Processing GNSS Data in Real-Time

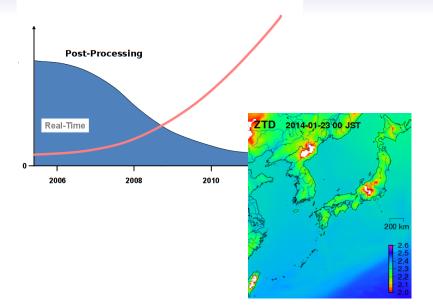
Leoš Mervart

TU Prague

Frankfurt, January 2014

Leoš Mervart, TU Prague

Medieval Times of GNSS (personal memories)


- 1991 Prof. Gerhard Beutler became the director of the Astronomical Institute, University of Berne. The so-called Bernese GPS Software started to be used for (post-processing) analyzes of GNSS data.
- 1992 LM started his PhD study at AIUB.
- 1992 Center for Orbit Determination in Europe (consortium of AIUB, Swisstopo, BKG, IGN, and IAPG/TUM) established. Roughly at that time LM met Dr. Georg Weber for the first time.
- 1993 International GPS Service formally recognized by the IAG.
- 1994 IGS began providing GPS orbits and other products routinely (January, 1).
- 1995 GPS declared fully operational.

CODE-Related Works in 1990's

- The Bernese GPS Software was the primary tool for CODE analyzes (Fortran 77).
- IGS reference network was sparse.
- Real-time data transmission limited (Internet was still young, TCP/IP widely accepted 1989).
- CPU power of then computers was limited (VAX/VMS OS used at AIUB).

In 1990's high precision GPS analyzes were almost exclusively performed in post-processing mode. The typical precise application of GPS at that time was the processing of a network of static GPS-only receivers for the estimation of station coordinates.

Tempora mutantur (and maybe "nos mutamur in illis")

O tempora! O mores!

- people want more and more ...
- everybody wants everything immediately
- and, of course, free of charge ...

In GNSS-world it means:

- There are many new kinds of GNSS applications positioning is becoming just one of many purposes of GNSS usage.
- Many results of GNSS processing are required in real-time (or, at least, with very small delay).
- GPS is not the only positioning system. Other GNSS are being established (for practical but also for political reasons).
- People are used that many GNSS services are available free of charge (but the development and maintenance has to be funded).

But . . .

Nihil novi sub sole

Each GNSS-application is based on processing code and/or phase observations

$$P^{i} = \varrho^{i} + c \,\delta - c \,\delta^{i} + T^{i} + l^{i} + b_{P}$$

$$L^{i} = \varrho^{i} + c \,\delta - c \,\delta^{i} + T^{i} - l^{i} + b^{i}$$

where

P ⁱ , L ⁱ	are the code and phase measurements,
ϱ^i	is the travel distance between the satellite and the receiver,
δ, δ^i	are the receiver and satellite clock errors,
l ⁱ	is the ionospheric delay,
T^i	is the tropospheric delay,
b _P	is the code bias, and
b ⁱ	is the phase bias (including initial phase ambiguity).

Observation equations reveal what information can be gained from processing GNSS data:

- geometry (receiver positions, satellite orbits), and
- state of atmosphere (both dispersive and non-dispersive part)

The observation equations also show that, in principle, GNSS is an interferometric technique – precise results are actually always relative.

Leoš Mervart, TU Prague

Challenges of Real-Time GNSS Application

- Suitable algorithms for the parameter adjustment have to be used (filter techniques instead of classical least-squares).
- Reliable data links have to been established (between rover station and a reference station, between receivers and processing center, or between processing center and DGPS correction provider).
- Software tools for handling real-time data (Fortran is not the best language for that).
- Fast CPUs.

As said above – GNSS is an interferometric technique. Processing of a single station cannot give precise results. However, data of reference station(s) can be replaced by the so-called corrections (DGPS corrections, precise-point positioning etc.) These techniques are particularly suited for real-time applications because the amount of data being transferred can be considerably reduced.

Algorithms – Kalman Filter

State vectors \mathbf{x} at two subsequent epochs are related to each other by the following linear equation:

$$\mathbf{x}(n) = \mathbf{\Phi} \mathbf{x}(n-1) + \mathbf{\Gamma} \mathbf{w}(n) ,$$

where Φ and Γ are known matrices and white noise $\mathbf{w}(n)$ is a random vector with the following statistical properties:

$$E(\mathbf{w}) = \mathbf{0}$$

$$E(\mathbf{w}(n) \mathbf{w}^{\mathsf{T}}(m)) = \mathbf{0} \text{ for } m \neq n$$

$$E(\mathbf{w}(n) \mathbf{w}^{\mathsf{T}}(n)) = \mathbf{Q}_{s}(n) .$$

Observations I(n) and the state vector x(n) are related to each other by the linearized *observation equations* of form

$$\mathbf{I}(n) = \mathbf{A} \mathbf{x}(n) + \mathbf{v}(n) \; ,$$

where **A** is a known matrix (the so-called *first-design matrix*) and $\mathbf{v}(n)$ is a vector of random errors with the following properties:

$$E(\mathbf{v}) = \mathbf{0}$$

$$E(\mathbf{v}(n) \mathbf{v}^{\mathsf{T}}(m)) = \mathbf{0} \text{ for } m \neq n$$

$$E(\mathbf{v}(n) \mathbf{v}^{\mathsf{T}}(n)) = \mathbf{Q}_{l}(n) .$$

Leoš Mervart, TU Prague

Classical KF Form

Minimum Mean Square Error (MMSE) estimate $\hat{\mathbf{x}}(n)$ of vector $\mathbf{x}(n)$ meets the condition $E((\mathbf{x} - \hat{\mathbf{x}})(\mathbf{x} - \hat{\mathbf{x}})^T) = \min$ and is given by

$$\widehat{\mathbf{x}}^{-}(n) = \mathbf{\Phi}\widehat{\mathbf{x}}(n-1)$$
(1a)

$$\mathbf{Q}^{-}(n) = \mathbf{\Phi}\mathbf{Q}(n-1)\mathbf{\Phi}^{T} + \mathbf{\Gamma}\mathbf{Q}_{s}(n)\mathbf{\Gamma}^{T}$$
(1b)

$$\widehat{\mathbf{x}}(n) = \widehat{\mathbf{x}}^{-}(n) + \mathbf{K} \left(\mathbf{I} - \mathbf{A} \widehat{\mathbf{x}}(n-1) \right)$$
(2a)

$$\mathbf{Q}(n) = \mathbf{Q}^{-}(n) - \mathbf{K}\mathbf{A}\mathbf{Q}^{-}(n) , \qquad (2b)$$

where

$$\mathbf{K} = \mathbf{Q}^{-}(n)\mathbf{A}^{T}\mathbf{H}^{-1}, \quad \mathbf{H} = \mathbf{Q}_{l}(n) + \mathbf{A}\mathbf{Q}^{-}(n)\mathbf{A}^{T}.$$

Equations (1) are called *prediction*, equations (2) are called *update* step of Kalman filter.

Square-Root Filter

Algorithms based on equations (1) and (2) may suffer from numerical instabilities that are primarily caused by the subtraction in (2b). This deficiency may be overcome by the so-called *square-root* formulation of the Kalman filter that is based on the so-called *QR-Decomposition*. Assuming the Cholesky decompositions

$$\mathbf{Q}(n) = \mathbf{S}^{\mathsf{T}}\mathbf{S}, \quad \mathbf{Q}_{l}(n) = \mathbf{S}_{l}^{\mathsf{T}}\mathbf{S}_{l}, \quad \mathbf{Q}^{-}(n) = \mathbf{S}^{-\mathsf{T}}\mathbf{S}^{-}$$
(3)

we can create the following block matrix and its QR-Decomposition:

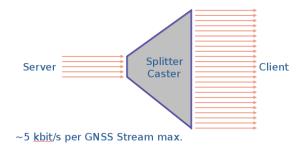
$$\begin{pmatrix} \mathbf{S}_{I} & \mathbf{0} \\ \mathbf{S}^{-}\mathbf{A}^{T} & \mathbf{S}^{-} \end{pmatrix} = N \begin{pmatrix} \mathbf{X} & \mathbf{Y} \\ \mathbf{0} & \mathbf{Z} \end{pmatrix} .$$
(4)

It can be easily verified that

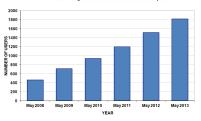
State vector $\hat{\mathbf{x}}(n)$ is computed in a usual way using the equation (2a).

Leoš Mervart, TU Prague

Data Transfer – NTRIP

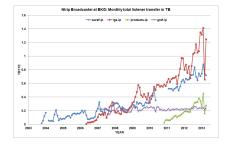

In order to be useful data have to be provided in a well-defined format. RTCM (Radio Technical Commission for Maritime Services) messages are widely used for GNSS data in real-time.

In addition to a format the so-called protocol has to be defined. Using a given protocol the data user communicates with the data provider. For GNSS data, the so-called NTRIP streaming protocol is used.


- NTRIP stands for Networked Transport of RTCM via Internet Protocol.
- NTRIP is in principle a layer on top of TCP/IP.
- NTRIP has been developed at BKG (together with TU Dortmund).
- NTRIP is capable of handling hundreds of data streams simultaneously delivering the data to thousands of users.
- NTRIP is world-wide accepted (great success of BKG).

NTRIP

Efficiency of data transfer using NTRIP is achieved thanks to the GNSS Internet Radio / IP-Streaming architecture:



NTRIP Users

Number of registered users at broadcaster www.euref-ip.net

Leoš Mervart, TU Prague

Processing GNSS Data in Real-Time

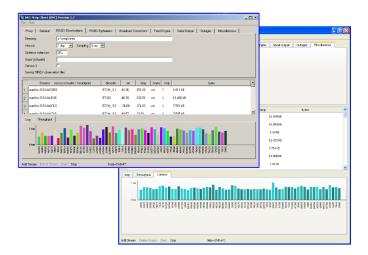
13/51

BKG Ntrip Client (BNC)

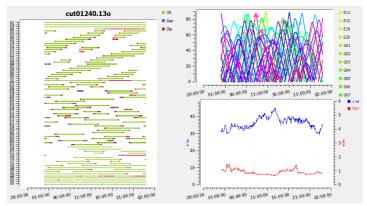
An important reason why NTRIP has been widely accepted is that BKG provided high-quality public license software tools for its usage. One of these tools is the so-called BKG Ntrip Client.

- BNC source consists currently of approximately 50.000 lines of code
- development started 2005 (LM and Georg Weber)
- BNC uses a few third-party pieces of software (e.g. RTCM decoders/encoders)
- BNC has a good documentation (thanks Georg Weber)

BNC is intended to be

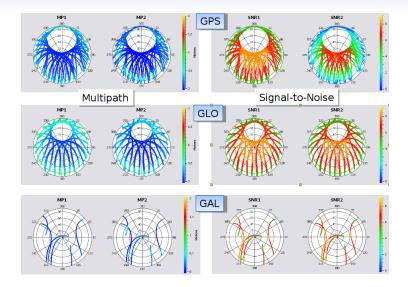

- user-friendly
- cross-platform
- easily modifiable (by students, GNSS beginners)
- useful (at least a little bit ...)

BNC is not only an NTRIP client ...


BNC Basic Usage

SBKG Ntrip Client ((BNC) Version 2.6					🛛	
Network General	RINEX Observations	RINEX Ephemeris	RINEX Editin	g&QC∣E	roadcas	Corrections Feed Engine Serial Ou 4 🕑	
Output decoded obser	vations in ASCII format to I	eed a real-time GNSS i	network engir	ю.			
Port	7777 Wait for	full epoch 5 sec 🗇					
Sampling	0 sec 🗇						
File (full path)	Z:\tmp						
Port (unsynchronized)							
					🔧 Se	cted Mountpoints	? 2
Streams: resource	loader / mountpoint	decoder	lat	kna n			
1 www.euref-ip.net:21	01/GAIA0	RTCM_2.3	41.11	151.41 no	44 -		
2 www.euref-ip.net:21	01/GCPE0	RTCM_2.3	49.91	14.79 no		-ADOR -CANT	
3 www.euref-ip.net:21	01/SOF10	RTCM_3.0	42.56	:3.39 no	-	-LEON	
4 www.euref-ip.net:21	01/SPT00	RTCM_3.0	57.73	12.53 no	42 -	+V900	-RIDS CHEU
5 www.igs-ip.net:2101,	AD150	RTCM_3.0	9.03	8.74 no		-1444	-2ARA -0011
Log Throughput	Latency PPP Plot				-	-SALA -SALA	
						-0246 ⁻¹⁷³	100
12-04-24 08:31:00 GAM	Start BNC v2. A0: Get data in RTCM 2.x fi	irmat			40 -	-0405 -5016	- HALL
12-04-24 08:31:00 5OF	120: Get data in RTCM 2.x f 10: Get data in RTCM 3.x fo	rnat				- CAGE	-044
12-04-24 08:31:00 ADI	00: Get data in RTCM 3.x fo 50: Get data in RTCM 3.x fo	rnat				-ceac	-44.40
12-04-24 08:31:01 WT2	IR0: Get data in RTCM 3.x f IR0: Get data in RTCM 3.x l	ormat			38 -	-008A	
12-04-24 08:31:01 Con	figuration read: C:/Dokume	nte und Einstellungen/	weber).config	//BKG\/BNC.ini	-		
					-	-LAGO +4.45	JUE
Add Stream Delete Stre			elp ?=Shift+F		·		
Add Scheam Desete Sche	am start stop	n	ep /=sorrer	1	36 -	-00.0	
						-10 -5	0 5
						Close Prir	rk Hølp+Shift+F1

PPP - Server-Side



Data QC in BNC

GPS, GLONASS, Galileo, QZSS, BeiDou, and SBAS

Data QC in BNC

Precise Point Positioning with PPP

				В	KG Ntrij	o Client (B	NC) Versi	on 2.6						- ×
ections	Feed Eng	ine Se	rial Output	Outages	Misce	llaneous	PPP (1)	(clk) Upload (e	eph)	••				
Precise Point Positioning (Panel 2)														
AntennasAntenna Name ANTEX File LEIAR25.R4 LEIT Antenna Name Apply Sat. Ant.														ets
Sigmas	[5.0	Code	0.	02	Phase		0.1	Tropo Ir	it	1e-6	Tropo Wh	ite Noi	se
Options	ons 🗹 Use phase obs 🗹 Estimate tropo 🖉 Use GLONASS 🗌 Use Galileo												0	
Options	Options cont'd 0.01 Sigma XYZ Init 100.0 Sigma XYZ Noise 30 Quick-Start (sec) Max Sol. Gap (s												Gap (se	ec)
Options	Options cont'd 3 Sync Corr (sec) Averaging (min)													
Stream	ms: reso	urce loa	der / mount	point		decode	r la	t	long	nmea	ntrip	bytes]A
1 produc	cts.igs-ip.	net:2101	/CLK11			RTCM_3	.0 50	.00 1	0.00	no	1	121.886 kB		
2 produc	cts.igs-ip.	net:2101	/RTCM3EPH			RTCM_3	50	.09 8	3.66	no	1	376.009 kB		
3 www.iş	gs-ip.net:	2101/FFI	VIJ1			RTCM_3	.0 50	.09 8	3.66	no	1	218.731 kB		-
Log Th	roughput	Late	ncy PPP PI	ot										
0.10 m	_ NEU	Star	08:25:58											
0.00 m			08:30		C	8:31		08:32			08:33		08:	.34
-0.10 m	-													
Add Stream	n Delet		Start St	op Start I					Help	?=Shift+	F1			

Principles of Precise Point Positioning

Observation Equations

The PPP is based on the processing of the ionosphere-free linear combination of phase observations

$$L_{3}^{ij} = \varrho^{ij} - c\delta^{ij} + T^{ij} + \bar{N}_{3}^{ij} , \qquad (5)$$

where the ambiguity term is given by

$$\bar{N}_{3}^{ij} = N_{3}^{ij} - l_{3}^{ij} = \frac{c f_{2}}{f_{1}^{2} - f_{2}^{2}} \left(n_{1}^{ij} - n_{2}^{ij} \right) + \lambda_{3} n_{1}^{ij} - l_{3}^{ij}$$
(6)

and (optionally) the ionosphere-free linear combination of code observations

$$P_3^{ij} = \varrho^{ij} - c\delta^{ij} + T^{ij} + \rho_3^{ij} , \qquad (7)$$

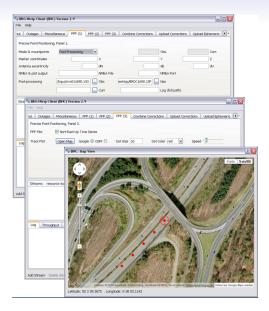
where the code bias p_3^{ij} is the linear combination of biases p_1^{ij}, p_2^{ij}

Principles of PPP Service

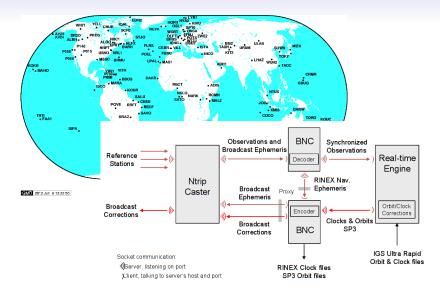
The server has to provide the orbit corrections and the satellite clock corrections $c\delta^{ij}$. That is sufficient for a client processing phase observations only.

Using the code observations on the client-side is not mandatory. After an initial convergence period (tens of minutes) there is almost no difference between a phase-only client and the client that uses also the code observations. However, correct utilization of accurate code observations improves the positioning results during the convergence period. Client which processes code observations either

- has to know the value p₃^{ij} (the value must be provided by the server - the most correct approach), or
- 2 has to estimate terms p_3^{ij} , or
- Ineglect the bias (de-weight the code observations not fully correct).


Options (2) and (3) mean that the benefit of using the code observations on the client-side (in addition to phase observations) is minor only.

PPP Options in BNC


- single station, SPP or PPP
- real-time or post-processing
- processing of code and phase ionosphere-free combinations, GPS, Glonass, and Galileo

Precise Point Po	sitioning (Panel 1)							
Obs Mountpoint	FFMJ1	РРР	▼	X 405	3455.82	Y	617729.74	Z	4869395.78
Corr Mountpoint	CLK11			dN		dE		dU	
Output	NMEA Fi	le				NMEA Port		PPP Plot	
Post-Processing	Obs			Nav			Corr		
	Output								
Precise Point Po	sitioning (Panel 2)							
Antennas	/IGS_05.	ATX	ANTEX	File LEIAR2	5.R4 LEI	т	Antenna Na	me 🗌 App	ly Sat. Ant. Offsets
Sigmas	5.0	Code	0.02	Phase	0.	1 Trop	o Init	1e-6 T	ropo White Noise
Options	~	Use phase obs	r	Estimate tro	ро	🗹 Use	GLONASS	🗆 L	lse Galileo
Options cont'd	0.01	Sigma XYZ Init	100.0	Sigma XYZ N	loise 30	Quic	k-Start (sec)		/lax Sol. Gap (sec)
Options cont'd	3	Sync Corr (sec)		Averaging (n	nin)				

PPP of Moving Receiver by BNC

PPP - Server-Side

G P S Solutions

gh Accuracy GPS Data Analysis & Consulting

HOME

RTNET

Realtime Demo

PPPAR

RTRef Network RTK

GNSS Meteorology

GNSS Converter

References

Application

RTNet Users

Contact Us

GPS Solutions Inc.

GPS Solutions Home

CFW: GPS-Enhanced Opearational Forecast System Version. 3

CFW OFS v3 CFW operational forecast package version 3

CFW OP3: Impact Study (Precipitation 2013/10/14)

Forecast w/o GPS PWV

Forecast with GPS PWV

NOAA Radar Image (Observation)

Processing GNSS Data in Real-Time

Prof. L.Mervart Algorithm / software development

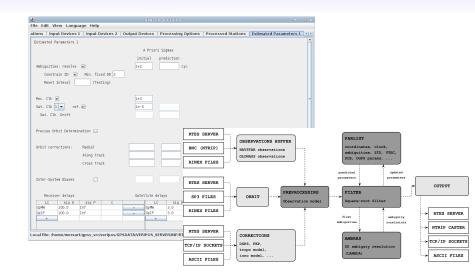
Dr. Z. Lukes Algorithm / software development

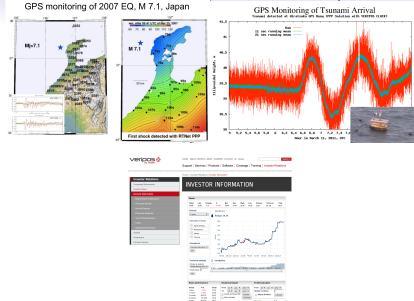
Dr. T. Springer Orbit Determination (PosiTim)

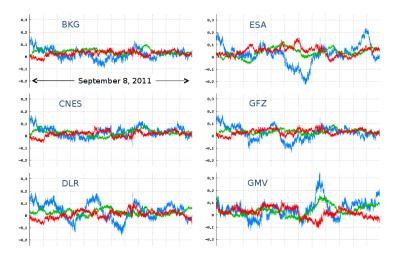
Mr. J. Johnson Co Founder, head of engineering

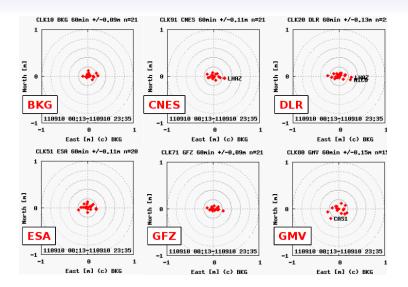
Dr. T. Iwabuchi Software applications, development and

Mr. S. Cumminss, Programmer Nov. 2011, Leuven, Belgium




Dr. C. Rocken Co Founder, science lead,


Mr. J. Barron, Programmer / Software testing



PPP - Server-Side

PPP - Server-Side

Combination using Kalman filtering

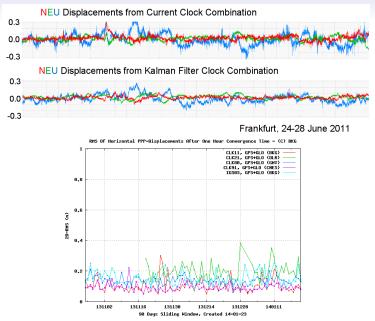
The combination is performed in two steps

- 1. The satellite clock corrections that refer to different broadcast messages (different IODs) are modified in such a way that they all refer to common broadcast clock value (common IOD is that of the selected "master" analysis center).
- 2. The corrections are used as pseudo-observations for Kalman filter using the following model (observation equation):

$$c_a^s = c^s + o_a + o_a^s$$

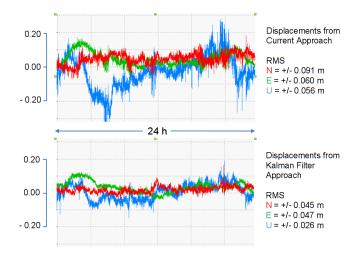
where

- c_a^s is the clock correction for satellite s estimated by the analysis center a,
- c^s is the resulting (combined) clock correction for satellite s,
- o_a is the AC-specific offset (common for all satellites), and
- o_a^s is the satellite and AC-specific offset.

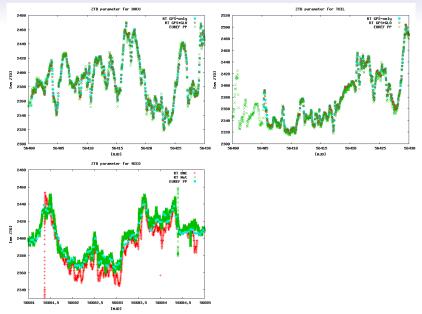

The three types of unknown parameters c^s , o_a , o_a^s differ in their stochastic properties: the parameters c^s and o_a are considered to be epoch-specific while the satellite and AC-specific offset o_a^s is assumed to be a static parameter.

Leoš Mervart, TU Prague

PPP – Combination of Corrections


*	BKG Ntrip Client	(ENC) Vers	ion 2.6								le-		*											
F	ile Help													R	00	l_tir	no	Clo	r٢	C	٦n	nbin	atio	n in
B	idcast Corrections	Feed Eng	ine Seri	tudtuO le	Outages	Miscellan	eous PP	P (1)	PPP (2)	Combination	Uploa	d (ch)								_				
	Mountpoint	AC Nem	e Weight											B	KC	5 Nt	rip	Cli	ent	: (E	ΒN	IC v	2.6)	
	1 CLK10	BRIG	1.0			_																	,	
	2 CLK20	DLR	1.0				Add Row																	
	3 CLK51	ESA	1.0	-			Delete																	
1	4 CLK71	GFZ	1.0								14	EKG N	hip Client (B	VC) Vers	ion 2.6								-	• • × •
	5 CLX80	GMV	1.0	-							F	le H	ılp											
	6 CLX91	CNES	1.0								2	Fe	ed Engine	Serial Ou	apunt (Outages Ma	scelaneous	PPP (1)	999 (2)	Cont	ination	Upload (dk)	Upland (e	
						Cont	oine Broadca	st Ephe	veris corre	ctions streams.		Н	ist	Po	t Meu	nt Password	System	Col	1 SP3 F	le		RNX File	bytes	
Į.											-11	1 pr	ducts igs-ip a	et 200	CLK33		16505	•					0 byte	0
	Streams: resor			nt	deceder	let	long	nm	ea ntrip	bytes		2 pro	ducts.igs-ip.	iet 200	CUG		GDA94	• •	/home	/weber/b	nc	/home/weber/t	nc 0 bytel	×
	1 products.igs-ip.	net:2101/C	LK10		RTCM_3.0	50.00	10.00	80	1	100 byte(s)														
	2 products.igs-ip.	net:2101/C	LK20		RTCM_3.0	50.00	10.00	80	1	781 byte(s)														_
	3 products.igs-ip.	net:2101/C	LK51		RTCM_3.0	50.00	10.00	80	1	100 byte(s)		Upload	RTNet or Conf	ination R	esuits 📗	Add Ro	w] [Del Raw				Interval 1.da	
	4 products.igs-ip.	net:2101/C	U(71		RTCM_3.0	50.00	10.00	=0	1	1.1 kB						Custom 1	tafo]				1	lampling 0 se	1 (D)
	5 products.igs-ip.	net:2101/C	LX80		RTCM_3.0	50.00	10.00	80	1	861 byte(s)	16	Stre	ams: resourc	e loader	/ mounts	cint	decoder	lat	long	omea	ntrio	bytes		
I	Log Througho	ut Late	ncy PPP	Plot								prod	ucts.igs-ip.ne	2101/C	K10		RTCM 3.0	50.00	10.00	no	1	100 byte(s)		1
	11.05-29 13:35:49		Start Rb	C v2.6 ====								prod	ucts.igs-ip.ne	2101/C	JK20		RTCM_3.0	50.00	10.00	80	1	100 byte(s)		
	11-06-29 13:35:49											prod	ucts.igs-ip.ne	:2101/C	JK51		RTCM.3.0	50.00	10.00	no	1	1.072 kB		- 11
	11-06-29 13:35:49										10				N71		-	\$0.00	10.00			100 1-4-00		*
	11-06-29 13:35:49	CLX71: Get	data in RTCM	3.x format								Log	Throughput	Later	KY PS	P Plot								
	11:05:29 13:35:49												9 13:42:23 CJ											
	11-06-29 13:35:50				met								9 13:42:23 CJ 9 13:42:23 CJ											
	11-06-29 13:35:50 11-06-29 13:35:50				Desktoo/RNC (Marcent	R stream(s)						9 13:42:23 00											- nii
1												11-06-2	9 13:42:23 0.4	91: Get o	lata in RTC	M 3.x format								2
14	dd Stream Delete	Stream \$1	art Stop		Help	-shift+F	1						9 13:42:24 RT			RTCH 3.x fem	nat							
																Users/weber/D	esktop/BNC	CMB.conf, 8	rtream(s)					1
												d Stree	m Delete Str	on St	et Stop		Hek	-Shift+F1						

PPP – Combination of Corrections



Leoš Mervart, TU Prague

PPP – Combination of Corrections

PPP – Estimated Troposphere

PPP with Ambiguity Resolution (PPPAR or PPP-RTK)

For a dual-band GPS receiver, the observation equations may read as

$$P^{i} = \varrho^{i} + c \,\delta - c \,\delta^{i} + T^{i} + b_{P}$$

$$L^{i} = \varrho^{i} + c \,\delta - c \,\delta^{i} + T^{i} + b^{i}$$

where

 P^i , L^i are the ionosphere-free code and phase measurements, ϱ^i is the travel distance between the satellite and the receiver, δ , δ^i are the receiver and satellite clock errors, T^i is the tropospheric delay, b_P is the code bias, and b^i is the phase bias (including initial phase ambiguity).

The single-difference bias $b^{ij} = b^i - b^j$ is given by

$$b^{ij} = rac{\lambda_5 - \lambda_3}{2} \left(n_5^{ij} + b_5^{ij}
ight) + \lambda_3 \left(n_1^{ij} + b_1^{ij}
ight)$$

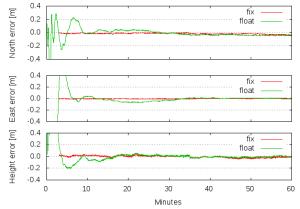
where

 $egin{array}{c} n_1^{ij}, \ n_5^{ij} \ b_1^{ij} \ b_5^{ij} \end{array}$

are the narrow-lane and wide-lane integer ambiguities is the narrow-lane (receiver-independent) SD bias is the wide-lane (receiver-independent) SD bias

Leoš Mervart, TU Prague

PPPAR Algorithm (cont.)


Receiver-independent single-difference biases b_1^{ij} and b_5^{ij} have to be estimated on the server-side.

- Narrow-lane bias b_1^{ij} may be combined with satellite clock corrections \implies modified satellite clock corrections.
- Wide-lane bias have to be transmitted from the server to the client (this bias is stable in time and can thus be transmitted in lower rate).

On the client-side the biases b_1^{ij} and b_5^{ij} are used as known quantities. It allows fixing the integer ambiguities n_5^{ij} and n_1^{ij} . The technique is called Precise Point Positioning with Ambiguity Resolution (PPP AR) or PPP RTK, or zero-difference ambiguity fixing (the latter term not fully correct because the ambiguities are actually being fixed on single-difference level).

Performance

Station KIR0 (kinematic)

Standard deviations (N,E,U)

				30-60 min		
float	0.034	0.026	0.026 0.016	0.010	0.009	0.011
fix	0.007	0.003	0.016	0.007	0.003	0.012

Leoš Mervart, TU Prague

Challenges

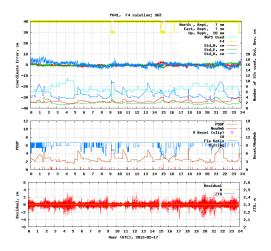
There are still both principal and technical problems and challenges:

- Principal problems:
 - Convergence time: PPP RTK in the form outlined above provides accuracy similar (or even slightly better) to RTK but the convergence time is longer.
 - There is a degradation in accuracy with the age of corrections.
 - Glonass ambiguity resolution: is it possible to resolve Glonass ambiguities? (yes, it is possible but it implicates introducing new parameters - does it really improve the results?)
 - ...
- Technical problems:
 - Availability of data in real time (reference network, high-precision satellite orbits).
 - Very high CPU requirements on the server-side.
 - Solution robustness on the server-side (problems with reliable DD ambiguity resolution).
 - ...

Challenges (cont.)

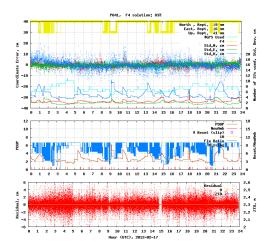
Longer convergence time

In case of a standard RTK the very short convergence time is being achieved thanks to the combined DD ambiguity resolution on both L_1 and L_2 when the differential ionospheric bias can either be neglected (short baselines) or its influence is mitigated (stochastic ionosphere estimation with constraints).

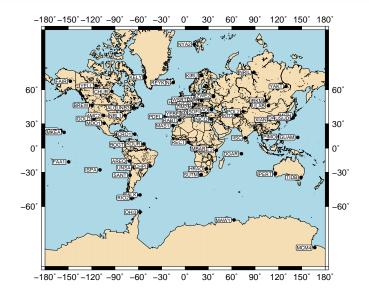

On the contrary, the outlined PPP RTK algorithm is in principle based on processing single (ionosphere-free) linear combination and resolving only one set of (narrow-lane) initial phase ambiguities.

Possible solutions

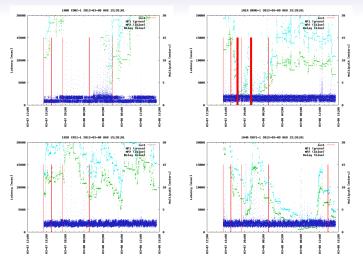
- third carrier
- multiple GNSS (Glonass ambiguity resolution?)
- processing original carriers (instead of ionosphere-free linear combination) and modeling the ionosphere?
- ?


Challenges (cont.)

Age of corrections 0 s


Challenges (cont.)

Age of corrections up to 35 s



Real-Time Data Availability

IGS network: very good global coverage:

Real-Time Data Availability (cont.)

Gaps in reference network data may degrade the PPP RTK server performance considerably!

Technical issues

CPU-requirements on the server-side

Processing a global reference network is a very CPU-intensive task. Numerically stable forms of the Kalman filter (square-root, UDU factorization etc.) require very fast hardware. Possible solutions:

- Processing optimization (estimating various kinds of parameters in different rates)
- Parallel processing
- Advanced hardware (GPS Solutions uses GPU-accelerated library)

Reliable DD ambiguity resolution on the server-side

Reliable double-difference ambiguity resolution on the server-side remains the crucial issue of the PPP RTK technique.

Dissemination of PPP RTK corrections

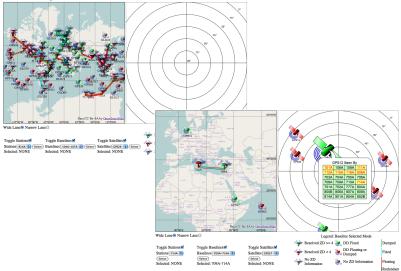
- data links
- formats (standardization?)
- optimization of correction rates (bandwidth)

Leoš Mervart, TU Prague

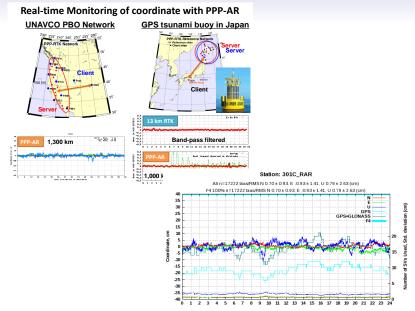
Satellite orbits

Predicted part of the IGS ultra-rapid orbits (available in real-time) is sometimes not sufficient for the processing of a global reference network (with narrow-lane ambiguity resolution). We have been forced to implement the real-time orbit determination capability in our main processing tool RTNet (Real-Time Network software).

*	RTNet Input Editor - +					
File Edit View Language						
Estimated Parameters 2	Ambiguity Resolution DGPS/FKP/VRS Info Precise Orbit Determination					
Precise Orbit Determinatio	an					
Satellites	(blank = all)					
Gravity Field A/ORBEST/	/GEN/EIGEN2. Open degree order					
Est.?	A Priori Sigma_0 Noise					
Initial Position	1.0 0.001 (r,a,o)					
Initial Velocity	0.0 0.0 (r,a,o)					
Atmospheric Drag 🖌	3.0 1.0 0.01					
Radiation Pressure 🗹	6.0 1.0 0.01					
Constrain Position 0.0						
Constrain Velocity 0.0						
D. 4						
Local file:(Changed) /home/mervart/GPSDATA/ORBEST/INP/RTNET.INP						


Regional versus global PPP RTK services

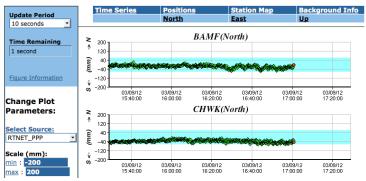
Currently we are routinely running both regional and global PPP RTK service demonstrators in real-time (some of the results will be shown below).


- in principal there is no difference between a global and regional service as far as the data processing, algorithms etc. is concerned
- global PPP RTK service has at least the following two advantages
 - $1.\,$ a single correction stream can serve all users
 - 2. all satellites are tracked permanently (helps ambiguity resolution)
- global PPP RTK service is much more challenging (data availability, CPU-requirements on the server-side, DD ambiguity resolution on long baselines, the highest requirements for the accuracy of the satellite orbits)

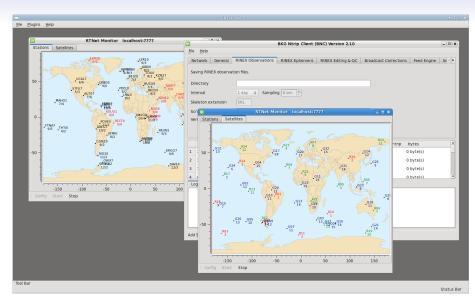
Services monitoring

Reliable, production-quality PPP RTK service requires sophisticated monitoring tools.

Results


Results (cont.)

Home > Tsunami


Realtime GPS Enhancement to Tsunami Warning System (Prototype)

Time Series Plots

Leoš Mervart, TU Prague

New Project - GNSS Center

