/* ------------------------------------------------------------------------- * BKG NTRIP Client * ------------------------------------------------------------------------- * * Class: t_pppClient * * Purpose: PPP Client processing starts here * * Author: L. Mervart * * Created: 29-Jul-2014 * * Changes: * * -----------------------------------------------------------------------*/ #include #include #include #include #include #include #include "pppClient.h" #include "pppEphPool.h" #include "pppObsPool.h" #include "bncconst.h" #include "bncutils.h" #include "pppStation.h" #include "bncantex.h" #include "pppFilter.h" using namespace BNC_PPP; using namespace std; // Global variable holding thread-specific pointers ////////////////////////////////////////////////////////////////////////////// QThreadStorage CLIENTS; // Static function returning thread-specific pointer ////////////////////////////////////////////////////////////////////////////// t_pppClient* t_pppClient::instance() { return CLIENTS.localData(); } // Constructor ////////////////////////////////////////////////////////////////////////////// t_pppClient::t_pppClient(const t_pppOptions* opt) { _output = 0; _opt = new t_pppOptions(*opt); _log = new ostringstream(); _ephPool = new t_pppEphPool(); _obsPool = new t_pppObsPool(); _staRover = new t_pppStation(); _filter = new t_pppFilter(); _tides = new t_tides(); if (!_opt->_antexFileName.empty()) { _antex = new bncAntex(_opt->_antexFileName.c_str()); } else { _antex = 0; } CLIENTS.setLocalData(this); // CLIENTS takes ownership over "this" } // Destructor ////////////////////////////////////////////////////////////////////////////// t_pppClient::~t_pppClient() { delete _log; delete _opt; delete _ephPool; delete _obsPool; delete _staRover; if (_antex) { delete _antex; } delete _filter; delete _tides; clearObs(); } // ////////////////////////////////////////////////////////////////////////////// void t_pppClient::putEphemeris(const t_eph* eph) { const t_ephGPS* ephGPS = dynamic_cast(eph); const t_ephGlo* ephGlo = dynamic_cast(eph); const t_ephGal* ephGal = dynamic_cast(eph); const t_ephBDS* ephBDS = dynamic_cast(eph); if (ephGPS) { _ephPool->putEphemeris(new t_ephGPS(*ephGPS)); } else if (ephGlo) { _ephPool->putEphemeris(new t_ephGlo(*ephGlo)); } else if (ephGal) { _ephPool->putEphemeris(new t_ephGal(*ephGal)); } else if (ephBDS) { _ephPool->putEphemeris(new t_ephBDS(*ephBDS)); } } // ////////////////////////////////////////////////////////////////////////////// void t_pppClient::putTec(const t_vTec* vTec) { _obsPool->putTec(new t_vTec(*vTec)); } // ////////////////////////////////////////////////////////////////////////////// void t_pppClient::putOrbCorrections(const vector& corr) { for (unsigned ii = 0; ii < corr.size(); ii++) { _ephPool->putOrbCorrection(new t_orbCorr(*corr[ii])); } } // ////////////////////////////////////////////////////////////////////////////// void t_pppClient::putClkCorrections(const vector& corr) { for (unsigned ii = 0; ii < corr.size(); ii++) { _ephPool->putClkCorrection(new t_clkCorr(*corr[ii])); } } // ////////////////////////////////////////////////////////////////////////////// void t_pppClient::putCodeBiases(const vector& biases) { for (unsigned ii = 0; ii < biases.size(); ii++) { _obsPool->putCodeBias(new t_satCodeBias(*biases[ii])); } } // ////////////////////////////////////////////////////////////////////////////// void t_pppClient::putPhaseBiases(const vector& biases) { for (unsigned ii = 0; ii < biases.size(); ii++) { _obsPool->putPhaseBias(new t_satPhaseBias(*biases[ii])); } } // ////////////////////////////////////////////////////////////////////////////// t_irc t_pppClient::prepareObs(const vector& satObs, vector& obsVector, bncTime& epoTime) { // Default // ------- epoTime.reset(); // Create vector of valid observations // ----------------------------------- for (unsigned ii = 0; ii < satObs.size(); ii++) { char system = satObs[ii]->_prn.system(); if (OPT->useSystem(system)) { t_pppSatObs* pppSatObs = new t_pppSatObs(*satObs[ii]); if (pppSatObs->isValid()) { obsVector.push_back(pppSatObs); } else { delete pppSatObs; } } } // Check whether data are synchronized, compute epoTime // ---------------------------------------------------- const double MAXSYNC = 0.05; // synchronization limit double meanDt = 0.0; for (unsigned ii = 0; ii < obsVector.size(); ii++) { const t_pppSatObs* satObs = obsVector.at(ii); if (epoTime.undef()) { epoTime = satObs->time(); } else { double dt = satObs->time() - epoTime; if (fabs(dt) > MAXSYNC) { LOG << "t_pppClient::prepareObs asynchronous observations" << endl; return failure; } meanDt += dt; } } if (obsVector.size() > 0) { epoTime += meanDt / obsVector.size(); } return success; } // Compute the Bancroft position, check for blunders ////////////////////////////////////////////////////////////////////////////// t_irc t_pppClient::cmpBancroft(const bncTime& epoTime, vector& obsVector, ColumnVector& xyzc, bool print) { t_lc::type tLC = t_lc::dummy; while (true) { Matrix BB(obsVector.size(), 4); int iObs = -1; for (unsigned ii = 0; ii < obsVector.size(); ii++) { const t_pppSatObs* satObs = obsVector.at(ii); if (satObs->prn().system() == 'G') { if (tLC == t_lc::dummy) { tLC = satObs->isValid(t_lc::cIF) ? t_lc::cIF : t_lc::c1; } if ( satObs->isValid(tLC) && (!satObs->modelSet() || satObs->eleSat() >= OPT->_minEle) ) { ++iObs; BB[iObs][0] = satObs->xc()[0]; BB[iObs][1] = satObs->xc()[1]; BB[iObs][2] = satObs->xc()[2]; BB[iObs][3] = satObs->obsValue(tLC) - satObs->cmpValueForBanc(tLC); } } } if (iObs + 1 < OPT->_minObs) { LOG << "t_pppClient::cmpBancroft not enough observations" << endl; return failure; } BB = BB.Rows(1,iObs+1); bancroft(BB, xyzc); xyzc[3] /= t_CST::c; // Check Blunders // -------------- const double BLUNDER = 100.0; double maxRes = 0.0; unsigned maxResIndex = 0; for (unsigned ii = 0; ii < obsVector.size(); ii++) { const t_pppSatObs* satObs = obsVector.at(ii); if ( satObs->isValid() && satObs->prn().system() == 'G' && (!satObs->modelSet() || satObs->eleSat() >= OPT->_minEle) ) { ColumnVector rr = satObs->xc().Rows(1,3) - xyzc.Rows(1,3); double res = rr.norm_Frobenius() - satObs->obsValue(tLC) - (satObs->xc()[3] - xyzc[3]) * t_CST::c; if (fabs(res) > maxRes || isnan(res)) { maxRes = fabs(res); maxResIndex = ii; } } } if (maxRes < BLUNDER) { if (print) { LOG.setf(ios::fixed); LOG << string(epoTime) << " BANCROFT:" << ' ' << setw(14) << setprecision(3) << xyzc[0] << ' ' << setw(14) << setprecision(3) << xyzc[1] << ' ' << setw(14) << setprecision(3) << xyzc[2] << ' ' << setw(14) << setprecision(3) << xyzc[3] * t_CST::c << endl << endl; } break; } else { t_pppSatObs* satObs = obsVector.at(maxResIndex); LOG << "t_pppClient::cmpBancroft outlier " << satObs->prn().toString() << " " << maxRes << endl; delete satObs; obsVector.erase(obsVector.begin() + maxResIndex); } } return success; } // Compute A Priori GPS-Glonass Offset ////////////////////////////////////////////////////////////////////////////// double t_pppClient::cmpOffGG(vector& obsVector) { t_lc::type tLC = t_lc::dummy; double offGG = 0.0; if (OPT->useSystem('R')) { while (obsVector.size() > 0) { offGG = 0.0; double maxRes = 0.0; int maxResIndex = -1; t_prn maxResPrn; unsigned nObs = 0; for (unsigned ii = 0; ii < obsVector.size(); ii++) { const t_pppSatObs* satObs = obsVector.at(ii); if (satObs->prn().system() == 'R') { if (tLC == t_lc::dummy) { tLC = satObs->isValid(t_lc::cIF) ? t_lc::cIF : t_lc::c1; } if (satObs->isValid(tLC) && (!satObs->modelSet() || satObs->eleSat() >= OPT->_minEle)) { double ll = satObs->obsValue(tLC) - satObs->cmpValue(tLC); ++nObs; offGG += ll; if (fabs(ll) > fabs(maxRes)) { maxRes = ll; maxResIndex = ii; maxResPrn = satObs->prn(); } } } } if (nObs > 0) { offGG = offGG / nObs; } else { offGG = 0.0; } if (fabs(maxRes) > 1000.0) { LOG << "t_pppClient::cmpOffGG outlier " << maxResPrn.toString() << " " << maxRes << endl; delete obsVector.at(maxResIndex); obsVector.erase(obsVector.begin() + maxResIndex); } else { break; } } } return offGG; } // ////////////////////////////////////////////////////////////////////////////// void t_pppClient::initOutput(t_output* output) { _output = output; _output->_numSat = 0; _output->_pDop = 0.0; _output->_error = false; } // ////////////////////////////////////////////////////////////////////////////// void t_pppClient::clearObs() { for (unsigned ii = 0; ii < _obsRover.size(); ii++) { delete _obsRover.at(ii); } _obsRover.clear(); } // ////////////////////////////////////////////////////////////////////////////// void t_pppClient::finish(t_irc irc) { clearObs(); _output->_epoTime = _epoTimeRover; if (irc == success) { _output->_xyzRover[0] = _staRover->xyzApr()[0] + _filter->x()[0]; _output->_xyzRover[1] = _staRover->xyzApr()[1] + _filter->x()[1]; _output->_xyzRover[2] = _staRover->xyzApr()[2] + _filter->x()[2]; xyz2neu(_staRover->ellApr().data(), _filter->x().data(), _output->_neu); copy(&_filter->Q().data()[0], &_filter->Q().data()[6], _output->_covMatrix); _output->_trp0 = t_tropo::delay_saast(_staRover->xyzApr(), M_PI/2.0); _output->_trp = _filter->trp(); _output->_trpStdev = _filter->trpStdev(); _output->_numSat = _filter->numSat(); _output->_pDop = _filter->PDOP(); _output->_error = false; } else { _output->_error = true; } _output->_log = _log->str(); delete _log; _log = new ostringstream(); } // ////////////////////////////////////////////////////////////////////////////// t_irc t_pppClient::cmpModel(t_pppStation* station, const ColumnVector& xyzc, vector& obsVector) { bncTime time; time = _epoTimeRover; station->setName(OPT->_roverName); station->setAntName(OPT->_antNameRover); if (OPT->xyzAprRoverSet()) { station->setXyzApr(OPT->_xyzAprRover); } else { station->setXyzApr(xyzc.Rows(1,3)); } station->setNeuEcc(OPT->_neuEccRover); // Receiver Clock // -------------- station->setDClk(xyzc[3]); // Tides // ----- station->setTideDspl( _tides->displacement(time, station->xyzApr()) ); // Ionosphere // ---------- station->setIonoEpochTime(time); // Observation model // ----------------- vector::iterator it = obsVector.begin(); while (it != obsVector.end()) { t_pppSatObs* satObs = *it; t_irc modelSetup; if (satObs->isValid()) { modelSetup = satObs->cmpModel(station); } if (satObs->isValid() && satObs->eleSat() >= OPT->_minEle && modelSetup == success) { ++it; } else { delete satObs; it = obsVector.erase(it); } } return success; } // ////////////////////////////////////////////////////////////////////////////// void t_pppClient::processEpoch(const vector& satObs, t_output* output) { try { initOutput(output); // Prepare Observations of the Rover // --------------------------------- if (prepareObs(satObs, _obsRover, _epoTimeRover) != success) { return finish(failure); } LOG << "\nPPP of Epoch "; if (!_epoTimeRover.undef()) LOG << string(_epoTimeRover); LOG << "\n---------------------------------------------------------------\n"; for (int iter = 1; iter <= 2; iter++) { ColumnVector xyzc(4); xyzc = 0.0; bool print = (iter == 2); if (cmpBancroft(_epoTimeRover, _obsRover, xyzc, print) != success) { return finish(failure); } if (cmpModel(_staRover, xyzc, _obsRover) != success) { return finish(failure); } } _offGG = cmpOffGG(_obsRover); if (int(_obsRover.size()) < OPT->_minObs) { LOG << "t_pppClient::processEpoch not enough observations" << endl; return finish(failure); } // Store last epoch of data // ------------------------ _obsPool->putEpoch(_epoTimeRover, _obsRover); // Process Epoch in Filter // ----------------------- if (_filter->processEpoch(_obsPool) != success) { return finish(failure); } } catch (Exception& exc) { LOG << exc.what() << endl; return finish(failure); } catch (t_except msg) { LOG << msg.what() << endl; return finish(failure); } catch (const char* msg) { LOG << msg << endl; return finish(failure); } catch (...) { LOG << "unknown exception" << endl; return finish(failure); } return finish(success); } // //////////////////////////////////////////////////////////////////////////// double lorentz(const ColumnVector& aa, const ColumnVector& bb) { return aa[0]*bb[0] + aa[1]*bb[1] + aa[2]*bb[2] - aa[3]*bb[3]; } // //////////////////////////////////////////////////////////////////////////// void t_pppClient::bancroft(const Matrix& BBpass, ColumnVector& pos) { if (pos.Nrows() != 4) { pos.ReSize(4); } pos = 0.0; for (int iter = 1; iter <= 2; iter++) { Matrix BB = BBpass; int mm = BB.Nrows(); for (int ii = 1; ii <= mm; ii++) { double xx = BB(ii,1); double yy = BB(ii,2); double traveltime = 0.072; if (iter > 1) { double zz = BB(ii,3); double rho = sqrt( (xx-pos(1)) * (xx-pos(1)) + (yy-pos(2)) * (yy-pos(2)) + (zz-pos(3)) * (zz-pos(3)) ); traveltime = rho / t_CST::c; } double angle = traveltime * t_CST::omega; double cosa = cos(angle); double sina = sin(angle); BB(ii,1) = cosa * xx + sina * yy; BB(ii,2) = -sina * xx + cosa * yy; } Matrix BBB; if (mm > 4) { SymmetricMatrix hlp; hlp << BB.t() * BB; BBB = hlp.i() * BB.t(); } else { BBB = BB.i(); } ColumnVector ee(mm); ee = 1.0; ColumnVector alpha(mm); alpha = 0.0; for (int ii = 1; ii <= mm; ii++) { alpha(ii) = lorentz(BB.Row(ii).t(),BB.Row(ii).t())/2.0; } ColumnVector BBBe = BBB * ee; ColumnVector BBBalpha = BBB * alpha; double aa = lorentz(BBBe, BBBe); double bb = lorentz(BBBe, BBBalpha)-1; double cc = lorentz(BBBalpha, BBBalpha); double root = sqrt(bb*bb-aa*cc); Matrix hlpPos(4,2); hlpPos.Column(1) = (-bb-root)/aa * BBBe + BBBalpha; hlpPos.Column(2) = (-bb+root)/aa * BBBe + BBBalpha; ColumnVector omc(2); for (int pp = 1; pp <= 2; pp++) { hlpPos(4,pp) = -hlpPos(4,pp); omc(pp) = BB(1,4) - sqrt( (BB(1,1)-hlpPos(1,pp)) * (BB(1,1)-hlpPos(1,pp)) + (BB(1,2)-hlpPos(2,pp)) * (BB(1,2)-hlpPos(2,pp)) + (BB(1,3)-hlpPos(3,pp)) * (BB(1,3)-hlpPos(3,pp)) ) - hlpPos(4,pp); } if ( fabs(omc(1)) > fabs(omc(2)) ) { pos = hlpPos.Column(2); } else { pos = hlpPos.Column(1); } } }