[2013] | 1 | /// \ingroup newmat
|
---|
| 2 | ///@{
|
---|
| 3 |
|
---|
| 4 | /// \file fft.cpp
|
---|
| 5 | /// \brief Fast Fourier (Carl de Boor) and trig transforms.
|
---|
| 6 |
|
---|
| 7 |
|
---|
| 8 | // Copyright (C) 1991,2,3,4,8: R B Davies
|
---|
| 9 |
|
---|
| 10 |
|
---|
| 11 | #define WANT_MATH
|
---|
| 12 | // #define WANT_STREAM
|
---|
| 13 |
|
---|
| 14 | #include "include.h"
|
---|
| 15 |
|
---|
| 16 | #include "newmatap.h"
|
---|
| 17 |
|
---|
| 18 | // #include "newmatio.h"
|
---|
| 19 |
|
---|
| 20 | #ifdef use_namespace
|
---|
| 21 | namespace NEWMAT {
|
---|
| 22 | #endif
|
---|
| 23 |
|
---|
| 24 | #ifdef DO_REPORT
|
---|
| 25 | #define REPORT { static ExeCounter ExeCount(__LINE__,19); ++ExeCount; }
|
---|
| 26 | #else
|
---|
| 27 | #define REPORT {}
|
---|
| 28 | #endif
|
---|
| 29 |
|
---|
| 30 | static void cossin(int n, int d, Real& c, Real& s)
|
---|
| 31 | // calculate cos(twopi*n/d) and sin(twopi*n/d)
|
---|
| 32 | // minimise roundoff error
|
---|
| 33 | {
|
---|
| 34 | REPORT
|
---|
| 35 | long n4 = n * 4; int sector = (int)floor( (Real)n4 / (Real)d + 0.5 );
|
---|
| 36 | n4 -= sector * d;
|
---|
| 37 | if (sector < 0) { REPORT sector = 3 - (3 - sector) % 4; }
|
---|
| 38 | else { REPORT sector %= 4; }
|
---|
| 39 | Real ratio = 1.5707963267948966192 * (Real)n4 / (Real)d;
|
---|
| 40 |
|
---|
| 41 | switch (sector)
|
---|
| 42 | {
|
---|
| 43 | case 0: REPORT c = cos(ratio); s = sin(ratio); break;
|
---|
| 44 | case 1: REPORT c = -sin(ratio); s = cos(ratio); break;
|
---|
| 45 | case 2: REPORT c = -cos(ratio); s = -sin(ratio); break;
|
---|
| 46 | case 3: REPORT c = sin(ratio); s = -cos(ratio); break;
|
---|
| 47 | }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | static void fftstep(ColumnVector& A, ColumnVector& B, ColumnVector& X,
|
---|
| 51 | ColumnVector& Y, int after, int now, int before)
|
---|
| 52 | {
|
---|
| 53 | REPORT
|
---|
| 54 | Tracer trace("FFT(step)");
|
---|
| 55 | // const Real twopi = 6.2831853071795864769;
|
---|
| 56 | const int gamma = after * before; const int delta = now * after;
|
---|
| 57 | // const Real angle = twopi / delta; Real temp;
|
---|
| 58 | // Real r_omega = cos(angle); Real i_omega = -sin(angle);
|
---|
| 59 | Real r_arg = 1.0; Real i_arg = 0.0;
|
---|
| 60 | Real* x = X.Store(); Real* y = Y.Store(); // pointers to array storage
|
---|
| 61 | const int m = A.Nrows() - gamma;
|
---|
| 62 |
|
---|
| 63 | for (int j = 0; j < now; j++)
|
---|
| 64 | {
|
---|
| 65 | Real* a = A.Store(); Real* b = B.Store(); // pointers to array storage
|
---|
| 66 | Real* x1 = x; Real* y1 = y; x += after; y += after;
|
---|
| 67 | for (int ia = 0; ia < after; ia++)
|
---|
| 68 | {
|
---|
| 69 | // generate sins & cosines explicitly rather than iteratively
|
---|
| 70 | // for more accuracy; but slower
|
---|
| 71 | cossin(-(j*after+ia), delta, r_arg, i_arg);
|
---|
| 72 |
|
---|
| 73 | Real* a1 = a++; Real* b1 = b++; Real* x2 = x1++; Real* y2 = y1++;
|
---|
| 74 | if (now==2)
|
---|
| 75 | {
|
---|
| 76 | REPORT int ib = before;
|
---|
| 77 | if (ib) for (;;)
|
---|
| 78 | {
|
---|
| 79 | REPORT
|
---|
| 80 | Real* a2 = m + a1; Real* b2 = m + b1; a1 += after; b1 += after;
|
---|
| 81 | Real r_value = *a2; Real i_value = *b2;
|
---|
| 82 | *x2 = r_value * r_arg - i_value * i_arg + *(a2-gamma);
|
---|
| 83 | *y2 = r_value * i_arg + i_value * r_arg + *(b2-gamma);
|
---|
| 84 | if (!(--ib)) break;
|
---|
| 85 | x2 += delta; y2 += delta;
|
---|
| 86 | }
|
---|
| 87 | }
|
---|
| 88 | else
|
---|
| 89 | {
|
---|
| 90 | REPORT int ib = before;
|
---|
| 91 | if (ib) for (;;)
|
---|
| 92 | {
|
---|
| 93 | REPORT
|
---|
| 94 | Real* a2 = m + a1; Real* b2 = m + b1; a1 += after; b1 += after;
|
---|
| 95 | Real r_value = *a2; Real i_value = *b2;
|
---|
| 96 | int in = now-1; while (in--)
|
---|
| 97 | {
|
---|
| 98 | // it should be possible to make this faster
|
---|
| 99 | // hand code for now = 2,3,4,5,8
|
---|
| 100 | // use symmetry to halve number of operations
|
---|
| 101 | a2 -= gamma; b2 -= gamma; Real temp = r_value;
|
---|
| 102 | r_value = r_value * r_arg - i_value * i_arg + *a2;
|
---|
| 103 | i_value = temp * i_arg + i_value * r_arg + *b2;
|
---|
| 104 | }
|
---|
| 105 | *x2 = r_value; *y2 = i_value;
|
---|
| 106 | if (!(--ib)) break;
|
---|
| 107 | x2 += delta; y2 += delta;
|
---|
| 108 | }
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | // temp = r_arg;
|
---|
| 112 | // r_arg = r_arg * r_omega - i_arg * i_omega;
|
---|
| 113 | // i_arg = temp * i_omega + i_arg * r_omega;
|
---|
| 114 |
|
---|
| 115 | }
|
---|
| 116 | }
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 |
|
---|
| 120 | void FFTI(const ColumnVector& U, const ColumnVector& V,
|
---|
| 121 | ColumnVector& X, ColumnVector& Y)
|
---|
| 122 | {
|
---|
| 123 | // Inverse transform
|
---|
| 124 | Tracer trace("FFTI");
|
---|
| 125 | REPORT
|
---|
| 126 | FFT(U,-V,X,Y);
|
---|
| 127 | const Real n = X.Nrows(); X /= n; Y /= (-n);
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | void RealFFT(const ColumnVector& U, ColumnVector& X, ColumnVector& Y)
|
---|
| 131 | {
|
---|
| 132 | // Fourier transform of a real series
|
---|
| 133 | Tracer trace("RealFFT");
|
---|
| 134 | REPORT
|
---|
| 135 | const int n = U.Nrows(); // length of arrays
|
---|
| 136 | const int n2 = n / 2;
|
---|
| 137 | if (n != 2 * n2)
|
---|
| 138 | Throw(ProgramException("Vector length not multiple of 2", U));
|
---|
| 139 | ColumnVector A(n2), B(n2);
|
---|
| 140 | Real* a = A.Store(); Real* b = B.Store(); Real* u = U.Store(); int i = n2;
|
---|
| 141 | while (i--) { *a++ = *u++; *b++ = *u++; }
|
---|
| 142 | FFT(A,B,A,B);
|
---|
| 143 | int n21 = n2 + 1;
|
---|
| 144 | X.resize(n21); Y.resize(n21);
|
---|
| 145 | i = n2 - 1;
|
---|
| 146 | a = A.Store(); b = B.Store(); // first els of A and B
|
---|
| 147 | Real* an = a + i; Real* bn = b + i; // last els of A and B
|
---|
| 148 | Real* x = X.Store(); Real* y = Y.Store(); // first els of X and Y
|
---|
| 149 | Real* xn = x + n2; Real* yn = y + n2; // last els of X and Y
|
---|
| 150 |
|
---|
| 151 | *x++ = *a + *b; *y++ = 0.0; // first complex element
|
---|
| 152 | *xn-- = *a++ - *b++; *yn-- = 0.0; // last complex element
|
---|
| 153 |
|
---|
| 154 | int j = -1; i = n2/2;
|
---|
| 155 | while (i--)
|
---|
| 156 | {
|
---|
| 157 | Real c,s; cossin(j--,n,c,s);
|
---|
| 158 | Real am = *a - *an; Real ap = *a++ + *an--;
|
---|
| 159 | Real bm = *b - *bn; Real bp = *b++ + *bn--;
|
---|
| 160 | Real samcbp = s * am + c * bp; Real sbpcam = s * bp - c * am;
|
---|
| 161 | *x++ = 0.5 * ( ap + samcbp); *y++ = 0.5 * ( bm + sbpcam);
|
---|
| 162 | *xn-- = 0.5 * ( ap - samcbp); *yn-- = 0.5 * (-bm + sbpcam);
|
---|
| 163 | }
|
---|
| 164 | }
|
---|
| 165 |
|
---|
| 166 | void RealFFTI(const ColumnVector& A, const ColumnVector& B, ColumnVector& U)
|
---|
| 167 | {
|
---|
| 168 | // inverse of a Fourier transform of a real series
|
---|
| 169 | Tracer trace("RealFFTI");
|
---|
| 170 | REPORT
|
---|
| 171 | const int n21 = A.Nrows(); // length of arrays
|
---|
| 172 | if (n21 != B.Nrows() || n21 == 0)
|
---|
| 173 | Throw(ProgramException("Vector lengths unequal or zero", A, B));
|
---|
| 174 | const int n2 = n21 - 1; const int n = 2 * n2; int i = n2 - 1;
|
---|
| 175 |
|
---|
| 176 | ColumnVector X(n2), Y(n2);
|
---|
| 177 | Real* a = A.Store(); Real* b = B.Store(); // first els of A and B
|
---|
| 178 | Real* an = a + n2; Real* bn = b + n2; // last els of A and B
|
---|
| 179 | Real* x = X.Store(); Real* y = Y.Store(); // first els of X and Y
|
---|
| 180 | Real* xn = x + i; Real* yn = y + i; // last els of X and Y
|
---|
| 181 |
|
---|
| 182 | Real hn = 0.5 / n2;
|
---|
| 183 | *x++ = hn * (*a + *an); *y++ = - hn * (*a - *an);
|
---|
| 184 | a++; an--; b++; bn--;
|
---|
| 185 | int j = -1; i = n2/2;
|
---|
| 186 | while (i--)
|
---|
| 187 | {
|
---|
| 188 | Real c,s; cossin(j--,n,c,s);
|
---|
| 189 | Real am = *a - *an; Real ap = *a++ + *an--;
|
---|
| 190 | Real bm = *b - *bn; Real bp = *b++ + *bn--;
|
---|
| 191 | Real samcbp = s * am - c * bp; Real sbpcam = s * bp + c * am;
|
---|
| 192 | *x++ = hn * ( ap + samcbp); *y++ = - hn * ( bm + sbpcam);
|
---|
| 193 | *xn-- = hn * ( ap - samcbp); *yn-- = - hn * (-bm + sbpcam);
|
---|
| 194 | }
|
---|
| 195 | FFT(X,Y,X,Y); // have done inverting elsewhere
|
---|
| 196 | U.resize(n); i = n2;
|
---|
| 197 | x = X.Store(); y = Y.Store(); Real* u = U.Store();
|
---|
| 198 | while (i--) { *u++ = *x++; *u++ = - *y++; }
|
---|
| 199 | }
|
---|
| 200 |
|
---|
| 201 | void FFT(const ColumnVector& U, const ColumnVector& V,
|
---|
| 202 | ColumnVector& X, ColumnVector& Y)
|
---|
| 203 | {
|
---|
| 204 | // from Carl de Boor (1980), Siam J Sci Stat Comput, 1 173-8
|
---|
| 205 | // but first try Sande and Gentleman
|
---|
| 206 | Tracer trace("FFT");
|
---|
| 207 | REPORT
|
---|
| 208 | const int n = U.Nrows(); // length of arrays
|
---|
| 209 | if (n != V.Nrows() || n == 0)
|
---|
| 210 | Throw(ProgramException("Vector lengths unequal or zero", U, V));
|
---|
| 211 | if (n == 1) { REPORT X = U; Y = V; return; }
|
---|
| 212 |
|
---|
| 213 | // see if we can use the newfft routine
|
---|
| 214 | if (!FFT_Controller::OnlyOldFFT && FFT_Controller::CanFactor(n))
|
---|
| 215 | {
|
---|
| 216 | REPORT
|
---|
| 217 | X = U; Y = V;
|
---|
| 218 | if ( FFT_Controller::ar_1d_ft(n,X.Store(),Y.Store()) ) return;
|
---|
| 219 | }
|
---|
| 220 |
|
---|
| 221 | ColumnVector B = V;
|
---|
| 222 | ColumnVector A = U;
|
---|
| 223 | X.resize(n); Y.resize(n);
|
---|
| 224 | const int nextmx = 8;
|
---|
| 225 | int prime[8] = { 2,3,5,7,11,13,17,19 };
|
---|
| 226 | int after = 1; int before = n; int next = 0; bool inzee = true;
|
---|
| 227 | int now = 0; int b1; // initialised to keep gnu happy
|
---|
| 228 |
|
---|
| 229 | do
|
---|
| 230 | {
|
---|
| 231 | for (;;)
|
---|
| 232 | {
|
---|
| 233 | if (next < nextmx) { REPORT now = prime[next]; }
|
---|
| 234 | b1 = before / now; if (b1 * now == before) { REPORT break; }
|
---|
| 235 | next++; now += 2;
|
---|
| 236 | }
|
---|
| 237 | before = b1;
|
---|
| 238 |
|
---|
| 239 | if (inzee) { REPORT fftstep(A, B, X, Y, after, now, before); }
|
---|
| 240 | else { REPORT fftstep(X, Y, A, B, after, now, before); }
|
---|
| 241 |
|
---|
| 242 | inzee = !inzee; after *= now;
|
---|
| 243 | }
|
---|
| 244 | while (before != 1);
|
---|
| 245 |
|
---|
| 246 | if (inzee) { REPORT A.release(); X = A; B.release(); Y = B; }
|
---|
| 247 | }
|
---|
| 248 |
|
---|
| 249 | // Trigonometric transforms
|
---|
| 250 | // see Charles Van Loan (1992) "Computational frameworks for the fast
|
---|
| 251 | // Fourier transform" published by SIAM; section 4.4.
|
---|
| 252 |
|
---|
| 253 | void DCT_II(const ColumnVector& U, ColumnVector& V)
|
---|
| 254 | {
|
---|
| 255 | // Discrete cosine transform, type II, of a real series
|
---|
| 256 | Tracer trace("DCT_II");
|
---|
| 257 | REPORT
|
---|
| 258 | const int n = U.Nrows(); // length of arrays
|
---|
| 259 | const int n2 = n / 2; const int n4 = n * 4;
|
---|
| 260 | if (n != 2 * n2)
|
---|
| 261 | Throw(ProgramException("Vector length not multiple of 2", U));
|
---|
| 262 | ColumnVector A(n);
|
---|
| 263 | Real* a = A.Store(); Real* b = a + n; Real* u = U.Store();
|
---|
| 264 | int i = n2;
|
---|
| 265 | while (i--) { *a++ = *u++; *(--b) = *u++; }
|
---|
| 266 | ColumnVector X, Y;
|
---|
| 267 | RealFFT(A, X, Y); A.cleanup();
|
---|
| 268 | V.resize(n);
|
---|
| 269 | Real* x = X.Store(); Real* y = Y.Store();
|
---|
| 270 | Real* v = V.Store(); Real* w = v + n;
|
---|
| 271 | *v = *x;
|
---|
| 272 | int k = 0; i = n2;
|
---|
| 273 | while (i--)
|
---|
| 274 | {
|
---|
| 275 | Real c, s; cossin(++k, n4, c, s);
|
---|
| 276 | Real xi = *(++x); Real yi = *(++y);
|
---|
| 277 | *(++v) = xi * c + yi * s; *(--w) = xi * s - yi * c;
|
---|
| 278 | }
|
---|
| 279 | }
|
---|
| 280 |
|
---|
| 281 | void DCT_II_inverse(const ColumnVector& V, ColumnVector& U)
|
---|
| 282 | {
|
---|
| 283 | // Inverse of discrete cosine transform, type II
|
---|
| 284 | Tracer trace("DCT_II_inverse");
|
---|
| 285 | REPORT
|
---|
| 286 | const int n = V.Nrows(); // length of array
|
---|
| 287 | const int n2 = n / 2; const int n4 = n * 4; const int n21 = n2 + 1;
|
---|
| 288 | if (n != 2 * n2)
|
---|
| 289 | Throw(ProgramException("Vector length not multiple of 2", V));
|
---|
| 290 | ColumnVector X(n21), Y(n21);
|
---|
| 291 | Real* x = X.Store(); Real* y = Y.Store();
|
---|
| 292 | Real* v = V.Store(); Real* w = v + n;
|
---|
| 293 | *x = *v; *y = 0.0;
|
---|
| 294 | int i = n2; int k = 0;
|
---|
| 295 | while (i--)
|
---|
| 296 | {
|
---|
| 297 | Real c, s; cossin(++k, n4, c, s);
|
---|
| 298 | Real vi = *(++v); Real wi = *(--w);
|
---|
| 299 | *(++x) = vi * c + wi * s; *(++y) = vi * s - wi * c;
|
---|
| 300 | }
|
---|
| 301 | ColumnVector A; RealFFTI(X, Y, A);
|
---|
| 302 | X.cleanup(); Y.cleanup(); U.resize(n);
|
---|
| 303 | Real* a = A.Store(); Real* b = a + n; Real* u = U.Store();
|
---|
| 304 | i = n2;
|
---|
| 305 | while (i--) { *u++ = *a++; *u++ = *(--b); }
|
---|
| 306 | }
|
---|
| 307 |
|
---|
| 308 | void DST_II(const ColumnVector& U, ColumnVector& V)
|
---|
| 309 | {
|
---|
| 310 | // Discrete sine transform, type II, of a real series
|
---|
| 311 | Tracer trace("DST_II");
|
---|
| 312 | REPORT
|
---|
| 313 | const int n = U.Nrows(); // length of arrays
|
---|
| 314 | const int n2 = n / 2; const int n4 = n * 4;
|
---|
| 315 | if (n != 2 * n2)
|
---|
| 316 | Throw(ProgramException("Vector length not multiple of 2", U));
|
---|
| 317 | ColumnVector A(n);
|
---|
| 318 | Real* a = A.Store(); Real* b = a + n; Real* u = U.Store();
|
---|
| 319 | int i = n2;
|
---|
| 320 | while (i--) { *a++ = *u++; *(--b) = -(*u++); }
|
---|
| 321 | ColumnVector X, Y;
|
---|
| 322 | RealFFT(A, X, Y); A.cleanup();
|
---|
| 323 | V.resize(n);
|
---|
| 324 | Real* x = X.Store(); Real* y = Y.Store();
|
---|
| 325 | Real* v = V.Store(); Real* w = v + n;
|
---|
| 326 | *(--w) = *x;
|
---|
| 327 | int k = 0; i = n2;
|
---|
| 328 | while (i--)
|
---|
| 329 | {
|
---|
| 330 | Real c, s; cossin(++k, n4, c, s);
|
---|
| 331 | Real xi = *(++x); Real yi = *(++y);
|
---|
| 332 | *v++ = xi * s - yi * c; *(--w) = xi * c + yi * s;
|
---|
| 333 | }
|
---|
| 334 | }
|
---|
| 335 |
|
---|
| 336 | void DST_II_inverse(const ColumnVector& V, ColumnVector& U)
|
---|
| 337 | {
|
---|
| 338 | // Inverse of discrete sine transform, type II
|
---|
| 339 | Tracer trace("DST_II_inverse");
|
---|
| 340 | REPORT
|
---|
| 341 | const int n = V.Nrows(); // length of array
|
---|
| 342 | const int n2 = n / 2; const int n4 = n * 4; const int n21 = n2 + 1;
|
---|
| 343 | if (n != 2 * n2)
|
---|
| 344 | Throw(ProgramException("Vector length not multiple of 2", V));
|
---|
| 345 | ColumnVector X(n21), Y(n21);
|
---|
| 346 | Real* x = X.Store(); Real* y = Y.Store();
|
---|
| 347 | Real* v = V.Store(); Real* w = v + n;
|
---|
| 348 | *x = *(--w); *y = 0.0;
|
---|
| 349 | int i = n2; int k = 0;
|
---|
| 350 | while (i--)
|
---|
| 351 | {
|
---|
| 352 | Real c, s; cossin(++k, n4, c, s);
|
---|
| 353 | Real vi = *v++; Real wi = *(--w);
|
---|
| 354 | *(++x) = vi * s + wi * c; *(++y) = - vi * c + wi * s;
|
---|
| 355 | }
|
---|
| 356 | ColumnVector A; RealFFTI(X, Y, A);
|
---|
| 357 | X.cleanup(); Y.cleanup(); U.resize(n);
|
---|
| 358 | Real* a = A.Store(); Real* b = a + n; Real* u = U.Store();
|
---|
| 359 | i = n2;
|
---|
| 360 | while (i--) { *u++ = *a++; *u++ = -(*(--b)); }
|
---|
| 361 | }
|
---|
| 362 |
|
---|
| 363 | void DCT_inverse(const ColumnVector& V, ColumnVector& U)
|
---|
| 364 | {
|
---|
| 365 | // Inverse of discrete cosine transform, type I
|
---|
| 366 | Tracer trace("DCT_inverse");
|
---|
| 367 | REPORT
|
---|
| 368 | const int n = V.Nrows()-1; // length of transform
|
---|
| 369 | const int n2 = n / 2; const int n21 = n2 + 1;
|
---|
| 370 | if (n != 2 * n2)
|
---|
| 371 | Throw(ProgramException("Vector length not multiple of 2", V));
|
---|
| 372 | ColumnVector X(n21), Y(n21);
|
---|
| 373 | Real* x = X.Store(); Real* y = Y.Store(); Real* v = V.Store();
|
---|
| 374 | Real vi = *v++; *x++ = vi; *y++ = 0.0;
|
---|
| 375 | Real sum1 = vi / 2.0; Real sum2 = sum1; vi = *v++;
|
---|
| 376 | int i = n2-1;
|
---|
| 377 | while (i--)
|
---|
| 378 | {
|
---|
| 379 | Real vi2 = *v++; sum1 += vi2 + vi; sum2 += vi2 - vi;
|
---|
| 380 | *x++ = vi2; vi2 = *v++; *y++ = vi - vi2; vi = vi2;
|
---|
| 381 | }
|
---|
| 382 | sum1 += vi; sum2 -= vi;
|
---|
| 383 | vi = *v; *x = vi; *y = 0.0; vi /= 2.0; sum1 += vi; sum2 += vi;
|
---|
| 384 | ColumnVector A; RealFFTI(X, Y, A);
|
---|
| 385 | X.cleanup(); Y.cleanup(); U.resize(n+1);
|
---|
| 386 | Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); v = u + n;
|
---|
| 387 | i = n2; int k = 0; *u++ = sum1 / n2; *v-- = sum2 / n2;
|
---|
| 388 | while (i--)
|
---|
| 389 | {
|
---|
| 390 | Real s = sin(1.5707963267948966192 * (++k) / n2);
|
---|
| 391 | Real ai = *(++a); Real bi = *(--b);
|
---|
| 392 | Real bz = (ai - bi) / 4 / s; Real az = (ai + bi) / 2;
|
---|
| 393 | *u++ = az - bz; *v-- = az + bz;
|
---|
| 394 | }
|
---|
| 395 | }
|
---|
| 396 |
|
---|
| 397 | void DCT(const ColumnVector& U, ColumnVector& V)
|
---|
| 398 | {
|
---|
| 399 | // Discrete cosine transform, type I
|
---|
| 400 | Tracer trace("DCT");
|
---|
| 401 | REPORT
|
---|
| 402 | DCT_inverse(U, V);
|
---|
| 403 | V *= (V.Nrows()-1)/2;
|
---|
| 404 | }
|
---|
| 405 |
|
---|
| 406 | void DST_inverse(const ColumnVector& V, ColumnVector& U)
|
---|
| 407 | {
|
---|
| 408 | // Inverse of discrete sine transform, type I
|
---|
| 409 | Tracer trace("DST_inverse");
|
---|
| 410 | REPORT
|
---|
| 411 | const int n = V.Nrows()-1; // length of transform
|
---|
| 412 | const int n2 = n / 2; const int n21 = n2 + 1;
|
---|
| 413 | if (n != 2 * n2)
|
---|
| 414 | Throw(ProgramException("Vector length not multiple of 2", V));
|
---|
| 415 | ColumnVector X(n21), Y(n21);
|
---|
| 416 | Real* x = X.Store(); Real* y = Y.Store(); Real* v = V.Store();
|
---|
| 417 | Real vi = *(++v); *x++ = 2 * vi; *y++ = 0.0;
|
---|
| 418 | int i = n2-1;
|
---|
| 419 | while (i--) { *y++ = *(++v); Real vi2 = *(++v); *x++ = vi2 - vi; vi = vi2; }
|
---|
| 420 | *x = -2 * vi; *y = 0.0;
|
---|
| 421 | ColumnVector A; RealFFTI(X, Y, A);
|
---|
| 422 | X.cleanup(); Y.cleanup(); U.resize(n+1);
|
---|
| 423 | Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); v = u + n;
|
---|
| 424 | i = n2; int k = 0; *u++ = 0.0; *v-- = 0.0;
|
---|
| 425 | while (i--)
|
---|
| 426 | {
|
---|
| 427 | Real s = sin(1.5707963267948966192 * (++k) / n2);
|
---|
| 428 | Real ai = *(++a); Real bi = *(--b);
|
---|
| 429 | Real az = (ai + bi) / 4 / s; Real bz = (ai - bi) / 2;
|
---|
| 430 | *u++ = az - bz; *v-- = az + bz;
|
---|
| 431 | }
|
---|
| 432 | }
|
---|
| 433 |
|
---|
| 434 | void DST(const ColumnVector& U, ColumnVector& V)
|
---|
| 435 | {
|
---|
| 436 | // Discrete sine transform, type I
|
---|
| 437 | Tracer trace("DST");
|
---|
| 438 | REPORT
|
---|
| 439 | DST_inverse(U, V);
|
---|
| 440 | V *= (V.Nrows()-1)/2;
|
---|
| 441 | }
|
---|
| 442 |
|
---|
| 443 | // Two dimensional FFT
|
---|
| 444 | void FFT2(const Matrix& U, const Matrix& V, Matrix& X, Matrix& Y)
|
---|
| 445 | {
|
---|
| 446 | Tracer trace("FFT2");
|
---|
| 447 | REPORT
|
---|
| 448 | int m = U.Nrows(); int n = U.Ncols();
|
---|
| 449 | if (m != V.Nrows() || n != V.Ncols() || m == 0 || n == 0)
|
---|
| 450 | Throw(ProgramException("Matrix dimensions unequal or zero", U, V));
|
---|
| 451 | X = U; Y = V;
|
---|
| 452 | int i; ColumnVector CVR; ColumnVector CVI;
|
---|
| 453 | for (i = 1; i <= m; ++i)
|
---|
| 454 | {
|
---|
| 455 | FFT(X.Row(i).t(), Y.Row(i).t(), CVR, CVI);
|
---|
| 456 | X.Row(i) = CVR.t(); Y.Row(i) = CVI.t();
|
---|
| 457 | }
|
---|
| 458 | for (i = 1; i <= n; ++i)
|
---|
| 459 | {
|
---|
| 460 | FFT(X.Column(i), Y.Column(i), CVR, CVI);
|
---|
| 461 | X.Column(i) = CVR; Y.Column(i) = CVI;
|
---|
| 462 | }
|
---|
| 463 | }
|
---|
| 464 |
|
---|
| 465 | void FFT2I(const Matrix& U, const Matrix& V, Matrix& X, Matrix& Y)
|
---|
| 466 | {
|
---|
| 467 | // Inverse transform
|
---|
| 468 | Tracer trace("FFT2I");
|
---|
| 469 | REPORT
|
---|
| 470 | FFT2(U,-V,X,Y);
|
---|
| 471 | const Real n = X.Nrows() * X.Ncols(); X /= n; Y /= (-n);
|
---|
| 472 | }
|
---|
| 473 |
|
---|
| 474 |
|
---|
| 475 | #ifdef use_namespace
|
---|
| 476 | }
|
---|
| 477 | #endif
|
---|
| 478 |
|
---|
| 479 |
|
---|
| 480 | ///@}
|
---|