1 | /// \ingroup newmat
|
---|
2 | ///@{
|
---|
3 |
|
---|
4 | /// \file fft.cpp
|
---|
5 | /// \brief Fast Fourier (Carl de Boor) and trig transforms.
|
---|
6 |
|
---|
7 |
|
---|
8 | // Copyright (C) 1991,2,3,4,8: R B Davies
|
---|
9 |
|
---|
10 |
|
---|
11 | #define WANT_MATH
|
---|
12 | // #define WANT_STREAM
|
---|
13 |
|
---|
14 | #include "include.h"
|
---|
15 |
|
---|
16 | #include "newmatap.h"
|
---|
17 |
|
---|
18 | // #include "newmatio.h"
|
---|
19 |
|
---|
20 | #ifdef use_namespace
|
---|
21 | namespace NEWMAT {
|
---|
22 | #endif
|
---|
23 |
|
---|
24 | #ifdef DO_REPORT
|
---|
25 | #define REPORT { static ExeCounter ExeCount(__LINE__,19); ++ExeCount; }
|
---|
26 | #else
|
---|
27 | #define REPORT {}
|
---|
28 | #endif
|
---|
29 |
|
---|
30 | static void cossin(int n, int d, Real& c, Real& s)
|
---|
31 | // calculate cos(twopi*n/d) and sin(twopi*n/d)
|
---|
32 | // minimise roundoff error
|
---|
33 | {
|
---|
34 | REPORT
|
---|
35 | long n4 = n * 4; int sector = (int)floor( (Real)n4 / (Real)d + 0.5 );
|
---|
36 | n4 -= sector * d;
|
---|
37 | if (sector < 0) { REPORT sector = 3 - (3 - sector) % 4; }
|
---|
38 | else { REPORT sector %= 4; }
|
---|
39 | Real ratio = 1.5707963267948966192 * (Real)n4 / (Real)d;
|
---|
40 |
|
---|
41 | switch (sector)
|
---|
42 | {
|
---|
43 | case 0: REPORT c = cos(ratio); s = sin(ratio); break;
|
---|
44 | case 1: REPORT c = -sin(ratio); s = cos(ratio); break;
|
---|
45 | case 2: REPORT c = -cos(ratio); s = -sin(ratio); break;
|
---|
46 | case 3: REPORT c = sin(ratio); s = -cos(ratio); break;
|
---|
47 | }
|
---|
48 | }
|
---|
49 |
|
---|
50 | static void fftstep(ColumnVector& A, ColumnVector& B, ColumnVector& X,
|
---|
51 | ColumnVector& Y, int after, int now, int before)
|
---|
52 | {
|
---|
53 | REPORT
|
---|
54 | Tracer trace("FFT(step)");
|
---|
55 | // const Real twopi = 6.2831853071795864769;
|
---|
56 | const int gamma = after * before; const int delta = now * after;
|
---|
57 | // const Real angle = twopi / delta; Real temp;
|
---|
58 | // Real r_omega = cos(angle); Real i_omega = -sin(angle);
|
---|
59 | Real r_arg = 1.0; Real i_arg = 0.0;
|
---|
60 | Real* x = X.Store(); Real* y = Y.Store(); // pointers to array storage
|
---|
61 | const int m = A.Nrows() - gamma;
|
---|
62 |
|
---|
63 | for (int j = 0; j < now; j++)
|
---|
64 | {
|
---|
65 | Real* a = A.Store(); Real* b = B.Store(); // pointers to array storage
|
---|
66 | Real* x1 = x; Real* y1 = y; x += after; y += after;
|
---|
67 | for (int ia = 0; ia < after; ia++)
|
---|
68 | {
|
---|
69 | // generate sins & cosines explicitly rather than iteratively
|
---|
70 | // for more accuracy; but slower
|
---|
71 | cossin(-(j*after+ia), delta, r_arg, i_arg);
|
---|
72 |
|
---|
73 | Real* a1 = a++; Real* b1 = b++; Real* x2 = x1++; Real* y2 = y1++;
|
---|
74 | if (now==2)
|
---|
75 | {
|
---|
76 | REPORT int ib = before;
|
---|
77 | if (ib) for (;;)
|
---|
78 | {
|
---|
79 | REPORT
|
---|
80 | Real* a2 = m + a1; Real* b2 = m + b1; a1 += after; b1 += after;
|
---|
81 | Real r_value = *a2; Real i_value = *b2;
|
---|
82 | *x2 = r_value * r_arg - i_value * i_arg + *(a2-gamma);
|
---|
83 | *y2 = r_value * i_arg + i_value * r_arg + *(b2-gamma);
|
---|
84 | if (!(--ib)) break;
|
---|
85 | x2 += delta; y2 += delta;
|
---|
86 | }
|
---|
87 | }
|
---|
88 | else
|
---|
89 | {
|
---|
90 | REPORT int ib = before;
|
---|
91 | if (ib) for (;;)
|
---|
92 | {
|
---|
93 | REPORT
|
---|
94 | Real* a2 = m + a1; Real* b2 = m + b1; a1 += after; b1 += after;
|
---|
95 | Real r_value = *a2; Real i_value = *b2;
|
---|
96 | int in = now-1; while (in--)
|
---|
97 | {
|
---|
98 | // it should be possible to make this faster
|
---|
99 | // hand code for now = 2,3,4,5,8
|
---|
100 | // use symmetry to halve number of operations
|
---|
101 | a2 -= gamma; b2 -= gamma; Real temp = r_value;
|
---|
102 | r_value = r_value * r_arg - i_value * i_arg + *a2;
|
---|
103 | i_value = temp * i_arg + i_value * r_arg + *b2;
|
---|
104 | }
|
---|
105 | *x2 = r_value; *y2 = i_value;
|
---|
106 | if (!(--ib)) break;
|
---|
107 | x2 += delta; y2 += delta;
|
---|
108 | }
|
---|
109 | }
|
---|
110 |
|
---|
111 | // temp = r_arg;
|
---|
112 | // r_arg = r_arg * r_omega - i_arg * i_omega;
|
---|
113 | // i_arg = temp * i_omega + i_arg * r_omega;
|
---|
114 |
|
---|
115 | }
|
---|
116 | }
|
---|
117 | }
|
---|
118 |
|
---|
119 |
|
---|
120 | void FFTI(const ColumnVector& U, const ColumnVector& V,
|
---|
121 | ColumnVector& X, ColumnVector& Y)
|
---|
122 | {
|
---|
123 | // Inverse transform
|
---|
124 | Tracer trace("FFTI");
|
---|
125 | REPORT
|
---|
126 | FFT(U,-V,X,Y);
|
---|
127 | const Real n = X.Nrows(); X /= n; Y /= (-n);
|
---|
128 | }
|
---|
129 |
|
---|
130 | void RealFFT(const ColumnVector& U, ColumnVector& X, ColumnVector& Y)
|
---|
131 | {
|
---|
132 | // Fourier transform of a real series
|
---|
133 | Tracer trace("RealFFT");
|
---|
134 | REPORT
|
---|
135 | const int n = U.Nrows(); // length of arrays
|
---|
136 | const int n2 = n / 2;
|
---|
137 | if (n != 2 * n2)
|
---|
138 | Throw(ProgramException("Vector length not multiple of 2", U));
|
---|
139 | ColumnVector A(n2), B(n2);
|
---|
140 | Real* a = A.Store(); Real* b = B.Store(); Real* u = U.Store(); int i = n2;
|
---|
141 | while (i--) { *a++ = *u++; *b++ = *u++; }
|
---|
142 | FFT(A,B,A,B);
|
---|
143 | int n21 = n2 + 1;
|
---|
144 | X.resize(n21); Y.resize(n21);
|
---|
145 | i = n2 - 1;
|
---|
146 | a = A.Store(); b = B.Store(); // first els of A and B
|
---|
147 | Real* an = a + i; Real* bn = b + i; // last els of A and B
|
---|
148 | Real* x = X.Store(); Real* y = Y.Store(); // first els of X and Y
|
---|
149 | Real* xn = x + n2; Real* yn = y + n2; // last els of X and Y
|
---|
150 |
|
---|
151 | *x++ = *a + *b; *y++ = 0.0; // first complex element
|
---|
152 | *xn-- = *a++ - *b++; *yn-- = 0.0; // last complex element
|
---|
153 |
|
---|
154 | int j = -1; i = n2/2;
|
---|
155 | while (i--)
|
---|
156 | {
|
---|
157 | Real c,s; cossin(j--,n,c,s);
|
---|
158 | Real am = *a - *an; Real ap = *a++ + *an--;
|
---|
159 | Real bm = *b - *bn; Real bp = *b++ + *bn--;
|
---|
160 | Real samcbp = s * am + c * bp; Real sbpcam = s * bp - c * am;
|
---|
161 | *x++ = 0.5 * ( ap + samcbp); *y++ = 0.5 * ( bm + sbpcam);
|
---|
162 | *xn-- = 0.5 * ( ap - samcbp); *yn-- = 0.5 * (-bm + sbpcam);
|
---|
163 | }
|
---|
164 | }
|
---|
165 |
|
---|
166 | void RealFFTI(const ColumnVector& A, const ColumnVector& B, ColumnVector& U)
|
---|
167 | {
|
---|
168 | // inverse of a Fourier transform of a real series
|
---|
169 | Tracer trace("RealFFTI");
|
---|
170 | REPORT
|
---|
171 | const int n21 = A.Nrows(); // length of arrays
|
---|
172 | if (n21 != B.Nrows() || n21 == 0)
|
---|
173 | Throw(ProgramException("Vector lengths unequal or zero", A, B));
|
---|
174 | const int n2 = n21 - 1; const int n = 2 * n2; int i = n2 - 1;
|
---|
175 |
|
---|
176 | ColumnVector X(n2), Y(n2);
|
---|
177 | Real* a = A.Store(); Real* b = B.Store(); // first els of A and B
|
---|
178 | Real* an = a + n2; Real* bn = b + n2; // last els of A and B
|
---|
179 | Real* x = X.Store(); Real* y = Y.Store(); // first els of X and Y
|
---|
180 | Real* xn = x + i; Real* yn = y + i; // last els of X and Y
|
---|
181 |
|
---|
182 | Real hn = 0.5 / n2;
|
---|
183 | *x++ = hn * (*a + *an); *y++ = - hn * (*a - *an);
|
---|
184 | a++; an--; b++; bn--;
|
---|
185 | int j = -1; i = n2/2;
|
---|
186 | while (i--)
|
---|
187 | {
|
---|
188 | Real c,s; cossin(j--,n,c,s);
|
---|
189 | Real am = *a - *an; Real ap = *a++ + *an--;
|
---|
190 | Real bm = *b - *bn; Real bp = *b++ + *bn--;
|
---|
191 | Real samcbp = s * am - c * bp; Real sbpcam = s * bp + c * am;
|
---|
192 | *x++ = hn * ( ap + samcbp); *y++ = - hn * ( bm + sbpcam);
|
---|
193 | *xn-- = hn * ( ap - samcbp); *yn-- = - hn * (-bm + sbpcam);
|
---|
194 | }
|
---|
195 | FFT(X,Y,X,Y); // have done inverting elsewhere
|
---|
196 | U.resize(n); i = n2;
|
---|
197 | x = X.Store(); y = Y.Store(); Real* u = U.Store();
|
---|
198 | while (i--) { *u++ = *x++; *u++ = - *y++; }
|
---|
199 | }
|
---|
200 |
|
---|
201 | void FFT(const ColumnVector& U, const ColumnVector& V,
|
---|
202 | ColumnVector& X, ColumnVector& Y)
|
---|
203 | {
|
---|
204 | // from Carl de Boor (1980), Siam J Sci Stat Comput, 1 173-8
|
---|
205 | // but first try Sande and Gentleman
|
---|
206 | Tracer trace("FFT");
|
---|
207 | REPORT
|
---|
208 | const int n = U.Nrows(); // length of arrays
|
---|
209 | if (n != V.Nrows() || n == 0)
|
---|
210 | Throw(ProgramException("Vector lengths unequal or zero", U, V));
|
---|
211 | if (n == 1) { REPORT X = U; Y = V; return; }
|
---|
212 |
|
---|
213 | // see if we can use the newfft routine
|
---|
214 | if (!FFT_Controller::OnlyOldFFT && FFT_Controller::CanFactor(n))
|
---|
215 | {
|
---|
216 | REPORT
|
---|
217 | X = U; Y = V;
|
---|
218 | if ( FFT_Controller::ar_1d_ft(n,X.Store(),Y.Store()) ) return;
|
---|
219 | }
|
---|
220 |
|
---|
221 | ColumnVector B = V;
|
---|
222 | ColumnVector A = U;
|
---|
223 | X.resize(n); Y.resize(n);
|
---|
224 | const int nextmx = 8;
|
---|
225 | int prime[8] = { 2,3,5,7,11,13,17,19 };
|
---|
226 | int after = 1; int before = n; int next = 0; bool inzee = true;
|
---|
227 | int now = 0; int b1; // initialised to keep gnu happy
|
---|
228 |
|
---|
229 | do
|
---|
230 | {
|
---|
231 | for (;;)
|
---|
232 | {
|
---|
233 | if (next < nextmx) { REPORT now = prime[next]; }
|
---|
234 | b1 = before / now; if (b1 * now == before) { REPORT break; }
|
---|
235 | next++; now += 2;
|
---|
236 | }
|
---|
237 | before = b1;
|
---|
238 |
|
---|
239 | if (inzee) { REPORT fftstep(A, B, X, Y, after, now, before); }
|
---|
240 | else { REPORT fftstep(X, Y, A, B, after, now, before); }
|
---|
241 |
|
---|
242 | inzee = !inzee; after *= now;
|
---|
243 | }
|
---|
244 | while (before != 1);
|
---|
245 |
|
---|
246 | if (inzee) { REPORT A.release(); X = A; B.release(); Y = B; }
|
---|
247 | }
|
---|
248 |
|
---|
249 | // Trigonometric transforms
|
---|
250 | // see Charles Van Loan (1992) "Computational frameworks for the fast
|
---|
251 | // Fourier transform" published by SIAM; section 4.4.
|
---|
252 |
|
---|
253 | void DCT_II(const ColumnVector& U, ColumnVector& V)
|
---|
254 | {
|
---|
255 | // Discrete cosine transform, type II, of a real series
|
---|
256 | Tracer trace("DCT_II");
|
---|
257 | REPORT
|
---|
258 | const int n = U.Nrows(); // length of arrays
|
---|
259 | const int n2 = n / 2; const int n4 = n * 4;
|
---|
260 | if (n != 2 * n2)
|
---|
261 | Throw(ProgramException("Vector length not multiple of 2", U));
|
---|
262 | ColumnVector A(n);
|
---|
263 | Real* a = A.Store(); Real* b = a + n; Real* u = U.Store();
|
---|
264 | int i = n2;
|
---|
265 | while (i--) { *a++ = *u++; *(--b) = *u++; }
|
---|
266 | ColumnVector X, Y;
|
---|
267 | RealFFT(A, X, Y); A.cleanup();
|
---|
268 | V.resize(n);
|
---|
269 | Real* x = X.Store(); Real* y = Y.Store();
|
---|
270 | Real* v = V.Store(); Real* w = v + n;
|
---|
271 | *v = *x;
|
---|
272 | int k = 0; i = n2;
|
---|
273 | while (i--)
|
---|
274 | {
|
---|
275 | Real c, s; cossin(++k, n4, c, s);
|
---|
276 | Real xi = *(++x); Real yi = *(++y);
|
---|
277 | *(++v) = xi * c + yi * s; *(--w) = xi * s - yi * c;
|
---|
278 | }
|
---|
279 | }
|
---|
280 |
|
---|
281 | void DCT_II_inverse(const ColumnVector& V, ColumnVector& U)
|
---|
282 | {
|
---|
283 | // Inverse of discrete cosine transform, type II
|
---|
284 | Tracer trace("DCT_II_inverse");
|
---|
285 | REPORT
|
---|
286 | const int n = V.Nrows(); // length of array
|
---|
287 | const int n2 = n / 2; const int n4 = n * 4; const int n21 = n2 + 1;
|
---|
288 | if (n != 2 * n2)
|
---|
289 | Throw(ProgramException("Vector length not multiple of 2", V));
|
---|
290 | ColumnVector X(n21), Y(n21);
|
---|
291 | Real* x = X.Store(); Real* y = Y.Store();
|
---|
292 | Real* v = V.Store(); Real* w = v + n;
|
---|
293 | *x = *v; *y = 0.0;
|
---|
294 | int i = n2; int k = 0;
|
---|
295 | while (i--)
|
---|
296 | {
|
---|
297 | Real c, s; cossin(++k, n4, c, s);
|
---|
298 | Real vi = *(++v); Real wi = *(--w);
|
---|
299 | *(++x) = vi * c + wi * s; *(++y) = vi * s - wi * c;
|
---|
300 | }
|
---|
301 | ColumnVector A; RealFFTI(X, Y, A);
|
---|
302 | X.cleanup(); Y.cleanup(); U.resize(n);
|
---|
303 | Real* a = A.Store(); Real* b = a + n; Real* u = U.Store();
|
---|
304 | i = n2;
|
---|
305 | while (i--) { *u++ = *a++; *u++ = *(--b); }
|
---|
306 | }
|
---|
307 |
|
---|
308 | void DST_II(const ColumnVector& U, ColumnVector& V)
|
---|
309 | {
|
---|
310 | // Discrete sine transform, type II, of a real series
|
---|
311 | Tracer trace("DST_II");
|
---|
312 | REPORT
|
---|
313 | const int n = U.Nrows(); // length of arrays
|
---|
314 | const int n2 = n / 2; const int n4 = n * 4;
|
---|
315 | if (n != 2 * n2)
|
---|
316 | Throw(ProgramException("Vector length not multiple of 2", U));
|
---|
317 | ColumnVector A(n);
|
---|
318 | Real* a = A.Store(); Real* b = a + n; Real* u = U.Store();
|
---|
319 | int i = n2;
|
---|
320 | while (i--) { *a++ = *u++; *(--b) = -(*u++); }
|
---|
321 | ColumnVector X, Y;
|
---|
322 | RealFFT(A, X, Y); A.cleanup();
|
---|
323 | V.resize(n);
|
---|
324 | Real* x = X.Store(); Real* y = Y.Store();
|
---|
325 | Real* v = V.Store(); Real* w = v + n;
|
---|
326 | *(--w) = *x;
|
---|
327 | int k = 0; i = n2;
|
---|
328 | while (i--)
|
---|
329 | {
|
---|
330 | Real c, s; cossin(++k, n4, c, s);
|
---|
331 | Real xi = *(++x); Real yi = *(++y);
|
---|
332 | *v++ = xi * s - yi * c; *(--w) = xi * c + yi * s;
|
---|
333 | }
|
---|
334 | }
|
---|
335 |
|
---|
336 | void DST_II_inverse(const ColumnVector& V, ColumnVector& U)
|
---|
337 | {
|
---|
338 | // Inverse of discrete sine transform, type II
|
---|
339 | Tracer trace("DST_II_inverse");
|
---|
340 | REPORT
|
---|
341 | const int n = V.Nrows(); // length of array
|
---|
342 | const int n2 = n / 2; const int n4 = n * 4; const int n21 = n2 + 1;
|
---|
343 | if (n != 2 * n2)
|
---|
344 | Throw(ProgramException("Vector length not multiple of 2", V));
|
---|
345 | ColumnVector X(n21), Y(n21);
|
---|
346 | Real* x = X.Store(); Real* y = Y.Store();
|
---|
347 | Real* v = V.Store(); Real* w = v + n;
|
---|
348 | *x = *(--w); *y = 0.0;
|
---|
349 | int i = n2; int k = 0;
|
---|
350 | while (i--)
|
---|
351 | {
|
---|
352 | Real c, s; cossin(++k, n4, c, s);
|
---|
353 | Real vi = *v++; Real wi = *(--w);
|
---|
354 | *(++x) = vi * s + wi * c; *(++y) = - vi * c + wi * s;
|
---|
355 | }
|
---|
356 | ColumnVector A; RealFFTI(X, Y, A);
|
---|
357 | X.cleanup(); Y.cleanup(); U.resize(n);
|
---|
358 | Real* a = A.Store(); Real* b = a + n; Real* u = U.Store();
|
---|
359 | i = n2;
|
---|
360 | while (i--) { *u++ = *a++; *u++ = -(*(--b)); }
|
---|
361 | }
|
---|
362 |
|
---|
363 | void DCT_inverse(const ColumnVector& V, ColumnVector& U)
|
---|
364 | {
|
---|
365 | // Inverse of discrete cosine transform, type I
|
---|
366 | Tracer trace("DCT_inverse");
|
---|
367 | REPORT
|
---|
368 | const int n = V.Nrows()-1; // length of transform
|
---|
369 | const int n2 = n / 2; const int n21 = n2 + 1;
|
---|
370 | if (n != 2 * n2)
|
---|
371 | Throw(ProgramException("Vector length not multiple of 2", V));
|
---|
372 | ColumnVector X(n21), Y(n21);
|
---|
373 | Real* x = X.Store(); Real* y = Y.Store(); Real* v = V.Store();
|
---|
374 | Real vi = *v++; *x++ = vi; *y++ = 0.0;
|
---|
375 | Real sum1 = vi / 2.0; Real sum2 = sum1; vi = *v++;
|
---|
376 | int i = n2-1;
|
---|
377 | while (i--)
|
---|
378 | {
|
---|
379 | Real vi2 = *v++; sum1 += vi2 + vi; sum2 += vi2 - vi;
|
---|
380 | *x++ = vi2; vi2 = *v++; *y++ = vi - vi2; vi = vi2;
|
---|
381 | }
|
---|
382 | sum1 += vi; sum2 -= vi;
|
---|
383 | vi = *v; *x = vi; *y = 0.0; vi /= 2.0; sum1 += vi; sum2 += vi;
|
---|
384 | ColumnVector A; RealFFTI(X, Y, A);
|
---|
385 | X.cleanup(); Y.cleanup(); U.resize(n+1);
|
---|
386 | Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); v = u + n;
|
---|
387 | i = n2; int k = 0; *u++ = sum1 / n2; *v-- = sum2 / n2;
|
---|
388 | while (i--)
|
---|
389 | {
|
---|
390 | Real s = sin(1.5707963267948966192 * (++k) / n2);
|
---|
391 | Real ai = *(++a); Real bi = *(--b);
|
---|
392 | Real bz = (ai - bi) / 4 / s; Real az = (ai + bi) / 2;
|
---|
393 | *u++ = az - bz; *v-- = az + bz;
|
---|
394 | }
|
---|
395 | }
|
---|
396 |
|
---|
397 | void DCT(const ColumnVector& U, ColumnVector& V)
|
---|
398 | {
|
---|
399 | // Discrete cosine transform, type I
|
---|
400 | Tracer trace("DCT");
|
---|
401 | REPORT
|
---|
402 | DCT_inverse(U, V);
|
---|
403 | V *= (V.Nrows()-1)/2;
|
---|
404 | }
|
---|
405 |
|
---|
406 | void DST_inverse(const ColumnVector& V, ColumnVector& U)
|
---|
407 | {
|
---|
408 | // Inverse of discrete sine transform, type I
|
---|
409 | Tracer trace("DST_inverse");
|
---|
410 | REPORT
|
---|
411 | const int n = V.Nrows()-1; // length of transform
|
---|
412 | const int n2 = n / 2; const int n21 = n2 + 1;
|
---|
413 | if (n != 2 * n2)
|
---|
414 | Throw(ProgramException("Vector length not multiple of 2", V));
|
---|
415 | ColumnVector X(n21), Y(n21);
|
---|
416 | Real* x = X.Store(); Real* y = Y.Store(); Real* v = V.Store();
|
---|
417 | Real vi = *(++v); *x++ = 2 * vi; *y++ = 0.0;
|
---|
418 | int i = n2-1;
|
---|
419 | while (i--) { *y++ = *(++v); Real vi2 = *(++v); *x++ = vi2 - vi; vi = vi2; }
|
---|
420 | *x = -2 * vi; *y = 0.0;
|
---|
421 | ColumnVector A; RealFFTI(X, Y, A);
|
---|
422 | X.cleanup(); Y.cleanup(); U.resize(n+1);
|
---|
423 | Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); v = u + n;
|
---|
424 | i = n2; int k = 0; *u++ = 0.0; *v-- = 0.0;
|
---|
425 | while (i--)
|
---|
426 | {
|
---|
427 | Real s = sin(1.5707963267948966192 * (++k) / n2);
|
---|
428 | Real ai = *(++a); Real bi = *(--b);
|
---|
429 | Real az = (ai + bi) / 4 / s; Real bz = (ai - bi) / 2;
|
---|
430 | *u++ = az - bz; *v-- = az + bz;
|
---|
431 | }
|
---|
432 | }
|
---|
433 |
|
---|
434 | void DST(const ColumnVector& U, ColumnVector& V)
|
---|
435 | {
|
---|
436 | // Discrete sine transform, type I
|
---|
437 | Tracer trace("DST");
|
---|
438 | REPORT
|
---|
439 | DST_inverse(U, V);
|
---|
440 | V *= (V.Nrows()-1)/2;
|
---|
441 | }
|
---|
442 |
|
---|
443 | // Two dimensional FFT
|
---|
444 | void FFT2(const Matrix& U, const Matrix& V, Matrix& X, Matrix& Y)
|
---|
445 | {
|
---|
446 | Tracer trace("FFT2");
|
---|
447 | REPORT
|
---|
448 | int m = U.Nrows(); int n = U.Ncols();
|
---|
449 | if (m != V.Nrows() || n != V.Ncols() || m == 0 || n == 0)
|
---|
450 | Throw(ProgramException("Matrix dimensions unequal or zero", U, V));
|
---|
451 | X = U; Y = V;
|
---|
452 | int i; ColumnVector CVR; ColumnVector CVI;
|
---|
453 | for (i = 1; i <= m; ++i)
|
---|
454 | {
|
---|
455 | FFT(X.Row(i).t(), Y.Row(i).t(), CVR, CVI);
|
---|
456 | X.Row(i) = CVR.t(); Y.Row(i) = CVI.t();
|
---|
457 | }
|
---|
458 | for (i = 1; i <= n; ++i)
|
---|
459 | {
|
---|
460 | FFT(X.Column(i), Y.Column(i), CVR, CVI);
|
---|
461 | X.Column(i) = CVR; Y.Column(i) = CVI;
|
---|
462 | }
|
---|
463 | }
|
---|
464 |
|
---|
465 | void FFT2I(const Matrix& U, const Matrix& V, Matrix& X, Matrix& Y)
|
---|
466 | {
|
---|
467 | // Inverse transform
|
---|
468 | Tracer trace("FFT2I");
|
---|
469 | REPORT
|
---|
470 | FFT2(U,-V,X,Y);
|
---|
471 | const Real n = X.Nrows() * X.Ncols(); X /= n; Y /= (-n);
|
---|
472 | }
|
---|
473 |
|
---|
474 |
|
---|
475 | #ifdef use_namespace
|
---|
476 | }
|
---|
477 | #endif
|
---|
478 |
|
---|
479 |
|
---|
480 | ///@}
|
---|