 5294 <tr><td>Rupprecht, W. (2000)</td><td>DGPS-IP. <a href="http://www.wsrcc.com/wolfgang/gps/dgps-ip.html" target="_blank">http://www.wsrcc.com/wolfgang/gps/dgps-ip.html</a>, 2000.</td></tr> 5295 5296 <tr><td>Weber, G., D. Dettmering and H. Gebhard (2005a)</td><td>Networked Transport of RTCM via Internet Protocol (NTRIP). In: Sanso F. (Ed.): A Window on the Future, Proceedings of the IAG General Assembly, Sapporo, Japan, 2003, Springer Verlag, Symposia Series, Vol. 128, p. 60-64, 2005.</td></tr> 5297 5298 <tr><td>Weber, G., D. Dettmering, H. Gebhard and R. Kalafus (2005b)</td><td>Networked Transport of RTCM via Internet Protocol (Ntrip), IP-Streaming for Real-Time GNSS Applications. ION GNSS 2005.</td></tr> 5299 5300 <tr><td>Weber, G., and M. Honkala (2004)</td><td>The future is talking Ntrip. Newsletter, Trimble GmbH Raunheim, Germany, 2004.</td></tr> 5301 5302 <tr><td>Weber, G. and L. Mervart (2009)</td><td>The BKG Ntrip Client (BNC), Report on EUREF Symposium 2007 in London. Mitteilungen des Bundesamtes fuer Kartographie und Geodaesie, Band 42, Frankfurt, 2009.</td></tr> 5303 5304 <tr><td>Weber, G. and L. Mervart (2010)</td><td>Real-time Combination of GNSS Orbit and Clock Correction Streams Using a Kalman Filter Approach. ION GNSS 2010.</td></tr> 5305 5306 <tr><td>Weber, G, L. Mervart, Z. Lukes, C. Rocken and J. Dousa (2007)</td><td>Real-time Clock and Orbit Corrections for Improved Point Positioning via Ntrip. ION GNSS 2007.</td></tr> 5307 5308 <tr><td>Weber, G., L. Mervart, A. Stürze, A. Rülke and D. Stöcker (2016)</td><td>BKG Ntrip Client, Version 2.12. Mitteilungen des Bundesamtes für Kartographie und Geodäsie, Vol. 49, Frankfurt am Main, 2016.</td><tr> 5309 5310 </table> 5311 5312 <p><h4 id="abbrev">3.4 Abbreviations</h3></p> 5153 5313 <table> 5154 <tr><td><b>Publications</b></td></tr> 5155 5156 <tr><td>Caissy, M., L. Agrotis, G. Weber, M. Hernandez-Pajares and U. Hugentobler (2012)</td><td>The International GNSS Real-Time Service. GPS World, June 1, 2012.</td></tr> 5157 5158 <tr><td>Estey, L. H. and C. M. Meertens (1999)</td><td>TEQC: The Multi-Purpose Toolkit for GPS/GLONASS Data. GPS Solutions, Vol. 3, No. 1, pp. 42-49, 1999.</td></tr> 5159 5160 <tr><td>Huisman, L., P. Teunissen and C. Hu (2012)</td><td>GNSS Precise Point Positioning in Regional Reference Frames Using Real-time Broadcast Corrections. Journal of Applied Geodesy, Vol. 6, pp15-23, 2012.</td></tr> 5161 5162 <tr><td>Mervart, L., Z. Lukes, C. Rocken and T. Iwabuchi (2008)</td><td>Precise Point Positioning With Ambiguity Resolution in Real-Time. ION GNSS 2008.</td></tr> 5163 5164 <tr><td>RTCM SC-104 (2011)</td><td>Amendment 1 to RTCM Standard 10410.1 Networked Transport of RTCM via Internet Protocol (Ntrip) - Version 2.0. RTCM Papter 139-2011-SC104-STD, 2011.</td></tr> 5165 5166 <tr><td>Rupprecht, W. (2000)</td><td>DGPS-IP. <u>http://www.wsrcc.com/wolfgang/gps/dgps-ip.html</u>, 2000.</td></tr> 5167 5168 <tr><td>Weber, G., D. Dettmering and H. Gebhard (2005a)</td><td>Networked Transport of RTCM via Internet Protocol (NTRIP). In: Sanso F. (Ed.): A Window on the Future, Proceedings of the IAG General Assembly, Sapporo, Japan, 2003, Springer Verlag, Symposia Series, Vol. 128, p. 60-64, 2005.</td></tr> 5169 5170 <tr><td>Weber, G., D. Dettmering, H. Gebhard and R. Kalafus (2005b)</td><td>Networked Transport of RTCM via Internet Protocol (Ntrip), IP-Streaming for Real-Time GNSS Applications. ION GNSS 2005.</td></tr> 5171 5172 <tr><td>Weber, G., and M. Honkala (2004)</td><td>The future is talking Ntrip. Newsletter, Trimble GmbH Raunheim, Germany, 2004.</td></tr> 5173 5174 <tr><td>Weber, G. and L. Mervart (2009)</td><td>The BKG Ntrip Client (BNC), Report on EUREF Symposium 2007 in London. Mitteilungen des Bundesamtes fuer Kartographie und Geodaesie, Band 42, Frankfurt, 2009.</td></tr> 5175 5176 <tr><td>Weber, G. and L. Mervart (2010)</td><td>Real-time Combination of GNSS Orbit and Clock Correction Streams Using a Kalman Filter Approach. ION GNSS 2010.</td></tr> 5177 5178 <tr><td>Weber, G, L. Mervart, Z. Lukes, C. Rocken and J. Dousa (2007)</td><td>Real-time Clock and Orbit Corrections for Improved Point Positioning via Ntrip. ION GNSS 2007.</td></tr> 5179 5180 <tr><td>Weber, G., L. Mervart, A. Stürze, A. Rülke and D. Stöcker (2016)</td><td>BKG Ntrip Client, Version 2.12. Mitteilungen des Bundesamtes für Kartographie und Geodäsie, Vol. 49, Frankfurt am Main, 2016.</td><tr> 5181 5314 <tr><td>AC</td><td>Analysis Center</td></tr> 5315 <tr><td>AFREF</td><td>IAG Reference Frame Sub-Commission for Africa</td></tr> 5316 <tr><td>ANTEX</td><td>Antenna Exchange Format</td></tr> 5317 <tr><td>APC</td><td>Antenna Phase Center</td></tr> 5318 <tr><td>APREF</td><td>IAG Reference Frame Sub-Commission for Asia and Pacific</td></tr> 5319 <tr><td>ARP</td><td>Antenna Reference Point</td></tr> 5320 <tr><td>BKG</td><td>Bundesamt für Kartographie und Geodäsie</td></tr> 5321 <tr><td>BNC</td><td>BNK Ntrip Client</td></tr> 5322 <tr><td>BSW</td><td>Bernese GNSS Software</td></tr> 5323 <tr><td>CC</td><td>Combination Center</td></tr> 5324 <tr><td>CLI</td><td>Command Line Interface</td></tr> 5325 <tr><td>CoM</td><td>Center Of Mass</td></tr> 5326 <tr><td>DGNSS</td><td>Differential GNSS</td></tr> 5327 <tr><td>DGPS-IP</td><td>Differential GPS via Internet Protocol</td></tr> 5328 <tr><td>DMG</td><td>Disk Image, File</td></tr> 5329 <tr><td>DREF91</td><td>Geodetic Datum for Germany 1991</td></tr> 5330 <tr><td>ECEF</td><td>Earth-Centred-Earth-Fixed</td></tr> 5331 <tr><td>EDGE</td><td>Enhanced Data Rates for GSM Evolution</td></tr> 5332 <tr><td>ETRF2000</td><td>European Terrestrial Reference Frame 2000</td></tr> 5333 <tr><td>EUREF</td><td>IAG Reference Frame Sub-Commission for Europe</td></tr> 5334 <tr><td>EoE</td><td>End of Epoch</td></tr> 5335 <tr><td>FKP</td><td>Flächen-Korrektur-Parameter</td></tr> 5336 <tr><td>FTP</td><td>File Transfer Protocol</td></tr> 5337 <tr><td>GDA2020</td><td>Geodetic Datum Australia 2020</td></tr> 5338 <tr><td>GM</td><td>Google Maps</td></tr> 5339 <tr><td>GNSS</td><td>Global Navigation Satellite System</td></tr> 5340 <tr><td>GNU</td><td>GNU's Not Unix</td></tr> 5341 <tr><td>GPL</td><td>General Public License</td></tr> 5342 <tr><td>GPRS</td><td>General Packet Radio Service</td></tr> 5343 <tr><td>GPSWD</td><td>GPS Week and Day</td></tr> 5344 <tr><td>GSM</td><td>Global System for Mobile Communications</td></tr> 5345 <tr><td>GUI</td><td>Graphical User Interface</td></tr> 5346 <tr><td>HP MSM</td><td>High Precision Multiple Signal Messages</td></tr> 5347 <tr><td>HR URA</td><td>High Rate User Range Accuracy</td></tr> 5348 <tr><td>HTTP</td><td>Hypertext Transfer Protocol</td></tr> 5349 <tr><td>HTTPS</td><td>Hypertext Transfer Protocol Secure</td></tr> 5350 <tr><td>IAG</td><td>International Association of Geodesy</td></tr> 5351 <tr><td>ICECAST</td><td>Streaming Media Server</td></tr> 5352 <tr><td>IGS14</td><td>IGS Reference Frame 2014</td></tr> 5353 <tr><td>IGS</td><td>International GNSS Service</td></tr> 5354 <tr><td>IOD</td><td>Issue of Data</td></tr> 5355 <tr><td>IP</td><td>Internet Protocol</td></tr> 5356 <tr><td>ITRF2014</td><td>International Terrestrial Reference Frame 2014</td></tr> 5357 <tr><td>L3</td><td>Ionosphere-Free Linear Combination Of Phase Observations</td></tr> 5358 <tr><td>LAN</td><td>Local Area Network</td></tr> 5359 <tr><td>LC</td><td>Linea Combination</td></tr> 5360 <tr><td>M-GEX</td><td>Multi GNSS-Experiment</td></tr> 5361 <tr><td>MAC</td><td>Master Auxiliary Concept</td></tr> 5362 <tr><td>MJD</td><td>Modified Julian Date</td></tr> 5363 <tr><td>MSI</td><td>Microsoft Installer, File</td></tr> 5364 <tr><td>MSM</td><td>Multiple Signal Messages</td></tr> 5365 <tr><td>MW</td><td>Melbourne Wübbena Linear Combination</td></tr> 5366 <tr><td>NAD83</td><td>North American Datum 1983</td></tr> 5367 <tr><td>NAREF</td><td>IAG Reference Frame Sub-Commission for North America</td></tr> 5368 <tr><td>NMEA</td><td>National Marine Electronics Association Format</td></tr> 5369 <tr><td>Ntrip</td><td>Networked Transport of RTCM via Internet Protocol</td></tr> 5370 <tr><td>OSM</td><td>OpenStreetMap</td></tr> 5371 <tr><td>OSR</td><td>Observation Space Representation</td></tr> 5372 <tr><td>P3</td><td>Ionosphere-Free Linear Combination Of Code Observations</td></tr> 5373 <tr><td>PDOP</td><td>Positional Dilution Of Precision</td></tr> 5374 <tr><td>PNG</td><td>Portable Network Graphics</td></tr> 5375 <tr><td>PPP</td><td>Precise Point Positioning</td></tr> 5376 <tr><td>Qt</td><td>Cross-Platform Application Framework</td></tr> 5377 <tr><td>REQC</td><td>RINEX Editing and Quality Checking</td></tr> 5378 <tr><td>RINEX</td><td>Receiver Independent Exchange Format</td></tr> 5379 <tr><td>RTCM SC-104</td><td>Radio Technical Commission for Maritime Services, Special Committee 104</td></tr> 5380 <tr><td>RTK</td><td>Real Time Kinematic</td></tr> 5381 <tr><td>RTKPLOT</td><td>View and Plot Positioning Solutions Software, Part of RTKLIB</td></tr> 5382 <tr><td>RTNET</td><td>Real-Time Network Format</td></tr> 5383 <tr><td>RTP</td><td>Real-Time Transport Protocol</td></tr> 5384 <tr><td>RTSP</td><td>Real-Time Streaming Protocol</td></tr> 5385 <tr><td>SBAS</td><td>Space Based Augmentation System</td></tr> 5386 <tr><td>SINEX TRO</td><td>Troposphere Solution Independent Exchange Format</td></tr> 5387 <tr><td>SINEX</td><td>Solution Independent Exchange Format</td></tr> 5388 <tr><td>SIRGAS2000</td><td>Geodetic Datum for Latin America and Caribbean 2000</td></tr> 5389 <tr><td>SIRGAS</td><td>IAG Reference Frame Sub-Commission for Latin America and Caribbean</td></tr> 5390 <tr><td>SP3</td><td>Standard Product # 3</td></tr> 5391 <tr><td>SPP</td><td>Single Point Positioning</td></tr> 5392 <tr><td>SSL</td><td>Secure Sockets Layer</td></tr> 5393 <tr><td>SSR</td><td>State Space Representation</td></tr> 5394 <tr><td>SVN</td><td>Subversion, Revision Control System</td></tr> 5395 <tr><td>TCP</td><td>Transmission Control Protocol</td></tr> 5396 <tr><td>TEQC</td><td>Translation, Editing and Quality Checking</td></tr> 5397 <tr><td>TLS</td><td>Transport Layer Security</td></tr> 5398 <tr><td>UDP</td><td>User Datagram Protocol</td></tr> 5399 <tr><td>UMTS</td><td>Universal Mobile Telecommunications System</td></tr> 5400 <tr><td>URA</td><td>User Range Accuracy</td></tr> 5401 <tr><td>VRS</td><td>Virtual Reference Station</td></tr> 5402 <tr><td>VTEC</td><td>Vertical Total Electron Content</td></tr> 5182 5403 </table> 5183 5404 5184 <p><h4>3.4 <a name="abbrev">Abbreviations</h3></p>5185 <table>5186 5187 <tr><td>AC</td><td>Analysis Center</td></tr>5188 <tr><td>AFREF</td><td>IAG Reference Frame Sub-Commission for Africa</td></tr>5189 <tr><td>ANTEX</td><td>Antenna Exchange Format</td></tr>5190 <tr><td>APC</td><td>Antenna Phase Center</td></tr>5191 <tr><td>APREF</td><td>IAG Reference Frame Sub-Commission for Asia and Pacific</td></tr>5192 <tr><td>ARP</td><td>Antenna Reference Point</td></tr>5193 <tr><td>BKG</td><td>Bundesamt für Kartographie und Geodäsie</td></tr>5194 <tr><td>BNC</td><td>BNK Ntrip Client</td></tr>5195 <tr><td>BSW</td><td>Bernese GNSS Software</td></tr>5196 <tr><td>CC</td><td>Combination Center</td></tr>5197 <tr><td>CLI</td><td>Command Line Interface</td></tr>5198 <tr><td>CoM</td><td>Center Of Mass</td></tr>5199 <tr><td>DGNSS</td><td>Differential GNSS</td></tr>5200 <tr><td>DGPS-IP</td><td>Differential GPS via Internet Protocol</td></tr>5201 <tr><td>DMG</td><td>Disk Image, File</td></tr>5202 <tr><td>DREF91</td><td>Geodetic Datum for Germany 1991</td></tr>5203 <tr><td>ECEF</td><td>Earth-Centred-Earth-Fixed</td></tr>5204 <tr><td>EDGE</td><td>Enhanced Data Rates for GSM Evolution</td></tr>5205 <tr><td>ETRF2000</td><td>European Terrestrial Reference Frame 2000</td></tr>5206 <tr><td>EUREF</td><td>IAG Reference Frame Sub-Commission for Europe</td></tr>5207 <tr><td>EoE</td><td>End of Epoch</td></tr>5208 <tr><td>FKP</td><td>Flächen-Korrektur-Parameter</td></tr>5209 <tr><td>FTP</td><td>File Transfer Protocol</td></tr>5210 <tr><td>GDA2020</td><td>Geodetic Datum Australia 2020</td></tr>5211 <tr><td>GM</td><td>Google Maps</td></tr>5212 <tr><td>GNSS</td><td>Global Navigation Satellite System</td></tr>5213 <tr><td>GNU</td><td>GNU's Not Unix</td></tr>5214 <tr><td>GPL</td><td>General Public License</td></tr>5215 <tr><td>GPRS</td><td>General Packet Radio Service</td></tr>5216 <tr><td>GPSWD</td><td>GPS Week and Day</td></tr>5217 <tr><td>GSM</td><td>Global System for Mobile Communications</td></tr>5218 <tr><td>GUI</td><td>Graphical User Interface</td></tr>5219 <tr><td>HP MSM</td><td>High Precision Multiple Signal Messages</td></tr>5220 <tr><td>HR URA</td><td>High Rate User Range Accuracy</td></tr>5221 <tr><td>HTTP</td><td>Hypertext Transfer Protocol</td></tr>5222 <tr><td>HTTPS</td><td>Hypertext Transfer Protocol Secure</td></tr>5223 <tr><td>IAG</td><td>International Association of Geodesy</td></tr>5224 <tr><td>ICECAST</td><td>Streaming Media Server</td></tr>5225 <tr><td>IGS14</td><td>IGS Reference Frame 2014</td></tr>5226 <tr><td>IGS</td><td>International GNSS Service</td></tr>5227 <tr><td>IOD</td><td>Issue of Data</td></tr>5228 <tr><td>IP</td><td>Internet Protocol</td></tr>5229 <tr><td>ITRF2014</td><td>International Terrestrial Reference Frame 2014</td></tr>5230 <tr><td>L3</td><td>Ionosphere-Free Linear Combination Of Phase Observations</td></tr>5231 <tr><td>LAN</td><td>Local Area Network</td></tr>5232 <tr><td>LC</td><td>Linea Combination</td></tr>5233 <tr><td>M-GEX</td><td>Multi GNSS-Experiment</td></tr>5234 <tr><td>MAC</td><td>Master Auxiliary Concept</td></tr>5235 <tr><td>MJD</td><td>Modified Julian Date</td></tr>5236 <tr><td>MSI</td><td>Microsoft Installer, File</td></tr>5237 <tr><td>MSM</td><td>Multiple Signal Messages</td></tr>5238 <tr><td>MW</td><td>Melbourne Wübbena Linear Combination</td></tr>5239 <tr><td>NAD83</td><td>North American Datum 1983</td></tr>5240 <tr><td>NAREF</td><td>IAG Reference Frame Sub-Commission for North America</td></tr>5241 <tr><td>NMEA</td><td>National Marine Electronics Association Format</td></tr>5242 <tr><td>Ntrip</td><td>Networked Transport of RTCM via Internet Protocol</td></tr>5243 <tr><td>OSM</td><td>OpenStreetMap</td></tr>5244 <tr><td>OSR</td><td>Observation Space Representation</td></tr>5245 <tr><td>P3</td><td>Ionosphere-Free Linear Combination Of Code Observations</td></tr>5246 <tr><td>PDOP</td><td>Positional Dilution Of Precision</td></tr>5247 <tr><td>PNG</td><td>Portable Network Graphics</td></tr>5248 <tr><td>PPP</td><td>Precise Point Positioning</td></tr>5249 <tr><td>Qt</td><td>Cross-Platform Application Framework</td></tr>5250 <tr><td>REQC</td><td>RINEX Editing and Quality Checking</td></tr>5251 <tr><td>RINEX</td><td>Receiver Independent Exchange Format</td></tr>5252 <tr><td>RTCM SC-104</td><td>Radio Technical Commission for Maritime Services, Special Committee 104</td></tr>5253 <tr><td>RTK</td><td>Real Time Kinematic</td></tr>5254 <tr><td>RTKPLOT</td><td>View and Plot Positioning Solutions Software, Part of RTKLIB</td></tr>5255 <tr><td>RTNET</td><td>Real-Time Network Format</td></tr>5256 <tr><td>RTP</td><td>Real-Time Transport Protocol</td></tr>5257 <tr><td>RTSP</td><td>Real-Time Streaming Protocol</td></tr>5258 <tr><td>SBAS</td><td>Space Based Augmentation System</td></tr>5259 <tr><td>SINEX TRO</td><td>Troposphere Solution Independent Exchange Format</td></tr>5260 <tr><td>SINEX</td><td>Solution Independent Exchange Format</td></tr>5261 <tr><td>SIRGAS2000</td><td>Geodetic Datum for Latin America and Caribbean 2000</td></tr>5262 <tr><td>SIRGAS</td><td>IAG Reference Frame Sub-Commission for Latin America and Caribbean</td></tr>5263 <tr><td>SP3</td><td>Standard Product # 3</td></tr>5264 <tr><td>SPP</td><td>Single Point Positioning</td></tr>5265 <tr><td>SSL</td><td>Secure Sockets Layer</td></tr>5266 <tr><td>SSR</td><td>State Space Representation</td></tr>5267 <tr><td>SVN</td><td>Subversion, Revision Control System</td></tr>5268 <tr><td>TCP</td><td>Transmission Control Protocol</td></tr>5269 <tr><td>TEQC</td><td>Translation, Editing and Quality Checking</td></tr>5270 <tr><td>TLS</td><td>Transport Layer Security</td></tr>5271 <tr><td>UDP</td><td>User Datagram Protocol</td></tr>5272 <tr><td>UMTS</td><td>Universal Mobile Telecommunications System</td></tr>5273 <tr><td>URA</td><td>User Range Accuracy</td></tr>5274 <tr><td>VRS</td><td>Virtual Reference Station</td></tr>5275 <tr><td>VTEC</td><td>Vertical Total Electron Content</td></tr>5276 5277 </table>5278 5279 5405 <p><img src="IMG/screenshot44.png"/></p> 5406 </body> 5407 </html> -
trunk/BNC/src/bnchlpdlg.cpp
r8203 r8238 35 35 * Created: 24-Sep-2006 36 36 * 37 * Changes: 37 * Changes: 38 38 * 39 39 * -----------------------------------------------------------------------*/ … … 86 86 87 87 setLayout(dlgLayout); 88 resize( 60*ww, 60*ww);88 resize(110*ww, 100*ww); 89 89 show(); 90 90 }
Note:
See TracChangeset
for help on using the changeset viewer.