1 | /// \ingroup newmat
|
---|
2 | ///@{
|
---|
3 |
|
---|
4 | /// \file cholesky.cpp
|
---|
5 | /// Cholesky decomposition.
|
---|
6 | /// Cholesky decomposition of symmetric and band symmetric matrices,
|
---|
7 | /// update, downdate, manipulate a Cholesky decomposition
|
---|
8 |
|
---|
9 |
|
---|
10 | // Copyright (C) 1991,2,3,4: R B Davies
|
---|
11 |
|
---|
12 | #define WANT_MATH
|
---|
13 | //#define WANT_STREAM
|
---|
14 |
|
---|
15 | #include "include.h"
|
---|
16 |
|
---|
17 | #include "newmat.h"
|
---|
18 | #include "newmatrm.h"
|
---|
19 |
|
---|
20 | #ifdef use_namespace
|
---|
21 | namespace NEWMAT {
|
---|
22 | #endif
|
---|
23 |
|
---|
24 | #ifdef DO_REPORT
|
---|
25 | #define REPORT { static ExeCounter ExeCount(__LINE__,14); ++ExeCount; }
|
---|
26 | #else
|
---|
27 | #define REPORT {}
|
---|
28 | #endif
|
---|
29 |
|
---|
30 | /********* Cholesky decomposition of a positive definite matrix *************/
|
---|
31 |
|
---|
32 | // Suppose S is symmetrix and positive definite. Then there exists a unique
|
---|
33 | // lower triangular matrix L such that L L.t() = S;
|
---|
34 |
|
---|
35 |
|
---|
36 | ReturnMatrix Cholesky(const SymmetricMatrix& S)
|
---|
37 | {
|
---|
38 | REPORT
|
---|
39 | Tracer trace("Cholesky");
|
---|
40 | int nr = S.Nrows();
|
---|
41 | LowerTriangularMatrix T(nr);
|
---|
42 | Real* s = S.Store(); Real* t = T.Store(); Real* ti = t;
|
---|
43 | for (int i=0; i<nr; i++)
|
---|
44 | {
|
---|
45 | Real* tj = t; Real sum; int k;
|
---|
46 | for (int j=0; j<i; j++)
|
---|
47 | {
|
---|
48 | Real* tk = ti; sum = 0.0; k = j;
|
---|
49 | while (k--) { sum += *tj++ * *tk++; }
|
---|
50 | *tk = (*s++ - sum) / *tj++;
|
---|
51 | }
|
---|
52 | sum = 0.0; k = i;
|
---|
53 | while (k--) { sum += square(*ti++); }
|
---|
54 | Real d = *s++ - sum;
|
---|
55 | if (d<=0.0) Throw(NPDException(S));
|
---|
56 | *ti++ = sqrt(d);
|
---|
57 | }
|
---|
58 | T.release(); return T.for_return();
|
---|
59 | }
|
---|
60 |
|
---|
61 | ReturnMatrix Cholesky(const SymmetricBandMatrix& S)
|
---|
62 | {
|
---|
63 | REPORT
|
---|
64 | Tracer trace("Band-Cholesky");
|
---|
65 | int nr = S.Nrows(); int m = S.lower_val;
|
---|
66 | LowerBandMatrix T(nr,m);
|
---|
67 | Real* s = S.Store(); Real* t = T.Store(); Real* ti = t;
|
---|
68 |
|
---|
69 | for (int i=0; i<nr; i++)
|
---|
70 | {
|
---|
71 | Real* tj = t; Real sum; int l;
|
---|
72 | if (i<m) { REPORT l = m-i; s += l; ti += l; l = i; }
|
---|
73 | else { REPORT t += (m+1); l = m; }
|
---|
74 |
|
---|
75 | for (int j=0; j<l; j++)
|
---|
76 | {
|
---|
77 | Real* tk = ti; sum = 0.0; int k = j; tj += (m-j);
|
---|
78 | while (k--) { sum += *tj++ * *tk++; }
|
---|
79 | *tk = (*s++ - sum) / *tj++;
|
---|
80 | }
|
---|
81 | sum = 0.0;
|
---|
82 | while (l--) { sum += square(*ti++); }
|
---|
83 | Real d = *s++ - sum;
|
---|
84 | if (d<=0.0) Throw(NPDException(S));
|
---|
85 | *ti++ = sqrt(d);
|
---|
86 | }
|
---|
87 |
|
---|
88 | T.release(); return T.for_return();
|
---|
89 | }
|
---|
90 |
|
---|
91 |
|
---|
92 |
|
---|
93 |
|
---|
94 | // Contributed by Nick Bennett of Schlumberger-Doll Research; modified by RBD
|
---|
95 |
|
---|
96 | // The enclosed routines can be used to update the Cholesky decomposition of
|
---|
97 | // a positive definite symmetric matrix. A good reference for this routines
|
---|
98 | // can be found in
|
---|
99 | // LINPACK User's Guide, Chapter 10, Dongarra et. al., SIAM, Philadelphia, 1979
|
---|
100 |
|
---|
101 | // produces the Cholesky decomposition of A + x.t() * x where A = chol.t() * chol
|
---|
102 | void update_Cholesky(UpperTriangularMatrix &chol, RowVector x)
|
---|
103 | {
|
---|
104 | int nc = chol.Nrows();
|
---|
105 | ColumnVector cGivens(nc); cGivens = 0.0;
|
---|
106 | ColumnVector sGivens(nc); sGivens = 0.0;
|
---|
107 |
|
---|
108 | for(int j = 1; j <= nc; ++j) // process the jth column of chol
|
---|
109 | {
|
---|
110 | // apply the previous Givens rotations k = 1,...,j-1 to column j
|
---|
111 | for(int k = 1; k < j; ++k)
|
---|
112 | GivensRotation(cGivens(k), sGivens(k), chol(k,j), x(j));
|
---|
113 |
|
---|
114 | // determine the jth Given's rotation
|
---|
115 | pythag(chol(j,j), x(j), cGivens(j), sGivens(j));
|
---|
116 |
|
---|
117 | // apply the jth Given's rotation
|
---|
118 | {
|
---|
119 | Real tmp0 = cGivens(j) * chol(j,j) + sGivens(j) * x(j);
|
---|
120 | chol(j,j) = tmp0; x(j) = 0.0;
|
---|
121 | }
|
---|
122 |
|
---|
123 | }
|
---|
124 |
|
---|
125 | }
|
---|
126 |
|
---|
127 |
|
---|
128 | // produces the Cholesky decomposition of A - x.t() * x where A = chol.t() * chol
|
---|
129 | void downdate_Cholesky(UpperTriangularMatrix &chol, RowVector x)
|
---|
130 | {
|
---|
131 | int nRC = chol.Nrows();
|
---|
132 |
|
---|
133 | // solve R^T a = x
|
---|
134 | LowerTriangularMatrix L = chol.t();
|
---|
135 | ColumnVector a(nRC); a = 0.0;
|
---|
136 | int i, j;
|
---|
137 |
|
---|
138 | for (i = 1; i <= nRC; ++i)
|
---|
139 | {
|
---|
140 | // accumulate subtr sum
|
---|
141 | Real subtrsum = 0.0;
|
---|
142 | for(int k = 1; k < i; ++k) subtrsum += a(k) * L(i,k);
|
---|
143 |
|
---|
144 | a(i) = (x(i) - subtrsum) / L(i,i);
|
---|
145 | }
|
---|
146 |
|
---|
147 | // test that l2 norm of a is < 1
|
---|
148 | Real squareNormA = a.SumSquare();
|
---|
149 | if (squareNormA >= 1.0)
|
---|
150 | Throw(ProgramException("downdate_Cholesky() fails", chol));
|
---|
151 |
|
---|
152 | Real alpha = sqrt(1.0 - squareNormA);
|
---|
153 |
|
---|
154 | // compute and apply Givens rotations to the vector a
|
---|
155 | ColumnVector cGivens(nRC); cGivens = 0.0;
|
---|
156 | ColumnVector sGivens(nRC); sGivens = 0.0;
|
---|
157 | for(i = nRC; i >= 1; i--)
|
---|
158 | alpha = pythag(alpha, a(i), cGivens(i), sGivens(i));
|
---|
159 |
|
---|
160 | // apply Givens rotations to the jth column of chol
|
---|
161 | ColumnVector xtilde(nRC); xtilde = 0.0;
|
---|
162 | for(j = nRC; j >= 1; j--)
|
---|
163 | {
|
---|
164 | // only the first j rotations have an affect on chol,0
|
---|
165 | for(int k = j; k >= 1; k--)
|
---|
166 | GivensRotation(cGivens(k), -sGivens(k), chol(k,j), xtilde(j));
|
---|
167 | }
|
---|
168 | }
|
---|
169 |
|
---|
170 |
|
---|
171 |
|
---|
172 | // produces the Cholesky decomposition of EAE where A = chol.t() * chol
|
---|
173 | // and E produces a RIGHT circular shift of the rows and columns from
|
---|
174 | // 1,...,k-1,k,k+1,...l,l+1,...,p to
|
---|
175 | // 1,...,k-1,l,k,k+1,...l-1,l+1,...p
|
---|
176 | void right_circular_update_Cholesky(UpperTriangularMatrix &chol, int k, int l)
|
---|
177 | {
|
---|
178 | int nRC = chol.Nrows();
|
---|
179 | int i, j;
|
---|
180 |
|
---|
181 | // I. compute shift of column l to the kth position
|
---|
182 | Matrix cholCopy = chol;
|
---|
183 | // a. grab column l
|
---|
184 | ColumnVector columnL = cholCopy.Column(l);
|
---|
185 | // b. shift columns k,...l-1 to the RIGHT
|
---|
186 | for(j = l-1; j >= k; --j)
|
---|
187 | cholCopy.Column(j+1) = cholCopy.Column(j);
|
---|
188 | // c. copy the top k-1 elements of columnL into the kth column of cholCopy
|
---|
189 | cholCopy.Column(k) = 0.0;
|
---|
190 | for(i = 1; i < k; ++i) cholCopy(i,k) = columnL(i);
|
---|
191 |
|
---|
192 | // II. determine the l-k Given's rotations
|
---|
193 | int nGivens = l-k;
|
---|
194 | ColumnVector cGivens(nGivens); cGivens = 0.0;
|
---|
195 | ColumnVector sGivens(nGivens); sGivens = 0.0;
|
---|
196 | for(i = l; i > k; i--)
|
---|
197 | {
|
---|
198 | int givensIndex = l-i+1;
|
---|
199 | columnL(i-1) = pythag(columnL(i-1), columnL(i),
|
---|
200 | cGivens(givensIndex), sGivens(givensIndex));
|
---|
201 | columnL(i) = 0.0;
|
---|
202 | }
|
---|
203 | // the kth entry of columnL is the new diagonal element in column k of cholCopy
|
---|
204 | cholCopy(k,k) = columnL(k);
|
---|
205 |
|
---|
206 | // III. apply these Given's rotations to subsequent columns
|
---|
207 | // for columns k+1,...,l-1 we only need to apply the last nGivens-(j-k) rotations
|
---|
208 | for(j = k+1; j <= nRC; ++j)
|
---|
209 | {
|
---|
210 | ColumnVector columnJ = cholCopy.Column(j);
|
---|
211 | int imin = nGivens - (j-k) + 1; if (imin < 1) imin = 1;
|
---|
212 | for(int gIndex = imin; gIndex <= nGivens; ++gIndex)
|
---|
213 | {
|
---|
214 | // apply gIndex Given's rotation
|
---|
215 | int topRowIndex = k + nGivens - gIndex;
|
---|
216 | GivensRotationR(cGivens(gIndex), sGivens(gIndex),
|
---|
217 | columnJ(topRowIndex), columnJ(topRowIndex+1));
|
---|
218 | }
|
---|
219 | cholCopy.Column(j) = columnJ;
|
---|
220 | }
|
---|
221 |
|
---|
222 | chol << cholCopy;
|
---|
223 | }
|
---|
224 |
|
---|
225 |
|
---|
226 |
|
---|
227 | // produces the Cholesky decomposition of EAE where A = chol.t() * chol
|
---|
228 | // and E produces a LEFT circular shift of the rows and columns from
|
---|
229 | // 1,...,k-1,k,k+1,...l,l+1,...,p to
|
---|
230 | // 1,...,k-1,k+1,...l,k,l+1,...,p to
|
---|
231 | void left_circular_update_Cholesky(UpperTriangularMatrix &chol, int k, int l)
|
---|
232 | {
|
---|
233 | int nRC = chol.Nrows();
|
---|
234 | int i, j;
|
---|
235 |
|
---|
236 | // I. compute shift of column k to the lth position
|
---|
237 | Matrix cholCopy = chol;
|
---|
238 | // a. grab column k
|
---|
239 | ColumnVector columnK = cholCopy.Column(k);
|
---|
240 | // b. shift columns k+1,...l to the LEFT
|
---|
241 | for(j = k+1; j <= l; ++j)
|
---|
242 | cholCopy.Column(j-1) = cholCopy.Column(j);
|
---|
243 | // c. copy the elements of columnK into the lth column of cholCopy
|
---|
244 | cholCopy.Column(l) = 0.0;
|
---|
245 | for(i = 1; i <= k; ++i)
|
---|
246 | cholCopy(i,l) = columnK(i);
|
---|
247 |
|
---|
248 | // II. apply and compute Given's rotations
|
---|
249 | int nGivens = l-k;
|
---|
250 | ColumnVector cGivens(nGivens); cGivens = 0.0;
|
---|
251 | ColumnVector sGivens(nGivens); sGivens = 0.0;
|
---|
252 | for(j = k; j <= nRC; ++j)
|
---|
253 | {
|
---|
254 | ColumnVector columnJ = cholCopy.Column(j);
|
---|
255 |
|
---|
256 | // apply the previous Givens rotations to columnJ
|
---|
257 | int imax = j - k; if (imax > nGivens) imax = nGivens;
|
---|
258 | for(int i = 1; i <= imax; ++i)
|
---|
259 | {
|
---|
260 | int gIndex = i;
|
---|
261 | int topRowIndex = k + i - 1;
|
---|
262 | GivensRotationR(cGivens(gIndex), sGivens(gIndex),
|
---|
263 | columnJ(topRowIndex), columnJ(topRowIndex+1));
|
---|
264 | }
|
---|
265 |
|
---|
266 | // compute a new Given's rotation when j < l
|
---|
267 | if(j < l)
|
---|
268 | {
|
---|
269 | int gIndex = j-k+1;
|
---|
270 | columnJ(j) = pythag(columnJ(j), columnJ(j+1), cGivens(gIndex),
|
---|
271 | sGivens(gIndex));
|
---|
272 | columnJ(j+1) = 0.0;
|
---|
273 | }
|
---|
274 |
|
---|
275 | cholCopy.Column(j) = columnJ;
|
---|
276 | }
|
---|
277 |
|
---|
278 | chol << cholCopy;
|
---|
279 |
|
---|
280 | }
|
---|
281 |
|
---|
282 |
|
---|
283 |
|
---|
284 |
|
---|
285 | #ifdef use_namespace
|
---|
286 | }
|
---|
287 | #endif
|
---|
288 |
|
---|
289 | ///@}
|
---|