[2013] | 1 | /// \ingroup newmat
|
---|
| 2 | ///@{
|
---|
| 3 |
|
---|
| 4 | /// \file cholesky.cpp
|
---|
| 5 | /// Cholesky decomposition.
|
---|
| 6 | /// Cholesky decomposition of symmetric and band symmetric matrices,
|
---|
| 7 | /// update, downdate, manipulate a Cholesky decomposition
|
---|
| 8 |
|
---|
| 9 |
|
---|
| 10 | // Copyright (C) 1991,2,3,4: R B Davies
|
---|
| 11 |
|
---|
| 12 | #define WANT_MATH
|
---|
| 13 | //#define WANT_STREAM
|
---|
| 14 |
|
---|
| 15 | #include "include.h"
|
---|
| 16 |
|
---|
| 17 | #include "newmat.h"
|
---|
| 18 | #include "newmatrm.h"
|
---|
| 19 |
|
---|
| 20 | #ifdef use_namespace
|
---|
| 21 | namespace NEWMAT {
|
---|
| 22 | #endif
|
---|
| 23 |
|
---|
| 24 | #ifdef DO_REPORT
|
---|
| 25 | #define REPORT { static ExeCounter ExeCount(__LINE__,14); ++ExeCount; }
|
---|
| 26 | #else
|
---|
| 27 | #define REPORT {}
|
---|
| 28 | #endif
|
---|
| 29 |
|
---|
| 30 | /********* Cholesky decomposition of a positive definite matrix *************/
|
---|
| 31 |
|
---|
| 32 | // Suppose S is symmetrix and positive definite. Then there exists a unique
|
---|
| 33 | // lower triangular matrix L such that L L.t() = S;
|
---|
| 34 |
|
---|
| 35 |
|
---|
| 36 | ReturnMatrix Cholesky(const SymmetricMatrix& S)
|
---|
| 37 | {
|
---|
| 38 | REPORT
|
---|
| 39 | Tracer trace("Cholesky");
|
---|
| 40 | int nr = S.Nrows();
|
---|
| 41 | LowerTriangularMatrix T(nr);
|
---|
| 42 | Real* s = S.Store(); Real* t = T.Store(); Real* ti = t;
|
---|
| 43 | for (int i=0; i<nr; i++)
|
---|
| 44 | {
|
---|
| 45 | Real* tj = t; Real sum; int k;
|
---|
| 46 | for (int j=0; j<i; j++)
|
---|
| 47 | {
|
---|
| 48 | Real* tk = ti; sum = 0.0; k = j;
|
---|
| 49 | while (k--) { sum += *tj++ * *tk++; }
|
---|
| 50 | *tk = (*s++ - sum) / *tj++;
|
---|
| 51 | }
|
---|
| 52 | sum = 0.0; k = i;
|
---|
| 53 | while (k--) { sum += square(*ti++); }
|
---|
| 54 | Real d = *s++ - sum;
|
---|
| 55 | if (d<=0.0) Throw(NPDException(S));
|
---|
| 56 | *ti++ = sqrt(d);
|
---|
| 57 | }
|
---|
| 58 | T.release(); return T.for_return();
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 | ReturnMatrix Cholesky(const SymmetricBandMatrix& S)
|
---|
| 62 | {
|
---|
| 63 | REPORT
|
---|
| 64 | Tracer trace("Band-Cholesky");
|
---|
| 65 | int nr = S.Nrows(); int m = S.lower_val;
|
---|
| 66 | LowerBandMatrix T(nr,m);
|
---|
| 67 | Real* s = S.Store(); Real* t = T.Store(); Real* ti = t;
|
---|
| 68 |
|
---|
| 69 | for (int i=0; i<nr; i++)
|
---|
| 70 | {
|
---|
| 71 | Real* tj = t; Real sum; int l;
|
---|
| 72 | if (i<m) { REPORT l = m-i; s += l; ti += l; l = i; }
|
---|
| 73 | else { REPORT t += (m+1); l = m; }
|
---|
| 74 |
|
---|
| 75 | for (int j=0; j<l; j++)
|
---|
| 76 | {
|
---|
| 77 | Real* tk = ti; sum = 0.0; int k = j; tj += (m-j);
|
---|
| 78 | while (k--) { sum += *tj++ * *tk++; }
|
---|
| 79 | *tk = (*s++ - sum) / *tj++;
|
---|
| 80 | }
|
---|
| 81 | sum = 0.0;
|
---|
| 82 | while (l--) { sum += square(*ti++); }
|
---|
| 83 | Real d = *s++ - sum;
|
---|
| 84 | if (d<=0.0) Throw(NPDException(S));
|
---|
| 85 | *ti++ = sqrt(d);
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | T.release(); return T.for_return();
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 |
|
---|
| 92 |
|
---|
| 93 |
|
---|
| 94 | // Contributed by Nick Bennett of Schlumberger-Doll Research; modified by RBD
|
---|
| 95 |
|
---|
| 96 | // The enclosed routines can be used to update the Cholesky decomposition of
|
---|
| 97 | // a positive definite symmetric matrix. A good reference for this routines
|
---|
| 98 | // can be found in
|
---|
| 99 | // LINPACK User's Guide, Chapter 10, Dongarra et. al., SIAM, Philadelphia, 1979
|
---|
| 100 |
|
---|
| 101 | // produces the Cholesky decomposition of A + x.t() * x where A = chol.t() * chol
|
---|
| 102 | void update_Cholesky(UpperTriangularMatrix &chol, RowVector x)
|
---|
| 103 | {
|
---|
| 104 | int nc = chol.Nrows();
|
---|
| 105 | ColumnVector cGivens(nc); cGivens = 0.0;
|
---|
| 106 | ColumnVector sGivens(nc); sGivens = 0.0;
|
---|
| 107 |
|
---|
| 108 | for(int j = 1; j <= nc; ++j) // process the jth column of chol
|
---|
| 109 | {
|
---|
| 110 | // apply the previous Givens rotations k = 1,...,j-1 to column j
|
---|
| 111 | for(int k = 1; k < j; ++k)
|
---|
| 112 | GivensRotation(cGivens(k), sGivens(k), chol(k,j), x(j));
|
---|
| 113 |
|
---|
| 114 | // determine the jth Given's rotation
|
---|
| 115 | pythag(chol(j,j), x(j), cGivens(j), sGivens(j));
|
---|
| 116 |
|
---|
| 117 | // apply the jth Given's rotation
|
---|
| 118 | {
|
---|
| 119 | Real tmp0 = cGivens(j) * chol(j,j) + sGivens(j) * x(j);
|
---|
| 120 | chol(j,j) = tmp0; x(j) = 0.0;
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | }
|
---|
| 124 |
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 |
|
---|
| 128 | // produces the Cholesky decomposition of A - x.t() * x where A = chol.t() * chol
|
---|
| 129 | void downdate_Cholesky(UpperTriangularMatrix &chol, RowVector x)
|
---|
| 130 | {
|
---|
| 131 | int nRC = chol.Nrows();
|
---|
| 132 |
|
---|
| 133 | // solve R^T a = x
|
---|
| 134 | LowerTriangularMatrix L = chol.t();
|
---|
| 135 | ColumnVector a(nRC); a = 0.0;
|
---|
| 136 | int i, j;
|
---|
| 137 |
|
---|
| 138 | for (i = 1; i <= nRC; ++i)
|
---|
| 139 | {
|
---|
| 140 | // accumulate subtr sum
|
---|
| 141 | Real subtrsum = 0.0;
|
---|
| 142 | for(int k = 1; k < i; ++k) subtrsum += a(k) * L(i,k);
|
---|
| 143 |
|
---|
| 144 | a(i) = (x(i) - subtrsum) / L(i,i);
|
---|
| 145 | }
|
---|
| 146 |
|
---|
| 147 | // test that l2 norm of a is < 1
|
---|
| 148 | Real squareNormA = a.SumSquare();
|
---|
| 149 | if (squareNormA >= 1.0)
|
---|
| 150 | Throw(ProgramException("downdate_Cholesky() fails", chol));
|
---|
| 151 |
|
---|
| 152 | Real alpha = sqrt(1.0 - squareNormA);
|
---|
| 153 |
|
---|
| 154 | // compute and apply Givens rotations to the vector a
|
---|
| 155 | ColumnVector cGivens(nRC); cGivens = 0.0;
|
---|
| 156 | ColumnVector sGivens(nRC); sGivens = 0.0;
|
---|
| 157 | for(i = nRC; i >= 1; i--)
|
---|
| 158 | alpha = pythag(alpha, a(i), cGivens(i), sGivens(i));
|
---|
| 159 |
|
---|
| 160 | // apply Givens rotations to the jth column of chol
|
---|
| 161 | ColumnVector xtilde(nRC); xtilde = 0.0;
|
---|
| 162 | for(j = nRC; j >= 1; j--)
|
---|
| 163 | {
|
---|
| 164 | // only the first j rotations have an affect on chol,0
|
---|
| 165 | for(int k = j; k >= 1; k--)
|
---|
| 166 | GivensRotation(cGivens(k), -sGivens(k), chol(k,j), xtilde(j));
|
---|
| 167 | }
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 |
|
---|
| 171 |
|
---|
| 172 | // produces the Cholesky decomposition of EAE where A = chol.t() * chol
|
---|
| 173 | // and E produces a RIGHT circular shift of the rows and columns from
|
---|
| 174 | // 1,...,k-1,k,k+1,...l,l+1,...,p to
|
---|
| 175 | // 1,...,k-1,l,k,k+1,...l-1,l+1,...p
|
---|
| 176 | void right_circular_update_Cholesky(UpperTriangularMatrix &chol, int k, int l)
|
---|
| 177 | {
|
---|
| 178 | int nRC = chol.Nrows();
|
---|
| 179 | int i, j;
|
---|
| 180 |
|
---|
| 181 | // I. compute shift of column l to the kth position
|
---|
| 182 | Matrix cholCopy = chol;
|
---|
| 183 | // a. grab column l
|
---|
| 184 | ColumnVector columnL = cholCopy.Column(l);
|
---|
| 185 | // b. shift columns k,...l-1 to the RIGHT
|
---|
| 186 | for(j = l-1; j >= k; --j)
|
---|
| 187 | cholCopy.Column(j+1) = cholCopy.Column(j);
|
---|
| 188 | // c. copy the top k-1 elements of columnL into the kth column of cholCopy
|
---|
| 189 | cholCopy.Column(k) = 0.0;
|
---|
| 190 | for(i = 1; i < k; ++i) cholCopy(i,k) = columnL(i);
|
---|
| 191 |
|
---|
| 192 | // II. determine the l-k Given's rotations
|
---|
| 193 | int nGivens = l-k;
|
---|
| 194 | ColumnVector cGivens(nGivens); cGivens = 0.0;
|
---|
| 195 | ColumnVector sGivens(nGivens); sGivens = 0.0;
|
---|
| 196 | for(i = l; i > k; i--)
|
---|
| 197 | {
|
---|
| 198 | int givensIndex = l-i+1;
|
---|
| 199 | columnL(i-1) = pythag(columnL(i-1), columnL(i),
|
---|
| 200 | cGivens(givensIndex), sGivens(givensIndex));
|
---|
| 201 | columnL(i) = 0.0;
|
---|
| 202 | }
|
---|
| 203 | // the kth entry of columnL is the new diagonal element in column k of cholCopy
|
---|
| 204 | cholCopy(k,k) = columnL(k);
|
---|
| 205 |
|
---|
| 206 | // III. apply these Given's rotations to subsequent columns
|
---|
| 207 | // for columns k+1,...,l-1 we only need to apply the last nGivens-(j-k) rotations
|
---|
| 208 | for(j = k+1; j <= nRC; ++j)
|
---|
| 209 | {
|
---|
| 210 | ColumnVector columnJ = cholCopy.Column(j);
|
---|
| 211 | int imin = nGivens - (j-k) + 1; if (imin < 1) imin = 1;
|
---|
| 212 | for(int gIndex = imin; gIndex <= nGivens; ++gIndex)
|
---|
| 213 | {
|
---|
| 214 | // apply gIndex Given's rotation
|
---|
| 215 | int topRowIndex = k + nGivens - gIndex;
|
---|
| 216 | GivensRotationR(cGivens(gIndex), sGivens(gIndex),
|
---|
| 217 | columnJ(topRowIndex), columnJ(topRowIndex+1));
|
---|
| 218 | }
|
---|
| 219 | cholCopy.Column(j) = columnJ;
|
---|
| 220 | }
|
---|
| 221 |
|
---|
| 222 | chol << cholCopy;
|
---|
| 223 | }
|
---|
| 224 |
|
---|
| 225 |
|
---|
| 226 |
|
---|
| 227 | // produces the Cholesky decomposition of EAE where A = chol.t() * chol
|
---|
| 228 | // and E produces a LEFT circular shift of the rows and columns from
|
---|
| 229 | // 1,...,k-1,k,k+1,...l,l+1,...,p to
|
---|
| 230 | // 1,...,k-1,k+1,...l,k,l+1,...,p to
|
---|
| 231 | void left_circular_update_Cholesky(UpperTriangularMatrix &chol, int k, int l)
|
---|
| 232 | {
|
---|
| 233 | int nRC = chol.Nrows();
|
---|
| 234 | int i, j;
|
---|
| 235 |
|
---|
| 236 | // I. compute shift of column k to the lth position
|
---|
| 237 | Matrix cholCopy = chol;
|
---|
| 238 | // a. grab column k
|
---|
| 239 | ColumnVector columnK = cholCopy.Column(k);
|
---|
| 240 | // b. shift columns k+1,...l to the LEFT
|
---|
| 241 | for(j = k+1; j <= l; ++j)
|
---|
| 242 | cholCopy.Column(j-1) = cholCopy.Column(j);
|
---|
| 243 | // c. copy the elements of columnK into the lth column of cholCopy
|
---|
| 244 | cholCopy.Column(l) = 0.0;
|
---|
| 245 | for(i = 1; i <= k; ++i)
|
---|
| 246 | cholCopy(i,l) = columnK(i);
|
---|
| 247 |
|
---|
| 248 | // II. apply and compute Given's rotations
|
---|
| 249 | int nGivens = l-k;
|
---|
| 250 | ColumnVector cGivens(nGivens); cGivens = 0.0;
|
---|
| 251 | ColumnVector sGivens(nGivens); sGivens = 0.0;
|
---|
| 252 | for(j = k; j <= nRC; ++j)
|
---|
| 253 | {
|
---|
| 254 | ColumnVector columnJ = cholCopy.Column(j);
|
---|
| 255 |
|
---|
| 256 | // apply the previous Givens rotations to columnJ
|
---|
| 257 | int imax = j - k; if (imax > nGivens) imax = nGivens;
|
---|
| 258 | for(int i = 1; i <= imax; ++i)
|
---|
| 259 | {
|
---|
| 260 | int gIndex = i;
|
---|
| 261 | int topRowIndex = k + i - 1;
|
---|
| 262 | GivensRotationR(cGivens(gIndex), sGivens(gIndex),
|
---|
| 263 | columnJ(topRowIndex), columnJ(topRowIndex+1));
|
---|
| 264 | }
|
---|
| 265 |
|
---|
| 266 | // compute a new Given's rotation when j < l
|
---|
| 267 | if(j < l)
|
---|
| 268 | {
|
---|
| 269 | int gIndex = j-k+1;
|
---|
| 270 | columnJ(j) = pythag(columnJ(j), columnJ(j+1), cGivens(gIndex),
|
---|
| 271 | sGivens(gIndex));
|
---|
| 272 | columnJ(j+1) = 0.0;
|
---|
| 273 | }
|
---|
| 274 |
|
---|
| 275 | cholCopy.Column(j) = columnJ;
|
---|
| 276 | }
|
---|
| 277 |
|
---|
| 278 | chol << cholCopy;
|
---|
| 279 |
|
---|
| 280 | }
|
---|
| 281 |
|
---|
| 282 |
|
---|
| 283 |
|
---|
| 284 |
|
---|
| 285 | #ifdef use_namespace
|
---|
| 286 | }
|
---|
| 287 | #endif
|
---|
| 288 |
|
---|
| 289 | ///@}
|
---|