/* ------------------------------------------------------------------------- * BKG NTRIP Client * ------------------------------------------------------------------------- * * Class: t_pppSatObs * * Purpose: Satellite observations * * Author: L. Mervart * * Created: 29-Jul-2014 * * Changes: * * -----------------------------------------------------------------------*/ #include #include #include #include #include "pppSatObs.h" #include "bncconst.h" #include "pppEphPool.h" #include "pppStation.h" #include "bncutils.h" #include "bncantex.h" #include "pppObsPool.h" #include "pppClient.h" using namespace BNC_PPP; using namespace std; // Constructor //////////////////////////////////////////////////////////////////////////// t_pppSatObs::t_pppSatObs(const t_satObs& pppSatObs) { _prn = pppSatObs._prn; _time = pppSatObs._time; _outlier = false; _valid = true; _reference = false; _stecSat = 0.0; _signalPriorities = QString::fromStdString(OPT->_signalPriorities); for (unsigned ii = 0; ii < t_frequency::max; ii++) { _obs[ii] = 0; } prepareObs(pppSatObs); } // Destructor //////////////////////////////////////////////////////////////////////////// t_pppSatObs::~t_pppSatObs() { for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) { delete _obs[iFreq]; } } // //////////////////////////////////////////////////////////////////////////// void t_pppSatObs::prepareObs(const t_satObs& pppSatObs) { _model.reset(); std::vector bb = OPT->frqBands(_prn.system()); char frqNum1 = '0'; if (bb.size() >= 1) { frqNum1 = bb[0]; } char frqNum2 = '0'; if (bb.size() == 2) { frqNum2 = bb[1]; } // Select pseudo-ranges and phase observations // ------------------------------------------- QStringList priorList = _signalPriorities.split(" ", Qt::SkipEmptyParts); string preferredAttrib; for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) { t_frequency::type frqType = static_cast(iFreq); char frqSys = t_frequency::toString(frqType)[0]; //cout << "frqSys: " << frqSys << endl; char frqNum = t_frequency::toString(frqType)[1]; //cout << "frqNum: " << frqNum << endl; if (frqSys != _prn.system()) { continue; } if (frqNum != frqNum1 && frqNum != frqNum2 ) { continue; } QStringList hlp; for (int ii = 0; ii < priorList.size(); ii++) { if (priorList[ii].indexOf(":") != -1) { hlp = priorList[ii].split(":", Qt::SkipEmptyParts); if (hlp.size() == 2 && hlp[0].length() == 1 && hlp[0][0] == frqSys) { hlp = hlp[1].split("&", Qt::SkipEmptyParts); } if (hlp.size() == 2 && hlp[0].indexOf(frqNum) != -1) { preferredAttrib = hlp[1].toStdString(); //cout << "preferredAttrib: " << preferredAttrib << endl; } } for (unsigned iPref = 0; iPref < preferredAttrib.length(); iPref++) { QString obsType = QString("%1").arg(frqNum) + preferredAttrib[iPref]; //cout << "obstype: " << obsType.toStdString().c_str() << endl; if (_obs[iFreq] == 0) { for (unsigned ii = 0; ii < pppSatObs._obs.size(); ii++) { const t_frqObs* obs = pppSatObs._obs[ii]; //cout << "observation2char: " << obs->_rnxType2ch << " vs. " << obsType.toStdString().c_str()<< endl; if (obs->_rnxType2ch == obsType.toStdString() && obs->_codeValid && obs->_code && obs->_phaseValid && obs->_phase) { _obs[iFreq] = new t_frqObs(*obs); //cout << "================> newObs: " << obs->_rnxType2ch << " obs->_lockTime: " << obs->_lockTime << endl; } } } } } } // Used frequency types // -------------------- _fType1 = t_frqBand::toFreq(_prn.system(), frqNum1); _fType2 = t_frqBand::toFreq(_prn.system(), frqNum2); // Check whether all required frequencies available // ------------------------------------------------ for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) { t_lc::type tLC = OPT->LCs(_prn.system())[ii]; if (tLC == t_lc::GIM) {continue;} if (!isValid(tLC)) { _valid = false; return; } } // Find GLONASS Channel Number // --------------------------- if (_prn.system() == 'R') { _channel = PPP_CLIENT->ephPool()->getChannel(_prn); } else { _channel = 0; } // Compute Satellite Coordinates at Time of Transmission // ----------------------------------------------------- _xcSat.ReSize(6); _xcSat = 0.0; _vvSat.ReSize(3); _vvSat = 0.0; bool totOK = false; ColumnVector satPosOld(6); satPosOld = 0.0; t_lc::type tLC = t_lc::dummy; if (isValid(t_lc::cIF)) { tLC = t_lc::cIF; } if (tLC == t_lc::dummy && isValid(t_lc::c1)) { tLC = t_lc::c1; } if (tLC == t_lc::dummy && isValid(t_lc::c2)) { tLC = t_lc::c2; } if (tLC == t_lc::dummy) { _valid = false; return; } double prange = obsValue(tLC); for (int ii = 1; ii <= 10; ii++) { bncTime ToT = _time - prange / t_CST::c - _xcSat[3]; if (PPP_CLIENT->ephPool()->getCrd(_prn, ToT, _xcSat, _vvSat) != success) { _valid = false; return; } ColumnVector dx = _xcSat - satPosOld; dx[3] *= t_CST::c; if (dx.NormFrobenius() < 1.e-4) { totOK = true; break; } satPosOld = _xcSat; } if (totOK) { _signalPropagationTime = prange / t_CST::c - _xcSat[3]; _model._satClkM = _xcSat[3] * t_CST::c; } else { _valid = false; } } // //////////////////////////////////////////////////////////////////////////// void t_pppSatObs::lcCoeff(t_lc::type tLC, map& codeCoeff, map& phaseCoeff, map& ionoCoeff) const { codeCoeff.clear(); phaseCoeff.clear(); ionoCoeff.clear(); double f1 = t_CST::freq(_fType1, _channel); double f2 = t_CST::freq(_fType2, _channel); double f1GPS = t_CST::freq(t_frequency::G1, 0); switch (tLC) { case t_lc::l1: phaseCoeff[_fType1] = 1.0; ionoCoeff [_fType1] = -1.0 * pow(f1GPS, 2) / pow(f1, 2); return; case t_lc::l2: phaseCoeff[_fType2] = 1.0; ionoCoeff [_fType2] = -1.0 * pow(f1GPS, 2) / pow(f2, 2); return; case t_lc::lIF: phaseCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2); phaseCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2); return; case t_lc::MW: phaseCoeff[_fType1] = f1 / (f1 - f2); phaseCoeff[_fType2] = -f2 / (f1 - f2); codeCoeff[_fType1] = -f1 / (f1 + f2); codeCoeff[_fType2] = -f2 / (f1 + f2); return; case t_lc::CL: phaseCoeff[_fType1] = 0.5; codeCoeff [_fType1] = 0.5; return; case t_lc::c1: codeCoeff[_fType1] = 1.0; ionoCoeff[_fType1] = pow(f1GPS, 2) / pow(f1, 2); return; case t_lc::c2: codeCoeff[_fType2] = 1.0; ionoCoeff[_fType2] = pow(f1GPS, 2) / pow(f2, 2); return; case t_lc::cIF: codeCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2); codeCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2); return; case t_lc::GIM: case t_lc::dummy: case t_lc::maxLc: return; } } // //////////////////////////////////////////////////////////////////////////// bool t_pppSatObs::isValid(t_lc::type tLC) const { bool valid = true; obsValue(tLC, &valid); return valid; } // //////////////////////////////////////////////////////////////////////////// double t_pppSatObs::obsValue(t_lc::type tLC, bool* valid) const { double retVal = 0.0; if (valid) *valid = true; // Pseudo observations if (tLC == t_lc::GIM) { if (_stecSat == 0.0) { if (valid) *valid = false; return 0.0; } else { return _stecSat; } } map codeCoeff; map phaseCoeff; map ionoCoeff; lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff); map::const_iterator it; // Code observations for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) { t_frequency::type tFreq = it->first; if (_obs[tFreq] == 0) { if (valid) *valid = false; return 0.0; } else { retVal += it->second * _obs[tFreq]->_code; } } // Phase observations for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) { t_frequency::type tFreq = it->first; if (_obs[tFreq] == 0) { if (valid) *valid = false; return 0.0; } else { retVal += it->second * _obs[tFreq]->_phase * t_CST::lambda(tFreq, _channel); } } return retVal; } // //////////////////////////////////////////////////////////////////////////// double t_pppSatObs::lambda(t_lc::type tLC) const { double f1 = t_CST::freq(_fType1, _channel); double f2 = t_CST::freq(_fType2, _channel); if (tLC == t_lc::l1) { return t_CST::c / f1; } else if (tLC == t_lc::l2) { return t_CST::c / f2; } else if (tLC == t_lc::lIF) { return t_CST::c / (f1 + f2); } else if (tLC == t_lc::MW) { return t_CST::c / (f1 - f2); } else if (tLC == t_lc::CL) { return t_CST::c / f1 / 2.0; } return 0.0; } // //////////////////////////////////////////////////////////////////////////// double t_pppSatObs::sigma(t_lc::type tLC) const { double retVal = 0.0; map codeCoeff; map phaseCoeff; map ionoCoeff; lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff); if (tLC == t_lc::GIM) { retVal = OPT->_sigmaGIM * OPT->_sigmaGIM; } map::const_iterator it; for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) { retVal += it->second * it->second * OPT->_sigmaC1 * OPT->_sigmaC1; } for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) { retVal += it->second * it->second * OPT->_sigmaL1 * OPT->_sigmaL1; } retVal = sqrt(retVal); // De-Weight R/C // ----------- if (_prn.system() == 'R') { retVal *= 5.0; } // Elevation-Dependent Weighting // ----------------------------- double cEle = 1.0; if ( (OPT->_eleWgtCode && t_lc::includesCode(tLC)) || (OPT->_eleWgtPhase && t_lc::includesPhase(tLC)) ) { double eleD = eleSat()*180.0/M_PI; double hlp = fabs(90.0 - eleD); cEle = (1.0 + hlp*hlp*hlp*0.000004); } return cEle * retVal; } // //////////////////////////////////////////////////////////////////////////// double t_pppSatObs::maxRes(t_lc::type tLC) const { double retVal = 0.0; map codeCoeff; map phaseCoeff; map ionoCoeff; lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff); map::const_iterator it; for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) { retVal += it->second * it->second * OPT->_maxResC1 * OPT->_maxResC1; } for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) { retVal += it->second * it->second * OPT->_maxResL1 * OPT->_maxResL1; } if (tLC == t_lc::GIM) { retVal = OPT->_maxResGIM * OPT->_maxResGIM + OPT->_maxResGIM * OPT->_maxResGIM; } retVal = sqrt(retVal); return retVal; } // //////////////////////////////////////////////////////////////////////////// t_irc t_pppSatObs::cmpModel(const t_pppStation* station) { // Reset all model values // ---------------------- _model.reset(); // Topocentric Satellite Position // ------------------------------ ColumnVector rSat = _xcSat.Rows(1,3); ColumnVector rRec = station->xyzApr(); ColumnVector rhoV = rSat - rRec; _model._rho = rhoV.NormFrobenius(); ColumnVector vSat = _vvSat; ColumnVector neu(3); xyz2neu(station->ellApr().data(), rhoV.data(), neu.data()); _model._eleSat = acos(sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / _model._rho); if (neu[2] < 0.0) { _model._eleSat *= -1.0; } _model._azSat = atan2(neu[1], neu[0]); // Sun unit vector ColumnVector xSun = t_astro::Sun(_time.mjddec()); xSun /= xSun.norm_Frobenius(); // Satellite unit vectors sz, sy, sx ColumnVector sz = -rSat / rSat.norm_Frobenius(); ColumnVector sy = crossproduct(sz, xSun); ColumnVector sx = crossproduct(sy, sz); sx /= sx.norm_Frobenius(); sy /= sy.norm_Frobenius(); // LOS unit vector satellite --> receiver ColumnVector rho = rRec - rSat; rho /= rho.norm_Frobenius(); // LOS vector in satellite frame ColumnVector u(3); u(1) = dotproduct(sx, rho); u(2) = dotproduct(sy, rho); u(3) = dotproduct(sz, rho); // Azimuth and elevation in satellite antenna frame _model._elTx = atan2(u(3),sqrt(pow(u(2),2)+pow(u(1),2))); _model._azTx = atan2(u(2),u(1)); // Satellite Clocks // ---------------- _model._satClkM = _xcSat[3] * t_CST::c; // Receiver Clocks // --------------- _model._recClkM = station->dClk() * t_CST::c; // Sagnac Effect (correction due to Earth rotation) // ------------------------------------------------ ColumnVector Omega(3); Omega[0] = 0.0; Omega[1] = 0.0; Omega[2] = t_CST::omega / t_CST::c; _model._sagnac = DotProduct(Omega, crossproduct(rSat, rRec)); // Antenna Eccentricity // -------------------- _model._antEcc = -DotProduct(station->xyzEcc(), rhoV) / _model._rho; // Antenna Phase Center Offsets and Variations // ------------------------------------------- if (PPP_CLIENT->antex()) { for (unsigned ii = 0; ii < t_frequency::max; ii++) { t_frequency::type frqType = static_cast(ii); string frqStr = t_frequency::toString(frqType); if (frqStr[0] != _prn.system()) {continue;} bool found; QString prn(_prn.toString().c_str()); _model._antPCO[ii] = PPP_CLIENT->antex()->rcvCorr(station->antName(), frqType, _model._eleSat, _model._azSat, found); _model._antPCO[ii] += PPP_CLIENT->antex()->satCorr(prn, frqType, _model._elTx, _model._azTx, found); if (OPT->_isAPC && found) { // the PCOs as given in the satellite antenna correction for all frequencies // have to be reduced by the PCO of the respective reference frequency if (_prn.system() == 'G') { _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::G1, _model._elTx, _model._azTx, found); } else if (_prn.system() == 'R') { _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::R1, _model._elTx, _model._azTx, found); } else if (_prn.system() == 'E') { _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::E1, _model._elTx, _model._azTx, found); } else if (_prn.system() == 'C') { _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::C2, _model._elTx, _model._azTx, found); } } } } // Tropospheric Delay // ------------------ _model._tropo = t_tropo::delay_saast(rRec, _model._eleSat); // Code Biases // ----------- const t_satCodeBias* satCodeBias = PPP_CLIENT->obsPool()->satCodeBias(_prn); if (satCodeBias) { for (unsigned ii = 0; ii < satCodeBias->_bias.size(); ii++) { const t_frqCodeBias& bias = satCodeBias->_bias[ii]; for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) { string frqStr = t_frequency::toString(t_frequency::type(iFreq)); if (frqStr[0] != _prn.system()) { continue; } const t_frqObs* obs = _obs[iFreq]; if (obs && obs->_rnxType2ch == bias._rnxType2ch) { _model._codeBias[iFreq] = bias._value; } } } } // Phase Biases // ----------- const t_satPhaseBias* satPhaseBias = PPP_CLIENT->obsPool()->satPhaseBias(_prn); double yaw = 0.0; bool ssr = false; if (satPhaseBias) { double dt = station->epochTime() - satPhaseBias->_time; if (satPhaseBias->_updateInt) { dt -= (0.5 * ssrUpdateInt[satPhaseBias->_updateInt]); } yaw = satPhaseBias->_yaw + satPhaseBias->_yawRate * dt; ssr = true; for (unsigned ii = 0; ii < satPhaseBias->_bias.size(); ii++) { const t_frqPhaseBias& bias = satPhaseBias->_bias[ii]; for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) { string frqStr = t_frequency::toString(t_frequency::type(iFreq)); if (frqStr[0] != _prn.system()) { continue; } const t_frqObs* obs = _obs[iFreq]; if (obs && obs->_rnxType2ch == bias._rnxType2ch) { _model._phaseBias[iFreq] = bias._value; } } } } // Phase Wind-Up // ------------- _model._windUp = station->windUp(_time, _prn, rSat, ssr, yaw, vSat) ; // Relativistic effect due to earth gravity // ---------------------------------------- double a = rSat.NormFrobenius() + rRec.NormFrobenius(); double b = (rSat - rRec).NormFrobenius(); double gm = 3.986004418e14; // m3/s2 _model._rel = 2 * gm / t_CST::c / t_CST::c * log((a + b) / (a - b)); // Tidal Correction // ---------------- _model._tideEarth = -DotProduct(station->tideDsplEarth(), rhoV) / _model._rho; _model._tideOcean = -DotProduct(station->tideDsplOcean(), rhoV) / _model._rho; // Ionospheric Delay // ----------------- const t_vTec* vTec = PPP_CLIENT->obsPool()->vTec(); bool vTecUsage = true; for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) { t_lc::type tLC = OPT->LCs(_prn.system())[ii]; if (tLC == t_lc::cIF || tLC == t_lc::lIF) { vTecUsage = false; } } if (vTecUsage && vTec) { double stec = station->stec(vTec, _signalPropagationTime, rSat); double f1GPS = t_CST::freq(t_frequency::G1, 0); for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) { if (OPT->_pseudoObsIono) { // For scaling the slant ionospheric delays the trick is to be consistent with units! // The conversion of TECU into meters requires the frequency of the signal. // Hence, GPS L1 frequency is used for all systems. The same is true for mu_i in lcCoeff(). _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(f1GPS, 2) * stec; } else { // PPP-RTK t_frequency::type frqType = static_cast(iFreq); _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(t_CST::freq(frqType, _channel), 2) * stec; } } } // Set Model Set Flag // ------------------ _model._set = true; //printModel(); return success; } // //////////////////////////////////////////////////////////////////////////// void t_pppSatObs::printModel() const { LOG.setf(ios::fixed); LOG << "\nMODEL for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "") << "\n======================= " << endl << "PPP " << ((OPT->_pseudoObsIono) ? " with pseudo-observations for STEC" : "") << endl << "RHO : " << setw(12) << setprecision(3) << _model._rho << endl << "ELE : " << setw(12) << setprecision(3) << _model._eleSat * RHO_DEG << endl << "AZI : " << setw(12) << setprecision(3) << _model._azSat * RHO_DEG << endl << "SATCLK : " << setw(12) << setprecision(3) << _model._satClkM << endl << "RECCLK : " << setw(12) << setprecision(3) << _model._recClkM << endl << "SAGNAC : " << setw(12) << setprecision(3) << _model._sagnac << endl << "ANTECC : " << setw(12) << setprecision(3) << _model._antEcc << endl << "TROPO : " << setw(12) << setprecision(3) << _model._tropo << endl << "WINDUP : " << setw(12) << setprecision(3) << _model._windUp << endl << "REL : " << setw(12) << setprecision(3) << _model._rel << endl << "EARTH TIDES : " << setw(12) << setprecision(3) << _model._tideEarth << endl << "OCEAN TIDES : " << setw(12) << setprecision(3) << _model._tideOcean << endl << endl << "FREQUENCY DEPENDENT CORRECTIONS:" << endl << "-------------------------------" << endl; for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) { if (_obs[iFreq]) { string frqStr = t_frequency::toString(t_frequency::type(iFreq)); if (_prn.system() == frqStr[0]) { LOG << "PCO : " << frqStr << setw(12) << setprecision(3) << _model._antPCO[iFreq] << endl << "BIAS CODE : " << frqStr << setw(12) << setprecision(3) << _model._codeBias[iFreq] << "\t(" << _obs[iFreq]->_rnxType2ch[1] << ") " << endl << "BIAS PHASE : " << frqStr << setw(12) << setprecision(3) << _model._phaseBias[iFreq] << "\t(" << _obs[iFreq]->_rnxType2ch[1] << ") " << endl << "IONO CODEDELAY: " << frqStr << setw(12) << setprecision(3) << _model._ionoCodeDelay[iFreq]<< endl; } } } } // //////////////////////////////////////////////////////////////////////////// void t_pppSatObs::printObsMinusComputed() const { LOG.setf(ios::fixed); LOG << "\nOBS-COMP for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "") << endl << "========================== " << endl; char sys = _prn.system(); for (unsigned ii = 0; ii < OPT->LCs(sys).size(); ii++) { t_lc::type tLC = OPT->LCs(sys)[ii]; LOG << "OBS-CMP " << setw(4) << t_lc::toString(tLC) << ": " << _prn.toString() << " " << setw(12) << setprecision(3) << obsValue(tLC) << " " << setw(12) << setprecision(3) << cmpValue(tLC) << " " << setw(12) << setprecision(3) << obsValue(tLC) - cmpValue(tLC) << endl; } } // //////////////////////////////////////////////////////////////////////////// double t_pppSatObs::cmpValueForBanc(t_lc::type tLC) const { return cmpValue(tLC) - _model._rho - _model._sagnac - _model._recClkM; } // //////////////////////////////////////////////////////////////////////////// double t_pppSatObs::cmpValue(t_lc::type tLC) const { double cmpValue; if (!isValid(tLC)) { cmpValue = 0.0; } else if (tLC == t_lc::GIM) { cmpValue = _stecSat; } else { // Non-Dispersive Part // ------------------- double nonDisp = _model._rho + _model._recClkM - _model._satClkM + _model._sagnac + _model._antEcc + _model._tropo + _model._tideEarth + _model._tideOcean + _model._rel; // Add Dispersive Part // ------------------- double dispPart = 0.0; map codeCoeff; map phaseCoeff; map ionoCoeff; lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff); map::const_iterator it; for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) { t_frequency::type tFreq = it->first; dispPart += it->second * (_model._antPCO[tFreq] - _model._codeBias[tFreq]); if (OPT->PPP_RTK) { dispPart += it->second * (_model._ionoCodeDelay[tFreq]); } } for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) { t_frequency::type tFreq = it->first; dispPart += it->second * (_model._antPCO[tFreq] - _model._phaseBias[tFreq] + _model._windUp * t_CST::lambda(tFreq, _channel)); if (OPT->PPP_RTK) { dispPart += it->second * (- _model._ionoCodeDelay[tFreq]); } } cmpValue = nonDisp + dispPart; } return cmpValue; } // //////////////////////////////////////////////////////////////////////////// void t_pppSatObs::setRes(t_lc::type tLC, double res) { _res[tLC] = res; } // //////////////////////////////////////////////////////////////////////////// double t_pppSatObs::getRes(t_lc::type tLC) const { map::const_iterator it = _res.find(tLC); if (it != _res.end()) { return it->second; } else { return 0.0; } } // //////////////////////////////////////////////////////////////////////////// bool t_pppSatObs::setPseudoObsIono(t_frequency::type freq) { bool pseudoObsIono = false; _stecSat = _model._ionoCodeDelay[freq]; if (_stecSat) { pseudoObsIono = true; } return pseudoObsIono; }