Changeset 9936 in ntrip for trunk


Ignore:
Timestamp:
Dec 2, 2022, 10:54:25 PM (2 years ago)
Author:
stuerze
Message:

docu updated

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/BNC/src/bnchelp.html

    r9854 r9936  
    172172&nbsp; &nbsp; &nbsp; 2.13 <a href=#pppclient><b>PPP Client</b></a><br>
    173173&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1 <a href=#pppInp><b>PPP (1): Input and Output</b></a><br>
    174 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.1 <a href=#pppdatasource>Data Source</a><br>
    175 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.2 <a href=#ppprnxobs>RINEX Observation File</a><br>
    176 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.3 <a href=#ppprnxnav>RINEX Navigation File</a><br>
    177 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.4 <a href=#pppcorrstream>Corrections Stream</a><br>
    178 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.5 <a href=#pppcorrfile>Corrections File</a><br>
    179 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.6 <a href=#pppantexfile>ANTEX File</a><br>
    180 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.7 <a href=#pppmarkcoor>Coordinates File</a><br>
    181 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.8 <a href=#pppv3filename>Version 3 Filenames</a><br>
    182 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.9 <a href=#ppplogfile>Logfile Directory</a><br>
    183 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.10 <a href=#pppnmeafile>NMEA Directory</a><br>
    184 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.11 <a href=#pppsnxtrofile>SNX TRO Directory</a><br>
    185 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.11.1 <a href=#pppsnxtrointr>Interval</a><br>
    186 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.11.2 <a href=#pppsnxtrosampl>Sampling</a><br>
    187 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.11.3 <a href=#pppsnxAc>Analysis Center</a><br>
    188 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.11.4 <a href=#pppsnxSol>Solution ID</a><br>
    189 
    190 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2 <a href=#pppStation><b>PPP (2): Processed Stations</b></a><br>
    191 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2.1 <a href=#pppsite>Station</a><br>
    192 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2.2 <a href=#pppnehsigma>Sigma North/East/Up</a><br>
    193 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2.3 <a href=#pppnehnoise>Noise North/East/Up</a><br>
    194 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2.4 <a href=#ppptropsigma>Tropo Sigma</a><br>
    195 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2.5 <a href=#ppptropnoise>Tropo Noise</a><br>
    196 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2.6 <a href=#pppnmeaport>NMEA Port</a><br>
    197 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.3 <a href=#pppOptions><b>PPP (3): Processing Options</b></a><br>
    198 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.3.1 <a href=#ppplinecombi>Linear Combinations</a><br>
    199 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.3.2 <a href=#pppcodeobs>Code Observations</a><br>
    200 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.3.3 <a href=#pppphaseobs>Phase Observations</a><br>
    201 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.3.4 <a href=#pppeleweight>Elevation Dependent Weighting</a><br>
    202 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.3.5 <a href=#pppminobs>Minimum Number of Observations</a><br>
    203 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.3.6 <a href=#pppmineleva>Minimum Elevation</a><br>
    204 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.3.7 <a href=#pppwaitclockcorr>Wait for Clock Corrections</a><br>
    205 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.3.8 <a href=#pppseeding>Seeding</a><br>
     174&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.1  <a href=#pppdatasource>Data Source</a><br>
     175&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.2  <a href=#pppcorrstream>Corrections Stream</a><br>
     176&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.3  <a href=#pppcorrfile>Corrections File</a><br>
     177&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.4  <a href=#pppionostream>Ionosphere Stream</a><br>
     178&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.5  <a href=#pppionofile>Ionosphere File</a><br>
     179&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.6  <a href=#ppprnxobs>RINEX Observation File</a><br>
     180&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.7  <a href=#ppprnxnav>RINEX Navigation File</a><br>
     181&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.8  <a href=#pppantexfile>ANTEX File</a><br>
     182&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.9  <a href=#pppmarkcoor>Coordinates File</a><br>
     183&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.10 <a href=#pppblqfile>BLQ File</a><br>
     184&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.11 <a href=#ppplogfile>Logfile Directory</a><br>
     185&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.12 <a href=#pppnmeafile>NMEA Directory</a><br>
     186&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.13 <a href=#pppsnxtrofile>SNX TRO Directory</a><br>
     187&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.13.1 <a href=#pppsnxtrointr>Interval</a><br>
     188&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.13.2 <a href=#pppsnxtrosampl>Sampling</a><br>
     189&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.13.3 <a href=#pppsnxAc>Analysis Center</a><br>
     190&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.1.13.4 <a href=#pppsnxSol>Solution ID</a><br>
     191&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2 <a href=#pppOptions><b>PPP (2): Processing Options</b></a><br>
     192&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2.1 <a href=#pppobs>GNSS Observations</a><br>
     193&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2.2 <a href=#pppcodeobs>Code Observations</a><br>
     194&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2.3 <a href=#pppphaseobs>Phase Observations</a><br>
     195&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2.4 <a href=#pppeleweight>Elevation Dependent Weighting</a><br>
     196&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2.5 <a href=#pppminobs>Minimum Number of Observations</a><br>
     197&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2.6 <a href=#pppmineleva>Minimum Elevation</a><br>
     198&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2.7 <a href=#pppwaitclockcorr>Wait for Clock Corrections</a><br>
     199&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2.8 <a href=#pppseeding>Seeding</a><br>
     200&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2.9 <a href=#ppppseudoobs>Pseudo Observations</a><br>
     201&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.2.10 <a href=#ppppseudogimobs>GIM Pseudo Observations</a><br>
     202&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.3 <a href=#pppStation><b>PPP (3): Processed Stations</b></a><br>
     203&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.3.1 <a href=#pppsite>Station</a><br>
     204&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.3.2 <a href=#pppnehsigma>Sigma North/East/Up</a><br>
     205&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.3.3 <a href=#pppnehnoise>Noise North/East/Up</a><br>
     206&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.3.4 <a href=#ppptropsigma>Tropo Sigma</a><br>
     207&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.3.5 <a href=#ppptropnoise>Tropo Noise</a><br>
     208&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.3.6 <a href=#pppnmeaport>NMEA Port</a><br>
     209&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.3.6 <a href=#pppsignalpriorities>Signal Priorities</a><br>
    206210&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.4 <a href=#pppPlots><b>PPP (4): Plots</b></a><br>
    207211&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.4.1 <a href=#ppptimeseries>PPP Plot</a><br>
    208212&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.4.2 <a href=#pppaudioresp>Audio Response</a><br>
    209213&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.4.3 <a href=#ppptrackmap>Track Map</a><br>
    210 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.4.3.1 <a href=#pppmaptype>Google/OSM</a><br>
    211214&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.4.4 <a href=#pppdotprop>Dot-properties</a><br>
    212215&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.13.4.4.1 <a href=#pppdotsize>Size</a><br>
     
    221224&nbsp; &nbsp; &nbsp; 2.15 <a href=#upclk><b>Upload Corrections</b></a><br>
    222225&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.1 <a href=#upadd>Add, Delete Row</a><br>
    223 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.2 <a href=#uphost>Host, Port, Mountpoint, Password</a><br>
     226&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.2 <a href=#uphost>Host, Port, Mountpoint, Ntrip Version, User and Password </a><br>
    224227&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.3 <a href=#upsystem>System</a><br>
    225228&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.4 <a href=#upformat>Format</a><br>
     
    227230&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.6 <a href=#upsp3>SP3 File</a><br>
    228231&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.7 <a href=#uprinex>RNX File</a><br>
    229 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.8 <a href=#pidsidiod>PID, SID, IOD</a><br>
    230 
    231 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.9 <a href=#upinter>Interval</a><br>
    232 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.10 <a href=#upclksmpl>Sampling</a><br>
    233 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.10.1 <a href=#upclkorb>Orbits</a><br>
    234 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.10.2 <a href=#upclksp3>SP3</a><br>
    235 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.10.3 <a href=#upclkrnx>RINEX</a><br>
    236 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.11 <a href=#upcustom>Custom Trafo</a><br>
    237 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.12 <a href=#upantex>ANTEX File</a><br>
     232&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.8 <a href=#upsinex>BSX File</a><br>
     233&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.9 <a href=#pidsidiod>PID, SID, IOD</a><br>
     234&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.10 <a href=#upinter>Interval</a><br>
     235&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.11 <a href=#upclksmpl>Sampling</a><br>
     236&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.11.1 <a href=#upclkorb>Orbits</a><br>
     237&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.11.2 <a href=#upclksp3>SP3</a><br>
     238&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.11.3 <a href=#upclkrnx>RINEX</a><br>
     239&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.11.4 <a href=#upbiassnx>SINEX</a><br>
     240&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.12 <a href=#upcustom>Custom Trafo</a><br>
     241&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.15.13 <a href=#upantex>ANTEX File</a><br>
    238242&nbsp; &nbsp; &nbsp; 2.16 <a href=#upeph><b>Upload Ephemeris</b></a><br>
    239243&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.16.1 <a href=#brdcserver>Host &amp; Port</a><br>
    240 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.16.2 <a href=#brdcmount>Mountpoint, User, Password</a><br>
     244&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.16.2 <a href=#brdcmount>Mountpoint, Ntrip Version, User, Password</a><br>
    241245&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.16.3 <a href=#brdcsys>Satellite System </a><br>
    242246&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 2.16.4 <a href=#brdcsmpl>Sampling</a><br>
     
    297301  <tr><td>6</td><td>Management of configuration options in BNC</td><td>1.6</td></tr>
    298302  <tr><td>7</td><td>BNC's 'Network' panel configured to ignore eventually occurring SSL error messages</td><td>2.2.2</td></tr>
    299   <tr><td>8</td><td>BNC translating incoming streams to 15 min RINEX Version 3 files</td><td>2.4</td></tr>
     303  <tr><td>8</td><td>BNC translating incoming RTCM Version 3 Observation streams to 15 min RINEX Version 4 Observation files</td><td>2.4</td></tr>
    300304  <tr><td>9</td><td>Example for creating RINEX quality check analysis graphics output with BNC</td><td>2.6.5</td></tr>
    301305  <tr><td>10</td><td>Example for satellite availability, elevation and PDOP plots as a result of a RINEX quality check analysis with BNC</td><td>2.6.5</td></tr>
     
    304308  <tr><td>13</td><td>Example for BNC's 'RINEX Editing Options' window</td><td>2.6.7</td></tr>
    305309  <tr><td>14</td><td>Example for RINEX file concatenation with BNC</td><td>2.6.7</td></tr>
    306 
    307   <tr><td>9</td><td>BNC converting Broadcast Ephemeris stream to RINEX Version 3 Navigation files</td><td>2.5.5</td></tr>
    308 
    309 
    310   <tr><td>16</td><td>Example for comparing two SP3 files with satellite orbit and clock data using BNC</td><td>2.7.3</td></tr>
     310  <tr><td>15</td><td>Example for comparing two SP3 files with satellite orbit and clock data using BNC</td><td>2.7</td></tr>
     311  <tr><td>16</td><td>Graphical results from an example comparison of two SP3 files with satellite orbit and clock data using BNC</td><td>2.7.3</td></tr>
    311312  <tr><td>17</td><td>Example for pulling, saving and output of Broadcast Corrections using BNC</td><td>2.8.3</td></tr>
    312313  <tr><td>18</td><td>Synchronized BNC output via IP port to feed a GNSS real-time engine</td><td>2.9</td></tr>
    313314  <tr><td>19</td><td>Flowcharts, BNC forwarding a stream to a serially connected receiver; sending NMEA sentences is mandatory for VRS streams</td><td>2.10</td></tr>
    314   <tr><td>20</td><td>BNC pulling a VRS stream to feed a serially connected RTK rover</td><td>2.10</td></tr>
     315  <tr><td>20</td><td>BNC pulling a RTCM Version 3 stream to feed a serial connected receiver with observations from a nearby reference station for conventional RTK</td><td>2.10</td></tr>
    315316  <tr><td>21</td><td>RTCM message numbers, latencies and observation types logged by BNC</td><td>2.12</td></tr>
    316317  <tr><td>22</td><td>Real-time Precise Point Positioning with BNC, PPP Panel 1</td><td>2.13.1</td></tr>
    317   <tr><td>23</td><td>Precise Point Positioning with BNC, PPP Panel 2, using RTKPLOT for visualization</td><td>2.13.2</td></tr>
    318   <tr><td>24</td><td>Precise Point Positioning with BNC, PPP Panel 3</td><td>2.13.3</td></tr>
    319   <tr><td>25</td><td>Precise Point Positioning with BNC in 'Quick-Start' mode, PPP Panel 4</td><td>2.13.3.8</td></tr>
    320   <tr><td>26</td><td>Track of positions from BNC with Google Maps in background</td><td>2.13.4.3</td></tr>
    321   <tr><td>27</td><td>Example for background map from Google Maps and OpenStreetMap (OSM) resources</td><td>2.13.4.3.1</td></tr>
    322   <tr><td>28</td><td>BNC combining Broadcast Correction streams</td><td>2.14</td></tr>
    323   <tr><td>29</td><td>INTERNAL' PPP with BNC using a combination of Broadcast Corrections</td><td>2.14</td></tr>
    324   <tr><td>30</td><td>Setting BNC's Custom Transformation Parameters window, example for 'ITRF2008->GDA94'</td><td>2.15.3</td></tr>
    325   <tr><td>31</td><td>BNC producing Broadcast Corrections from incoming precise orbits and clocks and uploading them to an Ntrip Broadcaster</td><td>2.15.11</td></tr>
    326   <tr><td>32</td><td>BNC uploading a combined Broadcast Correction stream</td><td>2.15.11</td></tr>
    327   <tr><td>33</td><td>BNC producing Broadcast Ephemeris stream from globally distributed RTCM streams; upload in RTCM format to an Ntrip Broadcaster</td><td>2.16.3</td></tr>
    328   <tr><td>34</td><td>Bandwidth consumption of RTCM streams received by BNC</td><td>2.18.2</td></tr>
    329   <tr><td>35</td><td>Latency of RTCM streams received by BNC</td><td>2.18.3</td></tr>
    330   <tr><td>36</td><td>Example for time series plot of displacements produced by BNC</td><td>2.18.4</td></tr>
    331   <tr><td>37</td><td>Steam input communication links accepted by BNC</td><td>2.19</td></tr>
    332   <tr><td>38</td><td>BNC's 'Select Broadcaster' table</td><td>2.19.1.1.2</td></tr>
    333   <tr><td>39</td><td>Broadcaster source-table shown by BNC</td><td>2.19.1.1.4</td></tr>
    334   <tr><td>40</td><td>Stream distribution map shown by BNC as derived from Ntrip Broadcaster source-table</td><td>2.19.1.1.6</td></tr>
    335   <tr><td>41</td><td>BNC configuration for pulling a stream via serial port</td><td>2.19.1.4</td></tr>
     318  <tr><td>23</td><td>Precise Point Positioning with BNC, PPP Panel 2</td><td>2.13.2</td></tr>
     319  <tr><td>24</td><td>Precise Point Positioning with BNC in 'Quick-Start' mode, PPP Panel 4</td><td>2.13.2.10</td></tr>
     320  <tr><td>25</td><td>Precise Point Positioning with BNC, PPP Panel 3</td><td>2.13.3</td></tr>
     321  <tr><td>26</td><td>Track of positions from BNC with OpenStreetMap in background</td><td>2.13.4.3</td></tr>
     322  <tr><td>27</td><td>BNC combining Broadcast Correction streams</td><td>2.14</td></tr>
     323  <tr><td>28</td><td>'INTERNAL' PPP with BNC using a combination of Broadcast Corrections</td><td>2.14</td></tr>
     324  <tr><td>29</td><td>BNC producing Broadcast Corrections from incoming precise orbits and clocks and uploading them to an Ntrip Broadcaster</td><td>2.15</td></tr>
     325  <tr><td>30</td><td>Setting BNC's Custom Transformation Parameters window</td><td>2.15.3</td></tr>
     326  <tr><td>31</td><td>BNC uploading a combined Broadcast Correction stream</td><td>2.15.12</td></tr>
     327  <tr><td>32</td><td>BNC producing Broadcast Ephemeris streams from globally distributed RTCM streams; upload in RTCM format to an Ntrip Broadcaster</td><td>2.16.3</td></tr>
     328  <tr><td>33</td><td>Bandwidth consumption of RTCM streams received by BNC</td><td>2.18.2</td></tr>
     329  <tr><td>34</td><td>Latency of RTCM streams received by BNC</td><td>2.18.3</td></tr>
     330  <tr><td>35</td><td>Example for time series plot of displacements produced by BNC</td><td>2.18.4</td></tr>
     331  <tr><td>36</td><td>Steam input communication links accepted by BNC</td><td>2.19</td></tr>
     332  <tr><td>37</td><td>BNC's 'Select Broadcaster' table</td><td>2.19.1.1.2</td></tr>
     333  <tr><td>38</td><td>Broadcaster source-table shown by BNC</td><td>2.19.1.1.4</td></tr>
     334  <tr><td>39</td><td>Stream distribution map shown by BNC as derived from Ntrip Broadcaster source-table</td><td>2.19.1.1.6</td></tr>
     335  <tr><td>40</td><td>BNC configuration for pulling a stream via serial port</td><td>2.19.1.4</td></tr>
    336336</table>
    337337</p>
     
    585585</table>
    586586<br>
    587 
    588587<p><h4 id="introFlow">1.3 Data Flow</h4></p>
    589 
    590588<p>
    591589BNC can be used in different contexts with varying data flows. Typical real-time communication follows the Ntrip protocol
     
    597595serial or TCP communication link for the purpose of Precise Point Positioning.
    598596</p>
    599 <p><img src="IMG/Figure01.png" width="900"></p>
     597<p><img src="IMG/Figure01.png" width="1000"></p>
    600598<p>Figure 1: Flowchart, BNC connected to a GNSS rover for Precise Point Positioning</p>
    601599<p>
     
    604602<p>
    605603</p>
    606 <p><img src="IMG/Figure02.png"width=900/></p>
     604<p><img src="IMG/Figure02.png"width=1000/></p>
    607605<p>Figure 2: Flowchart, BNC converting RTCM streams to RINEX batches</p>
    608606<p>
     
    613611<p>
    614612</p>
    615 <p><img src="IMG/Figure03.png"width=900/></p>
     613<p><img src="IMG/Figure03.png"width=1000/></p>
    616614<p>Figure 3: Flowchart, BNC feeding a real-time GNSS engine and uploading encoded Broadcast Corrections</p>
    617615<p>
     
    621619<p>
    622620</p>
    623 <p><img src="IMG/Figure04.png"width=900/></p>
     621<p><img src="IMG/Figure04.png"width=1000/></p>
    624622<p>Figure 4: Flowchart, BNC combining Broadcast Correction streams</p>
    625623
     
    634632using processing options from a previously saved configuration or from command line.
    635633</p>
    636 
    637634<p>
    638635Unless it runs offline, BNC
     
    647644</ul>
    648645</p>
    649 
    650646<p>
    651647The main window of BNC shows a 'Top menu bar' section, a 'Settings' sections with panels to set processing options,
    652648a 'Streams' section, a section for 'Log' tabs, and a 'Bottom menu bar' section, see figure below.
    653649</p>
    654 <p><img src="IMG/Figure05.png"width=900/></p>
     650<p><img src="IMG/Figure05.png"width=1000/></p>
    655651<p>Figure 5: Sections on BNC's main window</p>
    656652
     
    664660and the '-display' command line option.
    665661</p>
    666 
    667662<p>
    668663The usual handling of BNC is that you first select a number of streams ('Add Stream'). Any stream configured to BNC
     
    672667 panel is empty, the affected functionality is deactivated.
    673668</p>
    674 
    675669<p>
    676670Records of BNC's activities are shown in the 'Log' tab which is part of the 'Log' canvas. The bandwidth consumption
     
    678672of that canvas and shown in the 'Throughput', 'Latency' and 'PPP Plot' tabs.
    679673</p>
    680 
    681674<p>
    682675Configuration options are usually first set using BNC's Graphical User Interface (GUI), then saved in a configuration
     
    684677 file and applied using the program's Command Line Interface (CLI).
    685678</p>
    686 
    687679<h4 id="introInst">1.5 Installation</h4>
    688680<p>
     
    691683Please ensure that you always use the latest version of the program.
    692684</p>
    693 
    694685<p>
    695686<b>Windows:</b> A dynamically compiled shared library build for Mircrosoft Windows systems is provided as
     
    699690After installation your 'bnc.exe' file shows up e.g. under 'All Programs'.
    700691</p>
    701 
    702692<p>
    703693<b>Linux:</b> Shared library builds for BNC are provided for a selection of Linux distributions.
    704694Download the ZIP archive for a version which fits to your Linux system, unzip the archive and run the included BNC binary.
    705695</p>
    706 
    707696<p>
    708697<b>Mac OS X Build:</b>
     
    713702You could also start BNC via Command Line Interface (CLI) using command <i>'/Applications/bnc.app/Contents/MacOS/bnc'</i>.
    714703</p>
    715 
    716704<h4 id="introCompile">1.5.1 Compilation</h4>
    717 
    718705<p>
    719706BNC has been written as Open Source and published under GNU General Public License (GPL). The latest source code can
     
    727714 version is installed.
    728715</p>
    729 
    730716<p><b>Static versus Shared Libraries</b><br>
    731717You can produce static or shared library builds of BNC. <b>Static</b> builds are sufficient in case you do not want
    732 BNC to produce track maps on top of Google Map (GM) or OpenStreetMap (OSM). GM/OSM usage would require the
    733 QtWebKit library which can only be part of BNC builds from <b>shared</b> Qt libraries. Hence, having a shared library
     718BNC to produce track maps on top of OpenStreetMap (OSM). The usage would require the
     719QtWebEngineWidges library which can only be part of BNC builds from <b>shared</b> Qt libraries. Hence, having a shared library
    734720 Qt installation available is a precondition for producing a shared library build of BNC.
    735721</p>
     
    799785<li>Extend the Windows environment variable PATH by C:\Qt\4.8.5\bin.</li>
    800786</ol>
    801 
    802787<p>
    803788Steps (11)-(15) can be repeated whenever a BNC update becomes available. Running bnc.exe on a windows system
    804789requires (1) when using the NTRIP Version 2s option for stream transfer over TLS/SSL.
    805790</p>
    806 
    807791<p>
    808792<b>Linux Systems</b><br>
     
    817801</pre>
    818802You will find a build of BNC in directory BNC.
    819 
    820 
    821803<p>
    822804<b>Mac OS X Systems</b><br>
     
    876858 See annexed 'Command Line Help' for a complete set of configuration options.
    877859</p>
    878 
    879860<p>
    880861BNC maintains configuration options at three different levels:
    881862</p>
    882 
    883863<ul>
    884864  <li>GUI, input fields level</li>
     
    886866  <li>Configuration file, disk level</li>
    887867</ul>
    888 
    889 <p><img src="IMG/Figure06.png"width=900/></p>
     868<p><img src="IMG/Figure06.png"width=1000/></p>
    890869<p>Figure 6: Management of configuration options in BNC:<br>
    891870<table>
     
    914893
    915894<p><h4 id="introExamples">1.6.1 Examples</h4></p>
    916 
    917895<p>
    918896BNC comes with a number of configuration examples which can be used on all operating systems.
     
    924902  <li>You could also start BNC using a command line for naming a specific configuration file (suggested e.g. for Mac systems):<br>
    925903      /Applications/bnc.app/Contents/MacOS/bnc --conf &lt;configFileName&gt;</li>
    926   <li>On non-graphical systems or when running BNC in batch mode in the background you may start the program using a command line with a configuration file option in '<u>n</u>o <u>w</u>indow' mode (example for Windows systems):<br>
     904  <li>On non-graphical systems or when running BNC in batch mode in the background you may start the program using a command line
     905  with a configuration file option in '<u>n</u>o <u>w</u>indow' mode (example for Windows systems):<br>
    927906      bnc.exe --conf &lt;configFileName&gt; --nw</li>
    928907</ul>
     
    954933
    955934<p>
    956   Note that the account for an Ntrip Broadcaster is usually limited to pulling a specified maximum number of streams at the same time. As running some of the example configurations requires pulling several streams, it is suggested to make sure that you do not exceed your account's limits.
    957 </p>
    958 
    959 <p>
    960 Make also sure that sub-directories 'Input' and 'Output' which are part of the example configurations exist on your system or adjust the affected example configuration options according to your needs.
    961 </p>
    962 
    963 <p>
    964 Some BNC options require Antenna Phase Center variations as made available from IGS through so-called ANTEX files at <a href="https://files.igs.org/pub/station/general/igs14.atx" target="_blank">https://files.igs.org/pub/station/general/igs14.atx</a>.
    965 An example ANTEX file 'igs14.atx' is part of the BNC package for convenience.
     935  Note that the account for an Ntrip Broadcaster is usually limited to pulling a specified maximum number of streams at the same time.
     936  As running some of the example configurations requires pulling several streams, it is suggested to make sure that you do not exceed your account's limits.
     937</p>
     938
     939<p>
     940Make also sure that sub-directories 'Input' and 'Output' which are part of the example configurations exist on your system or adjust
     941the affected example configuration options according to your needs.
     942</p>
     943
     944<p>
     945Some BNC options require Antenna Phase Center variations as made available from IGS through so-called ANTEX files
     946at <a href="https://files.igs.org/pub/station/general/igs20.atx" target="_blank">https://files.igs.org/pub/station/general/igs20.atx</a>.
     947An example ANTEX file 'igs20.atx' is part of the BNC package for convenience.
    966948</p>
    967949
     
    11071089IGS-SSR messages to finally upload them to an Ntrip Broadcaster. The
    11081090Broadcast Correction stream is referred to satellite Antenna Phase Center (APC)
    1109 and reference system IGS14. Orbits are saved on disk in SP3 format and clocks
     1091and reference system IGS20. Orbits are saved on disk in SP3 format and clocks
    11101092are saved in Clock RINEX format.
    11111093</li>
     
    11181100an Ntrip Broadcaster. The Broadcast Correction stream is referred to
    11191101satellite Antenna Phase Center (APC) and not to satellite Center of
    1120 Mass (CoM). Its reference system is IGS14. Orbits are saved in SP3 format
     1102Mass (CoM). Its reference system is IGS20. Orbits are saved in SP3 format
    11211103(referred to CoM) and clocks in Clock RINEX format.
    11221104</li>
     
    12481230<p><h4 id="introLBack">Looking Back</h4></p>
    12491231<p>
    1250 A basic function of BNC is streaming GNSS data over the open Internet using the Ntrip transport protocol. Employing IP streaming for satellite positioning goes back to the beginning of our century. Wolfgang Rupprecht has been the first person who developed TCP/IP server software under the acronym of DGPS-IP (Rupprecht 2000) and published it under GNU General Public License (GPL). While connecting marine beacon receivers to PCs with permanent access to the Internet he transmitted DGPS corrections in an RTCM format to support Differential GPS positioning over North America. With approximately 200 bits/sec the bandwidth requirement for disseminating beacon data was comparatively small. Each stream was transmitted over a unique combination of IP address and port. Websites informed about existing streams and corresponding receiver positions.
    1251 </p>
    1252 <p>
    1253 To cope with an increasing number of transmitting GNSS reference stations, the Federal Agency for Cartography and Geodesy (BKG) together with the Informatik Centrum Dortmund (ICD) in Germany developed a streaming protocol for satellite navigation data called 'Networked Transport of RTCM via Internet Protocol' (Ntrip). The protocol was built on top of the HTTP standard and included the provision of meta data describing the stream content. Any stream could now be globally transmitted over just one IP port: HTTP port 80. Stream availability and content details became part of the transport protocol. The concept was first published in 2003 (Weber and Honkala 2004, Weber et al. 2005a) and was based on three software components, namely an NtripServer pushing data from a reference station to an NtripCaster and an NtripClient pulling data from the stream splitting caster to support a rover receiver. (Note that from a socket-programmers perspective NtripServer and NtripClient both act as clients; only the NtripCaster operates as socket-server.) Ntrip could essentially benefit from Internet Radio developments. It was the ICECAST multimedia server, which provided the bases for BKG's 'Professional Ntrip Broadcaster' with software published first in 2003 and of course again as Open Source under GPL.
    1254 </p>
    1255 <p>
    1256 For BKG as a governmental agency, making Ntrip an Open Industry Standard has been an objective from the very beginning. The 'Radio Technical Commission for Maritime Services' (RTCM) accepted 'Ntrip Version 1' in 2004 as 'RTCM Recommended Standard' (Weber et al. 2005b). Nowadays there is almost no geodetic GNSS receiver which does not come with integrated NtripClient and NtripServer functionality as part of the firmware. Hundreds of NtripCaster implementations are operated world-wide for highly accurate satellite navigation through RTK networks. Thousands of reference stations upload observations via NtripServer to central computing facilities for any kind of NtripClient application. In 2011 'Ntrip Version 2' was released (RTCM SC-104 2011) which cleared and fixed some design problems and HTTP protocol violations. It also supports TCP/IP via SSL and adds optional communication over RTSP/RTP and UDP.
     1232A basic function of BNC is streaming GNSS data over the open Internet using the Ntrip transport protocol.
     1233Employing IP streaming for satellite positioning goes back to the beginning of our century.
     1234Wolfgang Rupprecht has been the first person who developed TCP/IP server software under the acronym of
     1235DGPS-IP (Rupprecht 2000) and published it under GNU General Public License (GPL).
     1236While connecting marine beacon receivers to PCs with permanent access to the Internet he
     1237transmitted DGPS corrections in an RTCM format to support Differential GPS positioning over North America.
     1238 With approximately 200 bits/sec the bandwidth requirement for disseminating beacon data was comparatively small.
     1239 Each stream was transmitted over a unique combination of IP address and port.
     1240 Websites informed about existing streams and corresponding receiver positions.
     1241</p>
     1242<p>
     1243To cope with an increasing number of transmitting GNSS reference stations, the Federal Agency for Cartography and Geodesy (BKG)
     1244together with the Informatik Centrum Dortmund (ICD) in Germany developed a streaming protocol for satellite navigation data called
     1245'Networked Transport of RTCM via Internet Protocol' (Ntrip). The protocol was built on top of the HTTP standard and included the
     1246provision of meta data describing the stream content. Any stream could now be globally transmitted over just one IP port: HTTP port 80.
     1247Stream availability and content details became part of the transport protocol. The concept was first published in 2003
     1248(Weber and Honkala 2004, Weber et al. 2005a) and was based on three software components, namely an NtripServer pushing data from
     1249a reference station to an NtripCaster and an NtripClient pulling data from the stream splitting caster to support a rover receiver.
     1250(Note that from a socket-programmers perspective NtripServer and NtripClient both act as clients; only the NtripCaster operates as socket-server.)
     1251Ntrip could essentially benefit from Internet Radio developments. It was the ICECAST multimedia server, which provided the bases
     1252for BKG's 'Professional Ntrip Broadcaster' with software published first in 2003 and of course again as Open Source under GPL.
     1253</p>
     1254<p>
     1255For BKG as a governmental agency, making Ntrip an Open Industry Standard has been an objective from the very beginning.
     1256The 'Radio Technical Commission for Maritime Services' (RTCM) accepted 'Ntrip Version 1' in 2004 as 'RTCM Recommended Standard' (Weber et al. 2005b).
     1257Nowadays there is almost no geodetic GNSS receiver which does not come with integrated NtripClient and NtripServer functionality as part of the firmware.
     1258Hundreds of NtripCaster implementations are operated world-wide for highly accurate satellite navigation through RTK networks.
     1259Thousands of reference stations upload observations via NtripServer to central computing facilities for any kind of NtripClient application.
     1260In 2011 'Ntrip Version 2' was released (RTCM SC-104 2011) which cleared and fixed some design problems and HTTP protocol violations.
     1261It also supports TCP/IP via SSL and adds optional communication over RTSP/RTP and UDP.
    12571262</p>
    12581263<p>
     
    12701275</p>
    12711276<p>
    1272 Adding real-time Precise Point Positioning (PPP) support to BNC began in 2010 as an important completion in view of developing an Open RTCM Standard for that. According to the State Space Representation (SSR) model, new Version 3 messages are proposed to provide e.g. satellite orbit and clock corrections and ionospheric corrections as well as biases for code and phase data. The ultimate goal for SSR standardization is to reach centimeter level accuracy within seconds as an alternative to Network RTK methods such as VRS, FKP, and MAC. Because of interoperability aspects, an Open Standard in this area is of particular interest for clients. Regarding stand-alone PPP in BNC, it is worth mentioning that the program is not and can never be in competition with a receiver manufacturer's proprietary solution. Only software or services that are part of a receiver firmware could have the potential of becoming a thread for commercial interests. However, implementing or not implementing an Open PPP approach in a firmware is and will always remain a manufacturer's decision.
    1273 </p>
    1274 <p>
    1275 Implementing some post processing capability is essential for debugging real-time software in case of problems. So certain real-time options in BNC were complemented to work offline through reading data from files. Moreover, beginning in 2012, the software was extended to support Galileo, BeiDou, and QZSS besides GPS and GLONASS. With that, the Open Source tool BNC could be used for RINEX Version 3 file editing, concatenation and quality checks, a post processing functionality demanded by the IGS Multi-GNSS Experiment and not really covered at that time by UNAVCO's famous TEQC program with its limitation on GPS.
    1276 </p>
    1277 
    1278 <p>
    1279 The well-established, mature codebase is mostly written in C++ language. Its publication under GNU GPL is thought to be well-suited for test, validation and demonstration of new approaches in precise real-time satellite navigation when IP streaming is involved. Commissioned by a German governmental agency, the overall intention has been to push the development of RTCM Recommended Standards to the benefit of IAG institutions and services such as IGS and the interested public in general.
     1277Adding real-time Precise Point Positioning (PPP) support to BNC began in 2010 as an important completion in view of developing an
     1278Open RTCM Standard for that. According to the State Space Representation (SSR) model, new Version 3 messages are proposed to provide e.g.
     1279satellite orbit and clock corrections and ionospheric corrections as well as biases for code and phase data.
     1280The ultimate goal for SSR standardization is to reach centimeter level accuracy within seconds as an alternative to Network RTK methods
     1281such as VRS, FKP, and MAC. Because of interoperability aspects, an Open Standard in this area is of particular interest for clients.
     1282Regarding stand-alone PPP in BNC, it is worth mentioning that the program is not and can never be in competition with a receiver
     1283manufacturer's proprietary solution. Only software or services that are part of a receiver firmware could have the potential of
     1284becoming a thread for commercial interests. However, implementing or not implementing an Open PPP approach in a firmware is and
     1285will always remain a manufacturer's decision.
     1286</p>
     1287<p>
     1288Implementing some post processing capability is essential for debugging real-time software in case of problems.
     1289So certain real-time options in BNC were complemented to work offline through reading data from files.
     1290Moreover, beginning in 2012, the software was extended to support Galileo, BeiDou, and QZSS besides GPS and GLONASS.
     1291With that, the Open Source tool BNC could be used for RINEX Version 3 file editing, concatenation and quality checks,
     1292 a post processing functionality demanded by the IGS Multi-GNSS Experiment and not really covered at that time by
     1293 UNAVCO's famous TEQC program with its limitation on GPS.
     1294</p>
     1295
     1296<p>
     1297The well-established, mature codebase is mostly written in C++ language.
     1298Its publication under GNU GPL is thought to be well-suited for test, validation and demonstration of new
     1299approaches in precise real-time satellite navigation when IP streaming is involved. Commissioned by a
     1300German governmental agency, the overall intention has been to push the development of RTCM Recommended Standards
     1301to the benefit of IAG institutions and services such as IGS and the interested public in general.
    12801302</p>
    12811303
    12821304<p><h3 id="optsettings">2. Settings Details</h3></p>
    12831305<p>
    1284 The general documentation approach is to create a separate chapter for each processing option in a sequence which follows the layout of BNC's Graphical User Interface (GUI). The advantage is that searching for help by means of the document's Table of Contents (TOC) is quite convenient. A rather comprehensive number of TOC entries is the accepted downside of this approach.
    1285 </p>
    1286 <p>
    1287 The following chapters describe how to set BNC program options. They explain the 'Top Menu Bar', the 'Settings Canvas' with the processing options, the content of the 'Streams Canvas' and 'Logging Canvas', and the 'Bottom Menu Bar'.
     1306The general documentation approach is to create a separate chapter for each processing option in a sequence which follows the layout of
     1307BNC's Graphical User Interface (GUI). The advantage is that searching for help by means of the document's Table of Contents (TOC) is
     1308quite convenient. A rather comprehensive number of TOC entries is the accepted downside of this approach.
     1309</p>
     1310<p>
     1311The following chapters describe how to set BNC program options. They explain the 'Top Menu Bar', the 'Settings Canvas' with the
     1312processing options, the content of the 'Streams Canvas' and 'Logging Canvas', and the 'Bottom Menu Bar'.
    12881313</p>
    12891314
    12901315<p><h4 id="topmenu">2.1 Top Menu Bar</h4></p>
    12911316<p>
    1292 The top menu bar allows selecting a font for the BNC windows, save configured options, or quit the program execution. It also provides access to the program's documentation.
     1317The top menu bar allows selecting a font for the BNC windows, save configured options, or quit the program execution.
     1318It also provides access to the program's documentation.
    12931319</p>
    12941320
     
    13501376Tick 'Ignore SSL authorization errors' if you generally trust the server and do not want to be bothered with this. Note that SSL communication is usually done over port 443.
    13511377</p>
    1352 
    1353 <p><img src="IMG/Figure07.png"width=900/></p>
     1378<p><img src="IMG/Figure07.png"width=800/></p>
    13541379<p>Figure 7: BNC's 'Network' panel configured to ignore eventually occurring SSL error messages</p>
    13551380
     
    14671492</p>
    14681493
    1469 <p><img src="IMG/Figure08.png"width=900/></p>
    1470 <p>Figure 8: BNC translating incoming observation streams to 15 min RINEX Version 4 Observation files</p>
     1494<p><img src="IMG/Figure08.png"width=1000/></p>
     1495<p>Figure 8: BNC translating incoming RTCM Version 3 Observation streams to 15 min RINEX Version 4 Observation files</p>
    14711496
    14721497<p><h4 id="rnxname">2.4.1 RINEX Filenames</h4></p>
     
    16891714As an example the 'Signal priority' of 'CWPX_?' is explained in more detail:
    16901715<ul>
    1691 <li>Signals with attribute 'C' enjoy the highest priority. If such a RINEX Version 3/4 observation becomes available, it is presented as RINEX Version 2 observation if that is the format you wish to see. Observations with other attributes are being ignored.</li>
    1692 <li>If no signal with 'C' attribute is available but we have an observation with 'W' attribute, BNC presents that one as RINEX Version 2 observation and ignores all observations with other attributes. The same applies mutatis mutandis to observations with P and X attributes.</li>
    1693 <li>If no signal with 'C', 'W', 'P', or 'X' attribute is available but a signal with undefined generation attribute (underscore character, '_') exists, BNC presents that one as RINEX Version 2 observation. Note that observation attributes should actually always be available in RINEX Version 3/4. Hence the underscore character makes only sense in a few very special cases.</li>
    1694 <li>If no signal with 'C', 'W', 'P', 'X', or '_' generation attribute exists then the question mark '?' tells BNC to present the first of any other appearing signal as RINEX Version 2 observation.</li>
     1716<li>Signals with attribute 'C' enjoy the highest priority. If such a RINEX Version 3/4 observation becomes available,
     1717    it is presented as RINEX Version 2 observation if that is the format you wish to see. Observations with other attributes are being ignored.</li>
     1718<li>If no signal with 'C' attribute is available but we have an observation with 'W' attribute, BNC presents that one as RINEX Version 2 observation
     1719    and ignores all observations with other attributes. The same applies mutatis mutandis to observations with P and X attributes.</li>
     1720<li>If no signal with 'C', 'W', 'P', or 'X' attribute is available but a signal with undefined generation attribute (underscore character, '_') exists,
     1721    BNC presents that one as RINEX Version 2 observation. Note that observation attributes should actually always be available in RINEX Version 3/4.
     1722    Hence the underscore character makes only sense in a few very special cases.</li>
     1723<li>If no signal with 'C', 'W', 'P', 'X', or '_' generation attribute exists then the question mark '?' tells BNC to present the first of any other
     1724    appearing signal as RINEX Version 2 observation.</li>
    16951725</ul>
    16961726</p>
     
    17371767<p><h4 id="ephdir">2.5.1 Directory - optional</h4></p>
    17381768<p>
    1739 Specify a path for saving Broadcast Ephemeris data in RINEX Navigation files. If the specified directory does not exist, BNC will not create RINEX Navigation files. Default value for Ephemeris 'Directory' is an empty option field, meaning that no RINEX Navigation files will be created.
     1769Specify a path for saving Broadcast Ephemeris data in RINEX Navigation files. If the specified directory does not exist,
     1770BNC will not create RINEX Navigation files. Default value for Ephemeris 'Directory' is an empty option field, meaning that
     1771no RINEX Navigation files will be created.
    17401772</p>
    17411773
     
    17471779<p><h4 id="ephport">2.5.3 Port - optional</h4></p>
    17481780<p>
    1749 BNC can output Broadcast Ephemeris in RINEX Version 3 format on your local host (IP 127.0.0.1) through an IP 'Port'. Specify an IP port number to activate this function. The default is an empty option field, meaning that no ASCII ephemeris output via IP port is generated.
     1781BNC can output Broadcast Ephemeris in RINEX Version 3 format on your local host (IP 127.0.0.1) through an IP 'Port'.
     1782Specify an IP port number to activate this function. The default is an empty option field, meaning that no ASCII ephemeris output via IP port is generated.
    17501783</p>
    17511784<p>
     
    17651798<p><h4 id="reqc">2.6 RINEX Editing & QC</h4></p>
    17661799<p>
    1767 Besides stream conversion from RTCM to RINEX, BNC allows editing RINEX files or concatenate their content. RINEX Observation and Navigation files can be handled. BNC can also carry out a RINEX file Quality Check. In summary  and besides Stream <u><b>T</b></u>ranslation, this functionality in BNC covers
     1800Besides stream conversion from RTCM to RINEX, BNC allows editing RINEX files or concatenate their content. RINEX Observation and Navigation files can be handled.
     1801BNC can also carry out a RINEX file Quality Check. In summary  and besides Stream <u><b>T</b></u>ranslation, this functionality in BNC covers
    17681802<ul>
    17691803  <li>File <u><b>E</b></u>diting and concatenation</li>
     
    17771811  </ul>
    17781812</ul>
    1779 and hence follows UNAVCO's famous TEQC program (see Estey and Meertens 1999). The remarkable thing about BNC in this context is that it supports RINEX Version 3 under GNU General Public License with full GUI support and graphics output.
     1813and hence follows UNAVCO's famous TEQC program (see Estey and Meertens 1999). The remarkable thing about BNC in this context is that it supports RINEX Version 3
     1814under GNU General Public License with full GUI support and graphics output.
    17801815</p>
    17811816
     
    17831818<p>Select an action. Options are 'Edit/Concatenate' and 'Analyze'.
    17841819<ul>
    1785 <li>Select 'Edit/Concatenate' if you want to edit RINEX file content according to options specified under 'Set Edit Options' or if you want to concatenate several RINEX files.</li>
     1820<li>Select 'Edit/Concatenate' if you want to edit RINEX file content according to options specified under 'Set Edit Options' or if you want
     1821    to concatenate several RINEX files.</li>
    17861822<li>Select 'Analyze' if you are interested in a quality check of your RINEX file content.</li>
    17871823</ul>
     
    17941830</p>
    17951831<p>
    1796 When specifying several input files, BNC will concatenate their contents. In case of RINEX Observation input files with different observation type header records, BNC will output only one set of adjusted observation type records in the RINEX header which fits to the whole file content.
     1832When specifying several input files, BNC will concatenate their contents. In case of RINEX Observation input files
     1833with different observation type header records, BNC will output only one set of adjusted observation type records in
     1834the RINEX header which fits to the whole file content.
    17971835</p>
    17981836
    17991837<p><h4 id="reqcout">2.6.3 Output Files - optional if 'Action' is set to 'Edit/Concatenate'</h4></p>
    18001838<p>
    1801 If 'Edit/Concatenate' is selected, specifying the full path to output RINEX Observation file(s) and specifying the full path to output RINEX Navigation file(s) is optional. Default are empty option fields, meaning that no RINEX files will be saved on disk.
     1839If 'Edit/Concatenate' is selected, specifying the full path to output RINEX Observation file(s) and specifying the full
     1840path to output RINEX Navigation file(s) is optional. Default are empty option fields, meaning that no RINEX files will be saved on disk.
    18021841</p>
    18031842
    18041843<p><h4 id="reqclog">2.6.4 Logfile - optional</h4></p>
    18051844<p>
    1806 Specify the name of a logfile to save information on RINEX file Editing/Concatenation or Analysis. Default is an empty option field, meaning that no logfile will be saved.
     1845Specify the name of a logfile to save information on RINEX file Editing/Concatenation or Analysis. Default is an empty option field,
     1846meaning that no logfile will be saved.
    18071847</p>
    18081848
     
    21552195An example configuration with plot results can be seen below.
    21562196</p>
    2157 
    2158 <p><img src="IMG/Figure09.png"width=900/></p>
     2197<p><img src="IMG/Figure09.png"width=1000/></p>
    21592198<p>Figure 9: Example for creating RINEX quality check analysis graphics output with BNC</p>
    21602199
    2161 <p><img src="IMG/Figure10.png"width=900/></p>
     2200<p><img src="IMG/Figure10.png"width=1000/></p>
    21622201<p>Figure 10: Example for satellite availability, elevation and PDOP plots as a result of a RINEX quality check analysis with BNC</p>
    21632202
    2164 <p><img src="IMG/Figure11.png"width=900/></p>
     2203<p><img src="IMG/Figure11.png"width=1000/></p>
    21652204<p>Figure 11: Sky plot examples for multipath, part of RINEX quality check analysis with BNC</p>
    21662205
    2167 <p><img src="IMG/Figure12.png"width=900/></p>
     2206<p><img src="IMG/Figure12.png"width=1000/></p>
    21682207<p>Figure 12: Sky plot examples for signal-to-noise ratio, part of RINEX quality check analysis with BNC</p>
    21692208
     
    22262265<p>Figure 13: Example for BNC's 'RINEX Editing Options' window</p>
    22272266
    2228 <p><img src="IMG/Figure14.png"width=900/></p>
     2267<p><img src="IMG/Figure14.png"width=1000/></p>
    22292268<p>Figure 14: Example for RINEX file concatenation with BNC</p>
    22302269
    22312270<p><h4 id="reqccommand">2.6.8 Command Line, No Window - optional</h4></p>
    22322271<p>
    2233 BNC applies options from the configuration file but allows updating every one of them on the command line while the content of the configuration file remains unchanged, see section on 'Command Line Options'. Note the following syntax for Command Line Interface (CLI) options:
     2272BNC applies options from the configuration file but allows updating every one of them on the command line
     2273while the content of the configuration file remains unchanged, see section on 'Command Line Options'.
     2274Note the following syntax for Command Line Interface (CLI) options:
    22342275</p>
    22352276<pre>
     
    22372278</pre>
    22382279<p>
    2239 Parameter &lt;keyName&gt; stands for the name of an option contained in the configuration file and &lt;keyValue&gt; stands for the value you want to assign to it. This functionality may be helpful in the 'RINEX Editing & QC' context when running BNC on a routine basis for maintaining a RINEX file archive.
    2240 </p>
    2241 The following example for a Linux platform calls BNC in 'no window' mode with a local configuration file 'rnx.conf' for concatenating four 15min RINEX files from station TLSE residing in the working directory to produce an hourly RINEX Version 3 file with 30 seconds sampling interval:
    2242 </p>
     2280Parameter &lt;keyName&gt; stands for the name of an option contained in the configuration file
     2281and &lt;keyValue&gt; stands for the value you want to assign to it.
     2282This functionality may be helpful in the 'RINEX Editing & QC' context when running BNC on a routine basis
     2283for maintaining a RINEX file archive.
     2284</p>
     2285<p>
     2286You may use asterisk '*' and/or question mark '?' wildcard characters as shown with the following globbing command line option
     2287to specify a selection of files in the working directory:
    22432288<pre>
    2244    ./bnc --nw --conf rnx.conf --key reqcAction Edit/Concatenate --key reqcObsFile
    2245    "tlse119b00.12o,tlse119b15.12o,tlse119b30.12o,tlse119b45.12o" --key
    2246    reqcOutObsFile tlse119b.12o --key reqcRnxVersion 3 --key reqcSampling 30
     2289   --key reqcObsFile "Input/BRUX00BEL_S_2021125*_15M_01S_MO.rnx"
     2290or:
     2291   --key reqcObsFile Input/BRUX00BEL_S_2021125\*_15M_01S_MO.rnx
    22472292</pre>
    2248 <p>
    2249 You may use asterisk '*' and/or question mark '?' wildcard characters as shown with the following globbing command line option to specify a selection of files in the working directory:
     2293</p>
     2294<p>
     2295The following example for a Linux platform calls BNC in 'no window' mode with a local configuration file 'rnx.conf'
     2296for concatenating four 15min RINEX files from station BRUX00BEL residing in the 'Input' directory to produce an hourly RINEX Version 3 file
     2297with 30 seconds sampling interval:
     2298
    22502299<pre>
    2251    --key reqcObsFile "tlse*"
    2252 or:
    2253    --key reqcObsFile tlse\*
     2300  /home/user/bnc --nw --conf rnx.conf \
     2301       --key reqcAction Edit/Concatenate \
     2302       --key reqcObsFile Input/BRUX00BEL_S_2021125\*_15M_01S_MO.rnx \
     2303       --key reqcOutLogFile Output/RinexConcat.log \
     2304       --key reqcRnxVersion 3 \
     2305       --key reqcSampling 30 \
     2306       --key reqcOutLogFile Output/RinexConcat.log \
     2307       --key reqcOutObsFile Output/BRUX00BEL_S_20211251100_01H_01S_MO.rnx
    22542308</pre>
    22552309</p>
    2256 
    2257 <p>The following Linux command line produces RINEX QC plots (see Estey and Meertens 1999) offline in 'no window' mode and saves them in directory '/home/user'. Introducing a dummy configuration file /dev/null makes sure that no configuration options previously saved on disc are used:</p>
     2310<p>
     2311The following Linux command line produces RINEX QC plots (see Estey and Meertens 1999) offline in 'no window' mode
     2312and saves them in directory '/home/user'. Introducing a dummy configuration file /dev/null makes sure that no configuration options
     2313previously saved on disc are used:
     2314</p>
    22582315<pre>
    2259    /home/user/bnc --conf /dev/null --key reqcAction Analyze --key reqcObsFile
    2260    CUT02070.12O --key reqcNavFile BRDC2070.12P --key reqcOutLogFile CUT0.txt --key
    2261    reqcPlotDir /home/user --nw
     2316  /home/user/bnc --nw --conf /dev/null -display :1 --platform offscreen \
     2317       --key reqcAction Analyze \
     2318       --key reqcObsFile Input/MAO000USA_R_20221720000_01D_30S_MO.rnx \
     2319       --key reqcNavFile Input/MAO000USA_R_20221720000_01D_MN.rnx \
     2320       --key reqcSkyPlotSignals "G:1&2&5 R:1&2 E:1&5&7 C:2&6 J:1&2" \
     2321       --key reqcOutLogFile Output/RinexQc.log \
     2322       --key reqcPlotDir Output 2>/dev/null
    22622323</pre>
    22632324</p>
     
    22652326</p>
    22662327<pre>
    2267    /home/user/bnc --conf /dev/null --key reqcAction Analyze --key reqcObsFile
    2268    CUT02070.12O --key reqcNavFile BRDC2070.12P --key reqcOutLogFile CUT0.txt --key
    2269    --key startTab 4 --key autoStart 2
     2328  /home/user/bnc --conf /dev/null \
     2329       --key reqcAction Analyze \
     2330       --key reqcObsFile Input/MAO000USA_R_20221720000_01D_30S_MO.rnx \
     2331       --key reqcNavFile Input/MAO000USA_R_20221720000_01D_MN.rnx \
     2332       --key reqcSkyPlotSignals "G:1&2&5 R:1&2 E:1&5&7 C:2&6 J:1&2" \
     2333       --key reqcOutLogFile Output/RinexQc.log \
     2334       --key startTab 4 --key autoStart 2
    22702335</pre>
    22712336</p>
    22722337
    22732338<p>
    2274 The following is a list of available key names for '<u>R</u>INEX <u>E</u>diting & <u>QC</u>' (short: REQC, pronounced 'rek') options and their meaning, cf. section 'Configuration Examples':
     2339The following is a list of available key names for '<u>R</u>INEX <u>E</u>diting & <u>QC</u>' (short: REQC, pronounced 'rek') options
     2340and their meaning, cf. section 'Configuration Examples':
    22752341</p>
    22762342<table>
     
    23122378</table>
    23132379
    2314 <p><h4 id="sp3comp">2.6.7 SP3 Comparison</h4></p>
    2315 <p>
    2316 BNC allows to compare the contents of two files with GNSS orbit and clock data in SP3 format. SP3 ASCII files basically contain a list of records over a certain period of time. Each record carries a time tag, the XYZ position of the satellite's Center of Mass at that time and the corresponding satellite clock value. Both SP3 files may contain some records for different epochs. If so, then BNC only compares records for identical epochs. BNC accepts that a specific GNSS system or a specific satellite is only available from one of the SP3 files. Note that BNC does not interpolate orbits when comparing SP3 files.
    2317 </p>
    2318 <p>
    2319 To compare satellite clocks provided by the two files, BNC first converts coordinate differences dX,dY,dZ into along track, out-of-plane, and radial components. It then corrects the clock differences for the radial components of coordinate differences. RMS values of clock differences are finally calculated after introducing at first one offset 'per epoch for all satellites' and secondly one offset 'per satellite for all epochs'.
    2320 </p>
     2380<p><h4 id="sp3comp">2.7 SP3 Comparison</h4></p>
     2381<p>
     2382BNC allows to compare the contents of two files with GNSS orbit and clock data in SP3 format.
     2383SP3 ASCII files basically contain a list of records over a certain period of time.
     2384Each record carries a time tag, the XYZ position of the satellite's Center of Mass at that time and
     2385the corresponding satellite clock value. Both SP3 files may contain some records for different epochs.
     2386If so, then BNC only compares records for identical epochs. BNC accepts that a specific GNSS system
     2387or a specific satellite is only available from one of the SP3 files.
     2388Note that BNC does not interpolate orbits when comparing SP3 files.
     2389</p>
     2390<p>
     2391To compare satellite clocks provided by the two files, BNC first converts coordinate differences dX,dY,dZ
     2392into along track, out-of-plane, and radial components. It then corrects the clock differences for the radial components
     2393of coordinate differences. RMS values of clock differences are finally calculated after introducing at first one offset
     2394'per epoch for all satellites' and secondly one offset 'per satellite for all epochs'.
     2395</p>
     2396<p><img src="IMG/Figure15.png"width=800/></p>
     2397<p>Figure 15: Example for comparing two SP3 files with satellite orbit and clock data using BNC</p>
    23212398
    23222399<p><h4 id="sp3input">2.7.1 Input SP3 Files - optional</h4></p>
     
    23272404<p><h4 id="sp3exclude">2.7.2 Exclude Satellites - optional</h4></p>
    23282405<p>
    2329 You may want to exclude one or more satellites in your SP3 files from the comparison. Or you may like to exclude all satellites of a specific GNSS system from the comparison. The following are example strings to be entered for excluding satellites from the comparison.
     2406You may want to exclude one or more satellites in your SP3 files from the comparison.
     2407Or you may like to exclude all satellites of a specific GNSS system from the comparison.
     2408The following are example strings to be entered for excluding satellites from the comparison.
    23302409<ul>
    23312410  <li>G05,G31 (excluding GPS satellites with PRN 5 and 31)</li>
     
    23472426The following is an example for a SP3 Comparison logfile:
    23482427</p>
    2349 <pre>
    2350 
    2351 ! SP3 File 1: esr18283.sp3
    2352 ! SP3 File 2: rt218283.sp3
     2428<pre><p style="font-family:Monospace">
     2429! SP3 File 1: Input/CNE1SSRRTS_20222410000_01D_05S_ORB.sp3
     2430! SP3 File 2: Input/BKG1SSRRTS_20222410000_01D_05S_ORB.sp3
    23532431!
    2354 !  MJD       PRN  radial   along   out        clk    clkRed   iPRN
    2355 ! ----------------------------------------------------------------
    2356 57043.000000 G01 -0.0001 -0.0318 -0.0354     0.0266  0.0267     1
    2357 57043.000000 G02 -0.0062 -0.0198  0.0111     0.0082  0.0143     2
    2358 57043.000000 G03  0.0052  0.0060  0.0032     0.0386  0.0334     3
    2359 57043.000000 G04 -0.0049 -0.0193 -0.0071    -0.1696 -0.1648     4
    2360 57043.000000 G05  0.0027  0.0154  0.0275     0.0345  0.0318     5
    2361 57043.000000 G06  0.0247 -0.0398 -0.0111     0.0483  0.0236     6
    2362 57043.000000 G07 -0.0052  0.2854 -0.0975    -0.0940 -0.0888     7
    2363 57043.000000 G08 -0.0247  0.0937 -0.0184    -0.1563 -0.1316     8
    2364 57043.000000 G09  0.0152  0.0583  0.0086    -0.0144 -0.0296     9
    2365 ...
    2366 ...
    2367 ...
     2432!  Epoch                PRN  radial   along   out        clk    clkRed   iPRN
     2433! ----------------------------------------------------------------------------
     2434..
     24352022-08-29_08:01:30.000 E02 -0.0023  0.1159 -0.0047     0.0187  0.0210    60
     24362022-08-29_08:01:30.000 E03 -0.0567 -0.0411  0.0146    -0.0093  0.0474    61
     24372022-08-29_08:01:30.000 E04  0.0695 -0.0406  0.0880    -0.0219 -0.0914    62
     24382022-08-29_08:01:30.000 E05 -0.1042  0.1161 -0.0503    -0.0101  0.0942    63
     24392022-08-29_08:01:30.000 E07  0.0354  0.0384 -0.0346     0.0134 -0.0219    65
     24402022-08-29_08:01:30.000 E08 -0.0312  0.0312 -0.0481     0.0130  0.0442    66
     24412022-08-29_08:01:30.000 E09 -0.0548  0.1941  0.0263    -0.0113  0.0436    67
     24422022-08-29_08:01:30.000 E12  0.0402 -0.0023  0.0012    -0.0051 -0.0454    70
     24432022-08-29_08:01:30.000 E13  0.0420 -0.0608 -0.0525    -0.0006 -0.0427    71
     24442022-08-29_08:01:30.000 E15  0.0478  0.0348 -0.0353    -0.0122 -0.0600    73
     24452022-08-29_08:01:30.000 E21  0.0639  0.0033  0.0292    -0.0167 -0.0806    79
     24462022-08-29_08:01:30.000 E24  0.0900 -0.1113 -0.0385     0.0047 -0.0853    82
     24472022-08-29_08:01:30.000 E25  0.0106  0.0340 -0.0564     0.0023 -0.0083    83
     24482022-08-29_08:01:30.000 E26  0.0598  0.0506 -0.0983    -0.0011 -0.0609    84
     24492022-08-29_08:01:30.000 E27  0.0763 -0.0972 -0.0480     0.0041 -0.0722    85
     24502022-08-29_08:01:30.000 E30  0.0385  0.0266  0.0028     0.0092 -0.0293    88
     24512022-08-29_08:01:30.000 E31  0.1017 -0.1834 -0.0211     0.0021 -0.0997    89
     24522022-08-29_08:01:30.000 E33  0.0827  0.0385 -0.0741    -0.0060 -0.0887    91
     24532022-08-29_08:01:30.000 E36  0.0099 -0.0769  0.0384     0.0269  0.0170    94
     2454
     2455..
    23682456!
    23692457! RMS[m]
    23702458!
    2371 !   PRN  radial   along   out     nOrb    clk   clkRed   nClk    Offset
    2372 ! ---------------------------------------------------------------------
    2373 !   G01  0.0151  0.0377  0.0196     96  0.0157  0.0154     96    0.0152
    2374 !   G02  0.0083  0.0278  0.0228     96  0.0097  0.0124     96   -0.0626
    2375 !   G03  0.0105  0.0311  0.0307     96  0.0352  0.0309     96    0.0898
    2376 !   G04  0.0113  0.0334  0.0154     94  0.0725  0.0707     94   -0.5087
    2377 !   G05  0.0103  0.0319  0.0299     96  0.0417  0.0403     96    0.1185
    2378 !   G06  0.0182  0.0509  0.0302     96  0.0218  0.0166     96    0.0040
    2379 !   G07  0.0337  0.1632  0.0463     96  0.0483  0.0435     96    0.3031
    2380 !   G08  0.0228  0.0741  0.0321     88  0.0616  0.0561     88   -0.2232
    2381 ...
    2382 ...
    2383 ...
    2384 !   R20  0.0637  0.2115  0.1131     96  0.1580  0.1345     96    0.7371
    2385 !   R21  0.0475  0.1657  0.0880     96  0.1123  0.0840     96   -0.4133
    2386 !   R22  0.0125  0.1249  0.0646     96  0.0414  0.0444     96   -0.7375
    2387 !   R23  0.0435  0.1503  0.0573     96  0.0987  0.1099     96    0.6620
    2388 !   R24  0.0278  0.2026  0.1186     96  0.1446  0.1303     96   -1.1470
     2459!    PRN  radial   along   out     nOrb    clk   clkRed   nClk    Offset
     2460! ----------------------------------------------------------------------
     2461!    E02  0.0072  0.1160  0.0267    165  0.0110  0.0158    165   -0.0345
     2462!    E03  0.0610  0.0387  0.0151    165  0.0083  0.0617    165   -0.0376
     2463!    E04  0.0830  0.0619  0.0819    165  0.0112  0.0828    165    0.0649
     2464!    E05  0.0966  0.1193  0.0418    165  0.0058  0.0965    165   -0.0073
     2465!    E07  0.0296  0.0309  0.0389    165  0.0102  0.0296    165   -0.0904
     2466!    E08  0.0371  0.0193  0.0424    165  0.0080  0.0372    165   -0.1017
     2467!    E09  0.0436  0.1744  0.0422    165  0.0044  0.0433    165   -0.0300
     2468!    E12  0.0490  0.0033  0.0107    165  0.0042  0.0489    165   -0.1174
     2469!    E13  0.0336  0.0393  0.0661    165  0.0046  0.0341    165   -0.0683
     2470!    E15  0.0548  0.0273  0.0375    165  0.0064  0.0547    165    0.0536
     2471!    E21  0.0667  0.0116  0.0301    165  0.0079  0.0671    165   -0.0384
     2472!    E24  0.0913  0.1101  0.0332    165  0.0050  0.0913    165    0.0946
     2473!    E25  0.0099  0.0412  0.0628    165  0.0033  0.0101    165    0.0797
     2474!    E26  0.0621  0.0516  0.0946    165  0.0033  0.0622    165    0.0300
     2475!    E27  0.0734  0.0841  0.0522    165  0.0052  0.0733    165    0.1015
     2476!    E30  0.0382  0.0380  0.0072    165  0.0046  0.0384    165    0.0682
     2477!    E31  0.0937  0.1700  0.0234    165  0.0089  0.0943    165    0.1110
     2478!    E33  0.0926  0.0340  0.0654    165  0.0032  0.0926    165    0.0010
     2479!    E36  0.0059  0.0630  0.0456    165  0.0089  0.0073    165   -0.0790
     2480..
    23892481!
    2390 ! Total  0.0262  0.0938  0.0492   5268  0.0620  0.0561   5268
     2482!  Total  0.0552  0.0877  0.0690  10395  0.0075  0.0551  10395
     2483</p>
    23912484</pre>
    23922485<p>
     
    23952488
    23962489<table>
    2397 <tr><td>'MJD' &nbsp;</td><td>Modified Julian Date</td></tr>
     2490<tr><td>'Epoch' &nbsp;</td><td>Epoch Date and Time</td></tr>
    23982491<tr><td>'PRN' &nbsp;</td><td>Satellite specification</td></tr>
    23992492<tr><td>'radial' &nbsp;</td><td>Radial component of orbit coordinate difference [m]</td></tr>
     
    24192512<tr><td>'Offset' &nbsp;</td><td>Clock offset [m]</td></tr>
    24202513</table>
    2421 
    24222514<br>
    2423 
    2424 <p><img src="IMG/screenshot36.png"/></p>
    2425 <p>Figure 16: Example for comparing two SP3 files with satellite orbit and clock data using BNC</p>
     2515<p><img src="IMG/Figure16.png"width=1000/></p>
     2516<p>Figure 16: Graphical results from an example comparison of two SP3 files with satellite orbit and clock data using BNC</p>
    24262517
    24272518<p><h4 id="correct">2.8 Broadcast Corrections</h4></p>
    24282519<p>
    2429 Differential GNSS and RTK operation using RTCM streams is currently based on corrections and/or raw measurements from single or multiple reference stations. This approach to differential positioning uses 'observation space' information. The representation with the RTCM standard can be called 'Observation Space Representation' (OSR).
    2430 </p>
    2431 <p>
    2432 An alternative to the observation space approach is the so-called 'state space' approach. The principle here is to provide information on individual error sources. It can be called 'State Space Representation' (SSR). For a rover position, state space information concerning precise satellite clocks, orbits, ionosphere, troposphere et cetera can be converted into observation space and used to correct the rover observables for more accurate positioning. Alternatively, the state information can be used directly in the rover's processing or adjustment model.
    2433 </p>
    2434 <p>
    2435 RTCM is currently developing Version 3 messages to transport SSR corrections in real-time. They refer to satellite Antenna Phase Center (APC). SSR messages adopted or recently proposed concern:
    2436 
     2520Differential GNSS and RTK operation using RTCM streams is currently based on corrections and/or raw measurements from single or
     2521multiple reference stations. This approach to differential positioning uses 'observation space' information.
     2522The representation with the RTCM standard can be called 'Observation Space Representation' (OSR).
     2523</p>
     2524<p>
     2525An alternative to the observation space approach is the so-called 'state space' approach. The principle here is to provide
     2526information on individual error sources. It can be called 'State Space Representation' (SSR).
     2527For a rover position, state space information concerning precise satellite clocks, orbits, ionosphere, troposphere et cetera
     2528can be converted into observation space and used to correct the rover observables for more accurate positioning.
     2529Alternatively, the state information can be used directly in the rover's processing or adjustment model.
     2530</p>
     2531<p>
     2532RTCM is currently developing Version 3 messages to transport SSR corrections in real-time. They may refer to satellite Antenna Phase Center (APC)
     2533or Center of Mass (CoM). Because the development was stagnating in RTCM over years, IGS has developed similar SSR messages in parallel.
     2534Available and unter development are:
    24372535<ul>
    24382536  <li>SSR, Step I:</li>
     
    24462544    <li>Code biases</li>
    24472545  </ul>
    2448   <li>SSR, Step II:</li>
     2546  <li>SSR, Step II (will change in 2023):</li>
    24492547  <ul>
    24502548    <li>Phase biases</li>
     
    24542552
    24552553<p>
    2456 RTCM Version 3 streams carrying these messages may be used e.g. to support real-time Precise Point Positioning (PPP) applications.
    2457 </p>
    2458 <p>
    2459 When using clocks from Broadcast Ephemeris (with or without applied corrections) or clocks from SP3 files, it may be important to understand that they are not corrected for the conventional periodic relativistic effect. Chapter 10 of the IERS Conventions 2003 mentions that the conventional periodic relativistic correction to the satellite clock (to be added to the broadcast clock) is computed as
    2460 </p>
    2461 
     2554SSR streams carrying these messages may be used e.g. to support real-time Precise Point Positioning (PPP) applications.
     2555</p>
     2556<p>
     2557Orbit corrections are provided in along-track, out-of-plane and radial components.
     2558These components are defined in the Earth-Centered, Earth-Fixed reference frame of the Broadcast Ephemeris.
     2559For an observer in this frame, the along-track component is aligned in both direction and sign with the velocity vector,
     2560the out-of-plane component is perpendicular to the plane defined by the satellite position and velocity vectors, and
     2561the radial direction is perpendicular to the along track and out-of-plane ones. The three components form a right-handed orthogonal system.
     2562</p>
     2563
     2564<p>
     2565After applying corrections, the satellite position and clock is referred to the 'ionospheric free' phase center of the antenna
     2566which is compatible with the broadcast orbit reference.
     2567</p>
     2568
     2569<p>
     2570The orbit and clock corrections do not include local effects like Ocean Loading, Solid Earth Tides or tropospheric delays.
     2571However, accurate single frequency applications can be corrected for global ionospheric effects using so-call VTEC messages
     2572for global ionospheric state parameters.
     2573</p>
     2574
     2575<p>
     2576While we have a plain ASCII standard for saving Broadcast Ephemeris in RINEX Navigation files, we do not have an equivalent standard
     2577for corrections to Broadcast Ephemeris. Hence, BNC saves Broadcast Correction files following its own format definition.
     2578</p>
     2579<p>
     2580The filename convention for Broadcast Correction files follows the convention for RINEX Version 3/4 files
     2581except for the two characters of the data type as well as for the characters of the filename suffix, which is set to 'ssr':
     2582The file below contains one day's data. 'MN' stands for 'Multi Constellation Clock' data.
     2583</p>
    24622584<pre>
    2463  &nbsp; &nbsp; dt =  -2 (R * V) / c<sup>2</sup>
     2585SSRA00CNE1_S_20222750000_01D_MC.ssr
     2586SSRA00DLR1_S_20222740000_01D_MC.ssr
    24642587</pre>
    2465 
    2466 <p>
    2467 where R * V is the scalar product of the satellite position and velocity and c is the speed of light. This can also be found in the GPS Interface Specification, IS-GPS-200, Revision D, 7 March 2006.
    2468 </p>
    2469 
    2470 <p>
    2471 Orbit corrections are provided in along-track, out-of-plane and radial components. These components are defined in the Earth-Centered, Earth-Fixed reference frame of the Broadcast Ephemeris. For an observer in this frame, the along-track component is aligned in both direction and sign with the velocity vector, the out-of-plane component is perpendicular to the plane defined by the satellite position and velocity vectors, and the radial direction is perpendicular to the along track and out-of-plane ones. The three components form a right-handed orthogonal system.
    2472 </p>
    2473 
    2474 <p>
    2475 After applying corrections, the satellite position and clock is referred to the 'ionospheric free' phase center of the antenna which is compatible with the broadcast orbit reference.
    2476 </p>
    2477 
    2478 <p>
    2479 The orbit and clock corrections do not include local effects like Ocean Loading, Solid Earth Tides or tropospheric delays. However, accurate single frequency applications can be corrected for global ionospheric effects using so-call VTEC messages for global ionospheric state parameters.
    2480 </p>
    2481 
    2482 <p>
    2483 While we have a plain ASCII standard for saving Broadcast Ephemeris in RINEX Navigation files, we do not have an equivalent standard for corrections to Broadcast Ephemeris. Hence, BNC saves Broadcast Correction files following its own format definition. The filename convention for Broadcast Correction files follows the convention for RINEX Version 2 files except for the last character of the filename suffix which is set to 'C'.
    2484 </p>
    2485 
    2486 <p>
    2487 BNC's Broadcast Correction files contain blocks of records in plain ASCII format. Each block covers information about one specific topic and starts with an 'Epoch Record'.
    2488 </p>
     2588BNC's Broadcast Correction files contain blocks of records in plain ASCII format.
     2589Each block covers information about one specific topic and starts with an 'Epoch Record'.
    24892590<p>
    24902591<b>The 'Epoch Record' of a Broadcast Correction block</b>
     
    24942595The leading 'Epoch Record' of each block in a Broadcast Correction file contains 11 parameters. Example:
    24952596</p>
    2496 <pre>
    2497 > ORBIT 2015 06 17 11 43 35.0 2 53 CLK93
    2498 </pre>
    2499 <p>
     2597<pre><p style="font-family:Monospace">
     2598> ORBIT 2022 10 01 23 59 45.0 2 110 SSRA00CNE1
     2599</p></pre>
    25002600Their meaning is as follows:
    2501 </p>
    25022601<ol type="1">
    25032602  <li>Special character '&#62;' is the first character in each 'Epoch Record' (as we have it in RINEX Version 3)</li>
     
    25312630  <li>Mountpoint, source/stream indicator</li>
    25322631</ol>
    2533 Each of the following 'satellite records' in such a block carries information for one specific satellite. Undefined parameters in the 'satellite records' could be set to zero &quot;0.000&quot;.
     2632Each of the following 'satellite records' in such a block carries information for one specific satellite.
     2633Undefined parameters in the 'satellite records' could be set to zero &quot;0.000&quot;.
    25342634
    25352635<p>
    25362636<b>Example for block 'ORBIT' carrying orbit corrections</b>
    25372637</p>
    2538 <pre>
    2539 > ORBIT 2015 06 17 11 43 35.0 2 53 CLK93
    2540 G01   9     0.5134     0.3692     0.6784        0.0000    -0.0000    -0.0000
    2541 G02  25    57.6817   139.0492   -91.3456        0.5436    -0.6931     1.0173
    2542 G03  79   -32.1768   191.8368  -121.6540        0.2695     0.2296     0.4879
    2543 ...
    2544 G32  82     1.8174     1.1704     0.2200       -0.0002    -0.0000    -0.0001
    2545 R01  59     0.7819    -0.6968     0.7388       -0.0001     0.0004     0.0004
    2546 R02  59     0.5816    -0.5800    -0.2004        0.0001    -0.0006     0.0001
    2547 R03  59     0.4635    -0.9104    -0.3832        0.0001     0.0001     0.0005
    2548 ...
    2549 R24  59     0.5935     2.0732    -0.6884       -0.0000     0.0004     0.0003
    2550 </pre>
    2551 <p>
     2638<pre><p style="font-family:Monospace">
     2639> ORBIT 2022 10 01 23 59 45.0 2 110 SSRA00CNE1
     2640G01          93    -0.1588    -0.8664    -0.0600        0.2210    -0.1200    -0.0400
     2641G02          33     0.0491    -1.7468     0.5608        0.1820     0.0040     0.0200
     2642G03          72    -0.1495    -0.5408     0.2372        0.1190    -0.1640     0.1200
     2643G04         183     0.1435    -0.1232     0.5380        0.0090    -0.1400     0.1080
     2644G06          94    -0.2037    -2.1956    -0.1688        0.2540    -0.1280     0.0480
     2645..
     2646R01          11    -0.7444     2.7684    -2.6576       -1.7740    -0.0480    -1.6440
     2647R02          11    -0.0127     0.9224    -0.5828       -0.0830     0.4400    -0.2480
     2648R03          11     1.1832     0.5412     1.0988        0.6670     0.8160     0.7280
     2649R04          11     0.3613    -1.5672     1.3608        0.1840    -0.4520     0.9440
     2650..
     2651E01         110    -0.0509    -0.1328    -0.1212        0.0010    -0.0960     0.0000
     2652E02         110    -0.1341    -0.3820     0.3552       -0.0040    -0.1200     0.0120
     2653E03         110     0.0744    -0.2620    -0.3392        0.0160    -0.1280    -0.0120
     2654E04         110    -0.0925     0.1708    -0.0212        0.0200    -0.0520     0.0120
     2655..
     2656C01         115     2.3749     0.8224    -3.0080        0.0360    -0.0440    -0.0320
     2657C02         115     4.4831     0.7836    -3.3052        0.0070    -0.0120     0.4240
     2658<p></pre>
     2659
    25522660Records in this block provide the following satellite specific information:
    25532661<ul>
     
    25672675</p>
    25682676
    2569 <p>
    2570 <pre>
    2571 > CLOCK 2015 06 17 11 43 35.0 2 53 CLK93
    2572 G01   9     0.5412     0.0000     0.0000
    2573 G02  25    11.1811     0.0000     0.0000
    2574 G03  79    45.0228     0.0000     0.0000
    2575 ...
    2576 G32  82    -1.5324     0.0000     0.0000
    2577 R01  59     4.2194     0.0000     0.0000
    2578 R02  59     2.0535     0.0000     0.0000
    2579 R03  59     1.8130     0.0000     0.0000
    2580 ...
    2581 R24  59     2.7409     0.0000     0.0000
     2677<pre><p style="font-family:Monospace">
     2678> CLOCK 2022 10 01 23 59 45.0 2 110 SSRA00CNE1
     2679G01          93     0.1498     0.0000     0.0000
     2680G02          33    -0.3686     0.0000     0.0000
     2681G03          72     0.2208     0.0000     0.0000
     2682G04         183    -0.9087     0.0000     0.0000
     2683..
     2684R01          11     3.2911     0.0000     0.0000
     2685R02          11     2.7534     0.0000     0.0000
     2686R03          11    -3.0149     0.0000     0.0000
     2687R04          11    -4.2644     0.0000     0.0000
     2688..
     2689E01         110    -0.1014     0.0000     0.0000
     2690E02         110     0.3910     0.0000     0.0000
     2691E03         110    -0.2841     0.0000     0.0000
     2692E04         110     0.0697     0.0000     0.0000
     2693..
     2694C01         115     0.0000     0.0000     0.0000
     2695C02         115    -7.1950     0.0000     0.0000
     2696</p>
    25822697</pre>
    25832698<p>
     
    25912706</ul>
    25922707</p>
    2593 
    25942708<p>
    25952709<b>Example for block 'CODE_BIAS' carrying code biases</b>
    25962710</p>
    2597 <pre>
    2598 > CODE_BIAS 2015 06 17 11 43 35.0 2 53 CLK93
    2599 G01    5   1C    -3.3100   1W    -3.7500   2W    -6.1900   2X    -5.7800   5I    -5.4200
    2600 G02    5   1C     3.6000   1W     3.9300   2W     6.4800   2X     0.0000   5I     0.0000
    2601 G03    5   1C    -2.1600   1W    -2.6500   2W    -4.3600   2X    -4.4800   5I    -5.3400
    2602 ...
    2603 G32    5   1C    -1.5800   1W    -1.1000   2W    -1.8200   2X     0.0000   5I     0.0000
    2604 R01    4   1C    -2.4900   1P    -2.4900   2C    -3.1500   2P    -4.1200
    2605 R02    4   1C     0.3900   1P     0.2100   2C     0.4000   2P     0.3400
    2606 R03    4   1C     2.4800   1P     2.2800   2C     3.7800   2P     3.7700
    2607 ...
    2608 R24    4   1C     2.7000   1P     2.7800   2C     3.9800   2P     4.6000
    2609 </pre>
     2711<pre><p style="font-family:Monospace">
     2712> CODE_BIAS 2022 10 01 23 59 45.0 2 110 SSRA00CNE1
     2713G01    7   1C    -2.6900   1P    -2.8300   1W    -3.1000   2L    -3.8000   2S    -3.8000   2W    -5.1000   5Q    -0.6300
     2714G02    4   1C     3.1700   1P     3.1400   1W     3.6600   2W     6.0300
     2715G03    7   1C    -2.0500   1P    -1.8800   1W    -2.2600   2L    -3.0300   2S    -2.9800   2W    -3.7200   5Q    -0.6400
     2716G04    7   1C     0.6300   1P     0.7000   1W     0.4800   2L     1.9200   2S     1.9100   2W     0.8000   5Q     0.5200
     2717..
     2718R01    4   1C    -2.6700   1P    -2.5800   2C    -3.6100   2P    -4.2500
     2719R02    4   1C    -0.2300   1P    -0.2700   2C    -0.4400   2P    -0.4400
     2720R03    4   1C     1.3200   1P     1.2700   2C     2.0100   2P     2.0900
     2721R04    4   1C     1.7100   1P     1.5700   2C     2.5700   2P     2.5800
     2722..
     2723E01    4   1C    -0.1500   5Q    -0.2700   6C    -1.0300   7Q    -0.2300
     2724E02    4   1C     0.3000   5Q     0.5300   6C    -0.3000   7Q     0.6800
     2725E03    4   1C    -0.9000   5Q    -1.6100   6C    -0.6600   7Q    -1.5700
     2726E04    4   1C     0.9400   5Q     1.6900   6C     0.9500   7Q     1.6500
     2727..
     2728C01    3   2I     0.5900   6I     0.8900   7I    -5.2500
     2729C02    3   2I     4.4700   6I     6.7600   7I     1.9700
     2730</p></pre>
    26102731<p>
    26112732Records in this block provide the following satellite specific information:
     
    26262747<b>Example for block 'PHASE_BIAS' carrying phase biases</b>
    26272748</p>
    2628 <pre>
    2629 > PHASE_BIAS 2015 06 17 11 43 35.0 2 31 CLK93
     2749<pre><p style="font-family:Monospace">
     2750> PHASE_BIAS 2022 10 01 23 59 45.0 2 110 SSRA00CNE1
    26302751 0   1
    2631 G01 245.39062500   0.00000000    3   1C     3.9518   1   2   6   2W     6.3177   1   2   6   5I     6.8059   1   2   6
    2632 G02 250.31250000   0.00000000    3   1C    -4.0900   1   2   5   2W    -6.7044   1   2   5   5I     0.0000   1   2   5
    2633 G03 281.95312500   0.00000000    3   1C     2.9327   1   2   4   2W     4.6382   1   2   4   5I     5.4120   1   2   4
    2634 ...
    2635 G32 290.39062500   0.00000000    3   1C     1.2520   1   2   5   2W     2.0554   1   2   5   5I     0.0000   1   2   5
    2636 </pre>
     2752G01 157.50000000   0.00000000    3   1C    -0.6023   1   2   7   2W    -0.8679   1   2   7   5I    -0.8614   1   2   7
     2753G02  13.35937500   0.00000000    2   1C     0.7878   1   2   4   2W     1.1236   1   2   4
     2754G03 114.60937500   0.00000000    3   1C     0.5267   1   2   5   2W     0.6362   1   2   5   5I     0.5909   1   2   5
     2755G04 142.73437500   0.00000000    3   1C    -0.2596   1   2   4   2W    -0.3408   1   2   4   5I    -0.3128   1   2   4
     2756..
     2757R01  61.87500000   0.00000000    0
     2758R02  63.28125000   0.00000000    0
     2759R03  81.56250000   0.00000000    0
     2760R04 104.76562500   0.00000000    0
     2761..
     2762E01 311.48437500   0.00000000    4   1C    -0.3417   1   2   7   5Q    -0.4521   1   2   7   7Q    -3.1509   1   2   7   6C    -3.4182   1   2   7
     2763E02 228.51562500   0.00000000    4   1C    -0.2393   1   2   5   5Q    -0.5462   1   2   5   7Q    -2.9695   1   2   5   6C    -3.3839   1   2   5
     2764E03 137.10937500   0.00000000    4   1C    -0.1708   1   2   4   5Q    -0.1185   1   2   4   7Q    -2.6085   1   2   4   6C    -3.0863   1   2   4
     2765E04  42.89062500   0.00000000    4   1C     0.5145   1   2  11   5Q     0.6448   1   2  11   7Q    -2.0412   1   2  11   6C    -2.5102   1   2  11
     2766..
     2767C01   0.00000000   0.00000000    3   2I    -0.2411   0   2   6   7I     2.9125   0   2   6   6I    -0.3651   0   2   6
     2768C02   0.00000000   0.00000000    3   2I     0.5378   0   2  15   7I     4.1515   0   2  15   6I     0.7121   0   2  15
     2769</p></pre>
    26372770<p>
    26382771The second record in this block provides the following consistency information:
     
    26692802<b>Example for block 'VTEC' carrying ionospheric corrections</b>
    26702803</p>
    2671 <pre>
    2672 > VTEC 2015 06 17 11 43 35.0 6 1 CLK93
    2673  1  6  6   450000.0
    2674    17.6800     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
    2675     4.5200     8.8700     0.0000     0.0000     0.0000     0.0000     0.0000
    2676    -4.6850    -0.3050     1.1700     0.0000     0.0000     0.0000     0.0000
    2677    -2.2250    -1.3900    -1.0250    -0.1300     0.0000     0.0000     0.0000
    2678     0.8750    -0.3800     0.2700    -0.1300     0.0400     0.0000     0.0000
    2679     1.2150     0.9050    -1.0100     0.3700    -0.1450    -0.2450     0.0000
    2680    -0.8200     0.4850     0.2300    -0.1750     0.3400    -0.0900    -0.0400
    2681     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
    2682     0.0000    -0.0700     0.0000     0.0000     0.0000     0.0000     0.0000
    2683     0.0000     0.5800    -1.4150     0.0000     0.0000     0.0000     0.0000
    2684     0.0000    -0.6200    -0.1500     0.2600     0.0000     0.0000     0.0000
    2685     0.0000     0.0700    -0.0900    -0.0550     0.1700     0.0000     0.0000
    2686     0.0000     0.5000     0.3050    -0.5700    -0.5250    -0.2750     0.0000
    2687     0.0000     0.0850    -0.4700     0.0600     0.0700     0.1600     0.0400
    2688 </pre>
     2804<pre><p style="font-family:Monospace"
     2805> VTEC 2022 10 02 00 00 00.0 6 1 SSRA00CNE1
     2806 1 12 12   450000.0
     2807   22.6900     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
     2808    0.2000    11.6050     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
     2809   -8.7500    -0.0200     2.0250     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
     2810   -0.2900    -1.5900     0.3700    -0.1750     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
     2811    3.1850    -0.1150    -0.2350     0.0050     0.0300     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
     2812   -0.1050     1.3550    -0.4000    -0.3400    -0.0150    -0.2550     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
     2813   -1.1200     0.0800     0.1100    -0.1350     0.0650    -0.0050     0.0400     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
     2814    0.1600    -0.3650     0.4200     0.0750    -0.0400    -0.0350     0.0950     0.3000     0.0000     0.0000     0.0000     0.0000     0.0000
     2815    0.6950    -0.0750     0.0500     0.0450    -0.0800     0.0600    -0.0500     0.0200    -0.0100     0.0000     0.0000     0.0000     0.0000
     2816    0.0200     0.0150    -0.0800    -0.0500     0.0600     0.0200    -0.0900    -0.1000     0.0400    -0.1050     0.0000     0.0000     0.0000
     2817   -0.2600    -0.2800    -0.0550    -0.0100     0.1200    -0.0150    -0.0200    -0.0050    -0.0250    -0.0750     0.0200     0.0000     0.0000
     2818    0.1850    -0.0400     0.1250     0.0100     0.0000    -0.0250     0.0600     0.0700     0.0000     0.0050    -0.0250    -0.0050     0.0000
     2819   -0.0500    -0.0200     0.0850     0.0700    -0.0850     0.0350    -0.0350     0.0350    -0.0250     0.0200     0.0200     0.0300     0.0250
     2820    0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
     2821    0.0000     1.5350     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
     2822    0.0000     0.1150    -1.3850     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
     2823    0.0000    -2.0150     0.2500     0.9750     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
     2824    0.0000     0.0450     0.3200     0.1500     0.2200     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
     2825    0.0000     1.0400    -0.0950    -0.0600     0.1100    -0.2750     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
     2826    0.0000    -0.1150    -0.5000    -0.0650    -0.1800    -0.0300     0.0100     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
     2827    0.0000    -0.5200    -0.0100    -0.0150    -0.0300    -0.1350     0.0100     0.0050     0.0000     0.0000     0.0000     0.0000     0.0000
     2828    0.0000     0.0900     0.1400     0.0550     0.0450     0.0300     0.1300     0.0250     0.0650     0.0000     0.0000     0.0000     0.0000
     2829    0.0000     0.0800     0.0350     0.0600     0.0150    -0.0700    -0.0100    -0.0100     0.0100     0.1000     0.0000     0.0000     0.0000
     2830    0.0000    -0.1550    -0.1400     0.0250    -0.0100    -0.0450    -0.0250     0.0200    -0.0800     0.0150    -0.1000     0.0000     0.0000
     2831    0.0000     0.0550    -0.0100    -0.0300     0.0050     0.1250    -0.0450    -0.0150    -0.0100     0.0250    -0.0200    -0.0600     0.0000
     2832    0.0000     0.0750    -0.1400     0.0850    -0.0200    -0.0150     0.0750     0.0000     0.0050     0.0200     0.0250     0.0100     0.0450
     2833</p></pre>
    26892834<p>
    26902835The second record in this block provides four parameters:
     
    27032848<p><h4 id="corrdir">2.8.1 Directory, ASCII - optional</h4></p>
    27042849<p>
    2705 Specify a directory for saving Broadcast Corrections in files. If the specified directory does not exist, BNC will not create Broadcast Correction files. Default value for Broadcast Correction 'Directory' is an empty option field, meaning that no Broadcast Correction files will be created.
     2850Specify a directory for saving Broadcast Corrections in files. If the specified directory does not exist,
     2851BNC will not create Broadcast Correction files. Default value for Broadcast Correction 'Directory' is
     2852an empty option field, meaning that no Broadcast Correction files will be created.
    27062853</p>
    27072854
     
    27132860<p><h4 id="corrport">2.8.3 Port - optional</h4></p>
    27142861<p>
    2715 BNC can output epoch by epoch synchronized Broadcast Corrections in ASCII format on your local host (IP 127.0.0.1) through an IP 'Port'. Specify an IP port number to activate this function. The default is an empty option field, meaning that no Broadcast Correction output via IP port is generated.
    2716 </p>
    2717 <p>
    2718 The output format is similar to the format used for saving Broadcast Corrections in a file.
    2719 </p>
    2720 <p>
    2721 The following is an example output for the stream from mountpoint CLK93:
    2722 <pre>
    2723 > ORBIT 2015 06 19 16 41 00.0 2 53 CLK93
    2724 G01  85     0.5891    -0.5124    -0.0216       -0.0001    -0.0002     0.0000
    2725 G02  25  -150.1820    11.4676    84.5216        0.4130    -0.6932     1.0159
    2726 G03  79    15.1999   141.9932  -156.4244        0.6782    -0.8607    -0.8211
    2727 ...
    2728 G32  39     1.8454     0.4888    -0.3876       -0.0001    -0.0001     0.0001
    2729 R01  79    -0.0506     1.9024    -0.0120        0.0004     0.0002    -0.0000
    2730 R02  79     0.1623     0.9012     0.3984        0.0001     0.0001     0.0002
    2731 R03  79     0.3247    -2.6704    -0.0240        0.0005    -0.0002     0.0002
    2732 ...
    2733 R24  79     0.7046    -0.5088    -0.0160       -0.0000     0.0000    -0.0002
    2734 > CLOCK 2015 06 19 16 41 00.0 2 53 CLK93
    2735 G01  85  -116.9441     0.0000     0.0000
    2736 G02  25  -110.4472     0.0000     0.0000
    2737 G03  79   -96.8299     0.0000     0.0000
    2738 ...
    2739 G32  39  -119.2757     0.0000     0.0000
    2740 R01  79     1.5703     0.0000     0.0000
    2741 R02  79    -1.4181     0.0000     0.0000
    2742 R03  79     0.2072     0.0000     0.0000
    2743 ...
    2744 R24  79     1.1292     0.0000     0.0000
    2745 > CODE_BIAS 2015 06 19 16 41 00.0 0 56 CLK93
    2746 E11    3   1B     1.3800   5Q     2.4800   7Q     2.5000
    2747 E12    3   1B     0.3900   5Q     0.6900   7Q     0.5300
    2748 E19    3   1B    -1.7800   5Q    -3.1900   7Q    -3.0700
    2749 G01    5   1C    -3.3100   1W    -3.7500   2W    -6.1900   2X    -5.7800   5I    -5.4200
    2750 G02    5   1C     3.6000   1W     3.9300   2W     6.4800   2X     0.0000   5I     0.0000
    2751 G03    5   1C    -2.1600   1W    -2.6500   2W    -4.3600   2X    -4.4800   5I    -5.3400
    2752 ...
    2753 G32    5   1C    -1.5800   1W    -1.1000   2W    -1.8200   2X     0.0000   5I     0.0000
    2754 R01    4   1C    -2.4900   1P    -2.4900   2C    -3.1500   2P    -4.1200
    2755 R02    4   1C     0.3900   1P     0.2100   2C     0.4000   2P     0.3400
    2756 R03    4   1C     2.4800   1P     2.2800   2C     3.7800   2P     3.7700
    2757 ...
    2758 R24    4   1C     2.7000   1P     2.7800   2C     3.9800   2P     4.6000
    2759 > PHASE_BIAS 2015 06 19 16 41 00.0 2 31 CLK93
    2760  0   1
    2761 G01 309.37500000   0.00000000    3   1C     3.9922   1   2   6   2W     6.3568   1   2   6   5I     6.8726   1   2   6
    2762 G02 263.67187500   0.00000000    3   1C    -4.0317   1   2   7   2W    -6.6295   1   2   7   5I     0.0000   1   2   7
    2763 G03 267.89062500   0.00000000    3   1C     3.1267   1   2   4   2W     4.9126   1   2   4   5I     5.6478   1   2   4
    2764 ...
    2765 G32 255.93750000   0.00000000    3   1C     1.3194   1   2   5   2W     2.1448   1   2   5   5I     0.0000   1   2   5
    2766 > VTEC 2015 06 19 16 41 00.0 6 1 CLK93
    2767  1  6  6   450000.0
    2768    16.7450     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
    2769     4.9300     8.1600     0.0000     0.0000     0.0000     0.0000     0.0000
    2770    -4.4900     0.2550     1.0950     0.0000     0.0000     0.0000     0.0000
    2771    -2.2450    -1.9500    -0.7950    -0.4700     0.0000     0.0000     0.0000
    2772     1.0250    -0.9000    -0.0900     0.1050     0.1450     0.0000     0.0000
    2773     1.5500     0.9750    -0.8150     0.3600     0.0350    -0.0900     0.0000
    2774    -0.4050     0.8300     0.0800    -0.0650     0.2200     0.0150    -0.1600
    2775     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
    2776     0.0000    -0.1250     0.0000     0.0000     0.0000     0.0000     0.0000
    2777     0.0000     1.0050    -0.7750     0.0000     0.0000     0.0000     0.0000
    2778     0.0000    -0.2300     0.7150     0.7550     0.0000     0.0000     0.0000
    2779     0.0000    -0.4100    -0.1250     0.2400     0.2700     0.0000     0.0000
    2780     0.0000     0.0850    -0.3400    -0.0500    -0.2200    -0.0750     0.0000
    2781     0.0000     0.2000    -0.2850    -0.0150    -0.0250     0.0900     0.0650
    2782 </pre>
    2783 </p>
    2784 <p>
    2785 The source code for BNC comes with an example Perl script 'test_tcpip_client.pl' that allows to read BNC's Broadcast Corrections from the IP port for verification.
    2786 </p>
    2787 
    2788 <p><img src="IMG/screenshot37.png"/></p>
     2862BNC can output epoch by epoch synchronized Broadcast Corrections in ASCII format on your local host (IP 127.0.0.1)
     2863through an IP 'Port'. Specify an IP port number to activate this function. The default is an empty option field,
     2864meaning that no Broadcast Correction output via IP port is generated.
     2865</p>
     2866<p>
     2867The output format is the same to the format used for saving Broadcast Corrections in a file.
     2868</p>
     2869<p>
     2870The source code for BNC comes with an example Perl script 'test_tcpip_client.pl' that allows to read
     2871BNC's Broadcast Corrections from the IP port for verification.
     2872</p>
     2873
     2874<p><img src="IMG/Figure17.png"width=1000/></p>
    27892875<p>Figure 17: Example for pulling, saving and output of Broadcast Corrections using BNC</p>
    27902876
     
    27922878
    27932879<p>
    2794 BNC can produce synchronized or unsynchronized observations epoch by epoch from all stations and satellites to feed a real-time GNSS network engine. Observations can be streamed out through an IP port and/or saved in a local file. The output is always in the same plain ASCII format and sorted per incoming stream.
    2795 </p>
    2796 
    2797 <p>
    2798 Each epoch in the synchronized output begins with a line containing the GPS Week Number and the seconds within the GPS Week. Following lines begin with the mountpoint string of the stream which provides the observations followed by a satellite number. Specifications for satellite number, code, phase, doppler and signal strength data follow definitions presented in the RINEX Version 3 documentation. In case of phase observations, a 'Slip Counter' is added. The end of an epoch is indicated by an empty line.
    2799 </p>
    2800 
    2801 <p>
    2802 A valid 'Slip Counter' is only presented for observations from RTCM Version 2 streams (Cummulative Loss of Lock Indicator). In RTCM Version 3 streams a 'Lock Time Indicator' is available instead. This parameter indicates a measure of the amount of time that has elapsed during which the receiver has maintained continuous lock on that satellite signal. If a cycle slip occurs during the previous measurement cycle, the 'Lock Time Indicator' will be reset to zero. But, this 'Lock Time Indicator' ist defined with different resolution for different RTCM version 3 observation types (MSMi, legacy messages).
    2803 </p>
    2804 
    2805 <p>
    2806 From the RTCM version 3 'Lock Time Indicator' a valid 'Lock Time' can be computed with the respective calculation rule. This parameter provides a measure of the amount of time that has elapsed during which the receiver has maintained continuous lock on that satellite signal in seconds. If a cycle slip occurs during the previous measurement cycle, the 'Lock Time' will decrease. This information will be used, to provide a 'Slip Counter' for RTCM Version 3 observations as well.  With it, we have an output format that is independent from the RTCM version of the observations. The 'Lock Time' output can be activated optional.
    2807 </p>
    2808 
    2809 <p>
    2810 The following table describes the format of BNC's synchronized output of GNSS observations which consists of 'Epoch Records' and 'Observation Records'. Each Epoch Record is followed by one or more Observation Records. The Observation Record is repeated for each satellite having been observed in the current epoch. The length of an Observation Record is given by the number of observation types for this satellite.
     2880BNC can produce synchronized or unsynchronized observations epoch by epoch from all stations and satellites to feed
     2881a real-time GNSS network engine.  Observations can be streamed out through an IP port and/or saved in a local file.
     2882The output is always in the same plain ASCII format and sorted per incoming stream.
     2883</p>
     2884
     2885<p>
     2886Each epoch in the synchronized output begins with a line containing the GPS Week Number and the seconds within the GPS Week.
     2887Following lines begin with the mountpoint string of the stream which provides the observations followed by a satellite number.
     2888Specifications for satellite number, code, phase, doppler and signal strength data follow definitions presented in the
     2889RINEX Version 3 documentation. In case of phase observations, a 'Slip Counter' is added. The end of an epoch is indicated by an empty line.
     2890</p>
     2891
     2892<p>
     2893A valid 'Slip Counter' is only presented for observations from RTCM Version 2 streams (Cummulative Loss of Lock Indicator).
     2894In RTCM Version 3 streams a 'Lock Time Indicator' is available instead. This parameter indicates a measure of the amount
     2895of time that has elapsed during which the receiver has maintained continuous lock on that satellite signal.
     2896If a cycle slip occurs during the previous measurement cycle, the 'Lock Time Indicator' will be reset to zero.
     2897But, this 'Lock Time Indicator' ist defined with different resolution for different RTCM version 3 observation types (MSMi, legacy messages).
     2898</p>
     2899
     2900<p>
     2901From the RTCM version 3 'Lock Time Indicator' a valid 'Lock Time' can be computed with the respective calculation rule.
     2902This parameter provides a measure of the amount of time that has elapsed during which the receiver has maintained continuous
     2903lock on that satellite signal in seconds. If a cycle slip occurs during the previous measurement cycle, the 'Lock Time' will decrease.
     2904This information will be used, to provide a 'Slip Counter' for RTCM Version 3 observations as well.  With it, we have an output
     2905format that is independent from the RTCM version of the observations. The 'Lock Time' output can be activated optional.
     2906</p>
     2907
     2908<p>
     2909The following table describes the format of BNC's synchronized output of GNSS observations which consists of 'Epoch Records'
     2910and 'Observation Records'. Each Epoch Record is followed by one or more Observation Records. The Observation Record is repeated
     2911for each satellite having been observed in the current epoch. The length of an Observation Record is given by the number of
     2912observation types for this satellite.
    28112913</p>
    28122914
     
    28562958<tr><td>Observation Code</td><td><b>T</b>2W</td><td>1X,A3</td></tr>
    28572959<tr><td>Computed Lock Time &nbsp; &nbsp;</td><td>937.000</td><td>1X,F8.3</td></tr>
    2858 
    28592960</table>
    28602961</p>
    28612962
    2862 <p>
    2863 The following is an example for synchronized file and IP port output, which presents observations from GPS, GLONASS, Galileo, BDS (BeiDou), QZSS, and SBAS satellites as collected through streams FFMJ1, WTZR0 and CUT07: <pre>
    2864 > 1884 206010.0000000
    2865 FFMJ1 G02 C1C   23286796.846 L1C  122372909.535  127 S1C   49.000 C2W   23286793.846 L2W   95355531.583  127 S2W   36.000
     2963The following is an example epoch for synchronized file and IP port output, which presents observations
     2964from GPS, GLONASS, Galileo, BDS (BeiDou), and QZSS satellites as collected through the stream CUT000AUS0:
     2965<pre><p style="font-family:Monospace">
     2966> 2235 161041.0000000
     2967CUT000AUS0 G05 C1C   22397546.124 L1C  117700392.329    0 D1C      -1640.054 S1C   43.812 C2W   22397552.729 L2W   91714594.476    0 S2W   40.500 C2X   22397553.316 L2X   91714226.480    0 S2X   42.312
     2968CUT000AUS0 G07 C1C   25034166.757 L1C  131554935.204    0 D1C      -2648.320 S1C   35.875 C2W   25034175.115 L2W  102510355.979    0 S2W   16.312 C2X   25034174.119 L2X  102511007.981    0 S2X   33.188
     2969CUT000AUS0 G13 C1C   20632879.971 L1C  108426200.511    0 D1C       1654.761 S1C   49.188 C2W   20632886.032 L2W   84487953.991    0 S2W   39.625
     2970CUT000AUS0 G14 C1C   20965039.130 L1C  110171908.246    0 D1C      -1943.579 S1C   47.125 C2W   20965046.213 L2W   85848259.985    0 S2W   38.312 C2X   20965046.165 L2X   85847926.992    0 S2X   49.688 C5X   20965051.615 L5X   82271015.564    0 S5X   53.375
     2971CUT000AUS0 G15 C1C   22787067.176 L1C  119746749.144    0 D1C       2849.917 S1C   44.125 C2W   22787072.695 L2W   93309160.157    0 S2W   41.688 C2X   22787072.244 L2X   93309423.169    0 S2X   41.375
     2972CUT000AUS0 G17 C1C   22121616.350 L1C  116249765.638    0 D1C       2427.573 S1C   45.875 C2W   22121622.093 L2W   90584239.708    0 S2W   43.000 C2X   22121621.190 L2X   90584535.701    0 S2X   41.812
     2973CUT000AUS0 G19 C1C   23142771.219 L1C  121616393.429    0 D1C       3092.017 S1C   40.000 C2W   23142777.011 L2W   94766026.444    0 S2W   25.500
     2974CUT000AUS0 G20 C1C   23782796.965 L1C  124978693.104    0 D1C      -2903.804 S1C   37.188 C2W   23782803.282 L2W   97386261.663    0 S2W   19.312
     2975CUT000AUS0 G24 C1C   25377344.828 L1C  133359519.706    0 D1C       2260.874 S1C   32.625 C2W   25377355.059 L2W  103916508.791    0 S2W   23.188 C2X   25377354.491 L2X  103915493.811    0 S2X   36.125 C5X   25377356.208 L5X   99585948.817    0 S5X   39.375
     2976CUT000AUS0 G30 C1C   22338975.386 L1C  117392908.228    0 D1C      -1822.832 S1C   44.688 C2W   22338984.492 L2W   91475025.743    0 S2W   33.125 C2X   22338984.476 L2X   91474721.733    0 S2X   45.375 C5X   22338985.207 L5X   87662740.132    0 S5X   48.812
     2977CUT000AUS0 R04 C1C   23881837.357 L1C  127885658.422    0 D1C      -4453.798 S1C   40.812 C1P   23881835.733 L1P  127885658.404    0 S1P   38.625 C2C   23881844.628 L2C   99466667.235    0 S2C   38.375 C2P   23881844.445 L2P   99467375.252    0 S2P   36.688
     2978CUT000AUS0 R05 C1C   19993055.353 L1C  106874582.378    0 D1C      -2706.814 S1C   53.500 C1P   19993054.520 L1P  106874858.394    0 S1P   52.125 C2C   19993059.406 L2C   83123912.722    0 S2C   48.188 C2P   19993059.047 L2P   83124682.719    0 S2P   47.875
     2979CUT000AUS0 R06 C1C   20263132.945 L1C  108127358.039    0 D1C       2084.428 S1C   43.312 C1P   20263130.042 L1P  108128324.023    0 S1P   41.812
     2980CUT000AUS0 R07 C1C   24129676.299 L1C  129167523.333    0 D1C       4208.592 S1C   40.625 C1P   24129674.854 L1P  129168613.333    0 S1P   39.625 C2C   24129680.090 L2C  100463556.008    0 S2C   34.812 C2P   24129680.907 L2P  100463507.006    0 S2P   34.375
     2981CUT000AUS0 R09 C1C   22647210.193 L1C  120935222.748    0 D1C       2451.996 S1C   44.312 C1P   22647208.752 L1P  120934301.732    0 S1P   42.625 C2C   22647213.052 L2C   94060688.797    0 S2C   40.875 C2P   22647212.494 L2P   94060910.813    0 S2P   39.625
     2982CUT000AUS0 R15 C1C   21378136.341 L1C  114238110.662    0 D1C      -2695.283 S1C   50.875 C1P   21378136.614 L1P  114238720.680    0 S1P   49.188 C2C   21378140.999 L2C   88852381.654    0 S2C   46.000 C2P   21378141.210 L2P   88852004.661    0 S2P   45.125
     2983CUT000AUS0 R17 C1C   23445042.586 L1C  125459843.828    0 D1C       2139.073 S1C   42.188 C1P   23445040.392 L1P  125458606.837    0 S1P   40.625 C2C   23445044.755 L2C   97579282.106    0 S2C   38.375 C2P   23445045.002 L2P   97579658.104    0 S2P   37.312
     2984CUT000AUS0 R18 C1C   24487212.824 L1C  130713967.425    0 D1C       3289.885 S1C   38.688 C1P   24487211.697 L1P  130714476.414    0 S1P   37.312 C2C   24487222.117 L2C  101666522.038    0 S2C   36.625 C2P   24487222.877 L2P  101667012.053    0 S2P   37.000
     2985CUT000AUS0 R24 C1C   24406995.868 L1C  130515122.174    0 D1C       -363.589 S1C   37.625 C1P   24406994.508 L1P  130514566.195    0 S1P   36.500 C2C   24407001.743 L2C  101511238.922    0 S2C   35.375 C2P   24407001.646 L2P  101511808.907    0 S2P   33.875
     2986CUT000AUS0 E07 C1X   24981018.132 L1X  131275662.874    0 D1X      -2005.073 S1X   47.312 C7X   24981022.166 L7X  100587870.838    0 S7X   48.500 C8X   24981023.032 L8X   99309728.272    0 S8X   50.375 C5X   24981024.925 L5X   98030555.501    0 S5X   48.312
     2987CUT000AUS0 E19 C1X   26936516.560 L1X  141552478.497    0 D1X       2328.999 S1X   40.688 C7X   26936519.247 L7X  108462290.707    0 S7X   41.875 C8X   26936519.723 L8X  107083533.258    0 S8X   44.375 C5X   26936521.948 L5X  105704775.587    0 S5X   41.375
     2988CUT000AUS0 E21 C1X   24762234.566 L1X  130126590.523    0 D1X       1574.204 S1X   49.500 C7X   24762237.934 L7X   99707410.202    0 S7X   48.812 C8X   24762238.719 L8X   98439944.211    0 S8X   50.500 C5X   24762240.762 L5X   97172479.002    0 S5X   48.000
     2989CUT000AUS0 E27 C1X   23576704.592 L1X  123895989.025    0 D1X       -851.299 S1X   52.625 C7X   23576706.467 L7X   94933319.817    0 S7X   51.375 C8X   23576707.753 L8X   93726498.714    0 S8X   53.375 C5X   23576709.755 L5X   92519764.395    0 S5X   51.812
     2990CUT000AUS0 E30 C1X   27140817.882 L1X  142626806.094    0 D1X      -2516.660 S1X   41.812 C7X   27140820.356 L7X  109284744.583    0 S7X   42.125 C8X   27140821.870 L8X  107896108.822    0 S8X   45.312 C5X   27140823.870 L5X  106506823.863    0 S5X   42.688
     2991CUT000AUS0 J02 C1C   33315686.894 L1C  175075542.860    0 D1C        843.828 S1C   49.125 C2X   33315691.154 L2X  136421853.584    0 S2X   52.312 C5X   33315695.902 L5X  130737887.374    0 S5X   54.688
     2992CUT000AUS0 J03 C1C   42286566.136 L1C  222216744.902    0 D1C       1795.498 S1C   36.500 C2X   42286572.066 L2X  173156649.003    0 S2X   38.312 C5X   42286579.133 L5X  165941790.603    0 S5X   42.188
     2993CUT000AUS0 J07 C1C   37020705.829 L1C  194545830.880    0 D1C          3.584 S1C   39.625 C2X   37020708.694 L2X  151593502.133    0 S2X   47.812 C5X   37020714.323 L5X  145277106.855    0 S5X   51.500
     2994CUT000AUS0 C01 C2I   37452945.154 L2I  195027050.043    0 D2I         -4.219 S2I   41.875 C6I   37452936.772 L6I  158475266.419    0 S6I   42.875 C7I   37452941.707 L7I  150807351.407    0 S7I   42.625
     2995CUT000AUS0 C02 C2I   37629590.702 L2I  195946381.957    0 D2I        -65.684 S2I   37.625 C6I   37629580.568 L6I  159222468.315    0 S6I   41.688 C7I   37629584.237 L7I  151518158.493    0 S7I   42.500
     2996CUT000AUS0 C03 C2I   37043583.946 L2I  192895689.591    0 D2I        -42.959 S2I   42.000 C6I   37043573.338 L6I  156743260.534    0 S6I   45.000 C7I   37043578.637 L7I  149159229.293    0 S7I   44.500
     2997CUT000AUS0 C04 C2I   38728082.770 L2I  201667622.637    0 D2I         16.230 S2I   36.812 C6I   38728071.971 L6I  163871475.478    0 S6I   40.312 C7I   38728076.953 L7I  155942209.993    0 S7I   39.375
     2998CUT000AUS0 C05 C2I   39585341.980 L2I  206131634.311    0 D2I        -45.948 S2I   34.812 C6I   39585332.316 L6I  167498725.372    0 S6I   36.375 C7I   39585337.333 L7I  159393949.120    0 S7I   37.125
     2999CUT000AUS0 C06 C2I   36205815.127 L2I  188533341.895    0 D2I        293.803 S2I   47.625 C6I   36205801.585 L6I  153198815.977    0 S6I   47.000 C7I   36205808.771 L7I  145785979.158    0 S7I   46.812
     3000CUT000AUS0 C07 C2I   36955824.337 L2I  192438747.274    0 D2I       1083.432 S2I   43.688 C6I   36955809.966 L6I  156372256.627    0 S6I   44.625 C7I   36955818.699 L7I  148805860.823    0 S7I   45.500
     3001CUT000AUS0 C09 C2I   36538611.526 L2I  190266647.981    0 D2I        320.453 S2I   46.312 C6I   36538598.798 L6I  154607263.246    0 S6I   46.000 C7I   36538607.103 L7I  147126274.839    0 S7I   45.500
     3002CUT000AUS0 C10 C2I   37839575.262 L2I  197041085.539    0 D2I       1304.384 S2I   41.688 C6I   37839563.189 L6I  160112029.382    0 S6I   41.500 C7I   37839572.127 L7I  152364675.110    0 S7I   41.875
     3003CUT000AUS0 C11 C2I   26805755.942 L2I  139584609.535    0 D2I       -416.109 S2I   32.312 C6I   26805745.652 L6I  113423929.526    0 S6I   35.312 C7I   26805755.187 L7I  107935674.616    0 S7I   36.125
     3004CUT000AUS0 C13 C2I   41051458.729 L2I  213765992.637    0 D2I      -1850.508 S2I   34.000 C6I   41051455.342 L6I  173702372.800    0 S6I   32.875 C7I   41051464.924 L7I  165297417.662    0 S7I   34.000
     3005CUT000AUS0 C16 C2I   36059609.070 L2I  187772602.648    0 D2I        211.928 S2I   48.625 C6I   36059599.120 L6I  152579828.103    0 S6I   45.812 C7I   36059607.906 L7I  145196944.884    0 S7I   45.688
     3006CUT000AUS0 C19 C2I   25734075.834 L2I  134004287.472    0 D2I       2607.207 S2I   39.375 C6I   25734062.383 L6I  108889463.904    0 S6I   41.125
     3007CUT000AUS0 C20 C2I   22171840.147 L2I  115454153.788    0 D2I        259.834 S2I   50.688 C6I   22171825.517 L6I   93815970.330    0 S6I   50.000
     3008CUT000AUS0 C23 C2I   24439012.163 L2I  127260830.033    0 D2I      -2096.363 S2I   44.688 C6I   24438995.765 L6I  103409879.739    0 S6I   44.875
     3009CUT000AUS0 C28 C2I   25427888.185 L2I  132409857.631    0 D2I       2314.521 S2I   38.625 C6I   25427881.814 L6I  107593860.548    0 S6I   38.688
     3010
     3011> 2235 161042.0000000
     3012..
     3013</p></pre>
     3014<p>
     3015The source code for BNC comes with a Perl script named 'test_tcpip_client.pl' that allows to read BNC's (synchronized or unsynchronized)
     3016ASCII observation output from the IP port and print it on standard output for verification.
     3017</p>
     3018
     3019<p>
     3020Note that any socket connection of an application to BNC's synchronized or unsynchronized observation ports is recorded in the 'Log' tab
     3021on the bottom of the main window together with a connection counter, resulting in log records like 'New client connection on sync/usync port: # 1'.
     3022</p>
     3023
     3024<p>
     3025The following figure shows the screenshot of a BNC configuration where a number of streams is pulled from different Ntrip Broadcasters
     3026to feed a GNSS engine via IP port output.
     3027</p>
     3028<p><img src="IMG/Figure18.png"width=1000/></p>
     3029<p>Figure 18: Synchronized BNC output via IP port to feed a GNSS real-time engine</p>
     3030
     3031<p><h4 id="syncport">2.9.1 Port - optional</h4></p>
     3032<p>
     3033BNC can produce synchronized observations in ASCII format on your local host (IP 127.0.0.1) through an IP 'Port'.
     3034Synchronized means that BNC collects all observation data for a specific epoch, which become available within
     3035a certain number of seconds (see 'Wait for Full Obs Epoch' option). It then - epoch by epoch - outputs whatever has been received.
     3036The output comes block-wise per stream following the format specified in Table 2. Enter an IP port number here to activate this function.
     3037The default is an empty option field, meaning that no synchronized output is generated.</p>
     3038</p>
     3039
     3040<p><h4 id="syncwait">2.9.2 Wait for Full Obs Epoch - mandatory if 'Port' is set</h4></p>
     3041<p>
     3042When feeding a real-time GNSS network engine waiting for synchronized observations epoch by epoch, BNC drops whatever is
     3043received later than 'Wait for full obs epoch' seconds. A value of 3 to 5 seconds could be an appropriate choice for that,
     3044depending on the latency of the incoming streams and the delay acceptable for your real-time GNSS product.
     3045Default value for 'Wait for full obs epoch' is 5 seconds.
     3046Note that 'Wait for full obs epoch' does not affect the RINEX Observation file content. Observations received later
     3047than 'Wait for full obs epoch' seconds will still be included in the RINEX Observation files.
     3048</p>
     3049
     3050<p><h4 id="syncsample">2.9.3 Sampling - mandatory if 'File' or 'Port' is set</h4></p>
     3051<p>
     3052Select a synchronized observation output sampling interval in seconds.
     3053</p>
     3054
     3055<p><h4 id="syncfile">2.9.4 File - optional</h4></p>
     3056<p>
     3057Specify the full path to a 'File' where synchronized observations are saved in plain ASCII format.
     3058The default value is an empty option field, meaning that no ASCII output file is created.
     3059Beware that the size of this file can rapidly increase depending on the number of incoming streams.
     3060To prevent it from becoming too large, the name of the file can be changed on-the-fly.
     3061This option is primarily meant for test and evaluation.
     3062</p>
     3063
     3064<p><h4 id="syncuport">2.9.5 Port (unsynchronized) - optional</h4></p>
     3065<p>
     3066BNC can produce unsynchronized observations from all configured streams in ASCII format on your local host (IP 127.0.0.1) through an IP 'Port'.
     3067Unsynchronized means that BNC immediately forwards any received observation to the port.
     3068Nevertheless, the output is produced block-wise per stream. Specify an IP port number here to activate this function.
     3069The default is an empty option field, meaning that no unsynchronized output is generated.
     3070</p>
     3071<p>
     3072The following is an example for unsynchronized IP port output which presents observations from GPS, GLONASS, Galileo, BDS (BeiDou)
     3073as collected through stream WTZR00DEU0. The format for synchronized and unsynchronized output of observations is very much the same.
     3074However, unsynchronized output does not have 'Epoch Records' and 'Observation Records'.
     3075Instead each record contains the 'GPS Week Number' and 'GPS Second of Week' time tag between the mountpoint string and the satellite number,
     3076see Table 2 for format details.
     3077</p>
     3078
     3079<pre><p style="font-family:Monospace">
     3080WTZR00DEU0 2235 163641.0000000 C45 C2I   21792728.974 L2I  113480606.233    0 D2I       -840.222 S2I   49.000 C6I   21792718.056 L6I   92212301.720    0 D6I       -682.735 S6I   53.000 C5P   21792722.630 L5P   85519518.841    0 D5P       -633.150 S5P   55.000 C1P   21792728.867 L1P  114521718.308    0 D1P       -847.940 S1P   49.000
     3081WTZR00DEU0 2235 163641.0000000 C57 C2I   35241541.940 L2I  183511967.699    0 D2I       3312.134 S2I   38.000
     3082WTZR00DEU0 2235 163641.0000000 C60 C2I   40835714.048 L2I  212642400.538    0 D2I          3.107 S2I   42.000 C6I   40835695.000 L6I  172789282.775    0 D6I          2.563 S6I   38.000
     3083WTZR00DEU0 2235 163642.0000000 G02 C1C   21379575.238 L1C  112350466.503    0 D1C       1170.040 S1C   50.000 C2W   21379571.878 L2W   87545832.377    0 D2W        911.720 S2W   48.000
     3084WTZR00DEU0 2235 163642.0000000 G04 C1C   25299844.801 L1C  132951592.093    0 D1C       1200.923 S1C   39.000 C2W   25299844.872 L2W  103598643.930    0 D2W        935.786 S2W   37.000 C2S   25299845.337 L2S  103598633.949    0 D2S        935.788 S2S   39.000 C5Q   25299848.214 L5Q   99282039.251    0 D5Q        896.700 S5Q   41.000
     3085..
     3086WTZR00DEU0 2235 163642.0000000 R02 C1C   24526502.578 L1C  130878135.690    0 D1C      -3106.188 S1C   46.000 C2C   24526504.954 L2C  101794134.136    0 D2C      -2415.923 S2C   38.000 C2P   24526504.597 L2P  101794114.124    0 D2P      -2415.924 S2P   38.000
     3087WTZR00DEU0 2235 163642.0000000 R03 C1C   23652572.765 L1C  126614077.711    0 D1C       -630.104 S1C   46.000 C2C   23652573.301 L2C   98477638.096    0 D2C       -490.081 S2C   37.000 C2P   23652572.533 L2P   98477618.066    0 D2P       -490.085 S2P   37.000
     3088..
     3089WTZR00DEU0 2235 163642.0000000 E01 C1C   26930045.201 L1C  141518526.177    0 D1C      -2534.602 S1C   49.000 C6C   26930047.720 L6C  114869006.985    0 D6C      -2057.304 S6C   50.000 C7Q   26930046.237 L7Q  108436367.651    0 D7Q      -1942.054 S7Q   45.000 C8Q   26930048.024 L8Q  107057942.802    0 D8Q      -1917.406 S8Q   50.000 C5Q   26930049.615 L5Q  105679526.128    0 D5Q      -1892.741 S5Q   48.000
     3090WTZR00DEU0 2235 163642.0000000 E03 C1C   28229782.305 L1C  148348501.362    0 D1C         39.942 S1C   44.000 C6C   28229782.234 L6C  120412744.902    0 D6C         32.553 S6C   43.000 C7Q   28229784.789 L7Q  113669639.982    0 D7Q         30.900 S7Q   42.000 C8Q   28229784.985 L8Q  112224686.556    0 D8Q         30.503 S8Q   44.000 C5Q   28229786.004 L5Q  110779744.311    0 D5Q         30.132 S5Q   40.000
     3091WTZR00DEU0 2235 163642.0000000 E05 C1C   27821824.684 L1C  146204675.792    0 D1C      -2023.955 S1C   45.000 C6C   27821825.542 L6C  118672628.805    0 D6C      -1642.884 S6C   44.000 C7Q   27821828.187 L7Q  112026972.544    0 D7Q      -1550.945 S7Q   44.000 C8Q   27821828.937 L8Q  110602896.522    0 D8Q      -1531.222 S8Q   46.000 C5Q   27821830.688 L5Q  109178838.676    0 D5Q      -1511.462 S5Q   43.000
     3092WTZR00DEU0 2235 163642.0000000 E10 C1C   27845624.132 L1C  146329752.236    0 D1C       3297.279 S1C   45.000 C6C   27845627.045 L6C  118774160.378    0 D6C       2676.374 S6C   45.000 C7Q   27845628.224 L7Q  112122811.041    0 D7Q       2526.467 S7Q   43.000 C8Q   27845628.510 L8Q  110697518.817    0 D8Q       2494.409 S8Q   46.000 C5Q   27845629.171 L5Q  109272236.786    0 D5Q       2462.268 S5Q   44.000
     3093WTZR00DEU0 2235 163642.0000000 E12 C1C   25724560.188 L1C  135183502.970    0 D1C       2910.137 S1C   46.000 C6C   25724557.561 L6C  109726872.278    0 D6C       2362.124 S6C   47.000 C7Q   25724559.313 L7Q  103582176.389    0 D7Q       2229.792 S7Q   46.000 C8Q   25724560.152 L8Q  102265454.924    0 D8Q       2201.438 S8Q   49.000 C5Q   25724561.117 L5Q  100948736.643    0 D5Q       2173.094 S5Q   46.000
     3094WTZR00DEU0 2235 163642.0000000 E24 C1C   24759911.740 L1C  130114254.885    0 D1C       1790.491 S1C   51.000 C6C   24759911.615 L6C  105612232.912    0 D6C       1453.295 S6C   54.000 C7Q   24759910.847 L7Q   99697952.062    0 D7Q       1371.869 S7Q   53.000 C8Q   24759912.151 L8Q   98430607.507    0 D8Q       1354.441 S8Q   55.000 C5Q   24759913.206 L5Q   97163270.129    0 D5Q       1337.013 S5Q   52.000
     3095WTZR00DEU0 2235 163642.0000000 E26 C1C   26508097.314 L1C  139301027.368    0 D1C      -2155.856 S1C   48.000 C6C   26508097.725 L6C  113069021.925    0 D6C      -1749.953 S6C   50.000 C7Q   26508097.279 L7Q  106737162.256    0 D7Q      -1651.940 S7Q   49.000 C8Q   26508097.904 L8Q  105380335.094    0 D8Q      -1630.981 S8Q   51.000 C5Q   26508099.012 L5Q  104023515.114    0 D5Q      -1610.036 S5Q   48.000
     3096..
     3097WTZR00DEU0 2235 163642.0000000 C26 C2I   23510858.851 L2I  122427226.293    0 D2I       2283.809 S2I   49.000 C6I   23510855.528 L6I   99482138.474    0 D6I       1855.875 S6I   49.000 C5P   23510859.888 L5P   92261680.179    0 D5P       1721.110 S5P   50.000 C1P   23510858.387 L1P  123550408.663    0 D1P       2304.891 S1P   48.000
     3098WTZR00DEU0 2235 163642.0000000 C29 C2I   21580712.838 L2I  112376488.453    0 D2I        208.852 S2I   49.000 C6I   21580707.799 L6I   91315102.976    0 D6I        169.736 S6I   52.000 C5P   21580712.266 L5P   84687416.320    0 D5P        157.427 S5P   54.000 C1P   21580712.373 L1P  113407458.870    0 D1P        210.745 S1P   48.000
     3099WTZR00DEU0 2235 163642.0000000 C30 C2I   23959205.575 L2I  124761931.366    0 D2I      -2657.024 S2I   49.000 C6I   23959203.305 L6I  101379299.287    0 D6I      -2159.002 S6I   48.000 C5P   23959207.880 L5P   94021152.637    0 D5P      -2002.326 S5P   49.000 C1P   23959204.699 L1P  125906536.640    0 D1P      -2681.458 S1P   49.000
     3100..
     3101WTZR00DEU0 2235 163642.0000000 C60 C2I   40835713.423 L2I  212642397.246    0 D2I          3.174 S2I   42.000 C6I   40835694.374 L6I  172789280.110    0 D6I          2.705 S6I   38.000
     3102WTZR00DEU0 2235 163643.0000000 G02 C1C   21379352.625 L1C  112349296.717    0 D1C       1169.503 S1C   50.000 C2W   21379349.266 L2W   87544920.854    0 D2W        911.301 S2W   49.000
     3103WTZR00DEU0 2235 163643.0000000 G04 C1C   25299616.345 L1C  132950391.648    0 D1C       1200.111 S1C   38.000 C2W   25299616.506 L2W  103597708.514    0 D2W        935.153 S2W   37.000 C2S   25299616.935 L2S  103597698.549    0 D2S        935.156 S2S   39.000 C5Q   25299619.758 L5Q   99281142.802    0 D5Q        896.365 S5Q   41.000
    28663104...
    2867 FFMJ1 G26 C1C   24796690.856 L1C  130307533.550  127 S1C   42.000 C2W   24796697.776 L2W  101538315.510  127 S2W   25.000
    2868 FFMJ1 S20 C1C   38682850.302 L1C  203279786.777  127 S1C   42.000
    2869 FFMJ1 S36 C1C   38288096.846 L1C  201205293.221  127 S1C   47.000
    2870 FFMJ1 R03 C1C   23182737.548 L1C  124098947.838  127 S1C   48.000 C2P   23182746.288 L2P   96521352.130  127 S2P   42.000
    2871 ...
    2872 FFMJ1 R21 C1C   22201343.772 L1C  118803851.388  127 S1C   52.000 C2P   22201348.892 L2P   92402993.884  127 S2P   44.000
    2873 CUT07 G01 C1C   25318977.766 L1C  133052476.488  521 D1C       2533.500 S1C   33.688 C2W   25318993.668 L2W  103677584.878  521 S2W   15.625 C2X   25318991.820 L2X  103676566.850  521 S2X   35.375 C5X   25318993.461 L5X   99357161.238  521 S5X   39.812
    2874 ...
    2875 CUT07 G27 C1C   20251005.351 L1C  106420601.969  627 D1C        250.937 S1C   50.312 C2W   20251014.512 L2W   82924447.644  627 S2W   45.125 C2X   20251014.246 L2X   82924648.644  627 S2X   53.188 C5X   20251015.480 L5X   79469461.619  627 S5X   56.375
    2876 CUT07 R01 C1C   20312587.149 L1C  108583395.373  625 D1C      -2456.703 S1C   52.875 C1P   20312586.192 L1P  108582844.382  625 S1P   51.000 C2C   20312593.422 L2C   84452892.610  625 S2C   43.625 C2P   20312593.836 L2P   84453114.622  625 S2P   42.312
    2877 ...
    2878 CUT07 R24 C1C   19732223.242 L1C  105517564.659  630 D1C         -7.477 S1C   47.375 C1P   19732222.609 L1P  105517564.669  630 S1P   46.375 C2C   19732227.660 L2C   82069550.193  630 S2C   38.125 C2P   19732227.316 L2P   82068477.204  630 S2P   37.375
    2879 CUT07 E11 C1X   28843071.547 L1X  151571208.816  405 D1X      -2221.055 S1X   29.000 C7X   28843082.531 L7X  116138795.418  405 S7X   27.188 C8X   28843085.699 L8X  114662585.261  405 S8X   33.688 C5X   28843086.281 L5X  113186518.907  405 S5X   30.375
    2880 ...
    2881 CUT07 E30 C1X   28096037.289 L1X  147645296.835  630 D1X      -2020.613 S1X   34.688 C7X   28096054.070 L7X  113131111.635  630 S7X   36.875 C8X   28096055.684 L8X  111692702.565  630 S8X   40.375 C5X   28096058.008 L5X  110254591.278  630 S5X   36.188
    2882 CUT07 S27 C1C   40038220.843 L1C  210402303.982  616 D1C        104.688 S1C   36.125 C5I   40038226.375 L5I  157118241.003  616 S5I   40.875
    2883 ...
    2884 CUT07 S37 C1C   37791754.594 L1C  198596881.251  704 D1C        106.605 S1C   37.875
    2885 CUT07 J01 C1C   33076065.781 L1C  173816471.106  674 D1C        169.765 S1C   48.375 C1Z   33076063.086 L1Z  173815528.437  674 S1Z   48.625 C6L   33076065.652 L6L  141084039.422  674 S6L   52.688 C2X   33076070.523 L2X  135440679.474  674 S2X   50.500 C5X   33076076.496 L5X  129797319.733  674 S5X   54.188 C1X   33076065.492 L1X  173815529.101  674 S1X   52.375
    2886 CUT07 C01 C2I   37725820.914 L2I  196447455.374  704 D2I         90.898 S2I   41.312 C6I   37725810.168 L6I  159630204.932  704 S6I   44.875 C7I   37725815.196 L7I  151906389.245  704 S7I   45.812
    2887 ...
    2888 CUT07 C14 C2I   23351041.328 L2I  121594621.501  592 D2I       2422.203 S2I   45.688 C6I   23351032.926 L6I   98805869.415  592 S6I   48.500 C7I   23351041.996 L7I   94024977.673  592 S7I   45.688
    2889 WTZR0 G02 C1C   23641481.864 L1C  124236803.604  127 S1C   47.500 C2W   23641476.604 L2W   96807881.233  127 S2W   39.250
    2890 ...
    2891 WTZR0 G26 C1C   24681555.676 L1C  129702453.534  127 S1C   43.750 C2W   24681561.256 L2W  101066873.870  127 S2W   37.750
    2892 WTZR0 R03 C1C   22982596.508 L1C  123027564.682  127 S1C   47.000 C2P   22982598.368 L2P   95688085.627  127 S2P   43.250
    2893 ...
    2894 WTZR0 R21 C1C   22510252.692 L1C  120456902.811  127 S1C   47.500 C2P   22510253.132 L2P   93688698.401  127 S2P   44.000
    2895 
    2896 > 1884 206011.0000000
    2897 ...
    2898 </pre>
    2899 <p>
    2900 The source code for BNC comes with a Perl script named 'test_tcpip_client.pl' that allows to read BNC's (synchronized or unsynchronized) ASCII observation output from the IP port and print it on standard output for verification.
    2901 </p>
    2902 
    2903 <p>
    2904 Note that any socket connection of an application to BNC's synchronized or unsynchronized observation ports is recorded in the 'Log' tab on the bottom of the main window together with a connection counter, resulting in log records like 'New client connection on sync/usync port: # 1'.
    2905 </p>
    2906 
    2907 <p>
    2908 The following figure shows the screenshot of a BNC configuration where a number of streams is pulled from different Ntrip Broadcasters to feed a GNSS engine via IP port output.
    2909 </p>
    2910 <p><img src="IMG/screenshot12.png"/></p>
    2911 <p>Figure 18: Synchronized BNC output via IP port to feed a GNSS real-time engine</p>
    2912 
    2913 <p><h4 id="syncport">2.9.1 Port - optional</h4></p>
    2914 <p>
    2915 BNC can produce synchronized observations in ASCII format on your local host (IP 127.0.0.1) through an IP 'Port'. Synchronized means that BNC collects all observation data for a specific epoch, which become available within a certain number of seconds (see 'Wait for Full Obs Epoch' option). It then - epoch by epoch - outputs whatever has been received. The output comes block-wise per stream following the format specified in Table 2. Enter an IP port number here to activate this function. The default is an empty option field, meaning that no synchronized output is generated.</p>
    2916 </p>
    2917 
    2918 <p><h4 id="syncwait">2.9.2 Wait for Full Obs Epoch - mandatory if 'Port' is set</h4></p>
    2919 <p>
    2920 When feeding a real-time GNSS network engine waiting for synchronized observations epoch by epoch, BNC drops whatever is received later than 'Wait for full obs epoch' seconds. A value of 3 to 5 seconds could be an appropriate choice for that, depending on the latency of the incoming streams and the delay acceptable for your real-time GNSS product. Default value for 'Wait for full obs epoch' is 5 seconds.
    2921 </p>
    2922 <p>
    2923 Note that 'Wait for full obs epoch' does not affect the RINEX Observation file content. Observations received later than 'Wait for full obs epoch' seconds will still be included in the RINEX Observation files.
    2924 </p>
    2925 
    2926 <p><h4 id="syncsample">2.9.3 Sampling - mandatory if 'File' or 'Port' is set</h4></p>
    2927 <p>
    2928 Select a synchronized observation output sampling interval in seconds. A value of zero '0' tells BNC to send/store all received epochs. This is the default value.
    2929 </p>
    2930 
    2931 <p><h4 id="syncfile">2.9.4 File - optional</h4></p>
    2932 <p>
    2933 Specify the full path to a 'File' where synchronized observations are saved in plain ASCII format. The default value is an empty option field, meaning that no ASCII output file is created.
    2934 </p>
    2935 <p>
    2936 Beware that the size of this file can rapidly increase depending on the number of incoming streams. To prevent it from becoming too large, the name of the file can be changed on-the-fly. This option is primarily meant for test and evaluation.
    2937 </p>
    2938 
    2939 <p><h4 id="syncuport">2.9.5 Port (unsynchronized) - optional</h4></p>
    2940 <p>
    2941 BNC can produce unsynchronized observations from all configured streams in ASCII format on your local host (IP 127.0.0.1) through an IP 'Port'. Unsynchronized means that BNC immediately forwards any received observation to the port. Nevertheless, the output is produced block-wise per stream. Specify an IP port number here to activate this function. The default is an empty option field, meaning that no unsynchronized output is generated.
    2942 </p>
    2943 <p>
    2944 The following is an example for unsynchronized IP port output which presents observations from GPS and GLONASS as collected through stream WTZR0. The format for synchronized and unsynchronized output of observations is very much the same. However, unsynchronized output does not have 'Epoch Records' and 'Observation Records'. Instead each record contains the 'GPS Week Number' and 'GPS Second of Week' time tag between the mountpoint string and the satellite number, see Table 2 for format details.
    2945 </p>
    2946 
    2947 <pre>
    2948 WTZR0 1884 209623.0000000 G02 C1C   22259978.112 L1C  116976955.890  127 S1C   49.250 C2W   22259974.472 L2W   91150855.991  127 S2W   44.500
    2949 WTZR0 1884 209623.0000000 G03 C1C   24426736.058 L1C  128363272.624  127 S1C   43.500 C2W   24426741.838 L2W  100023289.335  127 S2W   39.000
    2950 ...
    2951 WTZR0 1884 209623.0000000 G29 C1C   25275897.592 L1C  132825869.191   90 S1C   35.250 C2W   25275893.692 L2W  103500567.110    8 S2W   28.500
    2952 WTZR0 1884 209623.0000000 G30 C1C   23670676.284 L1C  124390283.441  127 S1C   46.750 C2W   23670679.784 L2W   96927531.685  127 S2W   39.500
    2953 WTZR0 1884 209623.0000000 R04 C1C   20758122.104 L1C  111158778.398  127 S1C   50.000 C2P   20758121.664 L2P   86456803.800  127 S2P   47.000
    2954 WTZR0 1884 209623.0000000 R05 C1C   19430829.552 L1C  103868912.028  127 S1C   45.750 C2P   19430829.672 L2P   80786936.849  127 S2P   46.750
    2955 ...
    2956 </pre>
     3105</p></pre>
    29573106
    29583107<p><h4 id="serial">2.10 Serial Output</h4></p>
    29593108<p>
    2960 You may use BNC to feed a serially connected device like a GNSS receiver. For that, an incoming stream can be forwarded to a serial port. Depending on the stream content, the receiver may use it for Differential GNSS, Precise Point Positioning or any other purpose supported by its firmware.
    2961 </p>
    2962 <p>
    2963 Note that receiving a VRS stream requires the receiver sending NMEA sentences (option 'NMEA' set to 'Manual' or 'Auto') to the Ntrip Broadcaster. The following figure shows the data flow when pulling a VRS stream or a physical (non-VRS) stream.
    2964 </p>
    2965 
    2966 <p><img src="IMG/screenshot35.png"/></p>
     3109You may use BNC to feed a serially connected device like a GNSS receiver. For that, an incoming stream can be forwarded to a serial port.
     3110Depending on the stream content, the receiver may use it for Differential GNSS, Precise Point Positioning or any other purpose
     3111supported by its firmware.
     3112</p>
     3113<p>
     3114Note that receiving a VRS stream requires the receiver sending NMEA sentences (option 'NMEA' set to 'Manual' or 'Auto') to the Ntrip Broadcaster.
     3115The following figure shows the data flow when pulling a VRS stream or a physical (non-VRS) stream.
     3116</p>
     3117
     3118<p><img src="IMG/Figure19.png"width=1000/></p>
    29673119<p>Figure 19: Flowcharts, BNC forwarding a stream to a serially connected receiver; sending NMEA sentences is mandatory for VRS streams</p>
    29683120
    29693121<p>
    2970 The following figure shows the screenshot of an example situation where BNC pulls a VRS stream from an Ntrip Broadcaster to feed a serially connected RTK rover.
    2971 </p>
    2972 
    2973 <p><img src="IMG/screenshot11.png"/></p>
    2974 <p>Figure 20: BNC pulling a VRS stream to feed a serially connected RTK rover</p>
     3122The following figure shows the screenshot of an example situation where BNC pulls a VRS stream from an Ntrip Broadcaster
     3123to feed a serially connected RTK rover.
     3124</p>
     3125
     3126<p><img src="IMG/Figure20.png"width=1000/></p>
     3127<p>Figure 20: BNC pulling a RTCM Version 3 stream to feed a serial connected receiver with observations from a nearby reference station for conventional RTK</p>
    29753128
    29763129<p><h4 id="sermount">2.10.1 Mountpoint - optional</h4></p>
     
    29793132</p>
    29803133<p>
    2981 When selecting one of the serial communication options listed below, make sure that you pick those configured to the serially connected receiver.
     3134When selecting one of the serial communication options listed below, make sure that you pick those configured to the
     3135serially connected receiver.
    29823136</p>
    29833137
    29843138<p><h4 id="serport">2.10.2 Port Name - mandatory if 'Mountpoint' is set</h4></p>
    29853139<p>
    2986 Enter the serial 'Port name' selected on your host for communication with the serially connected receiver. Valid port names are
    2987 </p>
    2988 <pre>
    2989    Windows:       COM1, COM2
    2990    Linux:         /dev/ttyS0, /dev/ttyS1
    2991    FreeBSD:       /dev/ttyd0, /dev/ttyd1
    2992    Digital Unix:  /dev/tty01, /dev/tty02
    2993    HP-UX:         /dev/tty1p0, /dev/tty2p0
    2994    SGI/IRIX:      /dev/ttyf1, /dev/ttyf2
    2995    SunOS/Solaris: /dev/ttya, /dev/ttyb
    2996 </pre>
     3140Enter the serial 'Port name' selected on your host for communication with the serially connected receiver.
     3141Valid port names are
     3142</p>
     3143<table>
     3144  <tr><td>Windows:      </td><td>&nbsp; COM1, COM2              </td></tr>
     3145  <tr><td>Linux:        </td><td>&nbsp; /dev/ttyS0, /dev/ttyS1  </td></tr>
     3146  <tr><td>FreeBSD:      </td><td>&nbsp; /dev/ttyd0, /dev/ttyd1  </td></tr>
     3147  <tr><td>Digital Unix: </td><td>&nbsp; /dev/tty01, /dev/tty02  </td></tr>
     3148  <tr><td>HP-UX:        </td><td>&nbsp; /dev/tty1p0, /dev/tty2p0</td></tr>
     3149  <tr><td>SGI/IRIX:     </td><td>&nbsp; /dev/ttyf1, /dev/ttyf2  </td></tr>
     3150  <tr><td>SunOS/Solaris:</td><td>&nbsp; /dev/ttya, /dev/ttyb    </td></tr>
     3151</table>
    29973152<p>
    29983153Note that you must plug a serial cable in the port defined here before you start BNC.
     
    30063161<p><h4 id="serflow">2.10.4 Flow Control - mandatory if 'Mountpoint' is set</h4></p>
    30073162<p>
    3008 Select a 'Flow control' for the serial output link. Note that your selection must equal the flow control configured to the serially connected device. Select 'OFF' if you do not know better.
     3163Select a 'Flow control' for the serial output link. Note that your selection must equal the flow control configured to the serially connected device.
     3164Select 'OFF' if you do not know better.
    30093165</p>
    30103166
     
    30253181
    30263182<p><h4 id="serauto">2.10.8 NMEA - mandatory if 'Mountpoint' is set</h4></p>
    3027 <p>The 'NMEA' option supports the so-called 'Virtual Reference Station' (VRS) concept which requires the receiver to send approximate position information to the Ntrip Broadcaster. Select 'no' if you do not want BNC to forward or upload any NMEA sentence to the Ntrip broadcaster in support of VRS.
    3028 </p>
    3029 <p>Select 'Auto' to automatically forward NMEA sentences of type GGA from your serially connected receiver to the Ntrip broadcaster and/or save them in a file.
    3030 </p>
    3031 <p>Select 'Manual GPGGA' or 'Manual GNGGA' if you want BNC to produce and upload GPGGA or GNGGA NMEA sentences to the Ntrip broadcaster because your serially connected receiver does not generate them. A Talker ID 'GP' proceeding the GGA string stands for GPS solutions while a Talker ID 'GN' stands for multi-constellation solutions.
    3032 </p>
    3033 <p>Note that selecting 'Auto' or 'Manual' works only for VRS streams which show up under the 'Streams' canvas on BNC's main window with 'nmea' stream attribute set to 'yes'. This attribute is either extracted from the Ntrip broadcaster's source-table or introduced by the user through editing the BNC configuration file.
     3183<p>The 'NMEA' option supports the so-called 'Virtual Reference Station' (VRS) concept which requires the receiver to send
     3184approximate position information to the Ntrip Broadcaster. Select 'no' if you do not want BNC to forward or upload any NMEA sentence
     3185to the Ntrip broadcaster in support of VRS.
     3186</p>
     3187<p>
     3188Select 'Auto' to automatically forward NMEA sentences of type GGA from your serially connected receiver to the Ntrip broadcaster
     3189and/or save them in a file.
     3190</p>
     3191<p>Select 'Manual GPGGA' or 'Manual GNGGA' if you want BNC to produce and upload GPGGA or GNGGA NMEA sentences to the Ntrip broadcaster
     3192because your serially connected receiver does not generate them. A Talker ID 'GP' proceeding the GGA string stands for GPS solutions
     3193while a Talker ID 'GN' stands for multi-constellation solutions.
     3194</p>
     3195<p>
     3196Note that selecting 'Auto' or 'Manual' works only for VRS streams which show up under the 'Streams' canvas on BNC's main window
     3197with 'nmea' stream attribute set to 'yes'. This attribute is either extracted from the Ntrip broadcaster's source-table or
     3198introduced by the user through editing the BNC configuration file.
    30343199</p>
    30353200
    30363201<p><h4 id="serfile">2.10.9 File - optional if 'NMEA' is set to 'Auto'</h4></p>
    3037 <p>Specify the full path to a file where NMEA sentences coming from your serially connected receiver are saved. Default is an empty option field, meaning that no NMEA sentences will be saved on disk.
     3202<p>
     3203Specify the full path to a file where NMEA sentences coming from your serially connected receiver are saved.
     3204Default is an empty option field, meaning that no NMEA sentences will be saved on disk.
    30383205</p>
    30393206<p><h4 id="serheight">2.10.10 Height - mandatory if 'NMEA' is set to 'Manual'</h4></p>
    30403207<p>
    3041 Specify an approximate 'Height' above mean sea level in meters for the reference station introduced through 'Mountpoint'. Together with the latitude and longitude from the Ntrip broadcaster source-table, the height information is used to build GGA sentences to be sent to the Ntrip broadcaster.
    3042 </p>
    3043 <p>For adjusting latitude and longitude values of a VRS stream given in the 'Streams' canvas, you can double click the latitude/longitude data fields, specify appropriate values and then hit Enter.
    3044 </p>
    3045 <p>This option is only relevant when option 'NMEA' is set to 'Manual GPGGA' or 'Manual GNGGA' respectively.
     3208Specify an approximate 'Height' above mean sea level in meters for the reference station introduced through 'Mountpoint'.
     3209Together with the latitude and longitude from the Ntrip broadcaster source-table, the height information is used
     3210to build GGA sentences to be sent to the Ntrip broadcaster.
     3211</p>
     3212<p>
     3213For adjusting latitude and longitude values of a VRS stream given in the 'Streams' canvas,
     3214you can double click the latitude/longitude data fields, specify appropriate values and then hit Enter.
     3215</p>
     3216<p>
     3217This option is only relevant when option 'NMEA' is set to 'Manual GPGGA' or 'Manual GNGGA' respectively.
    30463218</p>
    30473219
     
    30513223</p>
    30523224<p>
    3053 A sampling rate of '0' means that a GGA sentence will be sent only once to initialize the requested VRS stream. Note that some VRS systems need GGA sentences at regular intervals.
     3225A sampling rate of '0' means that a GGA sentence will be sent only once to initialize the requested VRS stream.
     3226Note that some VRS systems need GGA sentences at regular intervals.
    30543227</p>
    30553228
    30563229<p><h4 id="advnote">2.11 Outages</h4></p>
    30573230<p>
    3058 At any time an incoming stream might become unavailable or corrupted. In such cases, it is important that the BNC operator and/or the stream providers become aware of the situation so that measures can be taken to restore the stream. Furthermore, continuous attempts to decode a corrupted stream can generate unnecessary workload for BNC. Outages and corruptions are handled by BNC as follows:
    3059 </p>
    3060 <p>
    3061 <u>Stream outages:</u> BNC considers a connection to be broken when there are no incoming data detected for more than 20 seconds. When this occurs, BNC will try to reconnect at a decreasing rate. It will first try to reconnect with 1 second delay and again in 2 seconds if the previous attempt failed. If the attempt is still unsuccessful, it will try to reconnect within 4 seconds after the previous attempt and so on. The waiting time doubles each time with a maximum of 256 seconds.
    3062 </p>
    3063 <p>
    3064 <u>Stream corruption:</u> Not all chunks of bits transferred to BNC's internal decoder may return valid observations. Sometimes several chunks might be needed before the next observation can be properly decoded. BNC buffers all outputs (both valid and invalid) from the decoder for a short time span (size derived from the expected 'Observation rate') to then determine whether a stream is valid or corrupted.
    3065 </p>
    3066 <p>
    3067 Outage and corruption events are reported in the 'Log' tab. They can also be passed on as parameters to a shell script or batch file to generate an advisory note to BNC's operator or affected stream providers. This functionality lets users utilize BNC as a real-time performance monitor and alarm system for a network of GNSS reference stations.
     3231At any time an incoming stream might become unavailable or corrupted. In such cases, it is important that the BNC operator
     3232and/or the stream providers become aware of the situation so that measures can be taken to restore the stream.
     3233Furthermore, continuous attempts to decode a corrupted stream can generate unnecessary workload for BNC.
     3234Outages and corruptions are handled by BNC as follows:
     3235</p>
     3236<p>
     3237<u>Stream outages:</u> BNC considers a connection to be broken when there are no incoming data detected for more than 20 seconds.
     3238When this occurs, BNC will try to reconnect at a decreasing rate. It will first try to reconnect with 1 second delay and
     3239again in 2 seconds if the previous attempt failed. If the attempt is still unsuccessful, it will try to reconnect
     3240within 4 seconds after the previous attempt and so on. The waiting time doubles each time with a maximum of 256 seconds.
     3241</p>
     3242<p>
     3243<u>Stream corruption:</u> Not all chunks of bits transferred to BNC's internal decoder may return valid observations.
     3244Sometimes several chunks might be needed before the next observation can be properly decoded.
     3245BNC buffers all outputs (both valid and invalid) from the decoder for a short time span
     3246(size derived from the expected 'Observation rate') to then determine whether a stream is valid or corrupted.
     3247</p>
     3248<p>
     3249Outage and corruption events are reported in the 'Log' tab. They can also be passed on as parameters to a shell script
     3250or batch file to generate an advisory note to BNC's operator or affected stream providers.
     3251This functionality lets users utilize BNC as a real-time performance monitor and alarm system for a network of GNSS reference stations.
    30683252</p>
    30693253
    30703254<p><h4 id="obsrate">2.11.1 Observation Rate - optional</h4></p>
    30713255<p>
    3072 BNC can collect all returns (success or failure) coming from a decoder within a certain short time span to then decide whether a stream has an outage or its content is corrupted. This procedure needs a rough a priori estimate of the expected observation rate of the incoming streams.</p><p>An empty option field (default) means that you do not want explicit information from BNC about stream outages and incoming streams that cannot be decoded.
     3256BNC can collect all returns (success or failure) coming from a decoder within a certain short time span to then decide whether
     3257a stream has an outage or its content is corrupted. This procedure needs a rough a priori estimate of the expected
     3258observation rate of the incoming streams.
     3259</p>
     3260<p>An empty option field (default) means that you do not want explicit information from BNC about stream outages and
     3261incoming streams that cannot be decoded.
    30733262</p>
    30743263
    30753264<p><h4 id="advfail">2.11.2 Failure Threshold - mandatory if 'Observation rate' is set</h4></p>
    30763265<p>
    3077 Event 'Begin_Failure' will be reported if no data is received continuously for longer than the 'Failure threshold' time. Similarly, event 'Begin_Corrupted' will be reported when corrupted data is detected by the decoder continuously for longer than this 'Failure threshold' time. The default value is set to 15 minutes and is recommended as to not inundate users with too many event reports.
    3078 </p>
    3079 <p>
    3080 Note that specifying a value of zero '0' for the 'Failure threshold' will force BNC to report any stream failure immediately. Note also that for using this function you need to specify the 'Observation rate'.
     3266Event 'Begin_Failure' will be reported if no data is received continuously for longer than the 'Failure threshold' time.
     3267Similarly, event 'Begin_Corrupted' will be reported when corrupted data is detected by the decoder continuously for
     3268longer than this 'Failure threshold' time. The default value is set to 15 minutes and is recommended as to not inundate
     3269users with too many event reports.
     3270</p>
     3271<p>
     3272Note that specifying a value of zero '0' for the 'Failure threshold' will force BNC to report any stream failure immediately.
     3273Note also that for using this function you need to specify the 'Observation rate'.
    30813274</p>
    30823275
    30833276<p><h4 id="advreco">2.11.3 Recovery Threshold - mandatory if 'Observation rate' is set</h4></p>
    30843277<p>
    3085 Once a 'Begin_Failure' or 'Begin_Corrupted' event has been reported, BNC will check when the stream again becomes available or uncorrupted. Event 'End_Failure' or 'End_Corrupted' will be reported as soon as valid observations are detected continuously throughout the 'Recovery threshold' time span. The default value is set to 5 minutes and is recommended as to not inundate users with too many event reports.
    3086 </p>
    3087 <p>
    3088 Note that specifying a value of zero '0' for the 'Recovery threshold' will force BNC to report any stream recovery immediately. Note also that for using this function you need to specify the 'Observation rate'.
     3278Once a 'Begin_Failure' or 'Begin_Corrupted' event has been reported, BNC will check when the stream again becomes available or uncorrupted.
     3279Event 'End_Failure' or 'End_Corrupted' will be reported as soon as valid observations are detected continuously throughout
     3280the 'Recovery threshold' time span. The default value is set to 5 minutes and is recommended as to not inundate users with too many event reports.
     3281</p>
     3282<p>
     3283Note that specifying a value of zero '0' for the 'Recovery threshold' will force BNC to report any stream recovery immediately.
     3284Note also that for using this function you need to specify the 'Observation rate'.
    30893285</p>
    30903286
    30913287<p><h4 id="advscript">2.11.4 Script - optional if 'Observation rate' is set</h4></p>
    30923288<p>
    3093 As mentioned before, BNC can trigger a shell script or a batch file to be executed when one of the described events is reported. This script can be used to email an advisory note to network operator or stream providers. To enable this feature, specify the full path to the script or batch file in the 'Script' field. The affected stream's mountpoint and type of event reported ('Begin_Outage', 'End_Outage', 'Begin_Corrupted' or 'End_Corrupted') will then be passed on to the script as command line parameters (%1 and %2 on Windows systems or $1 and $2 on Unix/Linux/Mac OS X systems) together with date and time information.
     3289As mentioned before, BNC can trigger a shell script or a batch file to be executed when one of the described events is reported.
     3290This script can be used to email an advisory note to network operator or stream providers. To enable this feature,
     3291specify the full path to the script or batch file in the 'Script' field. The affected stream's mountpoint and type of event
     3292reported ('Begin_Outage', 'End_Outage', 'Begin_Corrupted' or 'End_Corrupted') will then be passed on to the script as
     3293command line parameters (%1 and %2 on Windows systems or $1 and $2 on Unix/Linux/Mac OS X systems) together with date and time information.
    30943294</p>
    30953295<p>
     
    30983298<p>
    30993299Examples for command line parameter strings passed on to the advisory 'Script' are:
    3100 <pre>
    3101    FFMJ0 Begin_Outage 08-02-21 09:25:59
    3102    FFMJ0 End_Outage 08-02-21 11:36:02 Begin was 08-02-21 09:25:59
    3103 </pre>
    3104 </p>
     3300<pre><p style="font-family:Monospace">
     3301   FFMJ00DEU0 Begin_Outage 22-02-21 09:25:59
     3302   FFMJ00DEU0 End_Outage 22-02-21 11:36:02 Begin was 22-02-21 09:25:59
     3303</p></pre>
    31053304<p>
    31063305Sample script for Unix/Linux/Mac OS X systems:
    31073306</p>
    3108 <pre>
     3307<pre><p style="font-family:Monospace">
    31093308   #!/bin/bash
    31103309   sleep $((60*RANDOM/32767))
     
    31163315   EOF
    31173316   mail -s &quot;NABU: $1&quot; email@address &lt; mail.txt
    3118 </pre>
    3119 </p>
    3120 <p>
    3121 Note the sleep command in this script, which causes the system to wait for a random period of up to 60 seconds before sending the email. This should avoid overloading your mail server in case of a simultaneous failure of many streams.
     3317</p></pre>
     3318<p>
     3319Note the sleep command in this script, which causes the system to wait for a random period of up to 60 seconds before sending the email.
     3320This should avoid overloading your mail server in case of a simultaneous failure of many streams.
    31223321</p>
    31233322
     
    31283327
    31293328<p>
    3130 The following figure shows RTCM message numbers and observation types contained in stream 'CUT07' and the message latencies recorded every 2 seconds.
    3131 </p>
    3132 <p><img src="IMG/screenshot14.png"/></p>
     3329The following figure shows RTCM message numbers and observation types contained in stream 'CUT000AUS0' and the message latencies
     3330recorded every 2 seconds.
     3331</p>
     3332<p><img src="IMG/Figure21.png"width=1000/></p>
    31333333<p>Figure 21: RTCM message numbers, latencies and observation types logged by BNC</p>
    31343334
     
    31363336<p><h4 id="miscmount">2.12.1 Mountpoint - optional </h4></p>
    31373337<p>
    3138 Specify a mountpoint to apply one or several of the 'Miscellaneous' options to the corresponding stream. Enter 'ALL' if you want to apply these options to all configured streams. An empty option field (default) means that you do not want BNC to apply any of these options.
     3338Specify a mountpoint to apply one or several of the 'Miscellaneous' options to the corresponding stream.
     3339Enter 'ALL' if you want to apply these options to all configured streams. An empty option field (default) means
     3340that you do not want BNC to apply any of these options.
    31393341</p>
    31403342
    31413343<p><h4 id="miscperf">2.12.2 Log Latency - optional </h4></p>
    31423344<p>
    3143  BNC can average latencies per stream over a certain period of GPS time, the 'Log latency' interval. Mean latencies are calculated from the individual latencies of one (first incoming) observation or Broadcast Correction per second. The mean latencies are then saved in BNC's logfile. Note that computing correct latencies requires the clock of the host computer to be properly synchronized. Note further that visualized latencies from the 'Latency' tab on the bottom of the main window represent individual latencies and not the mean latencies for the logfile.
     3345 BNC can average latencies per stream over a certain period of GPS time, the 'Log latency' interval.
     3346 Mean latencies are calculated from the individual latencies of one (first incoming) observation or
     3347 Broadcast Correction per second. The mean latencies are then saved in BNC's logfile.
     3348 Note that computing correct latencies requires the clock of the host computer to be properly synchronized.
     3349 Note further that visualized latencies from the 'Latency' tab on the bottom of the main window represent
     3350 individual latencies and not the mean latencies for the logfile.
    31443351</p>
    31453352<p>
     
    31543361</pre>
    31553362<p>
    3156 <b>Statistics:</b> BNC counts the number of GPS seconds covered by at least one observation. It also estimates an observation rate (independent from the a priori specified 'Observation rate') from all observations received throughout the first full 'Log latency' interval. Based on this rate, BNC estimates the number of data gaps when appearing in subsequent intervals.
    3157 </p>
    3158 <p>
    3159 Latencies of observations or corrections to Broadcast Ephemeris and statistical information can be recorded in the 'Log' tab at the end of each 'Log latency' interval. A typical output from a 1 hour 'Log latency' interval would be:
     3363<b>Statistics:</b> BNC counts the number of GPS seconds covered by at least one observation.
     3364It also estimates an observation rate (independent from the a priori specified 'Observation rate')
     3365from all observations received throughout the first full 'Log latency' interval. Based on this rate,
     3366BNC estimates the number of data gaps when appearing in subsequent intervals.
     3367</p>
     3368<p>
     3369Latencies of observations or corrections to Broadcast Ephemeris and statistical information can be recorded in the 'Log' tab
     3370at the end of each 'Log latency' interval. A typical output from a 1 hour 'Log latency' interval would be:
    31603371</p>
    31613372<pre>
    3162 08-03-17 15:59:47 BRUS0: Mean latency 1.47 sec, min 0.66, max 3.02, rms 0.35, 3585 epochs, 15 gaps
     337322-11-09 11:59:42 CUT000AUS0 Observations: Mean latency 0.48 sec, min 0.25, max 0.97, rms 0.50, 3600 epochs, 0 gaps
    31633374</pre>
    31643375<p>
    3165 Select a 'Log latency' interval to activate this function or select the empty option field if you do not want BNC to log latencies and statistical information.
     3376Select a 'Log latency' interval to activate this function or select the empty option field if you do not want BNC
     3377to log latencies and statistical information.
    31663378</p>
    31673379
     
    31693381<p><h4 id="miscscan">2.12.3 Scan RTCM - optional</h4></p>
    31703382<p>
    3171 When configuring a GNSS receiver for RTCM stream generation, the firmware's setup interface may not provide details about RTCM message types and observation types. As reliable information concerning stream content should be available e.g. for Ntrip Broadcaster operators to maintain the broadcaster's source-table, BNC allows to scan RTCM streams for incoming message types and printout some of the contained meta-data. Contained observation types are also printed because such information is required a priori for the conversion of RTCM Version 3 MSM streams to RINEX Version 3 files. The idea for this option arose from 'inspectRTCM', a comprehensive stream analyzing tool written by D. St&ouml;cker.
     3383When configuring a GNSS receiver for RTCM stream generation, the firmware's setup interface may not provide details about
     3384RTCM message types and observation types. As reliable information concerning stream content should be available e.g.
     3385for Ntrip Broadcaster operators to maintain the broadcaster's source-table, BNC allows to scan RTCM streams for
     3386incoming message types and printout some of the contained meta-data. Contained observation types are also printed because
     3387such information is required a priori for the conversion of RTCM Version 3 MSM streams to RINEX Version 3 files.
    31723388</p>
    31733389<p>
     
    31883404
    31893405<p>
    3190 Note that in RTCM Version 2 message types 18 and 19 carry only the observables of one frequency. Hence it needs two type 18 and 19 messages per epoch to transport observations from dual frequency receivers.
    3191 </p>
    3192 
    3193 <p>
    3194 Please note further that RTCM Version 3 message types 1084 for GLONASS do not contain GLONASS channel numbers. Observations from these messages can only be decoded when you include 1020 GLONASS ephemeris messages to your stream which contain the channels. You could also consider adding a second stream carrying 1087 GLONASS observation messages or 1020 GLONASS ephemeris messages as both contain the GLONASS channel numbers.
    3195 </p>
    3196 <p>
    3197 
    3198 <p>Logged time stamps refer to message reception time and allow understanding repetition rates. Enter 'ALL' if you want to log this information from all configured streams. Beware that the size of the logfile can rapidly increase depending on the number of incoming RTCM streams.
    3199 </p>
    3200 <p>This option is primarily meant for test and evaluation. Use it to figure out what exactly is produced by a specific GNSS receiver's configuration. An empty option field (default) means that you do not want BNC to print message type numbers and antenna information carried in RTCM streams.
    3201 </p>
    3202 
     3406Note that in RTCM Version 2 message types 18 and 19 carry only the observables of one frequency.
     3407Hence it needs two type 18 and 19 messages per epoch to transport observations from dual frequency receivers.
     3408</p>
     3409
     3410<p>
     3411Please note further that RTCM Version 3 message types 1084 for GLONASS do not contain GLONASS channel numbers.
     3412The same is true for most of the GLONASS MSM messages, expect for MSM5 and MSM7, where the GLONASS channel number is available
     3413as extended information. Such observations can only be decoded when you include 1020 GLONASS ephemeris messages to your stream,
     3414which contain the channels. You could also add another stream carrying 1087 GLONASS observation messages or
     34151020 GLONASS ephemeris messages to get the GLONASS channel numbers.
     3416</p>
     3417
     3418<p>
     3419Logged time stamps refer to message reception time and allow understanding repetition rates.
     3420Enter 'ALL' if you want to log this information from all configured streams.
     3421Beware that the size of the logfile can rapidly increase depending on the number of incoming RTCM streams.
     3422</p>
     3423<p>This option is primarily meant for test and evaluation. Use it to figure out what exactly is produced
     3424by a specific GNSS receiver's configuration. An empty option field (default) means that you do not want BNC
     3425to print message type numbers and antenna information carried in RTCM streams.
     3426</p>
    32033427
    32043428<p><h4 id="miscport">2.12.4 Port - optional</h4></p>
    32053429<p>
    3206 BNC can output streams related to the above specified 'Mountpoint' through a TCP/IP port of your local host. Enter a port number to activate this function. The stream content remains untouched. BNC does not decode or reformat the data for this output.
    3207 </p>
    3208 <p>
    3209 Be careful when keyword 'ALL' is specified as 'Mountpoint' for involving all incoming streams together because the affiliation of data to certain streams gets lost in the output.
    3210 </p>
     3430BNC can output streams related to the above specified 'Mountpoint' through a TCP/IP port of your local host.
     3431Enter a port number to activate this function. The stream content remains untouched. BNC does not decode or reformat the data for this output.
     3432</p>
     3433
    32113434<p>
    32123435 An empty option field (default) means that you do not want BNC to apply the TCP/IP port output option.
    32133436</p>
    32143437
    3215 
    32163438<p><h4 id="pppclient">2.13 PPP Client</h4></p>
    32173439<p>
    3218 BNC can derive coordinates for rover positions following the Precise Point Positioning (PPP) approach. It uses code or code plus phase data from one or more GNSS systems in ionosphere-free linear combinations P3, L3, or P3&L3. Besides pulling streams of observations from a dual frequency GNSS receiver, this
    3219 <ul>
    3220   <li>Requires pulling in addition a stream carrying satellite orbit and clock corrections to Broadcast Ephemeris in the form of RTCM Version 3 'State Space Representation' (SSR) messages. Note that for BNC these Broadcast Corrections need to be referred to the satellite's Antenna Phase Center (APC). Streams providing such messages are listed on <u>http://igs.bkg.bund.de/ntrip/orbits</u> (Caissy et al. 2012). Stream 'CLK11' on Ntrip Broadcaster 'products.igs-ip.net:2101' is an example.</li>
    3221   <li>May require pulling a stream carrying Broadcast Ephemeris available as RTCM Version 3 message types 1019, 1020, 1043, 1044, 1045, 1046 and 63 (tentative). This becomes a must only when the stream coming from the receiver does not contain Broadcast Ephemeris or provides them only at very low repetition rate. Streams providing such messages are listed on <u>http://igs.bkg.bund.de/ntrip/ephemeris</u>. Stream 'RTCM3EPH' on caster 'products.igs-ip.net:2101' is an example.</li>
    3222 </ul>
    3223 Note that Broadcast Ephemeris parameters pass a plausibility check in BNC which allows to ignore incorrect or outdated ephemeris data when necessary, leaving a note 'WRONG EPHEMERIS' or 'OUTDATED EPHEMERIS' in the logfile.
    3224 </p>
    3225 
    3226 <p>When using the PPP option, it is important to understand which effects are corrected by BNC.
    3227 </p>
    3228 <ul>
    3229   <li>BNC does correct for Solid Earth Tides and Phase Windup.</li>
    3230   <li>Satellite Antenna Phase Center offsets are corrected.</li>
    3231   <li>Satellite Antenna Phase Center variations are neglected because this is a small effect usually less than 2 centimeters.</li>
    3232   <li>Observations can be corrected for a Receiver Antenna Offset and Receiver Antenna Phase Center Variation. Depending on whether or not these corrections are applied, the estimated position is either that of the receiver's Antenna Phase Center or that of the receiver's Antenna Reference Point.</li>
    3233   <li>Ocean and atmospheric loading is neglected. Atmospheric loading is pretty small. Ocean loading is usually also a small effect but may reach up to about 10 centimeters for coastal stations.</li>
    3234   <li>Rotational deformation due to polar motion (Polar Tides) is not corrected because this is a small effect usually less than 2 centimeters.</li>
    3235 </ul>
    3236 </p>
    3237 
    3238 <p>
    3239 The provider of an orbit/clock correction stream may switch with his service at any time from a duty to a backup server installation. This shall be noted in the SSR stream through a change of the Issue Of Data (IOD SSR) parameter. The PPP option in BNC will immediately reset all ambiguities in such a situation.
    3240 </p>
    3241 
     3440BNC can derive coordinates for rover positions following different Precise Point Positioning (PPP) methods:
     3441<ul>
     3442  <li>Uncombined PPP</li>
     3443  <li>Ionosphere-free PPP</li>
     3444  <li>Decoupled Clock Model (DCM) with Code Biases</li>
     3445  <li>Decoupled Clock Model with Phase Biases</li>
     3446</ul>
     3447Therefore it uses code data (Pi), phase data (Li) or code&phase data (Pi&Li) from one or more GNSS.
     3448Besides pulling streams of observations from a dual frequency GNSS receiver, this
     3449<ul>
     3450  <li>Requires pulling in addition a stream carrying satellite orbit and clock corrections to Broadcast Ephemeris in the form of
     3451      RTCM-SSR or IGS-SSR messages. Note that for BNC these Broadcast Corrections need to be referred to the satellite's
     3452      Antenna Phase Center (APC). Streams providing such messages are listed on
     3453      <a href="https://igs.bkg.bund.de/ntrip/#rtcm-corr" target="_blank">https://igs.bkg.bund.de/ntrip/#rtcm-corr</a>
     3454      Stream 'SSRA00BKG0' (RTCM-SSR) or 'SSRA00BKG1' (IGS-SSR) on Ntrip Broadcaster 'products.igs-ip.net:2101' is an example.</li>
     3455  <li>May require pulling a stream carrying Broadcast Ephemeris available as RTCM Version 3 message types 1019, 1020, 1043, 1044, 1045, 1046, etc..
     3456      This becomes a must only when the stream coming from the receiver does not contain Broadcast Ephemeris or provides them only
     3457      at very low repetition rate. Streams providing such messages are listed on
     3458      <a href="https://igs.bkg.bund.de/ntrip/#rtcm-eph" target="_blank">https://igs.bkg.bund.de/ntrip/#rtcm-eph</a>
     3459      Stream 'BCEP00BKG0' on caster 'products.igs-ip.net:2101' is an example.</li>
     3460</ul>
     3461Note that Broadcast Ephemeris parameters pass a plausibility check in BNC which allows to ignore incorrect or outdated ephemeris data
     3462when necessary, leaving a note 'WRONG EPHEMERIS' or 'OUTDATED EPHEMERIS' in the logfile. Unhealthy ephemeris data sets are remaining
     3463and leaving a note 'UNHEALTHY' in the logfile.
     3464</p>
     3465When using the PPP option, BNC does correct for:
     3466<ul>
     3467  <li>Solid Earth Tides and Phase Windup</li>
     3468  <li>Satellite Antenna Phase Center offsets and variations</li>
     3469  <li>Receiver  Antenna Phase Center offsets and variations:
     3470      Depending on whether or not these corrections are applied, the estimated position is either that of the receiver's
     3471      Antenna Phase Center or that of the receiver's Antenna Reference Point</li>
     3472  <li>Ocean and atmospheric loading:
     3473      Atmospheric loading is pretty small but Ocean loading may reach up to about 10 centimeters for coastal stations</li>
     3474</ul>
     3475<p>
     3476Rotational deformation due to polar motion (Polar Tides) is not corrected because this is a small effect usually less than 2 centimeters.
     3477</p>
     3478<p>
     3479The provider of an orbit/clock correction stream may switch with his service at any time from a duty to a backup server installation.
     3480This shall be noted in the SSR stream through a change of the Issue Of Data (IOD SSR) parameter.
     3481The PPP option in BNC will immediately reset all ambiguities in such a situation.
     3482</p>
    32423483<p>
    32433484PPP options are specified in BNC through the following four panels.
    32443485<ul>
    32453486  <li>PPP (1): Input and output, specifying real-time or post processing mode and associated data sources</li>
    3246   <li>PPP (2): Processed stations, specifying sigmas and noise of a priori coordinates and NMEA stream output</li>
    3247   <li>PPP (3): Processing options, specifying general PPP processing options</li>
     3487  <li>PPP (2): Processing options, specifying general PPP processing options</li>
     3488  <li>PPP (3): Processed stations, specifying sigmas and noise of a priori coordinates and troposphere paremeters,
     3489               NMEA stream output and signal priorities</li>
    32483490  <li>PPP (4): Plots, specifying visualization through time series and track maps</li>
    32493491</ul>
     
    32543496This panel provides options for specifying the input and output streams and files required by BNC for real-time or post processing PPP.
    32553497</p>
    3256 
    3257 <p><img src="IMG/screenshot03.png"/></p>
     3498<p><img src="IMG/Figure22.png"width=1000/></p>
    32583499<p>Figure 22: Real-time Precise Point Positioning with BNC, PPP Panel 1</p>
    32593500
     
    32623503Choose between input from 'Real-time Streams' or 'RINEX Files' for PPP with BNC in real-time or post processing mode.
    32633504</p>
    3264 
    3265 <p>
    3266 <u>Real-time Streams</u><br>
    3267 When choosing 'Real-time Streams' BNC will do PPP solutions in real-time. This requires pulling GNSS observation streams, Broadcast Ephemeris messages and a stream containing corrections to Broadcast Ephemeris. Streams must come in RTCM Version 3 format.
    3268 </p>
    3269 <p>
     3505<p><u>Real-time Streams</u>: When choosing 'Real-time Streams' BNC will do PPP solutions in real-time.
     3506This requires pulling GNSS observation streams, Broadcast Ephemeris messages and a stream containing corrections to Broadcast Ephemerides.
     3507Streams with observation and navigation data have to be in RTCM Version 3 format. Correction streams have to be in RTCM-SSR or IGS-SSR format.
    32703508If you do not pull Broadcast Corrections, BNC will switch with its solution to 'Single Point Positioning' (SPP) mode.
    32713509</p>
    3272 
    3273 <p>
    3274 <u>RINEX Files</u><br>
    3275 This input mode allows to specify RINEX Observation, RINEX Navigation and Broadcast Correction files. BNC accepts RINEX Version 2 as well as RINEX Version 3 Observation or Navigation file formats. Files carrying Broadcast Corrections must have the format produced by BNC through the 'Broadcast Corrections' panel.
    3276 </p>
    3277 <p>
    3278 Specifying only a RINEX Observation and a RINEX Navigation file and no Broadcast Correction file leads BNC to a 'Single Point Positioning' (SPP) solution.
    3279 <p>
    3280 <u>Debugging</u><br>
    3281 Note that for debugging purposes, BNC's real-time PPP functionality can also be used offline. Apply the 'File Mode' 'Command Line' option for that to read a file containing synchronized observations, orbit and clock correctors, and Broadcast Ephemeris. Example:
     3510<p><u>RINEX Files</u>: This input mode allows to specify RINEX Observation, RINEX Navigation and Broadcast Correction files.
     3511BNC accepts RINEX Version 2 as well as RINEX Version 3 Observation or Navigation file formats.
     3512Files carrying Broadcast Corrections must have the format produced by BNC through the 'Broadcast Corrections' panel.
     3513Specifying only a RINEX Observation and a RINEX Navigation file and no Broadcast Correction file leads BNC to a
     3514'Single Point Positioning' (SPP) solution.
     3515<p>
     3516Note that for debugging purposes, BNC's real-time PPP functionality can also be used offline.
     3517Apply the 'File Mode' 'Command Line' option for that to read a file containing synchronized observations,
     3518orbit and clock correctors, and Broadcast Ephemeris. Example:
    32823519<pre>
    3283   bnc.exe --conf c:\temp\PPP.bnc --file c:\temp\RAW
     3520        Windows: bnc.exe --conf c:\temp\PPP.bnc --file c:\temp\RAW
    32843521</pre>
    32853522Such a file (here: 'RAW') must be saved beforehand using BNC's 'Raw output file' option.
    3286 </li>
    3287 </ul>
    3288 </p>
    3289 
    3290 <p><h4 id="ppprnxobs">2.13.1.2 RINEX Observation File - mandatory if 'Data source' is set to 'RINEX Files'</h4></p>
    3291 <p>
    3292 Specify a RINEX Observation file. The file format can be RINEX Version 2 or RINEX Version 3.
    3293 </p>
    3294 
    3295 <p><h4 id="ppprnxnav">2.13.1.3 RINEX Navigation File - mandatory if 'Data source' is set to 'RINEX Files'</h4></p>
    3296 <p>
    3297 Specify a RINEX Navigation file. The file format can be RINEX Version 2 or RINEX Version 3.
    3298 </p>
    3299 
    3300 <p><h4 id="pppcorrstream">2.13.1.4 Corrections Stream - optional if 'Data source' is set to 'Real-Time Streams'</h4></p>
    3301 <p>
    3302 Specify a Broadcast 'Corrections stream' from the list of selected 'Streams' you are pulling if you want BNC to correct your satellite ephemeris accordingly. Note that the stream's orbit and clock corrections must refer to the satellite Antenna Phase Center (APC). Streams providing such corrections are made available e.g. through the International GNSS Service (IGS) and listed on <u>http://igs.bkg.bund.de/ntrip/orbits</u>. The stream format must be RTCM Version 3 containing so-called SSR messages. Streams 'IGS03' and 'CLK11' supporting GPS plus GLONASS are examples.
    3303 </p>
    3304 <p>
     3523</p>
     3524<p><h4 id="pppcorrstream">2.13.1.2 Corrections Stream - optional if 'Data source' is set to 'Real-Time Streams'</h4></p>
     3525<p>
     3526Specify a Broadcast 'Corrections stream' from the list of selected 'Streams' you are pulling if you want BNC to correct your
     3527satellite ephemeris and observations accordingly. Note that the stream's orbit and clock corrections must refer to the
     3528satellite Antenna Phase Center (APC). Streams providing such corrections are made available e.g. through the
     3529International GNSS Service (IGS) and can for example be be pulled from <a href="https://products.igs-ip.net" target="_blank">https://products.igs-ip.net</a>
     3530The stream format must be RTCM-SSR or IGS-SSR containing so-called SSR messages. Streams 'SSRA03IGS1' and 'SSRA00BKG1' are examples
     3531using the IGS-SSR format.
    33053532If you do not specify a 'Corrections stream', BNC will fall back from a PPP solution to a Single Point Positioning (SPP) solution.
    33063533</p>
    3307 
    3308 <p><h4 id="pppcorrfile">2.13.1.5 Corrections File - optional if 'Data source' is set to 'RINEX Files'</h4></p>
    3309 <p>
    3310 Specify a Broadcast 'Corrections file' as saved beforehand using BNC. The file content is basically the ASCII representation of a RTCM Version 3 Broadcast Correction (SSR) stream.
    3311 </p>
    3312 <p>
    3313 If you do not specify a 'Correction file', BNC will fall back from a PPP solution to a Single Point Positioning (SPP) solution.
    3314 </p>
    3315 
    3316 <p><h4 id="pppantexfile">2.13.1.6 ANTEX File - optional</h4></p>
    3317 <p>
    3318 IGS provides a file containing absolute phase center corrections for GNSS satellite and receiver antennas in ANTEX format. Entering the full path to such an ANTEX file is required for correcting observations in PPP for Antenna Phase Center offsets and variations. Note that for applying such corrections you need to specify the receiver's antenna name and radome in BNC's 'Coordinates file'.
    3319 </p>
    3320 <p>
    3321 Default value for 'ANTEX file' is an empty option field, meaning that you do not want to correct observations for Antenna Phase Center offsets and variations.
    3322 </p>
    3323 
     3534<p><h4 id="pppcorrfile">2.13.1.3 Corrections File - optional if 'Data source' is set to 'RINEX Files'</h4></p>
     3535<p>
     3536Specify a Broadcast 'Corrections file' as saved beforehand using BNC. The file content is basically the ASCII representation of a
     3537RTCM-SSR or a IGS-SSR Broadcast Correction stream. If you do not specify a 'Correction file', BNC will fall back from a PPP solution
     3538to a Single Point Positioning (SPP) solution.
     3539</p>
     3540<p><h4 id="pppionostream">2.13.1.4 Ionosphere Stream - optional if 'Data source' is set to 'Real-Time Streams'</h4></p>
     3541<p>
     3542Specify a 'Ionosphere stream' which provides VTEC informations in SSR format from the list of selected 'Streams' you are pulling
     3543if you want BNC to correct your observations accordingly. Streams providing such VTEC informations are made available e.g. through the
     3544International GNSS Service (IGS) and can for example be be pulled from <a href="https://products.igs-ip.net" target="_blank">https://products.igs-ip.net</a>
     3545The stream format must be RTCM-SSR or IGS-SSR containing so-called SSR messages. Streams 'IONO00IGS1' and 'IONO00UPC1' are examples
     3546using the IGS-SSR format.
     3547If you do not specify a 'Ionosphere stream' via this option, BNC will use VTEC informations from the Corrections stream 'mountpoint',
     3548if available.
     3549</p>
     3550<p><h4 id="pppionofile">2.13.1.5 Ionosphere File - optional if 'Data source' is set to 'RINEX Files'</h4></p>
     3551<p>
     3552Specify a 'Ionosphere file' as saved beforehand using BNC. The file content is basically the ASCII representation of a
     3553RTCM-SSR or a IGS-SSR Ionosphere stream.
     3554</p>
     3555<p><h4 id="ppprnxobs">2.13.1.6 RINEX Observation File - mandatory if 'Data source' is set to 'RINEX Files'</h4></p>
     3556<p>
     3557Specify a RINEX Observation file. The file format can be RINEX Version 2, RINEX Version 3 or RINEX Version 4.
     3558</p>
     3559<p><h4 id="ppprnxnav">2.13.1.7 RINEX Navigation File - mandatory if 'Data source' is set to 'RINEX Files'</h4></p>
     3560<p>
     3561Specify a RINEX Navigation file.The file format can be RINEX Version 2, RINEX Version 3 or RINEX Version 4.
     3562</p>
     3563<p><h4 id="pppantexfile">2.13.1.8 ANTEX File - optional</h4></p>
     3564<p>
     3565IGS provides a file containing absolute phase center corrections for GNSS satellite and receiver antennas in ANTEX format.
     3566Such so-called ANTEX files are available from IGS through
     3567at <a href="https://files.igs.org/pub/station/general/" target="_blank">https://files.igs.org/pub/station/general/</a>.
     3568An example ANTEX file 'igs20.atx' is part of the BNC package for convenience.
     3569</p>
     3570<p>
     3571Entering the full path to such an ANTEX file is required for correcting observations in PPP for Antenna Phase Center offsets
     3572and variations. Note that for applying such corrections you need to specify the receiver's antenna name and radome in BNC's 'Coordinates file'.
     3573</p>
     3574<p>
     3575Default value for 'ANTEX file' is an empty option field, meaning that you do not want to correct observations for
     3576Antenna Phase Center offsets and variations.
     3577</p>
    33243578<p><h4 id="pppmarkcoor">2.13.1.7 Coordinates File - optional </h4></p>
    33253579<p>
    3326 Enter the full path to an ASCII file which specifies all observation streams or files from stationary or mobile receivers you possibly may want to process. Specifying a 'Coordinates file' is optional. If it exists, it should contain one record per stream or file with the following parameters separated by blank characters:
    3327 </p>
    3328 <p>
     3580Enter the full path to an ASCII file which specifies all observation streams or files from stationary or mobile receivers
     3581you possibly may want to process.
     3582</p>
     3583<p>
     3584Specifying a 'Coordinates file' is optional. If it exists, it should contain one record per stream or file
     3585with the following parameters separated by blank characters:
     3586</p>
    33293587<ul>
    33303588  <li>Input data source, to be specified either through
    33313589  <ul>
    33323590    <li>the 'Mountpoint' of an RTCM stream (when in real-time PPP mode), or</li>
    3333     <li>the first four characters of the RINEX observations file (when in post processing PPP mode).</li>
     3591    <li>the first four (RINEX Version 2) or nine (RINEX Version 3 and 4) characters of the RINEX observations file (when in post processing PPP mode).</li>
    33343592  </ul>
    3335   Having at least this first parameter in each record is mandatory.</li><br>
    3336   <li>Only for static observations from a stationary receiver:<br>Approximate a priori XYZ coordinate [m] of the station's marker; specify '0.0 0.0 0.0' if unknown or when observations come from a mobile receiver.</li><br>
    3337   <li>Nort, East and Up component [m] of antenna eccentricity which is the difference between Antenna Reference Point (ARP) and a nearby marker position; when specifying the antenna eccentricity BNC will produce coordinates referring to the marker position and not referring to ARP; specify '0.0 0.0 0.0' if eccentricity is unknown or the ARP itself is understood as the marker.</li><br>
    3338   <li>Receiver's antenna name as defined in your ANTEX file (see below); Observations will be corrected for the Antenna Phase Center (APC) offsets and variations, which may result in a reduction of a few centimeters at max; the specified name must consist of 20 characters; add trailing blanks if the antenna name has less than 20 characters; examples:<br><pre>
    3339 &nbsp; &nbsp;'JPSREGANT_SD_E      ' (no radome)
    3340 &nbsp; &nbsp;'LEIAT504        NONE' (no radome)
    3341 &nbsp; &nbsp;'LEIAR25.R3      LEIT' (radome is LEIT)</pre>
    3342 Leave antenna name blank if you do not want to correct observations for APC offsets and variations or if you do not know the antenna name.</li><br>
    3343   <li>Receiver type following the naming convention for IGS equipment as defined in <a href="https://igscb.jpl.nasa.gov/igscb/station/general/rcvr_ant.tab" target="_blank">https://igscb.jpl.nasa.gov/igscb/station/general/rcvr_ant.tab</a>.
    3344   Specifying the receiver type is only required when saving SINEX Troposphere files. In those files it becomes part of the 'SITE/RECEIVER' specifications, see section
    3345    'SNX TRO Directory'.</li>
    3346 </ul>
    3347 </p>
     3593      Having at least this first parameter in each record is mandatory.</li><br>
     3594  <li>For static observations from a stationary receiver an approximate a priori XYZ coordinate [m] of the station's marker should be specified. <br>
     3595      If such an approximate a priori XYZ coordinate is unknown or when observations come from a mobile receiver, '0.0 0.0 0.0' shall be used instead.</li>
     3596      <br>
     3597  <li>The North, East and Up component [m] of antenna eccentricity, which is the difference between the Antenna Reference Point (ARP)
     3598      and a nearby marker position, can be specified.<br>
     3599      Please note, when specifying the antenna eccentricity, BNC will produce coordinates referring to the marker position and not referring to the ARP.<br>
     3600      If the eccentricity is unknown or the ARP itself is understood as the marker, '0.0 0.0 0.0' shall be specified instead.</li>
     3601      <br>
     3602  <li>Receiver's antenna name as defined in your ANTEX file (see below).
     3603      The specified name must consist of 20 characters. Add trailing blanks if the antenna name has less than 20 characters. <br>Examples:<br>
     3604        <pre><p style="font-family:Monospace">
     3605                &nbsp;'JPSREGANT_SD_E      ' (no radome)
     3606                &nbsp;'LEIAT504        NONE' (no radome)
     3607                &nbsp;'LEIAR25.R3      LEIT' (radome is LEIT)
     3608        </p></pre>
     3609          Observations will be corrected for the receiver Antenna Phase Center (APC) offsets and variations.<br>
     3610      Leave antenna name blank if you do not want to correct observations for APC offsets and variations or if you do not know the antenna name.</li>
     3611      <br>
     3612  <li>Receiver type following the naming convention for IGS equipment as defined in
     3613      <a href="https://files.igs.org/pub/station/general/rcvr_ant.tab" target="_blank">https://files.igs.org/pub/station/general/rcvr_ant.tab</a>.<br>
     3614   <li>Specifying the receiver type is only required when saving SINEX Troposphere files. In those files it becomes part of the 'SITE/RECEIVER' specifications,
     3615       see section 'SNX TRO Directory'.</li>
     3616</ul>
    33483617<p>
    33493618Records in the 'Coordinates' file with exclamation mark '!' in the first column or blank records will be understood as comment lines and ignored.
    33503619</p>
    33513620<p>
    3352 The following is the content of an example 'Coordinates file'. Here each record describes the mountpoint of a stream available from the global IGS real-time reference station network. A priori coordinates are followed by North/East/Up eccentricity components of the ARP
    3353 followed by the antenna name and radome in use.
    3354 </p>
     3621The following is the content of an example 'Coordinates file'. Here each record describes the mountpoint of a stream
     3622available from the global IGS real-time reference station network.
     3623A priori coordinates are followed by North/East/Up eccentricity components of the ARP,
     3624followed by the antenna name and radome in use, and followed by the receiver name.
     3625</p>
     3626<pre><p style="font-family:Monospace">
     3627! --------------------------------------------------------------------------------------------------------------------------------!
     3628! Apriori coordinates with eccentricities, antenna and receiver, Reference System IGS20
     3629! --------------------------------------------------------------------------------------------------------------------------------!
     3630! Station       X[m]            Y[m]          Z[m]          North[m]   EAST[m]    UP[m]   Antenna_______Radom Receiver
     3631! --------------------------------------------------------------------------------------------------------------------------------!
     3632! REAL-TIME !
     3633FFMJ00DEU0 4053455.62808   617729.94590  4869395.88436      0.0000     0.0000     0.0450  LEIAR25.R4     LEIT JAVAD TRE_G3TH DELTA
     3634FFMJ01DEU0 4053455.62808   617729.94590  4869395.88436      0.0000     0.0000     0.0450  LEIAR25.R4     LEIT LEICA GR50
     3635WTZR00DEU0 4075580.27823   931854.08861  4801568.30495      0.0000     0.0000     0.0710  LEIAR25.R3     LEIT LEICA GR25
     3636! RINEX !
     3637FFMJ00DEU  4053455.62808   617729.94590  4869395.88436      0.0000     0.0000     0.0450  LEIAR25.R4     LEIT JAVAD TRE_G3TH DELTA
     3638FFMJ01DEU  4053455.62808   617729.94590  4869395.88436      0.0000     0.0000     0.0450  LEIAR25.R4     LEIT LEICA GR50
     3639WTZR00DEU  4075580.27823   931854.08861  4801568.30495      0.0000     0.0000     0.0710  LEIAR25.R3     LEIT LEICA GR25
     3640VM01             0.0            0.0            0.0          0.0000     0.0000     0.0000
     3641! REAL-TIME TEST !
     3642TRDS00NOR0 2820170.56469  513486.25161  5678936.13675      5.5460     0.0070     0.0180 TRM55971.00     NONE TRIMBLE NETR9
     3643</p></pre>
     3644In this file
     3645<ul>
     3646  <li> Record 'FFMJ00DEU0' describes a stream from a stationary receiver with known a priori marker coordinates, antenna eccentricities,
     3647       antenna and radome type, and receiver type.</li>
     3648  <li> Record 'FFMJ00DEU' indicates that a RINEX version 3 or 4 observations file for post processing PPP is available for station 'FFMJ00DEU'
     3649       with known a priori marker coordinates, antenna eccentricities, antenna and radome type, and receiver type.</li>
     3650  <li> The 4-character station ID 'VM01' indicates that a RINEX version 2 observations file, resultant from a mobile rover receiver,
     3651       is available for post processing PPP. Hence a priori coordinates are unknown although antenna eccentricities, antenna and radome type,
     3652       and receiver type are known.</li>
     3653  <li> Record 'TRDS00NOR0' describes a stream from a stationary receiver with known a priori marker coordinates, antenna eccentricities,
     3654       antenna and receiver type but without radom.</li>
     3655</ul>
     3656<p>
     3657Note again that the only mandatory parameters in this file are the 'Station' parameters in the first column,
     3658each standing for an observation stream's mountpoint or the 9/4-character station ID of a RINEX filename.
     3659</p>
     3660
     3661<p><h4 id="pppblqfile">2.13.1.8 BLQ File - optional </h4></p>
     3662<p>
     3663Specify a 'BLQ file' containing the ocean loading coefficients for all stations you want to process.
     3664These coefficients can be obtained from the ocean loading service under request trough the web site
     3665<a href="http://holt.oso.chalmers.se/loading/" target="_blank">http://holt.oso.chalmers.se/loading/</a>
     3666 .
     3667BNC computes time series of tidal displacements for the respective stations using that input file.
     3668</p>
     3669
     3670
     3671<p><h4 id="ppplogfile">2.13.1.9 Logfile Directory - optional</h4></p>
     3672<p>
     3673Essential PPP results are shown in the 'Log' tab on the bottom of BNC's main window. Depending on the processing options,
     3674the following values are presented about once per second (example):
     3675<pre><p style="font-family:Monospace">
     3676...
     367722-11-17 21:42:02 2022-11-17_21:42:20.000 WTZR00DEU0 X = 4075580.2851 Y = 931854.1072 Z = 4801568.3290 NEU:  +0.0075  +0.0166  +0.0253 TRP:  +2.1833  +0.0026
     367822-11-17 21:42:03 2022-11-17_21:42:21.000 WTZR00DEU0 X = 4075580.2848 Y = 931854.1070 Z = 4801568.3289 NEU:  +0.0077  +0.0164  +0.0250 TRP:  +2.1833  +0.0028
     367922-11-17 21:42:04 2022-11-17_21:42:22.000 WTZR00DEU0 X = 4075580.2859 Y = 931854.1078 Z = 4801568.3292 NEU:  +0.0070  +0.0170  +0.0260 TRP:  +2.1833  +0.0031
     368022-11-17 21:42:05 2022-11-17_21:42:23.000 WTZR00DEU0 X = 4075580.2850 Y = 931854.1056 Z = 4801568.3294 NEU:  +0.0081  +0.0150  +0.0252 TRP:  +2.1833  +0.0034
     368122-11-17 21:42:06 2022-11-17_21:42:24.000 WTZR00DEU0 X = 4075580.2871 Y = 931854.1059 Z = 4801568.3291 NEU:  +0.0063  +0.0149  +0.0265 TRP:  +2.1833  +0.0037
     368222-11-17 21:42:07 2022-11-17_21:42:25.000 WTZR00DEU0 X = 4075580.2868 Y = 931854.1048 Z = 4801568.3298 NEU:  +0.0072  +0.0139  +0.0266 TRP:  +2.1833  +0.0040
     368322-11-17 21:42:08 2022-11-17_21:42:26.000 WTZR00DEU0 X = 4075580.2868 Y = 931854.1048 Z = 4801568.3269 NEU:  +0.0053  +0.0139  +0.0245 TRP:  +2.1833  +0.0042
     368422-11-17 21:42:09 2022-11-17_21:42:27.000 WTZR00DEU0 X = 4075580.2876 Y = 931854.1038 Z = 4801568.3266 NEU:  +0.0047  +0.0127  +0.0245 TRP:  +2.1833  +0.0046
     368522-11-17 21:42:10 2022-11-17_21:42:28.000 WTZR00DEU0 X = 4075580.2861 Y = 931854.1026 Z = 4801568.3265 NEU:  +0.0059  +0.0119  +0.0234 TRP:  +2.1833  +0.0049
     368622-11-17 21:42:11 2022-11-17_21:42:29.000 WTZR00DEU0 X = 4075580.2850 Y = 931854.1030 Z = 4801568.3248 NEU:  +0.0055  +0.0125  +0.0215 TRP:  +2.1833  +0.0053
     368722-11-17 21:42:12 2022-11-17_21:42:30.000 WTZR00DEU0 X = 4075580.2842 Y = 931854.1011 Z = 4801568.3253 NEU:  +0.0068  +0.0109  +0.0210 TRP:  +2.1833  +0.0056
     3688...
     3689</p></pre>
     3690<p>
     3691Each row reports the PPP result of one epoch. It begins with a UTC time stamp (yy-mm-dd hh:mm:ss) which tells us when the result was produced.
     3692A second time stamp (yyyy-mm-dd_hh:mm:ss) describes the PPP's epoch in 'GPS Time'. It is followed by the derived XYZ position in [m],
     3693its North, East and Up displacement compared to an introduced a priori coordinate, and the estimated tropospheric delay [m] (model plus correction).
     3694</p>
     3695<p>
     3696If you require more information, you can specify a 'Logfile directory' to save daily logfiles per station (filename suffix 'ppp')
     3697with additional processing details on disk.
     3698</p>
     3699<pre><p style="font-family:Monospace">
     3700PPP of Epoch 2022-11-17_21:47:08.000
     3701---------------------------------------------------------------
     37022022-11-17_21:47:08.000 BANCROFT:    4075580.023     931856.214    4801566.122         94.689
     3703
     37042022-11-17_21:47:08.000 SATNUM G  9
     37052022-11-17_21:47:08.000 RES c1  G02  -0.1726
     37062022-11-17_21:47:08.000 RES c1  G05   0.5544
     37072022-11-17_21:47:08.000 RES c1  G16  -0.5058
     37082022-11-17_21:47:08.000 RES c1  G18  -0.0158
     37092022-11-17_21:47:08.000 RES c1  G20  -0.3456
     37102022-11-17_21:47:08.000 RES c1  G25   0.0098
     37112022-11-17_21:47:08.000 RES c1  G26   0.3615
     37122022-11-17_21:47:08.000 RES c1  G29   0.0823
     37132022-11-17_21:47:08.000 RES c1  G31   0.0791
     37142022-11-17_21:47:08.000 RES c2  G02   0.2043
     37152022-11-17_21:47:08.000 RES c2  G05  -0.1494
     37162022-11-17_21:47:08.000 RES c2  G16   0.4594
     37172022-11-17_21:47:08.000 RES c2  G18   0.0795
     37182022-11-17_21:47:08.000 RES c2  G20   0.4275
     37192022-11-17_21:47:08.000 RES c2  G25   0.1922
     37202022-11-17_21:47:08.000 RES c2  G26   0.0648
     37212022-11-17_21:47:08.000 RES c2  G29  -0.2369
     37222022-11-17_21:47:08.000 RES c2  G31   0.0044
     37232022-11-17_21:47:08.000 RES l1  G02   0.0008
     37242022-11-17_21:47:08.000 RES l1  G05   0.0127
     37252022-11-17_21:47:08.000 RES l1  G16  -0.0069
     37262022-11-17_21:47:08.000 RES l1  G18   0.0011
     37272022-11-17_21:47:08.000 RES l1  G20  -0.0063
     37282022-11-17_21:47:08.000 RES l1  G25  -0.0025
     37292022-11-17_21:47:08.000 RES l1  G26   0.0043
     37302022-11-17_21:47:08.000 RES l1  G29  -0.0036
     37312022-11-17_21:47:08.000 RES l1  G31  -0.0018
     37322022-11-17_21:47:08.000 RES l2  G02  -0.0004
     37332022-11-17_21:47:08.000 RES l2  G05  -0.0079
     37342022-11-17_21:47:08.000 RES l2  G16   0.0042
     37352022-11-17_21:47:08.000 RES l2  G18  -0.0007
     37362022-11-17_21:47:08.000 RES l2  G20   0.0037
     37372022-11-17_21:47:08.000 RES l2  G25   0.0013
     37382022-11-17_21:47:08.000 RES l2  G26  -0.0025
     37392022-11-17_21:47:08.000 RES l2  G29   0.0022
     37402022-11-17_21:47:08.000 RES l2  G31   0.0011
     37412022-11-17_21:47:08.000 SATNUM R  4
     37422022-11-17_21:47:08.000 RES c1  R13  -0.0118
     37432022-11-17_21:47:08.000 RES c1  R14   1.2099
     37442022-11-17_21:47:08.000 RES c1  R15  -1.1385
     37452022-11-17_21:47:08.000 RES c1  R24  -1.1821
     37462022-11-17_21:47:08.000 RES c2  R13   0.0502
     37472022-11-17_21:47:08.000 RES c2  R14  -0.4755
     37482022-11-17_21:47:08.000 RES c2  R15   1.0857
     37492022-11-17_21:47:08.000 RES c2  R24   0.4894
     37502022-11-17_21:47:08.000 RES l1  R13   0.0063
     37512022-11-17_21:47:08.000 RES l1  R14   0.0114
     37522022-11-17_21:47:08.000 RES l1  R15   0.0128
     37532022-11-17_21:47:08.000 RES l1  R24  -0.0202
     37542022-11-17_21:47:08.000 RES l2  R13  -0.0054
     37552022-11-17_21:47:08.000 RES l2  R14  -0.0053
     37562022-11-17_21:47:08.000 RES l2  R15  -0.0114
     37572022-11-17_21:47:08.000 RES l2  R24   0.0121
     37582022-11-17_21:47:08.000 SATNUM E  7
     37592022-11-17_21:47:08.000 RES c1  E10   0.2013
     37602022-11-17_21:47:08.000 RES c1  E12  -0.0202
     37612022-11-17_21:47:08.000 RES c1  E24   0.1911
     37622022-11-17_21:47:08.000 RES c1  E25   0.2827
     37632022-11-17_21:47:08.000 RES c1  E26  -0.0250
     37642022-11-17_21:47:08.000 RES c1  E31   0.3809
     37652022-11-17_21:47:08.000 RES c1  E33  -0.0607
     37662022-11-17_21:47:08.000 RES c2  E10   0.2610
     37672022-11-17_21:47:08.000 RES c2  E12   0.0690
     37682022-11-17_21:47:08.000 RES c2  E24   0.1595
     37692022-11-17_21:47:08.000 RES c2  E25   0.0284
     37702022-11-17_21:47:08.000 RES c2  E26  -0.0843
     37712022-11-17_21:47:08.000 RES c2  E31  -0.1387
     37722022-11-17_21:47:08.000 RES c2  E33  -0.0813
     37732022-11-17_21:47:08.000 RES l1  E10  -0.0017
     37742022-11-17_21:47:08.000 RES l1  E12  -0.0008
     37752022-11-17_21:47:08.000 RES l1  E24   0.0017
     37762022-11-17_21:47:08.000 RES l1  E25  -0.0012
     37772022-11-17_21:47:08.000 RES l1  E26   0.0007
     37782022-11-17_21:47:08.000 RES l1  E31  -0.0005
     37792022-11-17_21:47:08.000 RES l1  E33  -0.0002
     37802022-11-17_21:47:08.000 RES l2  E10   0.0010
     37812022-11-17_21:47:08.000 RES l2  E12   0.0004
     37822022-11-17_21:47:08.000 RES l2  E24  -0.0009
     37832022-11-17_21:47:08.000 RES l2  E25   0.0005
     37842022-11-17_21:47:08.000 RES l2  E26  -0.0005
     37852022-11-17_21:47:08.000 RES l2  E31   0.0003
     37862022-11-17_21:47:08.000 RES l2  E33   0.0001
     3787
     37882022-11-17_21:47:08.000 REC_CLK  G       0.0000    +3.0126 +-   0.2920
     37892022-11-17_21:47:08.000 REC_CLK  R       0.0000   +11.1614 +-   1.7196
     37902022-11-17_21:47:08.000 REC_CLK  E       0.0000    -5.9155 +-   0.2753
     37912022-11-17_21:47:08.000 TRP              2.1833    +0.0517 +-   0.0739
     37922022-11-17_21:47:08.000 ION      G02     0.0000    -5.7945 +-   0.2104
     37932022-11-17_21:47:08.000 ION      G05     0.0000    -3.1871 +-   0.2783
     37942022-11-17_21:47:08.000 ION      G16     0.0000    -2.8219 +-   0.3255
     37952022-11-17_21:47:08.000 ION      G18     0.0000    -2.5264 +-   0.2184
     37962022-11-17_21:47:08.000 ION      G20     0.0000    -2.8718 +-   0.3272
     37972022-11-17_21:47:08.000 ION      G25     0.0000    +2.9946 +-   0.2567
     37982022-11-17_21:47:08.000 ION      G26     0.0000    +1.4823 +-   0.2219
     37992022-11-17_21:47:08.000 ION      G29     0.0000    -3.7500 +-   0.2113
     38002022-11-17_21:47:08.000 ION      G31     0.0000    -3.7782 +-   0.2260
     38012022-11-17_21:47:08.000 ION      R12     0.0000    +5.1937 +-   2.5551
     38022022-11-17_21:47:08.000 ION      R13     0.0000    +3.0746 +-   1.3815
     38032022-11-17_21:47:08.000 ION      R14     0.0000    +0.8970 +-   1.3602
     38042022-11-17_21:47:08.000 ION      R15     0.0000    +5.8365 +-   1.9561
     38052022-11-17_21:47:08.000 ION      R24     0.0000    +4.9548 +-   1.3849
     38062022-11-17_21:47:08.000 ION      E10     0.0000    +2.9867 +-   0.2217
     38072022-11-17_21:47:08.000 ION      E12     0.0000    -0.6873 +-   0.1879
     38082022-11-17_21:47:08.000 ION      E24     0.0000    +0.5845 +-   0.1841
     38092022-11-17_21:47:08.000 ION      E25     0.0000    +3.1903 +-   0.3103
     38102022-11-17_21:47:08.000 ION      E26     0.0000    +0.4911 +-   0.3528
     38112022-11-17_21:47:08.000 ION      E31     0.0000    +3.8772 +-   0.1889
     38122022-11-17_21:47:08.000 ION      E33     0.0000    +0.8343 +-   0.1887
     38132022-11-17_21:47:08.000 AMB  l1  G02     0.0000   -23.6657 +-   2.3839 el =  65.27 epo =  126
     38142022-11-17_21:47:08.000 AMB  l1  G05   -18.0000   -10.8006 +-   2.6173 el =  24.29 epo =  126
     38152022-11-17_21:47:08.000 AMB  l1  G16    -5.0000    -8.3983 +-   2.9733 el =  16.95 epo =  126
     38162022-11-17_21:47:08.000 AMB  l1  G18    14.0000    -6.2637 +-   2.3943 el =  51.38 epo =  126
     38172022-11-17_21:47:08.000 AMB  l1  G20    20.0000    -8.9493 +-   2.9963 el =  15.90 epo =  126
     38182022-11-17_21:47:08.000 AMB  l1  G25    71.0000   +21.9859 +-   2.5119 el =  29.47 epo =  126
     38192022-11-17_21:47:08.000 AMB  l1  G26    14.0000   +14.7236 +-   2.4022 el =  48.19 epo =  126
     38202022-11-17_21:47:08.000 AMB  l1  G29     8.0000   -12.9052 +-   2.3846 el =  62.61 epo =  126
     38212022-11-17_21:47:08.000 AMB  l1  G31   -12.0000   -13.7575 +-   2.4113 el =  43.92 epo =  126
     38222022-11-17_21:47:08.000 AMB  l1  R12   134.0000   -11.4687 +-  19.4149 el =   7.00 epo =   72
     38232022-11-17_21:47:08.000 AMB  l1  R13    80.0000   -21.2997 +-  15.8981 el =  53.05 epo =  126
     38242022-11-17_21:47:08.000 AMB  l1  R14    45.0000   -32.1410 +-  15.8330 el =  60.69 epo =  126
     38252022-11-17_21:47:08.000 AMB  l1  R15    79.0000    -8.5602 +-  17.6318 el =  10.24 epo =  126
     38262022-11-17_21:47:08.000 AMB  l1  R24    86.0000   -11.0912 +-  15.9190 el =  54.30 epo =  126
     38272022-11-17_21:47:08.000 AMB  l1  E10   -25.0000   +69.2221 +-   2.2445 el =  33.75 epo =  126
     38282022-11-17_21:47:08.000 AMB  l1  E12   -34.0000   +50.0813 +-   2.1477 el =  57.80 epo =  126
     38292022-11-17_21:47:08.000 AMB  l1  E24   -36.0000   +56.4165 +-   2.1446 el =  69.89 epo =  126
     38302022-11-17_21:47:08.000 AMB  l1  E25   -27.0000   +69.8552 +-   2.8830 el =  15.51 epo =  126
     38312022-11-17_21:47:08.000 AMB  l1  E26   -20.0000   +54.7160 +-   3.4490 el =  10.89 epo =  126
     38322022-11-17_21:47:08.000 AMB  l1  E31    42.0000   +74.0156 +-   2.1497 el =  55.47 epo =  126
     38332022-11-17_21:47:08.000 AMB  l1  E33   -18.0000   +57.4397 +-   2.1506 el =  56.46 epo =  126
     38342022-11-17_21:47:08.000 AMB  l2  G02   -18.0000   -34.1382 +-   2.3954 el =  65.27 epo =  126
     38352022-11-17_21:47:08.000 AMB  l2  G05    -3.0000   -16.1458 +-   2.7261 el =  24.29 epo =  126
     38362022-11-17_21:47:08.000 AMB  l2  G16   -24.0000   -14.5440 +-   3.1164 el =  16.95 epo =  126
     38372022-11-17_21:47:08.000 AMB  l2  G18     5.0000   -11.4185 +-   2.4192 el =  51.38 epo =  126
     38382022-11-17_21:47:08.000 AMB  l2  G20     9.0000   -14.9204 +-   3.1420 el =  15.90 epo =  126
     38392022-11-17_21:47:08.000 AMB  l2  G25    69.0000   +24.5505 +-   2.5938 el =  29.47 epo =  126
     38402022-11-17_21:47:08.000 AMB  l2  G26    49.0000   +15.2478 +-   2.4320 el =  48.19 epo =  126
     38412022-11-17_21:47:08.000 AMB  l2  G29    14.0000   -20.5723 +-   2.3973 el =  62.61 epo =  126
     38422022-11-17_21:47:08.000 AMB  l2  G31   -18.0000   -20.6551 +-   2.4479 el =  43.92 epo =  126
     38432022-11-17_21:47:08.000 AMB  l2  R12   135.0000    +5.2598 +-  21.1165 el =   7.00 epo =   72
     38442022-11-17_21:47:08.000 AMB  l2  R13    74.0000    -8.5429 +-  15.9055 el =  53.05 epo =  126
     38452022-11-17_21:47:08.000 AMB  l2  R14    52.0000   -22.7534 +-  15.8155 el =  60.69 epo =  126
     38462022-11-17_21:47:08.000 AMB  l2  R15    41.0000    +9.1213 +-  18.5219 el =  10.24 epo =  126
     38472022-11-17_21:47:08.000 AMB  l2  R24    72.0000    +4.9855 +-  15.9258 el =  54.30 epo =  126
     38482022-11-17_21:47:08.000 AMB  l2  E10    -7.0000   +60.7498 +-   2.3202 el =  33.75 epo =  126
     38492022-11-17_21:47:08.000 AMB  l2  E12   -20.0000   +35.4043 +-   2.1634 el =  57.80 epo =  126
     38502022-11-17_21:47:08.000 AMB  l2  E24   -14.0000   +43.4891 +-   2.1513 el =  69.89 epo =  126
     38512022-11-17_21:47:08.000 AMB  l2  E25   -10.0000   +61.6943 +-   3.0445 el =  15.51 epo =  126
     38522022-11-17_21:47:08.000 AMB  l2  E26    -4.0000   +42.6730 +-   3.6063 el =  10.89 epo =  126
     38532022-11-17_21:47:08.000 AMB  l2  E31    90.0000   +67.0696 +-   2.1672 el =  55.47 epo =  126
     38542022-11-17_21:47:08.000 AMB  l2  E33    -4.0000   +45.4395 +-   2.1669 el =  56.46 epo =  126
     38552022-11-17_21:47:08.000 WTZR00DEU0 X = 4075580.2593 +- 0.0736 Y = 931854.0817 +- 0.0473 Z = 4801568.2785 +- 0.0924 dN = -0.0022 +- 0.0493 dE = -0.0026 +- 0.0457 dU = -0.0331 +- 0.1080
     3856</p></pre>
     3857<p>
     3858 Depending on selected processing options you find 'GPS Time' stamps (yyyy-mm-dd_hh:mm:ss.sss) followed by
     3859 <table>
     3860  <tr><td>&nbsp; SATNUM G  </td><td>&nbsp; &nbsp; Number of satellites per contributing GNSS, here GPS</td></tr>
     3861  <tr><td>&nbsp; RES ci/li </td><td>&nbsp; &nbsp; Code and phase residuals for contributing GNSS in [m] given per satellite</td></tr>
     3862  <tr><td>&nbsp; REC_CLK G </td><td>&nbsp; &nbsp; Receiver clock errors for contributing GNSS in [m], here GPS</td></tr>
     3863  <tr><td>&nbsp; TRP       </td><td>&nbsp; &nbsp; A priori and correction values of tropospheric zenith delay in [m]</td></tr>
     3864  <tr><td>&nbsp; ION       </td><td>&nbsp; &nbsp; A priori and correction values of ionospheric delay in [m]</td></tr>
     3865  <tr><td>&nbsp; AMB li    </td><td>&nbsp; &nbsp; Floated ambiguities given per satellite with 'nEpo' = number of epochs since last ambiguity reset</td></tr>
     3866  <tr><td>&nbsp; MOUNTPOINT</td><td>&nbsp; &nbsp; Here 'WTZR00DEU0' with XYZ position in [m] and dN/dE/dU in [m] for North, East, and Up displacements compared to a priori marker coordinates</td></tr>
     3867</table>
     3868<p>
     3869Estimated parameters are presented together with their formal errors as derived from the implemented filter.
     3870The PPP algorithm includes outlier and cycle slip detection.
     3871</p>
     3872
     3873<p>
     3874Default value for 'Logfile directory' is an empty option field, meaning that you do not want to save daily PPP logfiles on disk.
     3875If a specified directory does not exist, BNC will not create PPP logfiles.
     3876</p>
     3877<p>
     3878BNC follows the RINEX Version 3 standard to create filenames for PPP logfiles (suffix 'ppp'), see section 'RINEX Filenames' for details:
    33553879<pre>
    3356 !
    3357 ! Station    X[m]          Y[m]          Z[m] North[m]  EAST[m]  UP[m]  Antenna--------Radom Receiver
    3358 ! -----------------------------------------------------------------------------------------------------
    3359 ADIS0  4913652.6612  3945922.7678   995383.4359  0.0000  0.0000  0.0010 TRM29659.00     NONE JPS LEGACY
    3360 ALIC0 -4052052.5593  4212836.0078 -2545104.8289  0.0000  0.0000  0.0015 LEIAR25.R3      NONE LEICA GRX1200GGPRO
    3361 BELF0  3685257.8823  -382908.8992  5174311.1067  0.0000  0.0000  0.0000 LEIAT504GG      LEIS LEICA GRX1200GGPRO
    3362 BNDY0 -5125977.4106  2688801.2966 -2669890.4345  0.0000  0.0000  0.0000 ASH701945E_M    NONE TRIMBLE NETR5
    3363 BRAZ0  4115014.0678 -4550641.6105 -1741443.8244  0.0000  0.0000  0.0080 LEIAR10         NONE LEICA GR25
    3364 CTWN0  5023564.4285  1677795.7211 -3542025.8392  0.0000  0.0000  0.0000 ASH701941.B     NONE TRIMBLE NETR5
    3365 CUT07 -2364337.4408  4870285.6055 -3360809.6280  0.0000  0.0000  0.0000 TRM59800.00     SCIS TRIMBLE NETR9
    3366 GANP0  3929181.3480  1455236.9105  4793653.9880  0.0000  0.0000  0.3830 TRM55971.00     NONE TRIMBLE NETR9
    3367 HLFX0  2018905.6037 -4069070.5095  4462415.4771  0.0000  0.0000  0.1000 TPSCR.G3        NONE TPS NET-G3A
    3368 LHAZ0  -106941.9272  5549269.8041  3139215.1564  0.0000  0.0000  0.1330 ASH701941.B     NONE TPS E_GGD
    3369 LMMF7  2993387.3587 -5399363.8649  1596748.0983  0.0000  0.0000  0.0000 TRM57971.00     NONE TRIMBLE NETR9
    3370 MAO07 -5466067.0979 -2404333.0198  2242123.1929  0.0000  0.0000  0.0000 LEIAR25.R3      LEIT JAVAD TRE_G3TH DELTA
    3371 NICO0  4359415.5252  2874117.1872  3650777.9614  0.0000  0.0000  0.0650 LEIAR25.R4      LEIT LEICA GR25
    3372 NKLG7  6287385.7320  1071574.7606    39133.1088 -0.0015 -0.0025  3.0430 TRM59800.00     SCIS TRIMBLE NETR9
    3373 NURK7  5516756.5103  3196624.9684  -215027.1315  0.0000  0.0000  0.1300 TPSCR3_GGD      NONE JAVAD TRE_G3TH DELTA
    3374 ONSA0  3370658.3928   711877.2903  5349787.0603  0.0000  0.0000  0.9950 AOAD/M_B        OSOD JAVAD TRE_G3TH DELTA
    3375 PDEL0  4551595.9072 -2186892.9495  3883410.9685  0.0000  0.0000  0.0000 LEIAT504GG      NONE LEICA GRX1200GGPRO
    3376 RCMN0  5101056.6270  3829074.4206  -135016.1589  0.0000  0.0000  0.0000 LEIAT504GG      LEIS LEICA GRX1200GGPRO
    3377 REUN0  3364098.9668  4907944.6121 -2293466.7379  0.0000  0.0000  0.0610 TRM55971.00     NONE TRIMBLE NETR9
    3378 REYK7  2587384.0890 -1043033.5433  5716564.1301  0.0000  0.0000  0.0570 LEIAR25.R4      LEIT LEICA GR25
    3379 RIO27  1429907.8578 -3495354.8953 -5122698.5595  0.0000  0.0000  0.0350 ASH700936C_M    SNOW JAVAD TRE_G3TH DELTA
    3380 SMR50   927077.1096 -2195043.5597 -5896521.1344  0.0000  0.0000  0.0000 TRM41249.00     TZGD TRIMBLE NETR5
    3381 SUWN0 -3062023.1604  4055447.8946  3841818.1684  0.0000  0.0000  1.5700 TRM29659.00     DOME TRIMBLE NETR9
    3382 TASH7  1695944.9208  4487138.6220  4190140.7391  0.0000  0.0000  0.1206 JAV_RINGANT_G3T NONE JAVAD TRE_G3TH DELTA
    3383 UFPR0  3763751.6731 -4365113.9039 -2724404.5331  0.0000  0.0000  0.1000 TRM55971.00     NONE TRIMBLE NETR5
    3384 UNB30  1761287.9724 -4078238.5659  4561417.8448  0.0000  0.0000  0.3145 TRM57971.00     NONE TRIMBLE NETR9
    3385 WIND7  5633708.8016  1732017.9297 -2433985.5795  0.0000  0.0000  0.0460 ASH700936C_M    SNOW JAVAD TRE_G3TH DELTA
    3386 WTZR0  4075580.3797   931853.9767  4801568.2360  0.0000  0.0000  0.0710 LEIAR25.R3      LEIT LEICA GR25
    3387 WUH27 -2267749.9761  5009154.5504  3221294.4429  0.0000  0.0000  0.1206 JAV_RINGANT_G3T NONE JAVAD TRE_G3TH DELTA
    3388 YELL7 -1224452.8796 -2689216.1863  5633638.2832  0.0000  0.0000  0.1000 AOAD/M_T        NONE JAVAD TRE_G3TH DELTA
     3880  WTZR00DEU_20223220000_01D_01S.ppp
    33893881</pre>
    3390 <p>
    3391 Note again that the only mandatory parameters in this file are the 'Station' parameters in the first column, each standing for an observation stream's mountpoint or the 4-character station ID of a RINEX filename. The following shows further valid examples for records of a 'Coordinates file'.
    3392 </p>
    3393 
    3394 <pre>
    3395 !
    3396 ! Station     X[m]         Y[m]          Z[m]    N[m]   E[m]   U[m]  Antenna--------Radom Receiver
    3397 ! --------------------------------------------------------------------------------------------------
    3398 WTZR0   4075580.3797  931853.9767  4801568.2360  0.000  0.000  0.071 LEIAR25.R3      LEIT LEICA GR25
    3399 CUT07  -2364337.4408 4870285.6055 -3360809.6280  0.000  0.000  0.000 TRM59800.00     SCIS
    3400 FFMJ1   4053455.7384  617729.8393  4869395.8214  0.000  0.000  0.045
    3401 TITZ1   3993780.4501  450206.8969  4936136.9886
    3402 WARN
    3403 SASS1         0.0          0.0           0.0     0.000  0.000  0.031 TPSCR3_GGD      CONE TRIMBLE NETR5
    3404 </pre>
    3405 
    3406 <p>
    3407 In this file
    3408 </p>
    3409 <ul>
    3410   <li> Record 'WTZR0' describes a stream from a stationary receiver with known a priori marker coordinate, antenna eccentricity, antenna and radome type and receiver type.</li>
    3411   <li> Record 'CUT07' describes a stream from a stationary receiver with known a priori marker coordinate, antenna eccentricity and antenna and radome type. The receiver type is unknown.</li>
    3412   <li> Record 'FFMJ1' describes a stream from a stationary receiver with known a priori marker coordinate and antenna eccentricity but unknown antenna, radome and receiver type.</li>
    3413   <li> Record 'TITZ1' describes a stream coming from a stationary receiver where an a priori marker coordinate is known but antenna eccentricity, name and radome and receiver type are unknown.</li>
    3414   <li>The 4-character station ID 'WARN' indicates that a RINEX observations file for post processing PPP is available for station 'WARN' but an a priori marker coordinate as well as antenna eccentricity, name and radome are unknown.</li>
    3415   <li>Record 'SASS1' stands for a mountpoint where the stream comes from a mobile rover receiver. Hence an a priori coordinate is unknown although antenna eccentricity, name and radome and receiver type are known.</li>
    3416 </ul>
    3417 </p>
    3418 
    3419 <p><h4 id="pppv3filename">2.13.1.8 Version 3 Filenames - optional</h4></p>
    3420 <p>
    3421 Tick 'Version 3 filenames' to let BNC create so-called extended filenames for PPP logfiles, NMEA files and SINEX Troposphere files to follow the RINEX Version 3 standard, see section 'RINEX Filenames' for details.
    3422 </p>
    3423 <p>
    3424 Default is an empty check box, meaning to create filenames following the RINEX Version 2 standard. The file content is not affected by this option. It only concerns the filename notation.
    3425 </p>
    3426 <p>
    3427 The following are examples for Version 2 filenames:
    3428 <p>
    3429 </p>
    3430 <table>
    3431   <tr><td>&nbsp; CUT018671.nmea</td><td>&nbsp; &nbsp; NMEA filename, suffix 'nmea'</td></tr>
    3432   <tr><td>&nbsp; CUT018671.ppp</td><td>&nbsp; &nbsp; PPP logfile name, suffix 'ppp'</td></tr>
    3433   <tr><td>&nbsp; CUT018671J30.tro</td><td>&nbsp; &nbsp; SINEX Troposphere filename, suffix 'tro'</td></tr>
    3434 </table>
    3435 </p>
    3436 <p>
    3437 The following are examples for Version 3 filenames:<br>
    3438 </p>
    3439 <table>
    3440   <tr><td>&nbsp; CUT000AUS_U_20152920000_01D_01S.nmea</td><td>&nbsp; &nbsp; NMEA filename, suffix 'nmea'</td></tr>
    3441   <tr><td>&nbsp; CUT000AUS_U_20152920000_01D_01S.ppp</td><td>&nbsp; &nbsp; PPP logfile name, suffix 'ppp'</td></tr>
    3442   <tr><td>&nbsp; CUT000AUS_U_20152920945_15M_01S.tra</td><td>&nbsp; &nbsp; SINEX Troposphere filename, suffix 'tra'</td></tr>
    3443 </table>
    3444 </p>
    3445 
    3446 <p><h4 id="ppplogfile">2.13.1.9 Logfile Directory - optional</h4></p>
    3447 <p>
    3448 Essential PPP results are shown in the 'Log' tab on the bottom of BNC's main window. Depending on the processing options, the following values are presented about once per second (example):
    3449 <pre>
    3450 ...
    3451 15-10-21 13:23:38 2015-10-21_13:23:38.000 CUT07 X = -2364337.4505 Y = 4870285.6269 Z = -3360809.6481 NEU:  -0.0046  -0.0006  +0.0306 TRP:  +2.4018  +0.1006
    3452 15-10-21 13:23:39 2015-10-21_13:23:39.000 CUT07 X = -2364337.4468 Y = 4870285.6244 Z = -3360809.6453 NEU:  -0.0043  -0.0029  +0.0258 TRP:  +2.4018  +0.0993
    3453 15-10-21 13:23:40 2015-10-21_13:23:40.000 CUT07 X = -2364337.4455 Y = 4870285.6215 Z = -3360809.6466 NEU:  -0.0070  -0.0027  +0.0238 TRP:  +2.4018  +0.0978
    3454 15-10-21 13:23:41 2015-10-21_13:23:41.000 CUT07 X = -2364337.4447 Y = 4870285.6248 Z = -3360809.6445 NEU:  -0.0039  -0.0049  +0.0249 TRP:  +2.4018  +0.0962
    3455 15-10-21 13:23:42 2015-10-21_13:23:42.000 CUT07 X = -2364337.4426 Y = 4870285.6238 Z = -3360809.6424 NEU:  -0.0031  -0.0063  +0.0223 TRP:  +2.4018  +0.0950
    3456 15-10-21 13:23:43 2015-10-21_13:23:43.000 CUT07 X = -2364337.4453 Y = 4870285.6386 Z = -3360809.6518 NEU:  -0.0033  -0.0104  +0.0395 TRP:  +2.4018  +0.0927
    3457 15-10-21 13:23:44 2015-10-21_13:23:44.000 CUT07 X = -2364337.4435 Y = 4870285.6354 Z = -3360809.6487 NEU:  -0.0027  -0.0106  +0.0348 TRP:  +2.4018  +0.0908
    3458 15-10-21 13:23:45 2015-10-21_13:23:45.000 CUT07 X = -2364337.4445 Y = 4870285.6381 Z = -3360809.6532 NEU:  -0.0049  -0.0109  +0.0396 TRP:  +2.4018  +0.0884
    3459 15-10-21 13:23:46 2015-10-21_13:23:46.000 CUT07 X = -2364337.4437 Y = 4870285.6365 Z = -3360809.6548 NEU:  -0.0073  -0.0109  +0.0389 TRP:  +2.4018  +0.0855
    3460 15-10-21 13:23:47 2015-10-21_13:23:47.000 CUT07 X = -2364337.4498 Y = 4870285.6317 Z = -3360809.6395 NEU:  +0.0049  -0.0033  +0.0294 TRP:  +2.4018  +0.0833
    3461 ...
    3462 </pre>
    3463 </p>
    3464 <p>
    3465 Each row reports the PPP result of one epoch. It begins with a UTC time stamp (yy-mm-dd hh:mm:ss) which tells us when the result was produced. A second time stamp (yyyy-mm-dd_hh:mm:ss) describes the PPP's epoch in 'GPS Time'. It is followed by the derived XYZ position in [m], its North, East and Up displacement compared to an introduced a priori coordinate, and the estimated tropospheric delay [m] (model plus correction).
    3466 </p>
    3467 <p>
    3468 If you require more information, you can specify a 'Logfile directory' to save daily logfiles per station (filename suffix 'ppp') with additional processing details on disk.
    3469 </p>
    3470 
    3471 <p>
    3472 <pre>
    3473 Precise Point Positioning of Epoch 2015-10-21_13:23:47.000
    3474 ---------------------------------------------------------------
    3475 2015-10-21_13:23:47.000 SATNUM G  9
    3476 2015-10-21_13:23:47.000 SATNUM R  6
    3477 2015-10-21_13:23:47.000 SATNUM E  0
    3478 2015-10-21_13:23:47.000 SATNUM C  9
    3479 2015-10-21_13:23:47.000 RES C01   P3    0.3201
    3480 2015-10-21_13:23:47.000 RES C02   P3    0.3597
    3481 2015-10-21_13:23:47.000 RES C03   P3   -0.8003
    3482 2015-10-21_13:23:47.000 RES C04   P3    2.7684
    3483 2015-10-21_13:23:47.000 RES C05   P3    4.9738
    3484 2015-10-21_13:23:47.000 RES C06   P3    0.1888
    3485 2015-10-21_13:23:47.000 RES C07   P3   -2.8624
    3486 2015-10-21_13:23:47.000 RES C08   P3   -2.9075
    3487 2015-10-21_13:23:47.000 RES C10   P3   -1.5682
    3488 2015-10-21_13:23:47.000 RES G05   P3    0.3828
    3489 2015-10-21_13:23:47.000 RES G16   P3   -3.7602
    3490 2015-10-21_13:23:47.000 RES G18   P3    0.8424
    3491 2015-10-21_13:23:47.000 RES G20   P3    0.4062
    3492 2015-10-21_13:23:47.000 RES G21   P3    0.8683
    3493 2015-10-21_13:23:47.000 RES G25   P3   -1.3367
    3494 2015-10-21_13:23:47.000 RES G26   P3    1.4107
    3495 2015-10-21_13:23:47.000 RES G29   P3    1.1870
    3496 2015-10-21_13:23:47.000 RES G31   P3   -0.5605
    3497 2015-10-21_13:23:47.000 RES R01   P3   -0.1458
    3498 2015-10-21_13:23:47.000 RES R02   P3   -2.1184
    3499 2015-10-21_13:23:47.000 RES R14   P3    1.8634
    3500 2015-10-21_13:23:47.000 RES R15   P3   -1.3964
    3501 2015-10-21_13:23:47.000 RES R18   P3    0.5517
    3502 2015-10-21_13:23:47.000 RES R24   P3    1.5750
    3503 2015-10-21_13:23:47.000 RES C01   L3   -0.0040
    3504 2015-10-21_13:23:47.000 RES C02   L3    0.0070
    3505 2015-10-21_13:23:47.000 RES C03   L3    0.0093
    3506 2015-10-21_13:23:47.000 RES C04   L3   -0.0017
    3507 2015-10-21_13:23:47.000 RES C05   L3   -0.0008
    3508 2015-10-21_13:23:47.000 RES C06   L3   -0.0031
    3509 2015-10-21_13:23:47.000 RES C07   L3   -0.0016
    3510 2015-10-21_13:23:47.000 RES C08   L3   -0.0089
    3511 2015-10-21_13:23:47.000 RES C10   L3    0.0051
    3512 2015-10-21_13:23:47.000 RES G05   L3   -0.0408
    3513 2015-10-21_13:23:47.000 RES G16   L3    0.0043
    3514 2015-10-21_13:23:47.000 RES G18   L3    0.0017
    3515 2015-10-21_13:23:47.000 RES G20   L3   -0.0132
    3516 2015-10-21_13:23:47.000 RES G21   L3    0.0188
    3517 2015-10-21_13:23:47.000 RES G25   L3   -0.0059
    3518 2015-10-21_13:23:47.000 RES G26   L3    0.0028
    3519 2015-10-21_13:23:47.000 RES G29   L3    0.0062
    3520 2015-10-21_13:23:47.000 RES G31   L3    0.0012
    3521 2015-10-21_13:23:47.000 RES R01   L3    0.0260
    3522 2015-10-21_13:23:47.000 RES R02   L3   -0.0121
    3523 2015-10-21_13:23:47.000 RES R14   L3    0.0055
    3524 2015-10-21_13:23:47.000 RES R15   L3   -0.0488
    3525 2015-10-21_13:23:47.000 RES R18   L3    0.0475
    3526 2015-10-21_13:23:47.000 RES R24   L3    0.0103
    3527 
    3528 2015-10-21_13:23:47.000 CLK      45386.971 +-  0.163
    3529 2015-10-21_13:23:47.000 TRP       2.402 +0.083 +-  0.013
    3530 2015-10-21_13:23:47.000 OFFGLO       1.766 +-  0.250
    3531 2015-10-21_13:23:47.000 OFFGAL       0.000 +- 1000.001
    3532 2015-10-21_13:23:47.000 OFFBDS      29.385 +-  0.218
    3533 2015-10-21_13:23:47.000 AMB C01    239.913 +-  0.149   epo = 180
    3534 2015-10-21_13:23:47.000 AMB C04    151.821 +-  0.149   epo = 180
    3535 2015-10-21_13:23:47.000 AMB C05    137.814 +-  0.150   epo = 180
    3536 2015-10-21_13:23:47.000 AMB C06   -368.848 +-  0.149   epo = 180
    3537 2015-10-21_13:23:47.000 AMB C07   -102.508 +-  0.149   epo = 180
    3538 2015-10-21_13:23:47.000 AMB C08   -145.358 +-  0.150   epo = 180
    3539 2015-10-21_13:23:47.000 AMB C10    195.732 +-  0.149   epo = 180
    3540 2015-10-21_13:23:47.000 AMB G25     58.320 +-  0.159   epo = 180
    3541 2015-10-21_13:23:47.000 AMB G26    110.077 +-  0.159   epo = 180
    3542 2015-10-21_13:23:47.000 AMB G29   -555.466 +-  0.159   epo = 180
    3543 2015-10-21_13:23:47.000 AMB G31    -47.938 +-  0.159   epo = 180
    3544 2015-10-21_13:23:47.000 AMB R01   -106.913 +-  0.193   epo = 180
    3545 2015-10-21_13:23:47.000 AMB R02    168.316 +-  0.194   epo = 180
    3546 2015-10-21_13:23:47.000 AMB R24    189.793 +-  0.193   epo = 180
    3547 2015-10-21_13:23:47.000 AMB C02    -50.146 +-  0.149   epo = 175
    3548 2015-10-21_13:23:47.000 AMB G05   -185.211 +-  0.173   epo = 175
    3549 2015-10-21_13:23:47.000 AMB R14   -509.359 +-  0.194   epo = 175
    3550 2015-10-21_13:23:47.000 AMB R15     65.355 +-  0.194   epo = 175
    3551 2015-10-21_13:23:47.000 AMB R18   -105.206 +-  0.204   epo = 170
    3552 2015-10-21_13:23:47.000 AMB G16    215.751 +-  0.160   epo = 165
    3553 2015-10-21_13:23:47.000 AMB G18   -168.240 +-  0.159   epo = 165
    3554 2015-10-21_13:23:47.000 AMB G20   -284.129 +-  0.159   epo = 165
    3555 2015-10-21_13:23:47.000 AMB G21    -99.245 +-  0.159   epo = 165
    3556 2015-10-21_13:23:47.000 AMB C03   -117.727 +-  0.149   epo = 30
    3557 
    3558 2015-10-21_13:23:47.000 CUT07 X = -2364337.4498 +- 0.0279 Y = 4870285.6317 +- 0.0388 Z = -3360809.6395 +- 0.0313 dN = 0.0049 +- 0.0248 dE = -0.0033 +- 0.0239 dU = 0.0294 +- 0.0456
    3559 </pre>
    3560 <p>
    3561  Depending on selected processing options you find 'GPS Time' stamps (yyyy-mm-dd_hh:mm:ss.sss) followed by
    3562 <ul>
    3563   <li>SATNUM: Number of satellites per GNSS,</li>
    3564   <li>RES: Code and phase residuals for contributing GNSS systems in [m]<br>Given per satellite with cIF/lIF for ionosphere-free linear combination of code/phase observations,</li>
    3565   <li>CLK: Receiver clock errors in [m], </li>
    3566   <li>TRP: A priori and correction values of tropospheric zenith delay in [m],
    3567   <li>OFFGLO: Time offset between GPS time and GLONASS time in [m],
    3568   <li>OFFGAL: Time offset between GPS time and Galileo time in [m],
    3569   <li>OFFBDS: Time offset between GPS time and BDS time in [m],
    3570   <li>AMB: L3 biases, also known as 'floated ambiguities'<br>Given per satellite with 'nEpo' = number of epochs since last ambiguity reset,
    3571   <li>MOUNTPOINT: Here 'CUT07' with XYZ position in [m] and dN/dE/dU in [m] for North, East, and Up displacements compared to a priori marker coordinates.</li>
    3572 </ul>
    3573 Estimated parameters are presented together with their formal errors as derived from the implemented filter. The PPP algorithm includes outlier and cycle slip detection.
    3574 </p>
    3575 
    3576 <p>
    3577 Default value for 'Logfile directory' is an empty option field, meaning that you do not want to save daily PPP logfiles on disk. If a specified directory does not exist, BNC will not create PPP logfiles.
    3578 </p>
    35793882
    35803883<p><h4 id="pppnmeafile">2.13.1.10 NMEA Directory - optional</h4></p>
    35813884<p>
    3582 You can specify a 'NMEA directory' to save daily NMEA files with Point Positioning results recorded as NMEA sentences. Such sentences are usually generated about once per second with pairs of
     3885You can specify a 'NMEA directory' to save daily NMEA files with Point Positioning results recorded as NMEA sentences.
     3886Such sentences are usually generated about once per second with pairs of
    35833887</p>
    35843888<p>
     
    35903894The following is an example for an NMEA output file from BNC.
    35913895</p>
     3896<pre><p style="font-family:Monospace">
     3897$GPGGA,214523.00,4908.6520501,N,01252.7348655,E,1,21,0.6,665.993,M,0.0,M,,*56
     3898$GPRMC,214524.000,A,4908.6521,N,01252.7349,E,,,171122,,*09
     3899$GPGGA,214524.00,4908.6520504,N,01252.7348645,E,1,21,0.6,665.994,M,0.0,M,,*52
     3900$GPRMC,214525.000,A,4908.6521,N,01252.7349,E,,,171122,,*08
     3901$GPGGA,214525.00,4908.6520501,N,01252.7348639,E,1,21,0.6,665.993,M,0.0,M,,*5a
     3902$GPRMC,214526.000,A,4908.6521,N,01252.7349,E,,,171122,,*0b
     3903$GPGGA,214526.00,4908.6520509,N,01252.7348637,E,1,21,0.6,665.990,M,0.0,M,,*5c
     3904$GPRMC,214527.000,A,4908.6521,N,01252.7349,E,,,171122,,*0a
     3905$GPGGA,214527.00,4908.6520502,N,01252.7348627,E,1,21,0.6,665.990,M,0.0,M,,*57
     3906$GPRMC,214528.000,A,4908.6520,N,01252.7349,E,,,171122,,*04
     3907$GPGGA,214528.00,4908.6520499,N,01252.7348630,E,1,21,0.6,665.988,M,0.0,M,,*54
     3908$GPRMC,214529.000,A,4908.6520,N,01252.7349,E,,,171122,,*05
     3909$GPGGA,214529.00,4908.6520494,N,01252.7348627,E,1,21,0.6,665.985,M,0.0,M,,*53
     3910$GPRMC,214530.000,A,4908.6521,N,01252.7349,E,,,171122,,*0c
     3911$GPGGA,214530.00,4908.6520501,N,01252.7348622,E,1,21,0.6,665.984,M,0.0,M,,*52
     3912$GPRMC,214531.000,A,4908.6521,N,01252.7349,E,,,171122,,*0d
     3913$GPGGA,214531.00,4908.6520504,N,01252.7348629,E,1,21,0.6,665.987,M,0.0,M,,*5e
     3914...
     3915</p></pre>
     3916
     3917<p>
     3918BNC follows the RINEX Version 3 standard to create filenames for NMEA logfiles (suffix 'nmea'), see section 'RINEX Filenames' for details:
    35923919<pre>
    3593 $GPRMC,112348,A,3200.233,S,11553.688,E,,,300615,,*A
    3594 $GPGGA,112348,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*5D
    3595 $GPRMC,112349,A,3200.233,S,11553.688,E,,,300615,,*B
    3596 $GPGGA,112349,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*5C
    3597 $GPRMC,112350,A,3200.233,S,11553.688,E,,,300615,,*3
    3598 $GPGGA,112350,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*54
    3599 $GPRMC,112351,A,3200.233,S,11553.688,E,,,300615,,*2
    3600 $GPGGA,112351,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*55
    3601 $GPRMC,112352,A,3200.233,S,11553.688,E,,,300615,,*1
    3602 $GPGGA,112352,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*56
    3603 $GPRMC,112353,A,3200.233,S,11553.688,E,,,300615,,*0
    3604 $GPGGA,112353,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*57
    3605 $GPRMC,112354,A,3200.233,S,11553.688,E,,,300615,,*7
    3606 $GPGGA,112354,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*50
    3607 $GPRMC,112355,A,3200.233,S,11553.688,E,,,300615,,*6
    3608 $GPGGA,112355,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*51
    3609 $GPRMC,112356,A,3200.233,S,11553.688,E,,,300615,,*5
    3610 $GPGGA,112356,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*52
    3611 ...
     3920  WTZR00DEU_20223220000_01D_01S.nmea
    36123921</pre>
    3613 <p>
    3614 The default value for 'NMEA directory' is an empty option field, meaning that BNC will not save NMEA sentences into files. If a specified directory does not exist, BNC will not create NMEA files.
    3615 </p>
    3616 
    3617 <p>
    3618 Note that Tomoji Takasu has written a program named RTKPLOT for visualizing NMEA sentences from IP ports or files. It is available from <u>http://www.rtklib.com</u> and compatible with the 'NMEA Directory' and port output of BNC's 'PPP' client option.
     3922The default value for 'NMEA directory' is an empty option field, meaning that BNC will not save NMEA sentences into files.
     3923If a specified directory does not exist, BNC will not create NMEA files.
     3924<p>
     3925Note that Tomoji Takasu has written a program named RTKPLOT for visualizing NMEA sentences from IP ports or files.
     3926It is available from <a href="http://www.rtklib.com" target="_blank">http://www.rtklib.com</a> and compatible with
     3927the 'NMEA Directory' and port output of BNC's 'PPP' client option.
    36193928</p>
    36203929
     
    36293938
    36303939<p>
    3631 You can specify a 'SNX TRO Directory' for saving SINEX Troposphere files on disk, see <a href="https://igscb.jpl.nasa.gov/igscb/data/format/sinex_tropo.txt" target="_blank">https://igscb.jpl.nasa.gov/igscb/data/format/sinex_tropo.txt</a> for a documentation of the file format. Note that receiver type information for these files must be provided through the coordinates file described in section 'Coordinates file'. The following is an example for a troposphere file content:
    3632 </p>
    3633 
    3634 <pre>
    3635 %=TRO 2.00 BKG 16:053:42824 BKG 16:053:42824 16:053:43199 P 00376 0  T
     3940You can specify a 'SNX TRO Directory' for saving SINEX Troposphere files on disk, see
     3941<a href="https://files.igs.org/pub/data/format/sinex_tro_v2.00.pdf" target="_blank">https://files.igs.org/pub/data/format/sinex_tro_v2.00.pdf</a>
     3942for a documentation of the file format. Note that receiver type information for these files must be provided through the coordinates file
     3943described in section 'Coordinates file'. The following is an example for a troposphere file content:
     3944</p>
     3945
     3946<pre><p style="font-family:Monospace">
     3947%=TRO 2.00 BKG 22:322:00000 BKG 22:322:00000 22:322:03599 P 03600 0  T
    36363948+FILE/REFERENCE
    36373949 DESCRIPTION        BNC generated SINEX TRO file
    36383950 OUTPUT             Total Troposphere Zenith Path Delay Product
    3639  SOFTWARE           BNC 2.12
    3640  INPUT              Ntrip streams, additional Orbit and Clock information from IGS03
     3951 SOFTWARE           BNC 2.13
     3952 INPUT              Observations: WTZR00DEU, SSR corrections: SSRA00BKG1
    36413953-FILE/REFERENCE
    36423954
    36433955+SITE/ID
    3644 *CODE PT DOMES____ T _STATION DESCRIPTION__ APPROX_LON_ APPROX_LAT_ _APP_H_
    3645  CUT0  A           P AUS                    115 53 41.3 -32  0 14.0    24.0
     3956*CODE      PT DOMES____ T _STATION DESCRIPTION__ APPROX_LON_ APPROX_LAT_ _APP_H_
     3957 WTZR00DEU  A           P DEU                     12 52 44.1  49  8 39.1   666.0
    36463958-SITE/ID
    36473959
    36483960+SITE/RECEIVER
    3649 *SITE PT SOLN T DATA_START__ DATA_END____ DESCRIPTION_________ S/N__ FIRMWARE___
    3650  CUT0  A 0001 P 16:053:42824 16:053:43199 TRM59800.00     SCIS ----- -----------
     3961*SITE      PT SOLN T DATA_START__ DATA_END____ DESCRIPTION_________ S/N__ FIRMWARE___
     3962 WTZR00DEU  A    1 P 22:322:00000 22:322:03599           LEICA GR25 ----- -----------
    36513963-SITE/RECEIVER
    36523964
    36533965+SITE/ANTENNA
    3654 *SITE PT SOLN T DATA_START__ DATA_END____ DESCRIPTION_________ S/N__
    3655  CUT0  A 0001 P 16:053:42824 16:053:43199 TRM59800.00     SCIS -----
     3966*SITE      PT SOLN T DATA_START__ DATA_END____ DESCRIPTION_________ S/N__
     3967 WTZR00DEU  A    1 P 22:322:00000 22:322:03599 LEIAR25.R3      LEIT -----
    36563968-SITE/ANTENNA
     3969
     3970+SITE/GPS_PHASE_CENTER
     3971*                           UP____ NORTH_ EAST__ UP____ NORTH_ EAST__
     3972*DESCRIPTION_________ S/N__ L1->ARP(m)__________ L2->ARP(m)__________ AZ_EL____
     3973 LEIAR25.R3      LEIT ----- +.1617 +.0005 +.0001 +.1579 +.0001 -.0007 ---------
     3974-SITE/GPS_PHASE_CENTER
     3975
     3976+SITE/GLONASS_PHASE_CENTER
     3977*                           UP____ NORTH_ EAST__ UP____ NORTH_ EAST__
     3978*DESCRIPTION_________ S/N__ L1->ARP(m)__________ L2->ARP(m)__________ AZ_EL____
     3979 LEIAR25.R3      LEIT ----- +.1617 +.0005 +.0001 +.1579 +.0001 -.0007 ---------
     3980-SITE/GLONASS_PHASE_CENTER
     3981
     3982+SITE/GALILEO_PHASE_CENTER
     3983*                           UP____ NORTH_ EAST__ UP____ NORTH_ EAST__
     3984*DESCRIPTION_________ S/N__ L1->ARP(m)__________ L2->ARP(m)__________ AZ_EL____
     3985 LEIAR25.R3      LEIT ----- ------ ------ ------ ------ ------ ------
     3986-SITE/GALILEO_PHASE_CENTER
    36573987
    36583988+SITE/ECCENTRICITY
    36593989*                                             UP______ NORTH___ EAST____
    3660 *SITE PT SOLN T DATA_START__ DATA_END____ AXE ARP->BENCHMARK(M)_________
    3661  CUT0  A 0001 P 16:053:42824 16:053:43199 UNE   0.0000   0.0000   0.0000
     3990*SITE      PT SOLN T DATA_START__ DATA_END____ AXE ARP->BENCHMARK(M)_________
     3991 WTZR00DEU  A    1 P 22:322:00000 22:322:03599 UNE   0.0710   0.0000   0.0000
    36623992-SITE/ECCENTRICITY
    36633993
    36643994+TROP/COORDINATES
    3665 *SITE PT SOLN T STA_X_______ STA_Y_______ STA_Z_______ SYSTEM REMARK
    3666  CUT0  A 0001 P -2364337.441  4870285.605 -3360809.628 ITRF08 BKG
     3995*SITE      PT SOLN T STA_X_______ STA_Y_______ STA_Z_______ SYSTEM REMARK
     3996 WTZR00DEU  A    1 P  4075580.278   931854.089  4801568.305 IGS20 BKG
    36673997-TROP/COORDINATES
    36683998
     
    36774007
    36784008+TROP/SOLUTION
    3679 *SITE EPOCH_______ TROTOT STDEV
    3680  CUT0 16:053:42824    0.0   0.0
    3681  CUT0 16:053:42825 2401.7 100.0
    3682  CUT0 16:053:42826 2401.8 100.0
    3683  CUT0 16:053:42827 2401.8  99.9
    3684  CUT0 16:053:42828 2402.1  99.9
    3685 ...
     4009*SITE      EPOCH_______ TROTOT STDEV
     4010 WTZR00DEU 22:322:78171 2183.5 100.0
     4011 WTZR00DEU 22:322:78172 2183.5 100.0
     4012 WTZR00DEU 22:322:78173 2183.7  99.9
     4013 WTZR00DEU 22:322:78174 2183.8  99.9
     4014 WTZR00DEU 22:322:78175 2184.0  99.8
     4015 WTZR00DEU 22:322:78176 2184.2  99.8
     4016 WTZR00DEU 22:322:78177 2184.4  99.7
     4017 WTZR00DEU 22:322:78178 2184.6  99.7
     4018 WTZR00DEU 22:322:78179 2184.8  99.6
     4019 WTZR00DEU 22:322:78180 2185.0  99.6
     4020 WTZR00DEU 22:322:78181 2185.4  99.5
    36864021...
    36874022-TROP/SOLUTION
    36884023%=ENDTROP
     4024</p></pre>
     4025For file naming, BNC follows the new format convention according to IGS products considering the site
     4026<a href="http://acc.igs.org/repro3/Long_Product_Filenames_v1.0.pdf" target="_blank">http://acc.igs.org/repro3/Long_Product_Filenames_v1.0.pdf</a>:
     4027<pre>
     4028  AAAVPPPTTT_YYYYDOYHHMM_LEN_SMP_SITENAME_CNT.FMT
    36894029</pre>
    3690 
    3691 <p>
    3692 The default value for 'SNX TRO Directory' is an empty option field, meaning that BNC will not save SINEX Troposphere files. If a specified directory does not exist, BNC will not create SINEX Troposphere files.
     4030With
     4031<p>
     4032<table>
     4033  <tr><td>&nbsp; AAA        </td><td>&nbsp; &nbsp; Analysis Center abbrevaition</td></tr>
     4034  <tr><td>&nbsp; V          </td><td>&nbsp; &nbsp; Version / Solution identifier (0-9)</td></tr>
     4035  <tr><td>&nbsp; PPP        </td><td>&nbsp; &nbsp; Project/Campaign identification, here demonstration (DEM)</td></tr>
     4036  <tr><td>&nbsp; TTT        </td><td>&nbsp; &nbsp; Solution Type, here real-time streamed product(RTS)</td></tr>
     4037  <tr><td>&nbsp; YYYYDOYHHMM</td><td>&nbsp; &nbsp; String representing beginning time of nominal data interval</td></tr>
     4038  <tr><td>&nbsp; LEN        </td><td>&nbsp; &nbsp; Intended product period of the file </td></tr>
     4039  <tr><td>&nbsp; SMP        </td><td>&nbsp; &nbsp; Data sampling rate</td></tr>
     4040  <tr><td>&nbsp; SITENAME   </td><td>&nbsp; &nbsp; 9-char site name</td></tr>
     4041  <tr><td>&nbsp; CNT        </td><td>&nbsp; &nbsp; Content type, here TRO</td></tr>
     4042  <tr><td>&nbsp; FMT        </td><td>&nbsp; &nbsp; File format, here tro</td></tr>
     4043</table>
     4044</p>
     4045A result for examle is:
     4046<pre>
     4047  BKG1DEMRTS_20223222100_01H_01S_WTZR00DEU_TRO.tro
     4048</pre>
     4049
     4050<p>
     4051The default value for 'SNX TRO Directory' is an empty option field, meaning that BNC will not save SINEX Troposphere files.
     4052If a specified directory does not exist, BNC will not create SINEX Troposphere files.
    36934053</p>
    36944054
     
    36974057Select the length of SINEX Troposphere files.
    36984058</p>
    3699 
    37004059<p>
    37014060Default 'Interval' for saving SINEX Troposphere files on disk is '1 day'.
    37024061</p>
    3703 
    37044062<p><h4 id="pppsnxtrosampl">2.13.1.11.2 Sampling - mandatory if 'SINEX TRO Directory' is set</h4></p>
    37054063<p>
     
    37174075<p><h4 id="pppsnxSol">2.13.1.11.4 Solution ID - Mandatory if 'SINEX TRO Directory' is set</h4></p>
    37184076<p>
    3719 Specify a 4-character solution ID to allow a distingtion between different solutions per AC. String '0001' is an example.
    3720 </p>
    3721 
    3722 <p><h4 id="pppStation">2.13.2 PPP (2): Processed Stations</h4></p>
    3723 
    3724 <p>
    3725 This panel allows to enter parameters specific to each PPP process or thread. Individual sigmas for a priori coordinates and a noise for coordinate variations over time can be introduced. Furthermore, a sigma for model-based troposphere estimates and the corresponding noise for troposphere variations can be specified. Finally, local IP server ports can be defined for output of NMEA streams carrying PPP results.
    3726 </p>
    3727 
    3728 <p>
    3729 BNC offers to create a table with one line per PPP process or thread to specify station-specific parameters. Hit the 'Add Station' button to create the table or add a new line to it. To remove a line from the table, highlight it by clicking it and hit the 'Delete Station' button. You can also remove multiple lines simultaneously by highlighting them using +Shift or +Ctrl.</p>
    3730 </p>
    3731 
    3732 <p>
    3733 BNC will simultaneously produce PPP solutions for all stations listed in the 'Station' column of this table.
    3734 </p>
    3735 
    3736 <p><img src="IMG/screenshot17.png"/></p>
    3737 <p>Figure 23: Precise Point Positioning with BNC, PPP Panel 2, using RTKPLOT for visualization</p>
    3738 
    3739 <p><h4 id="pppsite">2.13.2.1 Station - mandatory</h4></p>
    3740 <p>
    3741 Hit the 'Add Station' button, double click on the 'Station' field, then specify an observation's mountpoint from the 'Streams' section or introduce the 4-character Station ID of your RINEX observation file and hit Enter. BNC will only produce PPP solutions for stations listed in this table.
    3742 </p>
    3743 
    3744 <p><h4 id="pppnehsigma">2.13.2.2 Sigma North/East/Up - mandatory</h4></p>
    3745 <p>
    3746 Enter sigmas in meters for the initial coordinate components. A value of 100.0 (default) may be an appropriate choice. However, this value may be significantly smaller (e.g. 0.01) when starting for example from a station with a well-known position in so-called Quick-Start mode.
    3747 </p>
    3748 
    3749 <p><h4 id="pppnehnoise">2.13.2.3 Noise North/East/Up - mandatory</h4></p>
    3750 <p>
    3751 Enter a white 'Noise' in meters for estimated coordinate components. A value of 100.0 (default) may be appropriate when considering possible sudden movements of a rover.
    3752 </p>
    3753 
    3754 <p><h4 id="ppptropsigma">2.13.2.4 Tropo Sigma - mandatory</h4></p>
    3755 <p>
    3756 Enter a sigma in meters for the a priori model based tropospheric delay estimation. A value of 0.1 (default) may be an appropriate choice.
    3757 </p>
    3758 
    3759 <p><h4 id="ppptropnoise">2.13.2.5 Tropo Noise - mandatory</h4></p>
    3760 <p>
    3761 Enter a white 'Noise' in meters per second to describe the expected variation of the tropospheric effect. Supposing 1Hz observation data, a value of 3e-6 (default) would mean that the tropospheric effect may vary for 3600 * 3e-6 = 0.01 meters per hour.
    3762 </p>
    3763 
    3764 <p><h4 id="pppnmeaport">2.13.2.6 NMEA Port - optional</h4></p>
    3765 Specify the IP port number of a local port where Point Positioning results become available as NMEA sentences. The default value for 'NMEA Port' is an empty option field, meaning that BNC does not provide NMEA sentences via IP port. Note that NMEA file output and NMEA IP port output are the same.
    3766 </p>
    3767 <p>
    3768 Note also that Tomoji Takasu has written a program named RTKPLOT for visualizing NMEA sentences from IP ports or files. It is available from <a href="http://www.rtklib.com" target="_blank">http://www.rtklib.com</a> and compatible with the NMEA file and port output of BNC's 'PPP' client option.
    3769 </p>
    3770 <p>
    3771 Furthermore, NASA's 'World Wind' software (see <a href="http://worldwindcentral.com/wiki/NASA_World_Wind_Download" target="_blank">http://worldwindcentral.com/wiki/NASA_World_Wind_Download</a>) can be used for real-time visualization of positions provided through BNC's NMEA IP output port. You need the 'GPS Tracker' plug-in available from <a href="http://worldwindcentral.com/wiki/GPS_Tracker" target="_blank">http://worldwindcentral.com/wiki/GPS_Tracker</a> for that. The 'Word Wind' map resolution is not meant for showing centimeter level details.
    3772 </p>
    3773 
    3774 <p><h4 id="pppOptions">2.13.3 PPP (3): Processing Options</h4></p>
    3775 <p>BNC allows using various Point Positioning processing options depending on the capability of the involved receiver and the application in mind. You can introduce specific sigmas for code and phase observations as well as for a priori coordinates and troposphere estimates. You could also carry out your PPP solution in Quick-Start mode or enforce BNC to restart a solution if the length of an outage exceeds a certain threshold.
     4077Specify a 1-character solution ID to allow a distingtion between different solutions per AC. String '1' is an example.
     4078</p>
     4079
     4080<p><h4 id="pppOptions">2.13.2 PPP (2): Processing Options</h4></p>
     4081<p>
     4082BNC allows using various Point Positioning processing options depending on the capability of the involved receiver and the application in mind.
     4083You can introduce specific sigmas for code and phase observations as well as for a priori coordinates and troposphere estimates.
     4084You could also carry out your PPP solution in Quick-Start mode or enforce BNC to restart a solution if the length of an outage exceeds a certain threshold.
    37764085</p>
    37774086<p>
     
    37794088</p>
    37804089
    3781 <p><img src="IMG/screenshot18.png"/></p>
    3782 <p>Figure 24: Precise Point Positioning with BNC, PPP Panel 3</p>
    3783 
    3784 <p><h4 id="ppplinecombi">2.13.3.1 Linear Combinations - mandatory</h4></p>
    3785 <p>
    3786 <p>
    3787 Specify on which ionosphere-free Linear Combinations (LCs) of observations you want to base ambiguity resolutions (Mervart et al. 2008). This implicitly defines the kind of GNSS observations you want to use. The specification is to be done per GNSS system ('GPS LCs', 'GLONASS LCs', 'Galileo LCs', 'BDS LCs').
    3788 </p>
    3789 <p>
    3790 <ul>
    3791   <li>Selecting 'P3' means that you request BNC to use code data and the so-called P3 ionosphere-free linear combinations of code observations.</li>
    3792   <li>'L3' means that you request BNC to use phase data and the so-called L3 ionosphere-free linear combinations of phase observations.</li>
    3793   <li>'P3&L3' means that you request BNC to use both, code and phase data and the so-called P3 and L3 ionosphere-free linear combinations of code and phase observations.</li>
    3794 </ul>
    3795 </p>
    3796 <p>Note that most geodetic GPS receivers support the observation of both, code and phase data. Hence, specifying 'P3&L3' would be a good choice for GPS when processing data from such a receiver. If multi-GNSS data processing is your intention, make sure your receiver supports GLONASS and/or Galileo and/or BDS observations besides GPS. Note also that the Broadcast Correction stream or file, which is required for PPP, also supports all the systems you have in mind.
     4090<p><img src="IMG/Figure23.png"width=1000/></p>
     4091<p>Figure 23: Precise Point Positioning with BNC, PPP Panel 2</p>
     4092
     4093<p><h4 id="pppobs">2.13.2.1 GNSS Observations - mandatory</h4></p>
     4094<p>
     4095Specify on which kind of GNSS observations you want to use. The specification is to be done per GNSS system ('GPS', 'GLONASS', 'Galileo', 'BDS').
     4096</p>
     4097<ul>
     4098  <li> Specifying 'Pi' means that you request BNC to use code data of two frequencies.</li>
     4099  <li> Specifying 'Li' means that you request BNC to use phase data of two frequencies.</li>
     4100  <li> Specifying 'Pi&Li' means that you request BNC to use code and phase data of two frequencies.</li>
     4101</ul>
     4102<p>
     4103Note that most geodetic GPS receivers support the observation of both, code and phase data.
     4104Hence, specifying 'Pi&Li' would be a good choice for GPS when processing data from such a receiver.
     4105If multi-GNSS data processing is your intention, make sure your receiver supports GLONASS and/or Galileo and/or BDS observations besides GPS.
     4106Note also that the Broadcast Correction stream or file, which is required for PPP, also supports all the systems you have in mind.
    37974107</p>
    37984108<p>Specifying 'no' means that you do not at all want BNC to use observations from the affected GNSS system.
    37994109</p>
    38004110
    3801 <p><h4 id="pppcodeobs">2.13.3.2 Code Observations - mandatory</h4></p>
    3802 <p>
    3803 Enter a 'Sigma C1' for C1 code observations in meters. The bigger the sigma you enter, the less the contribution of C1 code observations to a PPP solution based on a combination of code and phase data. '2.0' meters is likely to be an appropriate choice.
    3804 </p>
    3805 <p>
    3806 Specify a maximum for residuals 'Max Res C1' for C1 code observations in a PPP solution. '3.0' meters may be an appropriate choice for that. If the maximum is exceeded, contributions from the corresponding observation will be ignored in the PPP solution.
    3807 </p>
    3808 
    3809 
    3810 <p><h4 id="pppphaseobs">2.13.3.3 Phase Observations - mandatory</h4></p>
    3811 <p>
    3812 Enter a 'Sigma L1' for L1 phase observations in meters. The bigger the sigma you enter, the less the contribution of L1 phase observations to a PPP solutions based on a combination of code and phase data. '0.01' meters is likely to be an appropriate choice.
    3813 </p>
    3814 <p>
    3815 Specify a maximum for residuals 'Max Res L1' for L1 phase observations in a PPP solution. '0.03' meters may be an appropriate choice for that. If the maximum is exceeded, contributions from the corresponding observation will be ignored in the PPP solution.
    3816 </p>
    3817 
    3818 <p>
    3819 As the convergence characteristic of a PPP solution can be influenced by the ratio of sigmas for code and phase, you may like to introduce sigmas which differ from the default values.
    3820 <ul>
    3821   <li>Introducing a smaller sigma (higher accuracy) for code observations or a bigger sigma for phase observations leads to better results shortly after program start. However, it may take more time until you finally get the best possible solution.</li>
    3822   <li>Introducing a bigger sigma (lower accuracy) for code observations or a smaller sigma for phase observations may lead to less accurate results shortly after program start and thus a prolonged period of convergence but could provide better positions in the long run.</li>
    3823 </ul>
    3824 </p>
    3825 
    3826 <p><h4 id="pppeleweight">2.13.3.4 Elevation Dependent Weighting - mandatory</h4></p>
     4111<p><h4 id="pppcodeobs">2.13.2.2 Code Observations - mandatory</h4></p>
     4112<p>
     4113Enter a 'Sigma C1' for C1 code observations in meters. The bigger the sigma you enter, the less the contribution of C1 code observations to a PPP solution
     4114based on a combination of code and phase data. '2.0' meters is likely to be an appropriate choice.
     4115</p>
     4116<p>
     4117Specify a maximum for residuals 'Max Res C1' for C1 code observations in a PPP solution. '3.0' meters may be an appropriate choice for that.
     4118If the maximum is exceeded, contributions from the corresponding observation will be ignored in the PPP solution.
     4119</p>
     4120
     4121<p><h4 id="pppphaseobs">2.13.2.3 Phase Observations - mandatory</h4></p>
     4122<p>
     4123Enter a 'Sigma L1' for L1 phase observations in meters. The bigger the sigma you enter, the less the contribution of
     4124L1 phase observations to a PPP solutions based on a combination of code and phase data. '0.01' meters is likely to be
     4125an appropriate choice.
     4126</p>
     4127<p>
     4128Specify a maximum for residuals 'Max Res L1' for L1 phase observations in a PPP solution. '0.03' meters may be an appropriate choice for that.
     4129If the maximum is exceeded, contributions from the corresponding observation will be ignored in the PPP solution.
     4130</p>
     4131<p>
     4132As the convergence characteristic of a PPP solution can be influenced by the ratio of sigmas for code and phase,
     4133you may like to introduce sigmas which differ from the default values.
     4134<ul>
     4135  <li>Introducing a smaller sigma (higher accuracy) for code observations or a bigger sigma for phase observations leads to better
     4136      results shortly after program start. However, it may take more time until you finally get the best possible solution.</li>
     4137  <li>Introducing a bigger sigma (lower accuracy) for code observations or a smaller sigma for phase observations may lead to
     4138      less accurate results shortly after program start and thus a prolonged period of convergence but could provide better
     4139      positions in the long run.</li>
     4140</ul>
     4141</p>
     4142
     4143<p><h4 id="pppeleweight">2.13.2.4 Elevation Dependent Weighting - mandatory</h4></p>
    38274144<p>
    38284145BNC allows elevation dependent weighting when processing GNSS observations. A weight function
    38294146</p>
    3830 
    38314147<p>&nbsp; &nbsp; &nbsp; P = cos&sup2; * z</p>
    3832 
    3833 <p>
    3834 with 'z' being the zenith distance to the involved satellite can be applied instead of the simple weight function 'P = 1' independent from satellite elevation angles.
     4148<p>
     4149with 'z' being the zenith distance to the involved satellite can be applied instead of the simple weight function 'P = 1'
     4150independent from satellite elevation angles.
    38354151</p>
    38364152<ul>
     
    38424158</p>
    38434159
    3844 <p><h4 id="pppminobs">2.13.3.5 Minimum Number of Observations - mandatory</h4></p>
     4160<p><h4 id="pppminobs">2.13.2.5 Minimum Number of Observations - mandatory</h4></p>
    38454161<p>
    38464162Select the minimum number of observations you want to use per epoch. The minimum for parameter 'Min # of Obs' is 5. This is also the default.
    38474163</p>
    3848 
    3849 <p><h4 id="pppmineleva">2.13.3.6 Minimum Elevation - mandatory</h4></p>
    3850 <p>
    3851 Select a minimum for satellite elevation angles. Selecting '10 deg' for option 'Min Elevation' may be an appropriate choice.
     4164<p><h4 id="pppmineleva">2.13.2.6 Minimum Elevation - mandatory</h4></p>
     4165<p>
     4166Select a minimum for satellite elevation angles. Selecting '7 deg' for option 'Min Elevation' may be an appropriate choice.
    38524167</p>
    38534168<p>
     
    38554170</p>
    38564171
    3857 <p><h4 id="pppwaitclockcorr">2.13.3.7 Wait for Clock Corrections - optional</h4></p>
    3858 <p>
    3859 Specifying 'no' for option 'Wait for clock corr.' means that BNC processes each epoch of data immediately after its arrival using satellite clock corrections available at that time. A non-zero value means that epochs of data are buffered and the processing of each epoch is postponed until satellite clock corrections not older than 'Wait for clock corr.' seconds are available. Specifying a value of half the update rate of the clock corrections (e.g. 5 sec) may be appropriate. Note that this causes an additional delay of the PPP solutions in the amount of half of the update rate.
    3860 </p>
    3861 <p>
    3862 Using observations in sync with the corrections can avoid a possible high frequency noise of PPP solutions. Such noise could result from processing observations regardless of how late after a clock correction they were received. Note that applying the 'Wait for clock corr.' option significantly reduces the PPP computation effort for BNC.
    3863 </p>
    3864 <p>
    3865 Default is an empty option field, meaning that you want BNC to process observations immediately after their arrival through applying the latest received clock correction.
    3866 </p>
    3867 
    3868 <p><h4 id="pppseeding">2.13.3.8 Seeding - optional if a priori coordinates specified in 'Coordinates file'</h4></p>
    3869 <p>
    3870 Enter the length of a startup period in seconds for which you want to fix the PPP solution to a known position, see option 'Coordinates file'. Constraining a priori coordinates is done in BNC through setting their white 'Noise' temporarily to zero.
    3871 </p>
    3872 <p>
    3873 This so-called <b>Quick-Start</b> option allows the PPP solutions to rapidly converge after startup. It requires that the antenna remains unmoved on the known position throughout the defined period. A value of '60' seconds is likely to be an appropriate choice for 'Seeding'. Default is an empty option field, meaning that you do not want BNC to start in Quick-Start mode.
    3874 <p>
    3875 You may need to create your own reference coordinate beforehand through running BNC for an hour in normal mode before applying the 'Seeding' option. Do not forget to introduce realistic North/East/Up sigmas under panel 'PPP (2)' corresponding to the coordinate's precision.
    3876 </p>
    3877 
     4172<p><h4 id="pppwaitclockcorr">2.13.2.7 Wait for Clock Corrections - optional</h4></p>
     4173<p>
     4174Specifying 'no' for option 'Wait for clock corr.' means that BNC processes each epoch of data immediately after its arrival using
     4175satellite clock corrections available at that time. A non-zero value means that epochs of data are buffered and the processing
     4176of each epoch is postponed until satellite clock corrections not older than 'Wait for clock corr.' seconds are available.
     4177Specifying a value of half the update rate of the clock corrections (e.g. 5 sec) may be appropriate.
     4178Note that this causes an additional delay of the PPP solutions in the amount of half of the update rate.
     4179</p>
     4180<p>
     4181Using observations in sync with the corrections can avoid a possible high frequency noise of PPP solutions.
     4182Such noise could result from processing observations regardless of how late after a clock correction they were received.
     4183Note that applying the 'Wait for clock corr.' option significantly reduces the PPP computation effort for BNC.
     4184</p>
     4185<p>
     4186Default is an empty option field, meaning that you want BNC to process observations immediately after their arrival
     4187through applying the latest received clock correction.
     4188</p>
     4189
     4190<p><h4 id="pppseeding">2.13.2.8 Seeding - optional if a priori coordinates specified in 'Coordinates file'</h4></p>
     4191<p>
     4192Enter the length of a startup period in seconds for which you want to fix the PPP solution to a known position, see option 'Coordinates file'.
     4193Constraining a priori coordinates is done in BNC through setting their white 'Noise' temporarily to zero.
     4194</p>
     4195<p>
     4196This so-called <b>Quick-Start</b> option allows the PPP solutions to rapidly converge after startup.
     4197It requires that the antenna remains unmoved on the known position throughout the defined period.
     4198A value of '60' seconds is likely to be an appropriate choice for 'Seeding'.
     4199Default is an empty option field, meaning that you do not want BNC to start in Quick-Start mode.
     4200<p>
     4201You may need to create your own reference coordinate beforehand through running BNC for an hour in normal mode before applying
     4202the 'Seeding' option. Do not forget to introduce realistic North/East/Up sigmas under panel 'PPP (3)' corresponding to the
     4203coordinate's precision.
     4204</p>
    38784205<p>
    38794206'Seeding' has also a function for <b>bridging gaps</b> in PPP solutions from failures caused e.g. by longer lasting
     
    38844211</p>
    38854212
     4213<p><h4 id="ppppseudoobs">2.13.2.9 Pseudo Observations - optional</h4></p>
     4214<p>
     4215Specify whether pseudo observations regarding the Ionosphere shall be used. Please note, this is useful,
     4216as soon as the ionospheric information is more accurate than the code data accuracy.
     4217
     4218<p><h4 id="ppppseudogimobs">2.13.2.10 GIM Pseudo Observations - optional</h4></p>
     4219<p>
     4220Enter a 'Sigma GIM' for pseudo observations regarding the Ionosphere in meters.
     4221The bigger the sigma you enter, the less the contribution of GIM Pseudo observations to a PPP solutions
     4222based on a combination of code and phase data. '5.0' meters is likely to be an appropriate choice.
     4223</p>
     4224<p>
     4225Specify a maximum for residuals 'Max Res GIM' for pseudo observations regarding the Ionosphere in a PPP solution.
     4226'3.0' meters may be an appropriate choice for that.
     4227If the maximum is exceeded, contributions from the corresponding observation will be ignored in the PPP solution.
     4228</p>
    38864229<p>
    38874230The following figure provides the screenshot of an example PPP session with BNC.
    38884231</p>
    3889 
    3890 <p><img src="IMG/screenshot22.png"/></p>
    3891 <p>Figure 25: Precise Point Positioning with BNC in 'Quick-Start' mode, PPP Panel 4</p>
     4232<p><img src="IMG/Figure24.png"width=1000/></p>
     4233<p>Figure 24: Precise Point Positioning with BNC in 'Quick-Start' mode, PPP Panel 4</p>
     4234
     4235<p><h4 id="pppStation">2.13.3 PPP (3): Processed Stations</h4></p>
     4236<p>
     4237This panel allows to enter parameters specific to each PPP process or thread. Individual sigmas for a priori coordinates and a
     4238noise for coordinate variations over time can be introduced. Furthermore, a sigma for model-based troposphere estimates and the
     4239corresponding noise for troposphere variations can be specified. Finally, local IP server ports can be defined for output of
     4240NMEA streams carrying PPP results.
     4241</p>
     4242
     4243<p>
     4244BNC offers to create a table with one line per PPP process or thread to specify station-specific parameters.
     4245Hit the 'Add Station' button to create the table or add a new line to it. To remove a line from the table,
     4246highlight it by clicking it and hit the 'Delete Station' button. You can also remove multiple lines simultaneously
     4247 by highlighting them using +Shift or +Ctrl.</p>
     4248</p>
     4249
     4250<p>
     4251BNC will simultaneously produce PPP solutions for all stations listed in the 'Station' column of this table.
     4252</p>
     4253
     4254<p><img src="IMG/Figure25.png"width=1000/></p>
     4255<p>Figure 25: Precise Point Positioning with BNC, PPP Panel 3</p>
     4256
     4257<p><h4 id="pppsite">2.13.2.1 Station - mandatory</h4></p>
     4258<p>
     4259Hit the 'Add Station' button, double click on the 'Station' field, then specify an observation's mountpoint from the
     4260'Streams' section or introduce the 9-character Station ID of your RINEX observation file and hit Enter.
     4261BNC will only produce PPP solutions for stations listed in this table.
     4262</p>
     4263
     4264<p><h4 id="pppnehsigma">2.13.2.2 Sigma North/East/Up - mandatory</h4></p>
     4265<p>
     4266Enter sigmas in meters for the initial coordinate components. A value of 100.0 (default) may be an appropriate choice.
     4267However, this value may be significantly smaller (e.g. 0.01) when starting for example from a station with a well-known position
     4268in so-called Quick-Start mode.
     4269</p>
     4270
     4271<p><h4 id="pppnehnoise">2.13.2.3 Noise North/East/Up - mandatory</h4></p>
     4272<p>
     4273Enter a white 'Noise' in meters for estimated coordinate components. A value of 100.0 (default) may be appropriate when
     4274considering possible sudden movements of a rover.
     4275</p>
     4276
     4277<p><h4 id="ppptropsigma">2.13.2.4 Tropo Sigma - mandatory</h4></p>
     4278<p>
     4279Enter a sigma in meters for the a priori model based tropospheric delay estimation. A value of 0.1 (default) may be an appropriate choice.
     4280</p>
     4281
     4282<p><h4 id="ppptropnoise">2.13.2.5 Tropo Noise - mandatory</h4></p>
     4283<p>
     4284Enter a white 'Noise' in meters per second to describe the expected variation of the tropospheric effect. Supposing 1Hz observation data,
     4285a value of 3e-6 (default) would mean that the tropospheric effect may vary for 3600 * 3e-6 = 0.01 meters per hour.
     4286</p>
     4287
     4288<p><h4 id="pppnmeaport">2.13.2.6 NMEA Port - optional</h4></p>
     4289<p>
     4290Specify the IP port number of a local port where Point Positioning results become available as NMEA sentences. The default value
     4291for 'NMEA Port' is an empty option field, meaning that BNC does not provide NMEA sentences via IP port. Note that NMEA file output
     4292and NMEA IP port output are the same.
     4293</p>
     4294<p>
     4295Note also that Tomoji Takasu has written a program named RTKPLOT for visualizing NMEA sentences from IP ports or files.
     4296It is available from <a href="http://www.rtklib.com" target="_blank">http://www.rtklib.com</a> and compatible with the
     4297NMEA file and port output of BNC's 'PPP' client option.
     4298</p>
     4299<p>
     4300Furthermore, NASA's 'World Wind' software
     4301(see <a href="http://worldwindcentral.com/wiki/NASA_World_Wind_Download" target="_blank">http://worldwindcentral.com/wiki/NASA_World_Wind_Download</a>)
     4302can be used for real-time visualization of positions provided through BNC's NMEA IP output port.
     4303You need the 'GPS Tracker' plug-in available from
     4304<a href="http://worldwindcentral.com/wiki/GPS_Tracker" target="_blank">http://worldwindcentral.com/wiki/GPS_Tracker</a> for that.
     4305The 'Word Wind' map resolution is not meant for showing centimeter level details.
     4306</p>
     4307
     4308<p><h4 id="pppsignalpriorities">2.13.2.7 Signal Priotities - optional</h4></p>
     4309<p>
     4310Specify a list of signal priorities (2 frequencies per system) for the observations that shall be used for PPP.
     4311</p>
     4312<p>
     4313'Signal Priorities' can be specified as equal for all systems, as system specific or as system and frequency specific.
     4314For example:
     4315</p>
     4316<ul>
     4317<li>'CWPX_?' (General signal priorities valid for all GNSS)</li>
     4318<li>'E:IQX' (System specific signal priorities for Galileo)</li>
     4319<li>'G:12&PWCSLX G:5&IQX R:12&PC R:3&IQX' (System and frequency specific signal priorities)</li>
     4320</ul>
     4321</p>
     4322<p>
     4323Default is the following list of 'Signal Priorities':
     4324<ul><li>'G:12&CWPSLX R:12&CP E:1&CBX E:5&QIX C:26&IQX'</li></ul>
     4325</p>
     4326But please note, for the PPP models 'DCM with Phase Biases' or 'DCM with Code Biases' currrently only one code or phase bias
     4327per system (G,R,E,C)/modulation can be considered. Hence, for example the following list of 'Signal Priorities' would be valid:
     4328<ul>  <li>'G:12&CW R:12&CP E:1&CX E:5&QX C:26&I'</li>  </ul>
    38924329
    38934330<p><h4 id="pppPlots">2.13.4 PPP (4): Plots</h4></p>
    38944331<p>
    38954332This panel presents options for visualizing PPP results as a time series plot or as a track map with PPP tracks on top
    3896 of OSM or Google maps.
     4333of OpenStreetMap (OSM) maps.
    38974334</p>
    38984335
     
    39194356<p><h4 id="ppptrackmap">2.13.4.3 Track Map - optional</h4></p>
    39204357<p>
    3921 You may like to track your rover position using Google Maps or OpenStreetMap as a background map. Track maps can be
     4358You may like to track your rover position using OpenStreetMap as a background map. Track maps can be
    39224359produced with BNC in 'Real-time Streams' mode or in 'RINEX Files' post processing mode with data coming from files.
    3923 </p>
    3924 <p>
    3925 Even when in 'RINEX Files' post processing mode, you should not forget to go online with your host and specify a
    3926 proxy under the 'Network' panel if that is operated in front of BNC.
    3927 </p>
    3928 <p>
    3929 The 'Open Map' button opens a window showing a map according to the selected 'Google/OSM' option.
    3930 </p>
    3931 
    3932 <p><img src="IMG/screenshot32.png"/></p>
    3933 <p>Figure 26: Track of positions from BNC with Google Maps in background</p>
    3934 
    3935 <p><h4 id="pppmaptype">2.13.4.3.1 Google/OSM - mandatory before pushing 'Open Map'</h4></p>
    3936 <p>
    3937 Select either 'Google' or 'OSM' as the background map for your rover positions.
    3938 </p>
    3939 
    3940 <p><img src="IMG/screenshot41.png"/></p>
    3941 <p>Figure 27: Example for background map from Google Maps and OpenStreetMap (OSM)</p>
     4360Even when in 'RINEX Files' post processing mode, you should not forget to go online with your host.
     4361</p>
     4362<p>
     4363The 'Open Map' button opens a window showing the map.
     4364</p>
     4365
     4366<p><img src="IMG/Figure26.png"width=1000/></p>
     4367<p>Figure 26: Track of positions from BNC with OpenStreetMap in background</p>
    39424368
    39434369<p><h4 id="pppdotprop">2.13.4.4 Dot-properties - mandatory before pushing 'Open Map'</h4></p>
     
    39674393<p>
    39684394BNC allows processing several orbit and clock correction streams in real-time to produce, encode, upload and save a
    3969 combination of Broadcast Corrections from various providers. All corrections must refer to satellite
    3970 Antenna Phase Centers (APC). It is so far only the satellite clock corrections which are combined by BNC while orbit
    3971 corrections in the combination product as well as product update rates are just taken over from one of the incoming
     4395combination of Broadcast Corrections from various providers  (Weber and Mervart 2010). All corrections must refer to
     4396satellite Antenna Phase Centers (APC). It is so far only the satellite clock corrections, which are combined by BNC
     4397while orbit corrections in the combination product are just taken over from one of the incoming
    39724398Broadcast Correction streams. Combining only clock corrections using a fixed orbit reference imposes the potential
    3973 to introduce some analysis inconsistencies. We may therefore eventually consider improvements on this approach.
    3974 The clock combination can be based either on a plain 'Single-Epoch' or on a Kalman 'Filter' approach.
    3975 </p>
    3976 
    3977 <p>
    3978 In the Kalman Filter approach, satellite clocks estimated by individual Analyses Centers (ACs) are used as pseudo
    3979 observations within the adjustment process. Each observation is modeled as a linear function (actually a simple sum)
    3980 of three estimated parameters: AC specific offset, satellite specific offset common to all ACs, and the actual satellite
    3981  clock correction, which represents the result of the combination. These three parameter types differ in their statistical
    3982   properties. The satellite clock offsets are assumed to be static parameters while AC specific and satellite specific
    3983   offsets are stochastic parameters affected by white noise.
    3984 </p>
    3985 
    3986 <p>
    3987 The solution is regularized by a set of minimal constraints. In case of a change of the 'SSR Provider ID',
    3988 'SSR Solution ID', or 'IOD SSR' (see section 'Upload Corrections'), the satellite clock offsets belonging to the
    3989 corresponding analysis center are reset in the adjustment.
    3990 </p>
    3991 
    3992 <p>
    3993 Removing the AC-dependent biases as well as possible is a major issue with clock combinations. Since they vary in time, it can be tricky to do this. Otherwise, there will be artificial jumps in the combined clock stream if one or more AC contributions drop out for certain epochs. Here the Kalman Filter approach is expected to do better than the Single-Epoch approach.
    3994 </p>
    3995 <p>
    3996 In view of IGS real-time products, the 'Combine Corrections' functionality has been integrated in BNC (Weber and Mervart 2010) because
    3997 <ul>
    3998   <li>The software with its Graphic User Interface and range of supported Operating Systems represents a perfect platform to process many Broadcast Correction streams in parallel;</li>
     4399to introduce some analysis inconsistencies. We will therefore consider improvements on this approach.
     4400</p>
     4401<p>
     4402The 'Combine Corrections' functionality may be of interrest because:
     4403<ul>
    39994404  <li>Outages of single AC product streams can be mitigated through merging several incoming streams into a combined product;</li>
    40004405  <li>Generating a combination product from several AC products allows detecting and rejecting outliers;</li>
     
    40034408  <li>It enables a BNC PPP user to follow his own preference in combining streams from individual ACs for Precise Point Positioning;</li>
    40044409  <li>It allows an instantaneous quality control of the combination process not only in the time domain but also in the space domain; this can be done by direct application of the combined stream in a PPP solution even without prior upload to an Ntrip Broadcaster;</li>
    4005   <li>It provides the means to output SP3 and Clock RINEX files containing precise orbit and clock information for further processing using other tools than BNC.</li>
    4006 </ul>
    4007 </p>
    4008 
    4009 <p>
    4010 Note that the combination process requires real-time access to Broadcast Ephemeris. Therefore, in addition to the orbit
    4011  and clock correction streams BNC must pull a stream carrying Broadcast Ephemeris in the form of RTCM Version 3 messages.
    4012  Stream 'RTCM3EPH' on caster <a href="http://products.igs-ip.net" target="_blank">http://products.igs-ip.net</a> is an example for that. Note further that BNC will ignore incorrect
    4013  or outdated Broadcast Ephemeris data when necessary, leaving a note 'WRONG EPHEMERIS' or 'OUTDATED EPHEMERIS' in the logfile.
    4014 </p>
    4015 
    4016 <p>
    4017 A combination is carried out following a specified sampling interval. BNC waits for incoming Broadcast Corrections for the period of one such interval. Corrections received later than that will be ignored. If incoming streams have different rates, only epochs that correspond to the sampling interval are used.
    4018 </p>
    4019 
    4020 <p>
    4021 With respect to IGS, it is important to understand that a major effect in the combination of GNSS orbit and clock correction streams is the selection of ACs to include. It is likely that a combination product could be improved in accuracy by using only the best two or three ACs. However, with only a few ACs to depend on, the reliability of the combination product could suffer and the risk of total failures increases. So there is an important tradeoff here that must be considered when selecting streams for a combination. The major strength of a combination product is its reliability and stable median performance which can be much better than that of any single AC product.
    4022 </p>
    4023 <p>
    4024 This comment applies in situations where we have a limited number of solutions to combine and their quality varies significantly. The situation may be different when the total number of ACs is larger and the range of AC variation is smaller. In that case, a standard full combination is probably the best.
     4410  <li>It provides the means to output SP3 and Clock RINEX files containing precise orbit and clock information as well as SINEX Bias files for further processing using other tools than BNC.</li>
     4411</ul>
     4412</p>
     4413The clock combination can be based either on a plain 'Single-Epoch' or on a Kalman 'Filter' approach.
     4414In the Kalman Filter approach, satellite clocks estimated by individual Analyses Centers (ACs) are used as pseudo
     4415observations within the adjustment process. Each observation is modeled as a linear function (actually a simple sum)
     4416of three estimated parameters:
     4417<pre>
     4418 Clk_Corr = AC_Offset + Sat_Offset + Clk
     4419 </pre>
     4420 With
     4421 <p>
     4422<table>
     4423  <tr><td>&nbsp; AC_Offset </td><td>&nbsp; &nbsp; AC specific offset</td></tr>
     4424  <tr><td>&nbsp; Sat_Offset</td><td>&nbsp; &nbsp; Satellite specific offset common to all ACs</td></tr>
     4425  <tr><td>&nbsp; Clk       </td><td>&nbsp; &nbsp; the actual satellite clock correction, which represents the result of the combination</td></tr>
     4426</table>
     4427</p>
     4428These three parameter types differ in their statistical properties. The satellite clock offsets are assumed to be static parameters
     4429while AC specific and satellite specific offsets are stochastic parameters affected by white noise.
     4430The solution is regularized by a set of minimal constraints. In case of a change of the 'SSR Provider ID',
     4431'SSR Solution ID', or 'IOD SSR' (see section 'Upload Corrections'), the satellite clock offsets belonging to the
     4432corresponding analysis center are reset in the adjustment.
     4433</p>
     4434<p>
     4435Removing the AC-dependent biases as well as possible is a major issue with clock combinations.
     4436Since they vary in time, it can be tricky to do this. Otherwise, there will be artificial jumps in the combined clock stream
     4437if one or more AC contributions drop out for certain epochs. Here the Kalman Filter approach is expected to do better than the
     4438Single-Epoch approach.
    40254439</p>
    40264440<p>
    40274441The following recursive algorithm is used to detect orbit outliers in the Kalman Filter combination when Broadcast Corrections are provided by several ACs:<br>
    4028 Step 1: We do not produce a combination for a certain satellite if only one AC provides corrections for it.<br>
    4029 Step 2: A mean satellite position is calculated as the average of positions from all ACs.<br>
    4030 Step 3: For each AC and satellite, the 3D distance between individual and mean satellite position is calculated.<br>
    4031 Step 4: We find the greatest difference between AC specific and mean satellite positions.<br>
    4032 Step 5: If that is less than a threshold, the conclusion is that we do not have an outlier and can proceed to the next epoch.<br>
    4033 Step 6: If that is greater than a threshold, then corrections of the affiliated AC are ignored for the affected epoch and the outlier detection restarts with step 1.
    4034 </p>
    4035 
    4036 <p>
    4037 The following screenshot shows an example setup of BNC when combining Broadcast Correction streams CLK11, CLK21, CLK91, and CLK80.
    4038 </p>
    4039 
    4040 <p><img src="IMG/screenshot20.png"/></p>
    4041 <p>Figure 28: BNC combining Broadcast Correction streams</p>
    4042 <p></p>
    4043 <p>
    4044 Note that BNC can produce an internal PPP solution from combined Broadcast Corrections. For that you have to specify the keyword 'INTERNAL' as 'Corrections stream' in the PPP (1) panel. The following example combines correction streams IGS01 and IGS02 and simultaneously carries out a PPP solution with observations from stream FFMJ1 to allow monitoring the quality of the combination product in the space domain.
    4045 </p>
    4046 
    4047 <p><img src="IMG/screenshot23.png"/></p>
    4048 <p>Figure 29: 'INTERNAL' PPP with BNC using a combination of Broadcast Corrections</p>
     4442 <p>
     4443<table>
     4444  <tr><td>&nbsp; Step 1 </td><td>&nbsp; &nbsp; We do not produce a combination for a certain satellite if only one AC provides corrections for it.</td></tr>
     4445  <tr><td>&nbsp; Step 2 </td><td>&nbsp; &nbsp; A mean satellite position is calculated as the average of positions from all ACs.</td></tr>
     4446  <tr><td>&nbsp; Step 3 </td><td>&nbsp; &nbsp; For each AC and satellite, the 3D distance between individual and mean satellite position is calculated.</td></tr>
     4447  <tr><td>&nbsp; Step 4 </td><td>&nbsp; &nbsp; We find the greatest difference between AC specific and mean satellite positions.</td></tr>
     4448  <tr><td>&nbsp; Step 5 </td><td>&nbsp; &nbsp; If that is less than a threshold, the conclusion is that we do not have an outlier and can proceed to the next epoch.</td></tr>
     4449  <tr><td>&nbsp; Step 6 </td><td>&nbsp; &nbsp; If that is greater than a threshold, then corrections of the affiliated AC are ignored for the affected epoch and
     4450        the outlier detection restarts with step 1.</td></tr>
     4451</table>
     4452</p>
     4453<p>
     4454The following screenshot shows an example setup of BNC when combining Broadcast Correction streams SSRA00BKG1 and SSRA00CNE1.
     4455</p>
     4456<p><img src="IMG/Figure27.png"width=1000/></p>
     4457<p>Figure 27: BNC combining Broadcast Correction streams</p>
     4458
     4459<p>
     4460The combination process requires real-time access to Broadcast Ephemeris. Therefore, in addition to the orbit
     4461and clock correction streams BNC must pull a stream carrying Broadcast Ephemeris in the form of RTCM Version 3 messages.
     4462Stream 'BCEP00BKG0' on caster <a href="http://products.igs-ip.net" target="_blank">http://products.igs-ip.net</a>
     4463is an example for that. Note further that BNC will ignore incorrect or outdated Broadcast Ephemeris data when necessary,
     4464leaving a note 'WRONG EPHEMERIS' or 'OUTDATED EPHEMERIS' in the logfile.
     4465</p>
     4466<p>
     4467The combination is done system-wise for the following reference signals as specified in the IGS RTWG:
     4468 <p>
     4469<table>
     4470  <tr><td>&nbsp; GPS:    </td><td>&nbsp; &nbsp; C1W/C2W</td></tr>
     4471  <tr><td>&nbsp; GLONASS;</td><td>&nbsp; &nbsp; C1P/C2P</td></tr>
     4472  <tr><td>&nbsp; Galileo:</td><td>&nbsp; &nbsp; C1C/C5Q</td></tr>
     4473  <tr><td>&nbsp; BDS:    </td><td>&nbsp; &nbsp; C2I/C6I</td></tr>
     4474  <tr><td>&nbsp; QZSS:   </td><td>&nbsp; &nbsp; C1C/C2L</td></tr>
     4475  <tr><td>&nbsp; SBAS:   </td><td>&nbsp; &nbsp; C1C/C5Q</td></tr>
     4476  <tr><td>&nbsp; IRNSS:  </td><td>&nbsp; &nbsp; nothing declared</td></tr>
     4477</table>
     4478</p>
     4479Assuming that the ACs generate ionosphere-free clocks based on their individual choosen signals, the ionosphere-free code biases
     4480for the reference signals as specified in the IGS RTWG are determined from the supplied code biases.
     4481These are subtracted from each of the clocks before combination, resulting in combined code-bias-free and ionosphere-free clocks.
     4482</p>
     4483<p>
     4484This can be used to set the ionosphere-free linearcombination of two Observable-specific Signal Biases (OSBs;
     4485those of the reference signals) to zero in order to calculate all other OSBs.
     4486For this, we use currently the satellite biases which are computed by the Institute of Geodesy and Geophysics (IGG)
     4487of the Chinese Academy of Sciences (CAS) and send them out as SSR code biases together with the combined clocks.
     4488These SINEX Bias files are archived at the CDDIS:
     4489<a href="https://cddis.nasa.gov/archive/gnss/products/bias/" target="_blank">https://cddis.nasa.gov/archive/gnss/products/bias/</a>
     4490</p>
     4491<p>
     4492A combination is carried out following a specified sampling interval. BNC waits for incoming Broadcast Corrections for the period
     4493of one such interval. Corrections received later than that will be ignored. If incoming streams have different rates,
     4494only epochs that correspond to the sampling interval are used.
     4495</p>
     4496<p>
     4497Note that BNC can produce an internal PPP solution from combined Broadcast Corrections.
     4498For that you have to specify the keyword 'INTERNAL' as 'Corrections stream' in the PPP (1) panel.
     4499The following example combines correction streams SSRA00BKG1 and SSRA00CNE1 and simultaneously carries out a PPP solution
     4500with observations from stream FFMJ01DEU0 to allow monitoring the quality of the combination product in the space domain.
     4501</p>
     4502<p><img src="IMG/Figure28.png"width=1000/></p>
     4503<p>Figure 28: 'INTERNAL' PPP with BNC using a combination of Broadcast Corrections</p>
    40494504
    40504505<p><h4 id="combimounttab">2.14.1 Combine Corrections Table - optional</h4></p>
    40514506<p>
    4052 Hit the 'Add Row' button, double click on the 'Mountpoint' field, enter a Broadcast Correction mountpoint from the 'Streams' section and hit Enter. Then double click on the 'AC Name' field to enter your choice of an abbreviation for the Analysis Center (AC) providing the Antenna Phase Center (APC) related correction stream. Finally, double click on the 'Weight' field to enter a weight to be applied to this stream in the combination.
    4053 </p>
    4054 
    4055 <p>
    4056 The sequence of entries in the 'Combine Corrections' table is not of importance. Note that the orbit information in the final combination stream is just copied from one of the incoming streams. The stream used for providing the orbits may vary over time: if the orbit-providing stream has an outage then BNC switches to the next remaining stream for getting hold of the orbit information.</p>
    4057 <p>
    4058 It is possible to specify only one Broadcast Ephemeris correction stream in the 'Combine Corrections' table. Instead of combining corrections from several sources, BNC will then merge the single corrections stream with Broadcast Ephemeris to allow saving results in SP3 and/or Clock RINEX format when specified accordingly under the 'Upload Corrections' panel. Note that in such a BNC application you must not pull more than one Broadcast Ephemeris correction stream even if a second stream would provide the same corrections from a backup caster.
     4507Hit the 'Add Row' button, double click on the 'Mountpoint' field, enter a Broadcast Correction mountpoint from the 'Streams' section
     4508and hit Enter. Then double click on the 'AC Name' field to enter your choice of an abbreviation for the Analysis Center (AC) providing
     4509the Antenna Phase Center (APC) related correction stream. Finally, double click on the 'Weight' field to enter a weight to be applied
     4510to this stream in the combination.</p>
     4511<p>
     4512The sequence of entries in the 'Combine Corrections' table is not of importance.
     4513Note that the orbit information in the final combination stream is just copied from one of the incoming streams.
     4514The stream used for providing the orbits may vary over time: if the orbit-providing stream has an outage then BNC switches
     4515to the next remaining stream for getting hold of the orbit information.</p>
     4516<p>
     4517It is possible to specify only one Broadcast Ephemeris correction stream in the 'Combine Corrections' table.
     4518Instead of combining corrections from several sources, BNC will then merge the single corrections stream with
     4519Broadcast Ephemeris to allow saving results in SP3 and/or Clock RINEX format when specified accordingly under the
     4520'Upload Corrections' panel. Note that in such a BNC application you must not pull more than one Broadcast Ephemeris correction stream
     4521even if a second stream would provide the same corrections from a backup caster.
    40594522</p>
    40604523
     
    40704533<p><h4 id="combimethod">2.14.1.2 Method - mandatory if 'Combine Corrections' table is populated</h4></p>
    40714534<p>
    4072 Select a clock combination method. Available options are Kalman 'Filter' and 'Single-Epoch. It is suggested to use the Kalman Filter approach in case the combined stream of Broadcast Corrections is intended for Precise Point Positioning.
     4535Select a clock combination method. Available options are Kalman 'Filter' and 'Single-Epoch.
     4536It is suggested to use the Kalman Filter approach in case the combined stream of Broadcast Corrections
     4537is intended for Precise Point Positioning.
    40734538</p>
    40744539
    40754540<p><h4 id="combimax">2.14.1.3 Maximal Residuum - mandatory if 'Combine Corrections' table is populated</h4></p>
    4076 
    4077 <p>BNC combines all incoming clocks according to specified weights. Individual clock estimates that differ by more than 'Maximal Residuum' meters from the average of all clocks will be ignored.<p>
    4078 </p>It is suggested to specify a value of about 0.2 m for the Kalman Filter combination approach and a value of about 3.0 meters for the Single-Epoch combination approach.</p>
    4079 <p>Default is a 'Maximal Residuum' of 999.0 meters.</p>
     4541<p>
     4542BNC combines all incoming clocks according to specified weights. Individual clock estimates that differ by more than
     4543'Maximal Residuum' meters from the average of all clocks will be ignored.
     4544It is suggested to specify a value of about 0.2 m for the Kalman Filter combination approach and
     4545a value of about 3.0 meters for the Single-Epoch combination approach.
     4546</p>
     4547<p>
     4548Default is a 'Maximal Residuum' of 999.0 meters.</p>
    40804549
    40814550<p><h4 id="combismpl">2.14.1.4 Sampling - mandatory if 'Combine Corrections' table is populated</h4></p>
    4082 <p>Specify a combination sampling interval. Orbit and clock corrections will be produced following that interval. A value of 10 sec may be an appropriate choice.</p>
     4551<p>
     4552Specify a combination sampling interval. Orbit and clock corrections will be produced following that interval.
     4553value of 10 sec may be an appropriate choice.
     4554</p>
    40834555
    40844556<p><h4 id="upclk">2.15 Upload Corrections</h4></p>
    40854557<p>
    4086 BNC can upload streams carrying orbit and clock corrections to Broadcast Ephemeris in radial, along-track and out-of-plane components if they are
     4558BNC can upload streams carrying orbit and clock corrections to Broadcast Ephemeris in radial, along-track and out-of-plane
     4559components if they are
    40874560<ol type="a">
    4088   <li>either generated by BNC as a combination of several individual Broadcast Correction streams coming from an number of real-time Analysis Centers (ACs), see section 'Combine Corrections',</li>
    4089   <li>or generated by BNC while the program receives an ASCII stream of precise satellite orbits and clocks via IP port from a connected real-time GNSS engine. Such a stream would be expected in a plain ASCII format and the associated 'decoder' string would have to be 'RTNET', see format description below. </li>
     4561  <li>either generated by BNC as a combination of several individual Broadcast Correction streams coming from an number of
     4562      real-time Analysis Centers (ACs), see section 'Combine Corrections',</li>
     4563  <li>or generated by BNC while the program receives an ASCII stream of precise satellite orbits and clocks via IP port
     4564      from a connected real-time GNSS engine. Such a stream would be expected in a plain ASCII format and the associated
     4565      'decoder' string would have to be 'RTNET', see format description below. </li>
    40904566</ol>
    4091 The procedure taken by BNC to generate the orbit and clock corrections to Broadcast Ephemeris and upload them to an Ntrip Broadcaster is as follow:
    4092 <ul>
    4093   <li>Continuously receive up-to-date Broadcast Ephemeris carrying approximate orbits and clocks for all satellites. Read new Broadcast Ephemeris immediately whenever they become available. This information may come via a stream of RTCM messages generated from another BNC instance.</li>
     4567The procedure taken by BNC to generate the orbit and clock corrections to Broadcast Ephemeris and upload them to an
     4568Ntrip Broadcaster is as follow:
     4569<ul>
     4570  <li>Continuously receive up-to-date Broadcast Ephemeris carrying approximate orbits and clocks for all satellites.
     4571      Read new Broadcast Ephemeris immediately whenever they become available. This information may come via a stream of
     4572      RTCM messages generated from another BNC instance.</li>
    40944573</ul>
    40954574Then, epoch by epoch:
    40964575<ul>
    4097   <li>Continuously receive the best available orbit and clock estimates for all satellites in XYZ Earth-Centered-Earth-Fixed IGS14 reference system. Receive them every epoch in plain ASCII format as provided by a real-time GNSS engine such as RTNET or generate them following a combination approach. </li>
     4576  <li>Continuously receive the best available orbit and clock estimates for all satellites in
     4577      XYZ Earth-Centered-Earth-Fixed IGS20 reference system.
     4578      Receive them every epoch in plain ASCII format as provided by a real-time GNSS engine such as RTNET or generate them
     4579      following a combination approach. </li>
    40984580  <li>Calculate XYZ coordinates from Broadcast Ephemeris orbits.</li>
    4099   <li>Calculate differences dX,dY,dZ between Broadcast Ephemeris and IGS14 orbits.</li>
     4581  <li>Calculate differences dX,dY,dZ between Broadcast Ephemeris and IGS20 orbits.</li>
    41004582  <li>Transform these differences into radial, along-track and out-of-plane corrections to Broadcast Ephemeris orbits.</li>
    4101   <li>Calculate corrections to Broadcast Ephemeris clocks as differences between Broadcast Ephemeris clocks and IGS14 clocks.</li>
    4102   <li>Encode Broadcast Ephemeris orbit and clock corrections in RTCM Version 3 format.</li>
     4583  <li>Calculate corrections to Broadcast Ephemeris clocks as differences between Broadcast Ephemeris clocks and IGS20 clocks.</li>
     4584  <li>Encode Broadcast Ephemeris orbit and clock corrections, biases and atmospheric parameters in 'State Space Reperesentation' messages'</li>
    41034585  <li>Upload Broadcast Correction stream to Ntrip Broadcaster.</li>
    41044586</ul>
    41054587<p>
    4106 The orbit and clock corrections to Broadcast Ephemeris are usually referred to the latest set of broadcast messages, which are generally also received in real-time by a GNSS rover. However, the use of the latest broadcast message is delayed for a period of 60 seconds, measured from the time of complete reception of ephemeris and clock parameters, in order to accommodate rover applications to obtain the same set of broadcast orbital and clock parameters. This procedure is recommended in the RTCM SSR standard.
    4107 </p>
    4108 
    4109 <p>
    4110 Because the stream delivery process may put a significant load on the communication link between BNC and the real-time GNSS engine, it is recommended to run both programs on the same host. However, doing so is not compulsory.
    4111 </p>
    4112 <p>
    4113 The usual handling of BNC when uploading a stream with Broadcast Corrections is that you first specify Broadcast Ephemeris and Broadcast Correction streams. You then specify an Ntrip Broadcaster for stream upload before you start the program.
    4114 </p>
    4115 
    4116 <p>
    4117 <u>'RTNET' Stream Format</u><br>
    4118 When uploading an SSR stream generated according to (b) then BNC requires precise GNSS orbits and clocks in the IGS Earth-Centered-Earth-Fixed (ECEF) reference system and in a specific ASCII format named 'RTNET' because the data may come from a real-time engine such as RTNET. The sampling interval for data transmission should not exceed 15 sec. Note that otherwise tools involved in IP streaming such as Ntrip Broadcasters or Ntrip Clients may respond with a timeout.
    4119 </p>
    4120 <p>
    4121 Below you find an example for the 'RTNET' ASCII format coming from a real-time GNSS engine. Each epoch begins with an asterisk character followed by the time as year, month, day of month, hour, minute and second. Subsequent records can provide
    4122 </p>
    4123 
     4588The orbit and clock corrections to Broadcast Ephemeris are usually referred to the latest set of broadcast messages,
     4589which are generally also received in real-time by a GNSS rover. However, the use of the latest broadcast message is
     4590delayed for a period of 60 seconds, measured from the time of complete reception of ephemeris and clock parameters,
     4591in order to accommodate rover applications to obtain the same set of broadcast orbital and clock parameters.
     4592This procedure is recommended in the RTCM SSR standard.
     4593</p>
     4594<p>
     4595Because the stream delivery process may put a significant load on the communication link between BNC and the real-time GNSS engine,
     4596it is recommended to run both programs on the same host. However, doing so is not compulsory.
     4597</p>
     4598<p>
     4599The usual handling of BNC when uploading a stream with Broadcast Corrections is that you first specify Broadcast Ephemeris and
     4600Broadcast Correction streams. You then specify an Ntrip Broadcaster for stream upload before you start the program.
     4601</p>
     4602
     4603<p>
     4604<u>'RTNET' Stream Format:</u> When uploading an SSR stream generated according to (b) then BNC requires
     4605precise GNSS orbits and clocks in the IGS Earth-Centered-Earth-Fixed (ECEF) reference system and in a specific ASCII format
     4606named 'RTNET' because the data may come from a real-time engine such as RTNET.
     4607The sampling interval for data transmission should not exceed 15 sec.
     4608Note that otherwise tools involved in IP streaming such as Ntrip Broadcasters or Ntrip Clients may respond with a timeout.
     4609</p>
     4610<p>
     4611Below you find an example for the 'RTNET' ASCII format coming from a real-time GNSS engine.
     4612Each epoch begins with an asterisk character followed by the time as year, month, day of month, hour, minute and second.
     4613Subsequent records can provide
     4614</p>
    41244615<p>
    41254616<ul>
     
    41274618</ul>
    41284619</p>
    4129 
    41304620<p>
    41314621A set of parameters can be defined for each satellite as follows:
     
    41364626The following satellite specific keys and values are currently specified for that in BNC:<br><br>
    41374627<table>
    4138   <tr><td><i>Key&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</i></td><td><i>Values</i></td></tr>
    4139   <tr><td>APC</td><td>Satellite Antenna Phase Center coordinate components in meters</td></tr>
    4140   <tr><td>Clk</td><td>Satellite clock correction components in meters, meters per seconds and meters per sec&#178 (relativistic correction applied like in broadcast clocks)</td></tr>
    4141   <tr><td>ClkSig</td><td>Standard deviation for satellite clock correction components in meters, meters per seconds and meters per sec&#178 (required for Clock RINEX file only) /td></tr>
    4142   <tr><td>Vel</td><td>Satellite velocity components in meters per second</td></tr>
    4143   <tr><td>CoM</td><td>Satellite Center of Mass coordinate components in meters</td></tr>
    4144   <tr><td>Ura</td><td>User range accuracy value in meters</td></tr>
    4145   <tr><td>CodeBias</td><td>Satellite Code Biases in meters with two characters for frequency and tracking mode per bias as defined in RINEX 3 and preceded by total number of biases</td></tr>
    4146   <tr><td>PhaseBias</td><td>Satellite Phase Biases in meters with two characters for frequency and tracking mode per bias as defined in RINEX 3, preceded by total number of biases and followed by Signal Integer Indicator, Signals Wilde-Lane Integer Indicator as well as Signal Discontinuity Counter</td></tr>
    4147   <tr><td>YawAngle</td><td>Satellite Yaw Angle in radian, restricted to be in [0, 2&#960], which shall be used for the computation of phase wind-up correction</td></tr>
    4148   <tr><td>YawRate</td><td>Satellite Yaw Rate in radian per second which is the rate of Yaw Angle</td></tr>
     4628  <tr><td>&nbsp;<i>Key&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</i></td><td>&nbsp;&nbsp;<i>Values</i></td></tr>
     4629  <tr><td>&nbsp;APC      </td><td>&nbsp; &nbsp;Satellite Antenna Phase Center coordinate components in meters</td></tr>
     4630  <tr><td>&nbsp;Clk      </td><td>&nbsp; &nbsp;Satellite clock correction components in meters, meters per seconds and meters per sec&#178 (relativistic correction applied like in broadcast clocks)</td></tr>
     4631  <tr><td>&nbsp;ClkSig   </td><td>&nbsp; &nbsp;Standard deviation for satellite clock correction components in meters, meters per seconds and meters per sec&#178 (required for Clock RINEX file only) /td></tr>
     4632  <tr><td>&nbsp;Vel      </td><td>&nbsp; &nbsp;Satellite velocity components in meters per second</td></tr>
     4633  <tr><td>&nbsp;CoM      </td><td>&nbsp; &nbsp;Satellite Center of Mass coordinate components in meters</td></tr>
     4634  <tr><td>&nbsp;Ura      </td><td>&nbsp; &nbsp;User range accuracy value in meters</td></tr>
     4635  <tr><td>&nbsp;CodeBias </td><td>&nbsp; &nbsp;Satellite Code Biases in meters with two characters for frequency and tracking mode per bias as defined in RINEX 3/4 and preceded by total number of biases</td></tr>
     4636  <tr><td>&nbsp;PhaseBias</td><td>&nbsp; &nbsp;Satellite Phase Biases in meters with two characters for frequency and tracking mode per bias as defined in RINEX 3/4, preceded by total number of biases <br>&nbsp; &nbsp;and followed by Signal Integer Indicator, Signals Wilde-Lane Integer Indicator as well as Signal Discontinuity Counter</td></tr>
     4637  <tr><td>&nbsp;YawAngle </td><td>&nbsp; &nbsp;Satellite Yaw Angle in radian, restricted to be in [0, 2&#960], which shall be used for the computation of phase wind-up correction</td></tr>
     4638  <tr><td>&nbsp;YawRate  </td><td>&nbsp; &nbsp;Satellite Yaw Rate in radian per second which is the rate of Yaw Angle</td></tr>
    41494639</table>
    41504640<p>
     
    41604650&nbsp;
    41614651</pre>
    4162 
    41634652<p>
    41644653</ul>
    41654654The following non-satellite specific keys and values are currently specified in BNC:<br><br>
    41664655<table>
    4167   <tr><td><i>Key&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</i></td><td><i>Values</i></td></tr>
    4168   <tr><td>IND</td><td>Stands for phase bias information and is followed by Dispersive Bias Consistency Indicator and MW Consistency Indicator</td></tr>
    4169   <tr><td>VTEC</td><td>Stands for Vertical TEC information and is followed by Update Interval and Number of Ionospheric Layers</td></tr>
     4656  <tr><td>&nbsp;<i>Key&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</i></td><td><i>&nbsp; &nbsp;Values</i></td></tr>
     4657  <tr><td>&nbsp;IND </td><td>&nbsp; &nbsp;Stands for phase bias information and is followed by Dispersive Bias Consistency Indicator and MW Consistency Indicator</td></tr>
     4658  <tr><td>&nbsp;VTEC</td><td>&nbsp; &nbsp;Stands for Vertical TEC information and is followed by Update Interval and Number of Ionospheric Layers</td></tr>
    41704659</table>
    41714660<br>
    4172 If key VTEC is specified, a data set for each layer contains within its first line the Layers Number, followed by Maximum Degree, Maximum Order and Layer Height. After that, Cosine and Sinus Spherical Harmonic Coefficients will follow, one block each.
    4173 </p>
    4174 
    4175 <p>
    4176 Because each keyword is associated to a certain number of values, an 'old' BNC could be operated with an incoming 'new' RTNET stream containing so far unknown keys - they would just be skipped in BNC.
     4661If key VTEC is specified, a data set for each layer contains within its first line the Layers Number,
     4662followed by Maximum Degree, Maximum Order and Layer Height. After that, Cosine and Sinus Spherical Harmonic Coefficients
     4663will follow, one block each.
     4664</p>
     4665<p>
     4666Because each keyword is associated to a certain number of values, an 'old' BNC could be operated with an incoming 'new'
     4667RTNET stream containing so far unknown keys - they would just be skipped in BNC.
    41774668</p>
    41784669
     
    41804671Example for 'RTNET' stream content and format:
    41814672</p>
    4182 
    4183 <p>
    4184 <pre>
    4185 * 2015 6 11 15 10 40.000000
    4186 VTEC 0 1 0 6 6 450000.0 20.4660 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5.3590 9.6580 0.0000 0.0000 0.0000 0.0000 0.0000 -6.3610 -0.1210 1.1050 0.0000 0.0000 0.0000 0.0000 -2.7140 -1.8200 -0.9920 -0.6430 0.0000 0.0000 0.0000 1.9140 -0.5180 0.2530 0.0870 -0.0110 0.0000 0.0000 2.2950 1.0510 -0.9540 0.6220 -0.0720 -0.0810 0.0000 -0.9760 0.7570 0.2320 -0.2520 0.1970 -0.0680 -0.0280 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2720 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1100 -1.0170 0.0000 0.0000 0.0000 0.0000 0.0000 -1.1500 0.5440 0.9890 0.0000 0.0000 0.0000 0.0000 -0.3770 -0.1990 0.2670 -0.0470 0.0000 0.0000 0.0000 0.6550 -0.0130 -0.2310 -0.4810 -0.3510 0.0000 0.0000 0.2360 -0.0710 0.0280 0.1900 -0.0810 0.0710
    4187 IND 0 1
    4188 G01 APC 3   -14442611.532   -13311059.070   -18020998.395 Clk 1   -1426.920500 Vel 3  2274.647600   -28.980300 -1787.861900 CoM 3   -14442612.572   -13311059.518   -18020999.539 CodeBias 6 1W -3.760000 1C -3.320000 2W -6.200000 2X -5.780000 1H -3.350000 5I -5.430000 YawAngle 1 -0.315600 YawRate 1 0.0 PhaseBias 3 1C  3.9473 1 2 4 2W  6.3143 1 2 4 5I 6.7895 1 2 4
    4189 G02 APC 3    -8859103.160    14801278.856    20456920.800 Clk 1  171219.083500 Vel 3 -2532.296700  -161.275800 -1042.884100 CoM 3    -8859103.418    14801279.287    20456921.395 CodeBias 6 1W  3.930000 1C  3.610000 2W  6.480000 2X  0.000000 1H  3.580000 5I  0.000000 YawAngle 1 -0.693500 YawRate 1 0.0 PhaseBias 2 1C -4.0902 1 2 4 2W -6.7045 1 2 4
    4190 G03 APC 3   -13788295.679   -22525098.353     2644811.508 Clk 1  104212.074300 Vel 3   102.263400  -429.953400 -3150.231900 CoM 3   -13788296.829   -22525099.534     2644811.518 CodeBias 6 1W -2.650000 1C -2.160000 2W -4.360000 2X -4.480000 1H -2.070000 5I -5.340000 YawAngle 1 -0.428800 YawRate 1 0.0 PhaseBias 3 1C  2.9024 1 2 2 2W  4.6124 1 2 2 5I 5.3694 1 2 2
     4673<p>
     4674<pre><p style="font-family:Monospace">
     4675*  2022 11 25 22 04 05.000
     4676G01 Clk 2     73898.6410 -0.00164097340 ClkSig 2   0.0024  0.00021199856 CoM 3  -3022799.7396 -14423300.4562 -22402573.0244 Vel 3   2691.3388   -619.5739     69.3300 APC 3  -3022799.9547 -14423299.6874 -22402571.6928 YawAngle 1 -2.756 CodeBias 3 1C   -2.6653 1W   -3.0640 2W   -5.0462
     4677G02 Clk 2   -190714.4788  0.00054568041 ClkSig 2   0.0021  0.00021199856 CoM 3   6435781.3836  14022665.7384  22245045.6986 Vel 3  -2523.5253    881.5723    199.4389 APC 3   6435781.2094  14022665.3599  22245045.1006 YawAngle 1 -0.496 CodeBias 3 1C    3.1444 1W    3.6734 2W    6.0498
     4678G03 Clk 2   -112198.0483 -0.00041212052 ClkSig 2   0.0021  0.00021199856 CoM 3  -9558560.1056 -21678640.8679 -12237759.6868 Vel 3   1195.6635    968.3425  -2665.8087 APC 3  -9558559.9115 -21678639.4511 -12237758.9694 YawAngle 1  2.269 CodeBias 3 1C   -1.9487 1W   -2.1477 2W   -3.5372
     4679G04 Clk 2    -23967.3447  0.00204827783 ClkSig 2   0.0016  0.00021199854 CoM 3   -925894.8383 -23797191.6947  11651418.9683 Vel 3    684.2944  -1338.1342  -2689.1911 APC 3   -925894.7893 -23797190.5964  11651418.4111 YawAngle 1  1.705 CodeBias 3 1C   -0.1054 1W   -0.2081 2W   -0.3427
    41914680..
    4192 R01 APC 3    -6783489.153   -23668850.753     6699094.457 Clk 1 - 45875.658100 Vel 3  -267.103000  -885.983700 -3403.253200 CoM 3    -6783489.307   -23668853.173     6699095.274 CodeBias 4 1P -2.496400 1C -2.490700 2P -4.126600 2C -3.156200
    4193 R02 APC 3   -11292959.022   -10047039.425    20577343.288 Clk 1   41215.750900 Vel 3  -476.369400 -2768.936600 -1620.000600 CoM 3   -11292959.672   -10047040.710    20577345.344 CodeBias 4 1P  0.211200 1C  0.391300 2P  0.349100 2C  0.406300
    4194 R03 APC 3    -9226469.614     9363128.850    21908853.313 Clk 1   13090.322800 Vel 3  -369.088600 -2964.934500  1111.041000 CoM 3    -9226470.226     9363129.442    21908855.791 CodeBias 4 1P  2.283800 1C  2.483800 2P  3.775300 2C  3.785500
    4195 ..
    4196 E11 APC 3     2965877.898    17754418.441    23503540.946 Clk 1   33955.329000 Vel 3 -1923.398100  1361.709200  -784.555800 CoM 3     2965878.082    17754418.669    23503541.507 CodeBias 3 1B  1.382100 5Q  2.478400 7Q  2.503300
    4197 E12 APC 3   -14807433.144    21753389.581    13577231.476 Clk 1 -389652.211900 Vel 3 -1082.464300   825.868400 -2503.982200 CoM 3   -14807433.366    21753389.966    13577231.926 CodeBias 3 1B  0.386600 5Q  0.693300 7Q  0.534700
    4198 E19 APC 3   -15922225.351     8097517.292    23611910.403 Clk 1   -2551.650800 Vel 3  -183.377800 -2359.143700   684.105100 CoM 3   -15922225.569     8097517.329    23611910.995 CodeBias 3 1B -1.777000 5Q -3.186600 7Q -3.069100
    4199 ..
    4200 EOE
    4201 </pre>
    4202 </p>
     4681R01 Clk 2      5546.7099  0.00018335589 ClkSig 2   0.0023  0.00021199856 CoM 3   7112494.0294  23814532.0433  -5735875.7206 Vel 3    284.0303    745.9382   3452.4470 APC 3   7112493.8323  23814529.8302  -5735874.8944 YawAngle 1  1.728 CodeBias 4 1C   -2.6149 1P   -2.7107 2C   -3.6969 2P   -4.4809
     4682R02 Clk 2     -7008.2454 -0.00000635271 ClkSig 2   0.0023  0.00021199856 CoM 3  11244225.8582  10071470.3245 -20546784.7044 Vel 3    494.7088   2778.4611   1623.0780 APC 3  11244225.2057  10071469.5457 -20546782.4482 YawAngle 1  2.071 CodeBias 4 1C   -0.1018 1P   -0.3894 2C   -0.6264 2P   -0.6436
     4683R03 Clk 2     20366.1568  0.00020195972 ClkSig 2   0.0021  0.00021199856 CoM 3   9092586.5727  -9144390.0351 -21957806.0158 Vel 3    417.8656   2989.9043  -1076.1050 APC 3   9092586.1678  -9144388.9369 -21957803.7216 YawAngle 1  2.112 CodeBias 4 1C    0.5948 1P    0.9738 2C    1.2086 2P    1.6097
     4684R04 Clk 2     49846.8890  0.00042529794 ClkSig 2   0.0022  0.00021199856 CoM 3   1867488.4178 -22822850.6299 -11196789.3037 Vel 3     66.4046   1545.5179  -3134.6080 APC 3   1867488.7750 -22822848.4388 -11196788.1327 YawAngle 1  1.866 CodeBias 4 1C    1.0137 1P    1.2486 2C    1.6395 2P    2.0640
     4685...
     4686E02 Clk 2      1444.2848  0.00069346607 ClkSig 2   0.0021  0.00021199856 CoM 3  -3377663.9278  18136033.0351 -23153818.3345 Vel 3  -1715.0309  -1566.2097   -974.6114 APC 3  -3377663.9510  18136032.5368 -23153817.7931 YawAngle 1 -0.010 CodeBias 5 1C    0.2681 1X    0.2629 5I    0.4302 5Q    0.4807 5X    0.4826
     4687E03 Clk 2   -186952.1234 -0.00113736360 ClkSig 2   0.0024  0.00021199856 CoM 3  -8254601.5653  28187191.4778   3641206.5123 Vel 3    114.7319   -350.5678   2966.0175 APC 3  -8254601.4684  28187190.7479   3641206.3909 YawAngle 1  1.300 CodeBias 5 1C   -0.9944 1X   -0.9846 5I   -1.7540 5Q   -1.7833 5X   -1.7956
     4688E05 Clk 2    -36305.4464  0.00110429712 ClkSig 2   0.0027  0.00021199857 CoM 3 -16951710.6073  14279857.1039  19615600.3991 Vel 3    411.8010  -1924.3142   1755.9024 APC 3 -16951710.2715  14279856.6791  19615599.8561 YawAngle 1  1.240 CodeBias 5 1C   -1.1095 1X   -1.0961 5I   -1.9636 5Q   -1.9896 5X   -1.9628
     4689E07 Clk 2      -664.2128 -0.00092754332 ClkSig 2   0.0025  0.00021199857 CoM 3  15638354.9447   7729299.3932 -23916035.7246 Vel 3   -463.7761   2352.3603    457.3356 APC 3  15638354.4877   7729299.1793 -23916035.2351 YawAngle 1  1.776 CodeBias 5 1C   -1.6081 1X   -1.5745 5I   -2.8718 5Q   -2.8838 5X   -2.8389
     4690..EOE
     4691</p></pre>
    42034692
    42044693<p>
    42054694Note that the end of an epoch in the incoming stream is indicated by an ASCII string 'EOE' (for End Of Epoch).
    42064695</p>
    4207 
    4208 <p>
    4209 When using clocks from Broadcast Ephemeris (with or without applied corrections) or clocks from SP3 files, it may be important to understand that they are not corrected for the conventional periodic relativistic effect. Chapter 10 of the IERS Conventions 2003 mentions that the conventional periodic relativistic correction to the satellite clock (to be added to the broadcast clock) is computed as
    4210 <pre>
    4211  &nbsp; &nbsp; dt =  -2 (R * V) / c<sup>2</sup>
    4212 </pre>
    4213 where R * V is the scalar product of the satellite position and velocity and c is the speed of light. This can also be found in the GPS Interface Specification, IS-GPS-200, Revision D, 7 March 2006.
    4214 </p>
     4696<p>
     4697The following screenshot shows the encoding and uploading of several streams using precise orbits and clocks coming from a real-time network engine
     4698in 'RTNET' ASCII format. The streams are uploaded to Ntrip Broadcaster 'products.igs-ip.net'. They are referred to APC or CoM and IGS20 or DREF91.
     4699Required Broadcast Ephemeris are received via stream 'BCEP00BKG0'.
     4700</p>
     4701<p><img src="IMG/Figure29.png"width=1000/></p>
     4702<p>Figure 29: BNC producing Broadcast Corrections from incoming precise orbits and clocks and uploading them to an Ntrip Broadcaster</p>
    42154703
    42164704<p><h4 id="upadd">2.15.1 Add, Delete Row - optional</h4></p>
    4217 <p>Hit 'Add Row' button to add a row to the stream 'Upload Table' or hit the 'Delete' button to delete the highlighted row(s).
    4218 </p>
    4219 
    4220 <p>
    4221 Having an empty 'Upload Table' is default and means that you do not want BNC to upload orbit and clock correction streams to any Ntrip Broadcaster.
    4222 </p>
    4223 
    4224 <p><h4 id="uphost">2.15.2 Host, Port, Mountpoint, Password - optional</h4></p>
    4225 
    4226 <p>Specify the domain name or IP number of an Ntrip Broadcaster for uploading the stream. Furthermore, specify the caster's listening IP port, an upload mountpoint and an upload password. Note that Ntrip Broadcasters are often configured to provide access through more than one port, usually ports 80 and 2101. If you experience communication problems on port 80, you should try to use the alternative port(s).
    4227 </p>
    4228 
    4229 <p>
    4230 BNC uploads a stream to the Ntrip Broadcaster by referring to a dedicated mountpoint that has been set by its operator. Specify the mountpoint based on the details you received for your stream from the operator. It is often a 4-character ID (capital letters) plus an integer number.</p>
    4231 <p>The stream upload may be protected through an upload 'Password'. Enter the password you received from the Ntrip Broadcaster operator along with the mountpoint(s).</p>
    4232 <p>
    4233 If 'Host', 'Port', 'Mountpoint' and 'Password' are set, the stream will be encoded in RTCM's 'State Space Representation' (SSR) messages and uploaded to the specified broadcaster following the Ntrip Version 1 transport protocol.
     4705<p>
     4706Hit 'Add Row' button to add a row to the stream 'Upload Table' or hit the 'Delete' button to delete the highlighted row(s).
     4707Having an empty 'Upload Table' is default and means that you do not want BNC to upload orbit and clock correction streams
     4708to any Ntrip Broadcaster.
     4709</p>
     4710
     4711<p><h4 id="uphost">2.15.2 Host, Port, Mountpoint, Ntrip Version, User and Password - optional</h4></p>
     4712<p>
     4713Specify the domain name or IP number of an Ntrip Broadcaster for uploading the stream. Furthermore, specify the caster's
     4714listening IP port and an upload mountpoint. Select the Ntrip Version that shall be used for data upload and, depending on this,
     4715an upload user (Ntrip Version 2 only) and an upload password.
     4716</p>
     4717<p>
     4718Note that Ntrip Broadcasters are often configured to provide access through more than one port, usually ports 80 and 2101.
     4719If you experience communication problems on port 80, you should try to use the alternative port(s).
     4720</p>
     4721<p>
     4722BNC uploads a stream to the Ntrip Broadcaster by referring to a dedicated mountpoint that has been set by its operator.
     4723Specify the mountpoint based on the details you received for your stream from the operator.
     4724It is often a 9-character ID (capital letters) plus an integer number.
     4725</p>
     4726<p>
     4727For stream upload the Ntrip Version can be chosen. An Ntrip version 1 upload is protected through an upload 'Password' only.
     4728For an Ntrip Version 2 upload an upload 'User' is required in addition. Enter user and password you received from the
     4729Ntrip Broadcaster operator along with the mountpoint(s).
     4730</p>
     4731<p>
     4732If 'Host', 'Port', 'Mountpoint', 'Ntrip' Version, 'User' and 'Password' are set, the stream will be encoded into 'State Space Representation' (SSR)
     4733messages and uploaded to the specified broadcaster following the specified Ntrip transport protocol options.
    42344734</p>
    42354735
    42364736<p><h4 id="upsystem">2.15.3 System - mandatory if 'Host' is set</h4></p>
    42374737<p>
    4238 BNC allows configuring several Broadcast Correction streams for upload so that they refer to different reference systems and different Ntrip Broadcasters. You may use this functionality for parallel support of a backup Ntrip Broadcaster or for simultaneous support of various regional reference systems. Available options for transforming orbit and clock corrections to specific target reference systems are
    4239 <p>
    4240 <ul>
    4241   <li>IGS14 which stands for the GNSS-based IGS realization of the International Terrestrial Reference Frame 2014 (ITRF2014), and</li>
    4242   <li>ETRF2000 which stands for the European Terrestrial Reference Frame 2000 adopted by EUREF, and</li>
    4243   <li>GDA2020 which stands for the Geodetic Datum Australia 2020 as adopted for Australia, and</li>
    4244   <li>SIRGAS2000 which stands for the Geodetic Datum adopted for Brazil, and</li>
    4245   <li>DREF91 which stands for the Geodetic Datum adopted for Germany, and</li>
    4246   <li>'Custom' which allows a transformation of Broadcast Corrections from the IGS14 system to any other system through specifying up to 14 Helmert Transformation Parameters.</li>
    4247 </ul>
    4248 </p>
    4249 
    4250 <p>
    4251 Because a mathematically strict transformation to a regional reference system is not possible on the BNC server side when a scale factor is involved, the program follows an approximate solution. While <u>orbits</u> are transformed in full accordance with given equations, a transformed <u>clock</u> is derived through applying correction term
     4738BNC allows configuring several Broadcast Correction streams for upload, so that they may refer to different reference systems
     4739and different Ntrip Broadcasters. You may use this functionality for parallel support of a backup Ntrip Broadcaster or
     4740for simultaneous support of various regional reference systems. Available options for transforming orbit and clock corrections
     4741to specific target reference systems are
     4742</p>
     4743<table>
     4744  <tr><td>&nbsp;IGS20:     </td><td>&nbsp; &nbsp;Stands for the GNSS-based IGS realization of the International Terrestrial Reference Frame 2020 (ITRF2020)</td></tr>
     4745  <tr><td>&nbsp;ETRF2000:  </td><td>&nbsp; &nbsp;Stands for the European Terrestrial Reference Frame 2000 adopted by EUREF</td></tr>
     4746  <tr><td>&nbsp;GDA2020:   </td><td>&nbsp; &nbsp;Stands for the Geodetic Datum Australia 2020 as adopted for Australia</td></tr>
     4747  <tr><td>&nbsp;SIRGAS2000:</td><td>&nbsp; &nbsp;Stands for the Geodetic Datum adopted for Brazil</td></tr>
     4748  <tr><td>&nbsp;DREF91:    </td><td>&nbsp; &nbsp;Stands for the Geodetic Datum adopted for Germany</td></tr>
     4749  <tr><td>&nbsp;Custom:    </td><td>&nbsp; &nbsp;Allows a transformation of Broadcast Corrections from the IGS20 system to any other system through specifying
     4750                              up to 14 Helmert Transformation Parameters </td></tr>
     4751</table>
     4752<p>
     4753Because a mathematically strict transformation to a regional reference system is not possible on the BNC server side when a scale factor is involved,
     4754the program follows an approximate solution. While <u>orbits</u> are transformed in full accordance with given equations,
     4755a transformed <u>clock</u> is derived through applying correction term
    42524756</p>
    42534757<pre>
     
    42554759</pre>
    42564760<p>
    4257 where s is the transformation scale, c is the speed of light, and &rho; are the topocentric distance between an (approximate) center of the transformation's validity area and the satellite.
    4258 </p>
    4259 
    4260 <p>
    4261 From a theoretical point of view, this kind of approximation leads to inconsistencies between orbits and clocks and is therefore not allowed (Huisman et al. 2012). However, it has been proved that resulting errors in Precise Point Positioning are on millimeter level for horizontal components and below one centimeter for height components.
    4262 </p>
    4263 
    4264 <p>
    4265 <b>IGS14:</b> As the orbits and clocks coming from real-time GNSS engine are expected to be in the IGS14 system, no transformation is carried out if this option is selected.
    4266 </p>
    4267 
    4268 <p>
    4269 <b>ETRF2000:</b> The formulas for the transformation 'ITRF2008-&gt;ETRF2000' are taken from 'Claude Boucher and Zuheir Altamimi 2008: Specifications for reference frame fixing in the analysis of EUREF GPS campaign', see <u>http://etrs89.ensg.ign.fr/memo-V8.pdf</u>. The following 14 Helmert Transformation Parameters were introduced:
    4270 </p>
    4271 <p>
     4761where s is the transformation scale, c is the speed of light, and &rho;
     4762are the topocentric distance between an (approximate) center of the transformation's validity area and the satellite.
     4763</p>
     4764<p>
     4765From a theoretical point of view, this kind of approximation leads to inconsistencies between orbits and clocks
     4766and is therefore not allowed (Huisman et al. 2012). However, it has been proved that resulting errors in Precise Point Positioning
     4767are on millimeter level for horizontal components and below one centimeter for height components.
     4768</p>
     4769<p>
     4770<b>IGS20:</b> As the orbits and clocks coming from real-time GNSS engine are expected to be in the IGS20 system,
     4771no transformation is carried out if this option is selected.
     4772</p>
     4773<p>
     4774As long as no updated transformation parameters are available regarding IGS20,
     4775a transformation from 'ITRF2020-&gt;ITRF2014' is done in a fist step using the following
     477614 Helmert Transformation Parameters, which are available at
     4777<a href="https://itrf.ign.fr/en/solutions/transformations" target="_blank">https://itrf.ign.fr/en/solutions/transformations</a>
     4778</p>
     4779<pre><p style="font-family:Monospace">
     4780   dx  = -0.0014;
     4781   dy  = -0.0009;
     4782   dz  =  0.0014;
     4783
     4784   dxr =  0.0000;
     4785   dyr = -0.0001;
     4786   dzr = -0.0002;
     4787
     4788   ox  =  0.0;
     4789   oy  =  0.0;
     4790   oz  =  0.0;
     4791
     4792   oxr =  0.0;
     4793   oyr =  0.0;
     4794   ozr =  0.0;
     4795
     4796   sc  = -0.4200;
     4797   scr =  0.0;
     4798
     4799   t0  =  2015.0;
     4800</p></pre>
     4801where
    42724802<pre>
    4273 Translation in X at epoch To:  0.0521 m
    4274 Translation in Y at epoch To:  0.0493 m
    4275 Translation in Z at epoch To: -0.0585 m
    4276 Translation rate in X:  0.0001 m/y
    4277 Translation rate in Y:  0.0001 m/y
    4278 Translation rate in Z: -0.0018 m/y
    4279 Rotation in X at epoch To:  0.891 mas
    4280 Rotation in Y at epoch To:  5.390 mas
    4281 Rotation in Z at epoch To: -8.712 mas
    4282 Rotation rate in X:  0.081 mas/y
    4283 Rotation rate in Y:  0.490 mas/y
    4284 Rotation rate in Z: -0.792 mas/y
    4285 Scale at epoch To : 0.00000000134
    4286 Scale rate: 0.00000000008 /y
    4287 To: 2000.0
     4803<table>
     4804  <tr><td>&nbsp;dx  </td><td>&nbsp; &nbsp;Translation in X at epoch t0 [m]</td></tr>
     4805  <tr><td>&nbsp;dy  </td><td>&nbsp; &nbsp;Translation in Y at epoch t0 [m]</td></tr>
     4806  <tr><td>&nbsp;dz  </td><td>&nbsp; &nbsp;Translation in Z at epoch t0 [m]</td></tr>
     4807  <tr><td>&nbsp;dxr </td><td>&nbsp; &nbsp;Translation rate in X at epoch t0 [m/y]</td></tr>
     4808  <tr><td>&nbsp;dyr </td><td>&nbsp; &nbsp;Translation rate in Y at epoch t0 [m/y]</td></tr>
     4809  <tr><td>&nbsp;dzr </td><td>&nbsp; &nbsp;Translation rate in Z at epoch t0 [m/y]</td></tr>
     4810  <tr><td>&nbsp;oxr </td><td>&nbsp; &nbsp;Rotation in X at epoch t0 [mas]</td></tr>
     4811  <tr><td>&nbsp;oyr </td><td>&nbsp; &nbsp;Rotation in Y at epoch t0 [mas]</td></tr>
     4812  <tr><td>&nbsp;ozr </td><td>&nbsp; &nbsp;Rotation in Z at epoch t0 [mas]</td></tr>
     4813  <tr><td>&nbsp;sc  </td><td>&nbsp; &nbsp;Scale at epoch t0 [1e-9]       </td> </tr>
     4814  <tr><td>&nbsp;scr </td><td>&nbsp; &nbsp;Scale at epoch t0 [1e-9/y] </td> </tr>
     4815  <tr><td>&nbsp;t0  </td><td>&nbsp; &nbsp;Reference Epoch [y]</td></tr>
     4816</table>
    42884817</pre>
    4289 In order to perform a transformation 'ITRF2014-&gt;ETRF2000', a transformation from 'ITRF2014-&gt;ITRF2008' is done at first.
    4290 </p>
    4291 
    4292 <p>
    4293 <b>GDA2020:</b> The formulas for the transformation 'ITRF2014-&gt;GDA2020' were provided via personal communication from Ryan Ruddick: 'Geocentric Datum of Australia 2020, Interim Release Note Version 1.01, Intergovernmental Committee on Surveying and Mapping (ICSM), Permanent Committee on Geodesy (PCG), 03 March 2017'.
    4294 </p>
    4295 <p>
     4818<p>
     4819<b>ETRF2000:</b> The transformation Parameters from ITRF2014 to ETRF2000 are taken from the EUREF Technical Note 1
     4820'EUREF Technical Note 1: Relationship and Transformation between
     4821the International and the European Terrestrial Reference Systems', Zuheir Altamimi, June 28, 2018:
     4822<a href="http://etrs89.ensg.ign.fr/pub/EUREF-TN-1.pdf" target="_blank">http://etrs89.ensg.ign.fr/pub/EUREF-TN-1.pdf</a>:
     4823</p>
     4824<pre><p style="font-family:Monospace">
     4825    dx  =  0.0547;
     4826    dy  =  0.0522;
     4827    dz  = -0.0741;
     4828
     4829    dxr =  0.0001;
     4830    dyr =  0.0001;
     4831    dzr = -0.0019;
     4832
     4833    ox  =  0.001701;
     4834    oy  =  0.010290;
     4835    oz  = -0.016632;
     4836
     4837    oxr =  0.000081;
     4838    oyr =  0.000490;
     4839    ozr = -0.000729;
     4840
     4841    sc  =  2.12;
     4842    scr =  0.11;
     4843
     4844    t0  =  2010.0;
     4845</p></pre>
     4846<p>
     4847<b>GDA2020:</b> The parameters for the transformation 'ITRF2014-&gt;GDA2020' were provided by Ryan Ruddick (Geoscience Australia):
     4848via personal communication:
     4849</p>
     4850<pre><p style="font-family:Monospace">
     4851    dx  = 0.0;
     4852    dy  = 0.0;
     4853    dz  = 0.0;
     4854
     4855    dxr = 0.0;
     4856    dyr = 0.0;
     4857    dzr = 0.0;
     4858
     4859    ox  = 0.0;
     4860    oy  = 0.0;
     4861    oz  = 0.0;
     4862
     4863    oxr = 0.00150379;
     4864    oyr = 0.00118346;
     4865    ozr = 0.00120716;
     4866
     4867    sc  = 0.0;
     4868    scr = 0.0;
     4869
     4870    t0  = 2020.0;
     4871</p></pre>
     4872<p>
     4873<b>SIRGAS2000:</b> The parameters for the transformation 'IGb14-&gt;SIRGAS2000' were provided from Sonia Costa, BRA via personal communication:</u>.
     4874</p>
     4875<pre><p style="font-family:Monospace">
     4876    dx  = -0.0027;
     4877    dy  = -0.0025;
     4878    dz  = -0.0042;
     4879
     4880    dxr =  0.0;
     4881    dyr =  0.0;
     4882    dzr =  0.0;
     4883
     4884    ox  =  0.0;
     4885    oy  =  0.0;
     4886    oz  =  0.0;
     4887
     4888    oxr =  0.0;
     4889    oyr =  0.0;
     4890    ozr =  0.0;
     4891
     4892    sc  =  1.2;
     4893    scr =  0.0;
     4894
     4895    t0  =  2000.0;
     4896</p></pre>
     4897<p>
     4898<b>DREF91:</b> The parameters for the transformation 'IGb14-&gt;DREF91' were provided from Peter Franke, BKG, Germany
     4899  via personal communication:
     4900</p>
     4901<pre><p style="font-family:Monospace">
     4902    dx  =  0.0547;
     4903    dy  =  0.0522;
     4904    dz  = -0.0741;
     4905
     4906    dxr =  0.0001;
     4907    dyr =  0.0001;
     4908    dzr = -0.0019;
     4909
     4910    // ERTF200  + rotation parameters (ETRF2000 => DREF91)
     4911    ox  =  0.001701 + 0.000658;
     4912    oy  =  0.010290 - 0.000208;
     4913    oz  = -0.016632 + 0.000755;
     4914
     4915    oxr =  0.000081;
     4916    oyr =  0.000490;
     4917    ozr = -0.000729;
     4918
     4919    sc  =  2.12;
     4920    scr =  0.11;
     4921
     4922    t0  =  2010.0;
     4923</p></pre>
     4924<p>
     4925<b>Custom:</b> Feel free to specify your own 14 Helmert Transformation parameters for transformations from IGS20/ITRF2020 into your own target system.
     4926</p>
     4927<p><img src="IMG/Figure30.png"width=700/></p>
     4928<p>Figure 30: Setting BNC's Custom Transformation Parameters window</p>
     4929
     4930<p><h4 id="upformat">2.15.4 Format - mandatory if 'Host' is set</h4></p>
     4931<p>
     4932BNC may upload the Broadcast Correction streams using different Formats. Supported are:
     4933<p>
     4934<ul>
     4935  <li>IGS-SSR which was developed within the IGS Real-Time Working Group (<a href="https://files.igs.org/pub/data/format/igs_ssr_v1.pdf" target="_blank">https://files.igs.org/pub/data/format/igs_ssr_v1.pdf</a>), and</li>
     4936  <li>RTCM-SSR which stands for the standardized and proposed SSR Messages which are developed within the RTCM SC-104 Working Group 'State Space Representation' (<a href="https://rtcm.myshopify.com/collections/differential-global-navigation-satellite-dgnss-standards" target="_blank">https://rtcm.myshopify.com/collections/differential-global-navigation-satellite-dgnss-standards</a>).</li>
     4937</ul>
     4938</p>
     4939<p><h4 id="upcom">2.15.5 Center of Mass - optional</h4></p>
     4940<p>
     4941BNC allows to either refer Broadcast Corrections to the satellite's Center of Mass (CoM) or to the satellite's Antenna Phase Center (APC).
     4942By default, corrections refer to APC. Tick 'Center of Mass' to refer uploaded corrections to CoM.
     4943</p>
     4944<p><h4 id="upsp3">2.15.6  SP3 File - optional</h4></p>
     4945<p>
     4946Specify a path for saving the generated orbit corrections as SP3 orbit files
     4947(<a href="http://epncb.eu/ftp/data/format/sp3d.pdf" target="_blank">http://epncb.eu/ftp/data/format/sp3d.pdf</a>).
     4948The following is a path example for a Linux system:
    42964949<pre>
    4297 Translation in X at epoch To: 0.0 m
    4298 Translation in Y at epoch To: 0.0 m
    4299 Translation in Z at epoch To: 0.0 m
    4300 Translation rate in X:  0.0 m/y
    4301 Translation rate in Y:  0.0 m/y
    4302 Translation rate in Z:  0.0 m/y
    4303 Rotation in X at epoch To: 0.0 mas
    4304 Rotation in Y at epoch To: 0.0 mas
    4305 Rotation in Z at epoch To: 0.0 mas
    4306 Rotation rate in X: 1.50379 mas/y
    4307 Rotation rate in Y: 1.18346 mas/y
    4308 Rotation rate in Z: 1.20716 mas/y
    4309 Scale at epoch To : 0.0
    4310 Scale rate: 0.0/y
    4311 To: 2020.0
     4950   /home/user/BKG0MGXRTS${V3PROD}.sp3
    43124951</pre>
    4313 </p>
    4314 
    4315 <p>
    4316 <b>SIRGAS2000:</b> The formulas for the transformation 'IGb14-&gt;SIRGAS2000' were provided via personal communication from CGED-Coordenacao de Geodesia, IBGE/DGC - Diretoria de Geociencias, Brazil.</u>.
    4317 </p>
    4318 <p>
     4952If the specified directory does not exist, BNC will not create SP3 orbit files.
     4953</p>
     4954<p>
     4955For file naming, BNC follows the new format convention according to IGS products
     4956<a href="http://acc.igs.org/repro3/Long_Product_Filenames_v1.0.pdf" target="_blank">http://acc.igs.org/repro3/Long_Product_Filenames_v1.0.pdf</a>:
     4957</p>
    43194958<pre>
    4320 Translation in X at epoch To:  0.0026 m
    4321 Translation in Y at epoch To:  0.0018 m
    4322 Translation in Z at epoch To: -0.0061 m
    4323 Translation rate in X:  0.0000 m/y
    4324 Translation rate in Y:  0.0000 m/y
    4325 Translation rate in Z:  0.0000 m/y
    4326 Rotation in X at epoch To: 0.0000 mas
    4327 Rotation in Y at epoch To: 0.0000 mas
    4328 Rotation in Z at epoch To: 0.0000 mas
    4329 Rotation rate in X:  0.000 mas/y
    4330 Rotation rate in Y:  0.000 mas/y
    4331 Rotation rate in Z:  0.000 mas/y
    4332 Scale at epoch To :  0.000
    4333 Scale rate: 0.000000000000 /y
    4334 To: 20000.4
     4959  AAAVPPPTTT_YYYYDDDHHMM_LEN_SMP_CNT.FMT
    43354960</pre>
    4336 </p>
    4337 
    4338 <p>
    4339 <b>DREF91:</b> 'Referenzkoordinaten fuer SAPOS, Empfehlungen der Projektgruppe SAPOS-Koordinatenmonitoring 2008', Personal communication with Peter Franke, BKG, Germany. The following 14 Helmert Transformation Parameters were introduced:
    4340 </p>
    4341 <p>
     4961With
     4962<p>
     4963<table>
     4964  <tr><td>&nbsp; AAA        </td><td>&nbsp; &nbsp; Analysis Center abbrevaition, here BKG</td></tr>
     4965  <tr><td>&nbsp; V          </td><td>&nbsp; &nbsp; Version / Solution identifier (0-9), here 0</td></tr>
     4966  <tr><td>&nbsp; PPP        </td><td>&nbsp; &nbsp; Project/Campaign identification, here Multi-GNSS product (MGX)</td></tr>
     4967  <tr><td>&nbsp; TTT        </td><td>&nbsp; &nbsp; Solution Type, here real-time streamed product (RTS)</td></tr>
     4968  <tr><td>&nbsp; YYYYDOYHHMM</td><td>&nbsp; &nbsp; String representing beginning time of nominal data interval</td></tr>
     4969  <tr><td>&nbsp; LEN        </td><td>&nbsp; &nbsp; Intended product period of the file </td></tr>
     4970  <tr><td>&nbsp; SMP        </td><td>&nbsp; &nbsp; Data sampling rate</td></tr>
     4971  <tr><td>&nbsp; CNT        </td><td>&nbsp; &nbsp; Content type ORB</td></tr>
     4972  <tr><td>&nbsp; FMT        </td><td>&nbsp; &nbsp; File format, here sp3</td></tr>
     4973</table>
     4974</p>
     4975<p>
     4976Note that '${V3PROD}' produces the part 'YYYYDDDHHMM_LEN_SMP_CNT' of the filename according the 'Upload Corrections' setup.
     4977</p>
     4978A result for examle is:
    43424979<pre>
    4343 Translation in X at epoch To: -0.0118 m
    4344 Translation in Y at epoch To:  0.1432 m
    4345 Translation in Z at epoch To: -0.1117 m
    4346 Translation rate in X:  0.0001 m/y
    4347 Translation rate in Y:  0.0001 m/y
    4348 Translation rate in Z: -0.0018 m/y
    4349 Rotation in X at epoch To:   3.291 mas
    4350 Rotation in Y at epoch To:   6.190 mas
    4351 Rotation in Z at epoch To: -11.012 mas
    4352 Rotation rate in X:  0.081 mas/y
    4353 Rotation rate in Y:  0.490 mas/y
    4354 Rotation rate in Z: -0.792 mas/y
    4355 Scale at epoch To : 0.00000001224
    4356 Scale rate: 0.00000000008 /y
    4357 To: 2000.0
     4980  BKG0MGXRTS_20223330000_01D_01M_ORB.sp3
    43584981</pre>
    4359 In order to perform a transformation 'ITRF2014-&gt;DREF91', a transformation from 'ITRF2014-&gt;ITRF2008' is done at first.
    4360 </p>
    4361 
    4362 <p>
    4363 <b>Custom:</b> Feel free to specify your own 14 Helmert Transformation parameters for transformations from IGS14/ITRF2014 into your own target system.
    4364 </p>
    4365 
    4366 <p><img src="IMG/screenshot38.png"/></p>
    4367 <p>Figure 30: Setting BNC's Custom Transformation Parameters window, example for 'ITRF2014->GDA94'</p>
    4368 
    4369 <p><h4 id="upformat">2.15.4 Format - mandatory if 'Host' is set</h4></p>
    4370 <p>
    4371 BNC may upload the Broadcast Correction streams using different Formats. Supported are:
    4372 <p>
    4373 <ul>
    4374   <li>IGS-SSR which was developed within the IGS Real-Time Working Group, and</li>
    4375   <li>RTCM-SSR which stands for the standardized and proposed SSR Messages which are developed within the RTCM SC-104 Working Group State Space Representation.</li>
    4376 </ul>
    4377 </p>
    4378 
    4379 <p><h4 id="upcom">2.15.5 Center of Mass - optional</h4></p>
    4380 <p>
    4381 BNC allows to either refer Broadcast Corrections to the satellite's Center of Mass (CoM) or to the satellite's Antenna Phase Center (APC). By default, corrections refer to APC. Tick 'Center of Mass' to refer uploaded corrections to CoM.
    4382 </p>
    4383 
    4384 <p><h4 id="upsp3">2.15.6  SP3 File - optional</h4></p>
    4385 <p>Specify a path for saving the generated orbit corrections as SP3 orbit files. If the specified directory does not exist, BNC will not create SP3 orbit files. The following is a path example for a Linux system:
    4386 
     4982<p>
     4983Default is an empty option field, meaning that you do not want BNC to save the uploaded stream content in daily SP3 files.
     4984</p>
     4985<p>
     4986As a SP3 file content should be referred to the satellites' Center of Mass (CoM) while Broadcast Corrections are referred to the satellites' APC,
     4987an offset has to be applied which is available from an IGS ANTEX file (see option 'ANTEX File' below).
     4988Hence, you should specify the 'ANTEX File' path there if you want to save the stream content in SP3 format.
     4989If you do not specify an 'ANTEX File' path, the SP3 file content will be referred to the satellites APCs.
     4990</p>
     4991<p>
     4992 Note that clocks in the SP3 orbit files are not corrected for the conventional periodic relativistic effect.
     4993</p>
     4994<p>
     4995In case the 'Combine Corrections' table contains only one Broadcast Correction stream, BNC will merge that stream with Broadcast Ephemeris
     4996to save results in files specified here through SP3 and/or Clock RINEX file path. In such a case you have to define only the SP3 and
     4997Clock RINEX file path and no further option in the 'Upload Corrections' table.
     4998</p>
     4999<p>
     5000Note that BNC outputs a complete list of SP3 'Epoch Header Records', even if no 'Position and Clock Records' are available for certain epochs
     5001because of stream outages. Note further that the 'Number of Epochs' in the first SP3 header record may not be correct because that number
     5002is not available when the file is created. Depending on your processing software (e.g. Bernese GNSS Software, BSW) it could therefore be necessary
     5003to correct an incorrect 'Number of Epochs' in the file before you use it in post processing.
     5004</p>
     5005
     5006<p><h4 id="uprinex">2.15.7 RNX File - optional</h4></p>
     5007<p>
     5008The clock corrections generated by BNC for upload can be logged in Clock RINEX format
     5009<a href="https://files.igs.org/pub/data/format/rinex_clock304.txt" target="_blank">https://files.igs.org/pub/data/format/rinex_clock304.txt</a>:.
     5010</p>
     5011<p>
     5012Specify a path for saving the generated clock corrections as Clock RINEX files. The following is a path example for a Linux system:
    43875013<pre>
    4388    /home/user/BNCOUTPUT${V3PROD}.sp3
     5014   /home/user/BKG0MGXRTS${V3PROD}.clk
    43895015</pre>
    4390 Note that '${V3PROD}' produces the time stamp in the filename, which is related to the RINEX version 3 filename concept.
    4391 </p>
    4392 <p>
    4393 Default is an empty option field, meaning that you do not want BNC to save the uploaded stream content in daily SP3 files.
    4394 </p>
    4395 
    4396 <p>
    4397 As a SP3 file content should be referred to the satellites' Center of Mass (CoM) while Broadcast Corrections are referred to the satellites' APC, an offset has to be applied which is available from an IGS ANTEX file (see option 'ANTEX File' below). Hence, you should specify the 'ANTEX File' path there if you want to save the stream content in SP3 format. If you do not specify an 'ANTEX File' path, the SP3 file content will be referred to the satellites APCs.
    4398 </p>
    4399 
    4400 <p>
    4401 The filenames for the daily SP3 files follow the convention for SP3 filenames. The first three characters of each filename are set to 'BNC'. Note that clocks in the SP3 orbit files are not corrected for the conventional periodic relativistic effect.
    4402 </p>
    4403 
    4404 <p>
    4405 In case the 'Combine Corrections' table contains only one Broadcast Correction stream, BNC will merge that stream with Broadcast Ephemeris to save results in files specified here through SP3 and/or Clock RINEX file path. In such a case you have to define only the SP3 and Clock RINEX file path and no further option in the 'Upload Corrections' table.
    4406 </p>
    4407 
    4408 <p>
    4409 Note that BNC outputs a complete list of SP3 'Epoch Header Records', even if no 'Position and Clock Records' are available for certain epochs because of stream outages. Note further that the 'Number of Epochs' in the first SP3 header record may not be correct because that number is not available when the file is created. Depending on your processing software (e.g. Bernese GNSS Software, BSW) it could therefore be necessary to correct an incorrect 'Number of Epochs' in the file before you use it in post processing.
    4410 </p>
    4411 
    4412 <p><h4 id="uprinex">2.15.7 RNX File - optional</h4></p>
    4413 <p>
    4414 The clock corrections generated by BNC for upload can be logged in Clock RINEX format. The file naming follows the RINEX convention.
    4415 </p>
    4416 <p>
    4417 Specify a path for saving the generated clock corrections as Clock RINEX files. If the specified directory does not exist, BNC will not create Clock RINEX files. The following is a path example for a Linux system:
     5016If the specified directory does not exist, BNC will not create Clock RINEX files.
     5017</p>
     5018<p>
     5019For file naming, BNC follows the new format convention according to IGS products
     5020<a href="http://acc.igs.org/repro3/Long_Product_Filenames_v1.0.pdf" target="_blank">http://acc.igs.org/repro3/Long_Product_Filenames_v1.0.pdf</a>:
     5021</p>
    44185022<pre>
    4419    /home/user/BNCOUTPUT${V3PROD}.clk
     5023  AAAVPPPTTT_YYYYDDDHHMM_LEN_SMP_CNT.FMT
    44205024</pre>
    4421 Note that '${V3PROD}' produces the time stamp in the filename, which is related to the RINEX version 3 filename concept.
    4422 </p>
    4423 
     5025With
     5026<p>
     5027<table>
     5028  <tr><td>&nbsp; AAA        </td><td>&nbsp; &nbsp; Analysis Center abbrevaition, here BKG</td></tr>
     5029  <tr><td>&nbsp; V          </td><td>&nbsp; &nbsp; Version / Solution identifier (0-9), here 0</td></tr>
     5030  <tr><td>&nbsp; PPP        </td><td>&nbsp; &nbsp; Project/Campaign identification, here Multi-GNSS product (MGX)</td></tr>
     5031  <tr><td>&nbsp; TTT        </td><td>&nbsp; &nbsp; Solution Type, here real-time streamed product (RTS)</td></tr>
     5032  <tr><td>&nbsp; YYYYDOYHHMM</td><td>&nbsp; &nbsp; String representing beginning time of nominal data interval</td></tr>
     5033  <tr><td>&nbsp; LEN        </td><td>&nbsp; &nbsp; Intended product period of the file </td></tr>
     5034  <tr><td>&nbsp; SMP        </td><td>&nbsp; &nbsp; Data sampling rate</td></tr>
     5035  <tr><td>&nbsp; CNT        </td><td>&nbsp; &nbsp; Content type CLK</td></tr>
     5036  <tr><td>&nbsp; FMT        </td><td>&nbsp; &nbsp; File format, here clk</td></tr>
     5037</table>
     5038</p>
     5039<p>
     5040Note that '${V3PROD}' produces the part 'YYYYDDDHHMM_LEN_SMP_CNT' of the filename according the 'Upload Corrections' setup.
     5041</p>
     5042A result for examle is:
     5043<pre>
     5044  BKG0MGXRTS_20223330000_01D_05S_CLK.clk
     5045</pre>
     5046<p>
     5047Default is an empty option field, meaning that you do not want BNC to save the uploaded stream content in daily Clock RINEX files.
     5048</p>
    44245049<p>
    44255050Note further that clocks in the Clock RINEX files are not corrected for the conventional periodic relativistic effect.
    44265051</p>
    4427 
    4428 <p><h4 id="pidsidiod">2.15.8 PID, SID, IOD - optional</h4></p>
    4429 <p>
    4430 When applying Broadcast Ephemeris corrections in a PPP algorithm or in a combination of several correction streams, it is important for the client software to receive information on the continuity of discontinuity of the stream contents. Here you can specify three ID's to describe the contents of your Broadcast Ephemeris correction stream when it is uploaded.
    4431 <ul>
    4432   <li>A 'SSR Provider ID' is issued by RTCM SC-104 on request to identify a SSR service (see e.g. <u>http://software.rtcm-ntrip.org/wiki/SSRProvider</u>). This ID is globally unique. Values vary in the range of 0-65535. Values in the range of 0-255 are reserved for experimental services.</li>
    4433   <li>A provider may generate several Broadcast Ephemeris correction streams with different contents. The 'SSR Solution ID' indicates different SSR services of one SSR provider. Values vary in the range of 0-15.</li>
    4434   <li>A change of the 'IOD SSR' is used to indicate a change in the SSR generating configuration which may be relevant for the rover. Values vary in the range of 0-15.</li>
    4435 </ul>
    4436 </p>
    4437 
    4438 <p><h4 id="upinter">2.15.9 Interval - mandatory if 'Upload Table' entries specified</h4></p>
    4439 <p>
    4440 Select the length of Clock RINEX files and SP3 Orbit files. The default value is 1 day.
    4441 </p>
    4442 
    4443 <p><h4 id="upclksmpl">2.15.10 Sampling</h4></p>
    4444 <p>BNC requires an orbit corrections sampling interval for the stream to be uploaded and sampling intervals for SP3 and Clock RINEX files. The outgoing stream's clock correction sampling interval follows that of incoming corrections and is therefore nothing to be specified here.</p>
    4445 
    4446 <p><h4 id="upclkorb">2.15.10.1 Orbits (Orb) - mandatory if 'Upload Table' entries specified</h4></p>
    4447 <p>Select the stream's orbit correction sampling interval in seconds. A value of 60 sec may be appropriate.</p>
    4448 <p> A value of zero '0' tells BNC to upload all orbit correction samples coming in from the real-time GNSS engine along with the clock correction samples to produce combined orbit and clock corrections to Broadcast Ephemeris (1060 for GPS, 1066 for GLONASS).
     5052<p><h4 id="upsinex">2.15.8 BSX File - optional</h4></p>
     5053<p>
     5054The satellite biases generated by BNC for upload can be logged in SINEX Bias format
     5055<a href="https://files.igs.org/pub/data/format/sinex_bias_100.pdf" target="_blank">https://files.igs.org/pub/data/format/sinex_bias_100.pdf</a>:.
     5056</p>
     5057<p>
     5058Specify a path for saving the generated clock corrections as Clock RINEX files. The following is a path example for a Linux system:
     5059<pre>
     5060   /home/user/BKG0MGXRTS${V3PROD}.bia
     5061</pre>
     5062If the specified directory does not exist, BNC will not create SINEX Bias files.
     5063</p>
     5064<p>
     5065For file naming, BNC follows the new format convention according to IGS products
     5066<a href="http://acc.igs.org/repro3/Long_Product_Filenames_v1.0.pdf" target="_blank">http://acc.igs.org/repro3/Long_Product_Filenames_v1.0.pdf</a>:
     5067</p>
     5068<pre>
     5069  AAAVPPPTTT_YYYYDDDHHMM_LEN_SMP_CNT.FMT
     5070</pre>
     5071With
     5072<p>
     5073<table>
     5074  <tr><td>&nbsp; AAA        </td><td>&nbsp; &nbsp; Analysis Center abbrevaition, here BKG</td></tr>
     5075  <tr><td>&nbsp; V          </td><td>&nbsp; &nbsp; Version / Solution identifier (0-9), here 0</td></tr>
     5076  <tr><td>&nbsp; PPP        </td><td>&nbsp; &nbsp; Project/Campaign identification, here Multi-GNSS product (MGX)</td></tr>
     5077  <tr><td>&nbsp; TTT        </td><td>&nbsp; &nbsp; Solution Type, here real-time streamed product (RTS)</td></tr>
     5078  <tr><td>&nbsp; YYYYDOYHHMM</td><td>&nbsp; &nbsp; String representing beginning time of nominal data interval</td></tr>
     5079  <tr><td>&nbsp; LEN        </td><td>&nbsp; &nbsp; Intended product period of the file </td></tr>
     5080  <tr><td>&nbsp; SMP        </td><td>&nbsp; &nbsp; Data sampling rate</td></tr>
     5081  <tr><td>&nbsp; CNT        </td><td>&nbsp; &nbsp; Content type, here absolute bias information (ABS)</td></tr>
     5082  <tr><td>&nbsp; FMT        </td><td>&nbsp; &nbsp; File format, here bia</td></tr>
     5083</table>
     5084</p>
     5085<p>
     5086Note that '${V3PROD}' produces the part 'YYYYDDDHHMM_LEN_SMP_CNT' of the filename according the 'Upload Corrections' setup.
     5087</p>
     5088A result for examle is:
     5089<pre>
     5090  BKG0MGXRTS_20223330000_01D_05S_ABS.bia
     5091</pre>
     5092<p>
     5093Default is an empty option field, meaning that you do not want BNC to save the uploaded stream content in daily Clock RINEX files.
     5094</p>
     5095
     5096<p><h4 id="pidsidiod">2.15.9 PID, SID, IOD - optional</h4></p>
     5097<p>
     5098When applying Broadcast Ephemeris corrections in a PPP algorithm or in a combination of several correction streams,
     5099it is important for the client software to receive information on the continuity of discontinuity of the stream contents.
     5100Here you can specify three ID's to describe the contents of your Broadcast Ephemeris correction stream when it is uploaded.
     5101<ul>
     5102  <li>A 'SSR Provider ID' is issued by RTCM SC-104 on request to identify a SSR service
     5103      (see e.g.<a href="https://software.rtcm-ntrip.org/wiki/SSRProvider" target="_blank">https://software.rtcm-ntrip.org/wiki/SSRProvider</a>)
     5104      This ID is globally unique. Values vary in the range of 0-65535. Values in the range of 0-255 are reserved for experimental services.</li>
     5105  <li>A provider may generate several Broadcast Ephemeris correction streams with different contents. The 'SSR Solution ID' indicates different
     5106      SSR services of one SSR provider. Values vary in the range of 0-15.</li>
     5107  <li>A change of the 'IOD SSR' is used to indicate a change in the SSR generating configuration which may be relevant for the rover.
     5108      Values vary in the range of 0-15.</li>
     5109</ul>
     5110</p>
     5111
     5112<p><h4 id="upinter">2.15.10 Interval - mandatory if 'Upload Table' entries specified</h4></p>
     5113<p>
     5114Select the length of SP3 Orbit files, Clock RINEX files and SINAX Bias files. The default value is 1 day.
     5115</p>
     5116
     5117<p><h4 id="upclksmpl">2.15.11 Sampling</h4></p>
     5118<p>
     5119BNC requires an orbit corrections sampling interval for the stream to be uploaded and sampling intervals for SP3, Clock RINEX, and SINEX Bias files.
     5120The outgoing stream's clock correction sampling interval follows that of incoming corrections and is therefore nothing to be specified here.</p>
     5121
     5122<p><h4 id="upclkorb">2.15.11.1 Orbits (Orb) - mandatory if 'Upload Table' entries specified</h4></p>
     5123<p>
     5124Select the stream's orbit correction sampling interval in seconds. A value of 60 sec may be appropriate.
     5125</p>
     5126<p>
     5127A value of zero '0' tells BNC to upload all orbit correction samples coming in from the real-time GNSS engine along
     5128with the clock correction samples to produce combined orbit and clock corrections to Broadcast Ephemeris; for example message type 1060 for GPS.
    44495129</p>
    44505130<p>
    44515131Configuration examples:
    44525132</p>
    4453 Let us suppose a real-time network engine supporting BNC every <b>5 sec</b> with GPS Broadcast Corrections for orbits, clocks and code biases in 'RTNET' stream format.
     5133Let us suppose a real-time network engine supporting BNC every <b>5 sec</b> with GPS Broadcast Corrections for orbits, clocks and code biases
     5134in 'RTNET' stream format.
    44545135<ul>
    44555136  <li>With 'Sampling Orb' set to '0'  BNC will produce</li>
     
    44695150  <ul>
    44705151    <li>Every 10 sec a 1057 message for GPS orbit corrections to Broadcast Ephemeris,</li>
    4471     <li>Every 5 sec a 1058 message for GPS clock corrections to Broadcast Ephemeris,</li>
    4472     <li>Every 5 sec a 1059 message for GPS code biases.</li>
     5152    <li>Every  5 sec a 1058 message for GPS clock corrections to Broadcast Ephemeris,</li>
     5153    <li>Every 10 sec a 1059 message for GPS code biases.</li>
    44735154  </ul>
    44745155</ul>
    4475 <br>
    4476 Note that only when specifying a value of zero '0' (default) for 'Sampling Orb', BNC produces <b>combined</b> orbit and clock correction messages.
    4477 <p><h4 id="upclksp3">2.15.10.2 SP3 - mandatory if 'SP3 File' is specified</h4></p>
    4478 <p>Select the SP3 orbit file sampling interval in minutes. A value of 15 min may be appropriate. A value of zero '0' tells BNC to store all available samples into SP3 orbit files.</p>
    4479 
    4480 <p><h4 id="upclkrnx">2.15.10.3 RINEX (RNX) - mandatory if 'RNX File' is specified</h4></p>
    4481 <p>Select the Clock RINEX file sampling interval in seconds. A value of 10 sec may be appropriate. A value of zero '0' tells BNC to store all available samples into Clock RINEX files.</p>
     5156</p>
     5157<p>
     5158Note that only when specifying a value of zero '0' (default) for 'Sampling Orb', BNC produces <b>combined</b>
     5159orbit and clock correction messages.
     5160</p>
     5161
     5162<p><h4 id="upclksp3">2.15.11.2 SP3 - mandatory if 'SP3 File' is specified</h4></p>
     5163<p>
     5164Select the SP3 orbit file sampling interval in minutes.
     5165A value of 15 min may be appropriate.
     5166A value of zero '0' tells BNC to store all available samples into SP3 orbit files.
     5167</p>
     5168
     5169<p><h4 id="upclkrnx">2.15.11.3 RINEX (RNX) - mandatory if 'RNX File' is specified</h4></p>
     5170<p>
     5171Select the Clock RINEX file sampling interval in seconds.
     5172A value of 10 sec may be appropriate.
     5173A value of zero '0' tells BNC to store all available samples into Clock RINEX files.
     5174</p>
     5175
     5176<p><h4 id="upbiassnx">2.15.11.4 SINEX (BSX) - mandatory if 'BSX File' is specified</h4></p>
     5177<p>
     5178Select the SINEX Bias file sampling interval in seconds.
     5179A value of 10 sec may be appropriate.
     5180A value of zero '0' tells BNC to store all available samples into SINEX Bias files.
     5181</p>
    44825182
    44835183<p><h4 id="upcustom">2.15.11 Custom Trafo - optional if 'Upload Table' entries specified</h4></p>
    4484 <p>Hit 'Custom Trafo' to specify your own 14 parameter Helmert Transformation instead of selecting a predefined transformation through 'System' button.</p>
     5184<p>
     5185Hit 'Custom Trafo' to specify your own 14 parameter Helmert Transformation instead of selecting a predefined transformation
     5186through 'System' button.
     5187.</p>
    44855188
    44865189<p><h4 id="upantex">2.15.12 ANTEX File - mandatory if 'SP3 File' is specified</h4></p>
    44875190<p>
    4488 IGS provides a file containing absolute phase center variations for GNSS satellite and receiver antennas in ANTEX format. Entering the full path to such an ANTEX file is required here for referring the SP3 file content to the satellite's Center of Mass (CoM). If you do not specify an ANTEX file, the SP3 file will contain orbit information which is referred to Antenna Phase Center (APC) instead of CoM.
    4489 </p>
    4490 <p>
    4491 The following screenshot shows the encoding and uploading of a stream of precise orbits and clocks coming from a real-time network engine in 'RTNET' ASCII format. The stream is uploaded to Ntrip Broadcaster 'products.igs-ip.net'. It is referred to APC and IGS14. Uploaded data are locally saved in SP3 and Clock RINEX format. The SSR Provider ID is set to 3. The SSR Solution ID and the Issue of Data SSR are set to 1. Required Broadcast Ephemeris are received via stream 'RTCM3EPH'.
    4492 </p>
    4493 <p><img src="IMG/screenshot26.png"/></p>
    4494 <p>Figure 31: BNC producing Broadcast Corrections from incoming precise orbits and clocks and uploading them to an Ntrip Broadcaster</p>
    4495 <p>
    4496 The following screenshot shows the encoding and uploading of several Broadcast Ephemeris correction streams combined from streams CLK11, CLK21, CLK80, and CLK91. Combined streams are uploaded to different Ntrip Broadcasters and referred to different reference systems. One of the uploaded streams is locally saved in SP3 and Clock RINEX format. Different SSR Provider IDs, SSR Solution IDs and Issue of Data IDs are specified. Required Broadcast Ephemeris are received via stream 'RTCM3EPH'.
    4497 </p>
    4498 <p><img src="IMG/screenshot21.png"/></p>
    4499 <p>Figure 32: BNC uploading a combined Broadcast Correction stream</p>
     5191IGS provides a file containing absolute phase center offsets and variations for GNSS satellite and receiver antennas in ANTEX format.
     5192Entering the full path to such an ANTEX file is required here for referring the SP3 file content to the satellite's Center of Mass (CoM).
     5193If you do not specify an ANTEX file, the SP3 file will contain orbit information which is referred to Antenna Phase Center (APC) instead of CoM.
     5194</p>
     5195<p>
     5196The following screenshot shows the encoding and uploading of several Broadcast Ephemeris correction streams combined from different AC streams.
     5197Combined streams using different SSR formats are uploaded to different Ntrip Broadcasters and referred to different reference systems.
     5198Different SSR Provider IDs, SSR Solution IDs and Issue of Data IDs are specified. Required Broadcast Ephemeris are received via stream 'BCEP00BKG0'.
     5199</p>
     5200<p><img src="IMG/Figure31.png"width=1000/></p>
     5201<p>Figure 31: BNC uploading a combined Broadcast Correction stream</p>
    45005202<p></p>
    45015203
    45025204<p><h4 id="upeph">2.16 Upload Ephemeris</h4></p>
    45035205<p>
    4504 BNC can generate streams carrying only Broadcast Ephemeris in RTCM Version 3 format and upload them to an Ntrip Broadcaster. The satellite system(s) that shall be part of the uploaded stream can be specified using the 'System' parameter. This can be done:
     5206BNC can generate streams carrying only Broadcast Ephemeris in RTCM Version 3 format and upload them to an Ntrip Broadcaster. The satellite system(s)
     5207that shall be part of the uploaded stream can be specified using the 'System' parameter. This can be done:
    45055208<ul>
    45065209<li>for an individual satellite system, specifying e.g. 'G' for GPS or 'E' for Galileo, etc. or </li>
     
    45105213</p>
    45115214<p>
    4512 Note that Broadcast Ephemeris received in real-time have a system specific period of validity in BNC, which is defined in accordance with the update rates and validity intervals of the navigation messages.
    4513 <ul>
    4514 <li>GPS ephemeris will be interpreted as outdated and ignored when older than 4 hours.</li>
    4515 <li>GLONASS ephemeris will be interpreted as outdated and ignored when older than 1 hours.</li>
    4516 <li>Galileo ephemeris will be interpreted as outdated and ignored when older than 4 hours.</li>
    4517 <li>BDS ephemeris will be interpreted as outdated and ignored when older than 1 hours.</li>
    4518 <li>SBAS ephemeris will be interpreted as outdated and ignored when older than 10 minutes.</li>
    4519 <li>QZSS ephemeris will be interpreted as outdated and ignored when older than 2 hours.</li>
    4520 <li>IRNSS ephemeris will be interpreted as outdated and ignored when older than 24 hours.</li>
     5215Note that Broadcast Ephemeris received in real-time have a system specific period of validity in BNC,
     5216which is defined in accordance with the update rates and validity intervals of the navigation messages.
     5217For this, the time difference dt of Time of Clock (TOC) with respect the current time is determined:
     5218</p>
     5219<pre>
     5220   dt = currentTime - TOC [sec]
     5221</pre>
     5222<p>
     5223Hence,
     5224<ul>
     5225<li>GPS ephemeris will be interpreted as outdated and ignored when dt > 14400.0 or dt < -7200.0.</li>
     5226<li>GLONASS ephemeris will be interpreted as outdated and ignored when dt >  3900.0 or dt < -2100.0.</li>
     5227<li>Galileo ephemeris will be interpreted as outdated and ignored when dt > 14400.0 or dt < 0.0.</li>
     5228<li>BDS ephemeris will be interpreted as outdated and ignored when dt > 3900.0 or dt < 0.0.</li>
     5229<li>SBAS ephemeris will be interpreted as outdated and ignored when dt > 600.0 or dt < -600.0.</li>
     5230<li>QZSS ephemeris will be interpreted as outdated and ignored when dt > 7200.0 or dt < -3600.0.</li>
     5231<li>IRNSS ephemeris will be interpreted as outdated and ignored when fabs(dt > 86400.0).</li>
    45215232</ul>
    45225233A note 'OUTDATED EPHEMERIS' will be given in the logfile and the data will be disregarded when necessary.
    45235234</p>
    4524 
    4525 <p>
    4526 Furthermore, received Broadcast Ephemeris parameters pass through a plausibility check in BNC which allows to ignore incorrect ephemeris data when necessary, leaving a note 'WRONG EPHEMERIS' in the logfile.
     5235<p>
     5236Furthermore, received Broadcast Ephemeris parameters pass through a plausibility check in BNC which allows to ignore
     5237incorrect ephemeris data when necessary, leaving a note 'WRONG EPHEMERIS' in the logfile.
    45275238Unhealthy Broadcast Ephemeris will not be excluded. A note 'UNHEALTHY EPHEMERIS' will be added in the logfile.
    45285239</p>
    4529 
    45305240<p><h4 id="brdcserver">2.16.1 Host &amp; Port - optional</h4></p>
    45315241<p>
    4532 Specify the 'Host' IP number or URL of an Ntrip Broadcaster to upload the stream. An empty option field means that you do not want to upload Broadcast Ephemeris.
    4533 </p>
    4534 <p>
    4535 Enter the Ntrip Broadcaster's IP 'Port' number for stream upload. Note that Ntrip Broadcasters are often configured to provide access through more than one port, usually ports 80 and 2101. If you experience communication problems on port 80, you should try to use the alternative port(s).
    4536 </p>
    4537 
    4538 <p><h4 id="brdcmount">2.16.2 Mountpoint, User, Password - mandatory if 'Host' is set</h4></p>
    4539 <p>
    4540 BNC uploads a stream to the Ntrip Broadcaster by referring it to a dedicated mountpoint that has been set by its operator. Specify the mountpoint based on the details you received for your stream from the operator. It is often a 9-character ID (capital letters) plus an integer number.</p>
    4541 <p>For stream upload the Ntrip Version can be chosen. An Ntrip version 1 upload is protected through an upload 'Password' only. For an Ntrip Version 2 upload an upload 'User' is required in addition. Enter the user name and the password you received from the Ntrip Broadcaster operator along with the mountpoint.</p>
    4542 </p>
    4543 
     5242Specify the 'Host' IP number or URL of an Ntrip Broadcaster to upload the stream. An empty option field means that you
     5243do not want to upload Broadcast Ephemeris.
     5244</p>
     5245<p>
     5246Enter the Ntrip Broadcaster's IP 'Port' number for stream upload. Note that Ntrip Broadcasters are often configured to provide
     5247access through more than one port, usually ports 80 and 2101. If you experience communication problems on port 80, you should
     5248try to use the alternative port(s).
     5249</p>
     5250
     5251<p><h4 id="brdcmount">2.16.2 Mountpoint, Ntrip Version, User, Password - mandatory if 'Host' is set</h4></p>
     5252<p>
     5253BNC uploads a stream to the Ntrip Broadcaster by referring it to a dedicated mountpoint that has been set by its operator.
     5254Specify the mountpoint based on the details you received for your stream from the operator. It is often a 9-character ID (capital letters)
     5255plus an integer number.
     5256</p>
     5257<p>
     5258For stream upload the Ntrip Version can be chosen. An Ntrip version 1 upload is protected through an upload 'Password' only.
     5259For an Ntrip Version 2 upload an upload 'User' is required in addition. Enter the user name and the password you received
     5260from the Ntrip Broadcaster operator along with the mountpoint.
     5261</p>
    45445262<p><h4 id="brdcsys">2.16.3 Satellite System - mandatory if 'Host' is set</h4></p>
    4545 Specify the satellite system(s) that shall be part of the uploaded stream (e.g. G for GPS or GRE for GPS+GLONASS+Galileo, or ALL).
     5263Specify the satellite system(s) that shall be part of the uploaded stream (e.g. 'G' for GPS or 'GRE' for GPS+GLONASS+Galileo, or 'ALL').
    45465264</p>
    45475265<p><h4 id="brdcsmpl">2.16.4 Sampling - mandatory if 'Host' is set</h4></p>
    4548 Select the Broadcast Ephemeris repetition interval in seconds. Default is '5', meaning that a complete set of Broadcast Ephemeris is uploaded every 5 seconds.
    4549 </p>
    4550 
    4551 <p><img src="IMG/screenshot28.png"/></p>
    4552 <p>Figure 33: BNC producing a Broadcast Ephemeris stream from navigation messages of globally distributed RTCM streams and uploading them in RTCM Version 3 format to an Ntrip Broadcaster</p>
     5266Select the Broadcast Ephemeris repetition interval in seconds. Default is '5', meaning that a complete set of Broadcast Ephemeris is uploaded
     5267every 5 seconds.
     5268</p>
     5269<p><img src="IMG/Figure32.png"width=1000/></p>
     5270<p>Figure 32: BNC producing Broadcast Ephemeris streams from globally distributed RTCM streams; upload in RTCM format to an Ntrip Broadcaster</p>
    45535271
    45545272<p><h4 id="streams">2.17 Streams Canvas</h4></p>
    45555273<p>
    4556 Each stream on an Ntrip Broadcaster (and consequently on BNC) is defined using a unique source ID called mountpoint. An Ntrip Client like BNC accesses the desired stream by referring to its mountpoint. Information about streams and their mountpoints is available through the source-table maintained by the Ntrip Broadcaster.
    4557 </p>
    4558 
    4559 <p>
    4560 Streams selected for retrieval are listed under the 'Streams' canvas on BNC's main window. The list provides the following information either extracted from source-table(s) produced by the Ntrip Broadcasters or introduced by BNC's user:
    4561 </p>
    4562 
     5274Each stream on an Ntrip Broadcaster (and consequently on BNC) is defined using a unique source ID called mountpoint. An Ntrip Client like BNC
     5275accesses the desired stream by referring to its mountpoint. Information about streams and their mountpoints is available through the source-table
     5276maintained by the Ntrip Broadcaster.
     5277</p>
     5278<p>
     5279Streams selected for retrieval are listed under the 'Streams' canvas on BNC's main window.
     5280The list provides the following information either extracted from source-table(s) produced by the Ntrip Broadcasters or introduced by BNC's user:
     5281</p>
    45635282<p>
    45645283<table>
    4565   <tr><td>'resource loader'&nbsp; </td><td>Ntrip Broadcaster URL and port, or<br>TCP/IP host and port, or<br>UDP port, or<br>Serial input port specification.</td></tr>
    4566   <tr><td>'mountpoint' &nbsp;</td><td>Mountpoint introduced by Ntrip Broadcaster, or<br>Mountpoint introduced by BNC's user.</td></tr>
    4567   <tr><td>'decoder' &nbsp;</td><td>Name of decoder used to handle the incoming stream content according to its format; editable.</td></tr>
    4568   <tr><td>'lat' &nbsp;</td><td>Approximate latitude of reference station, in degrees, north; editable if 'nmea' = 'yes'.</td></tr>
    4569   <tr><td>'long' &nbsp;</td><td>Approximate longitude of reference station, in degrees, east; editable if 'nmea' = 'yes'.</td></tr>
    4570   <tr><td>'nmea' &nbsp;</td><td>Indicates whether or not streaming needs to be initiated by BNC through sending NMEA-GGA message carrying position coordinates in 'lat' and 'long'.</td></tr>
    4571   <tr><td>'ntrip' &nbsp;</td><td>Selected Ntrip transport protocol version (1, 2, 2s, R, or U), or<br>'N' for TCP/IP streams without Ntrip, or<br>'UN' for UDP streams without Ntrip, or<br>'S' for serial input streams without Ntrip.</td></tr>
    4572   <tr><td>'bytes' &nbsp;</td><td>Number of bytes received.
     5284  <tr><td>&nbsp; 'resource loader'&nbsp; &nbsp; </td><td>Ntrip Broadcaster URL and port, or TCP/IP host and port, or UDP port, or Serial input port specification.</td></tr>
     5285  <tr><td>&nbsp; 'mountpoint'     &nbsp; &nbsp; </td><td>Mountpoint introduced by Ntrip Broadcaster, or Mountpoint introduced by BNC's user.</td></tr>
     5286  <tr><td>&nbsp; 'decoder'        &nbsp; &nbsp; </td><td>Name of decoder used to handle the incoming stream content according to its format; editable.</td></tr>
     5287  <tr><td>&nbsp; 'lat'            &nbsp; &nbsp; </td><td>Approximate latitude of reference station, in degrees, north; editable if 'nmea' = 'yes'.</td></tr>
     5288  <tr><td>&nbsp; 'long'           &nbsp; &nbsp; </td><td>Approximate longitude of reference station, in degrees, east; editable if 'nmea' = 'yes'.</td></tr>
     5289  <tr><td>&nbsp; 'nmea'           &nbsp; &nbsp; </td><td>Indicates whether or not streaming needs to be initiated by BNC through sending
     5290                                                         NMEA-GGA message carrying position coordinates in 'lat' and 'long'.</td></tr>
     5291  <tr><td>&nbsp; 'ntrip'          &nbsp; &nbsp; </td><td>Selected Ntrip transport protocol version (1, 2, 2s, R, or U), or 'N' for TCP/IP streams without Ntrip,
     5292                                                         or 'UN' for UDP streams without Ntrip, or 'S' for serial input streams without Ntrip.</td></tr>
     5293  <tr><td>&nbsp; 'bytes'          &nbsp; &nbsp; </td><td>Number of bytes received.
    45735294</table>
    45745295</p>
    4575 
    45765296<p><h4 id="streamedit">2.17.1 Edit Streams</h4></p>
    45775297<ul>
    4578   <li>BNC automatically allocates one of its internal decoders to a stream based on the stream's 'format' and 'format-details' as given in the source-table. However, there might be cases where you need to override the automatic selection due to an incorrect source-table for example. BNC allows users to manually select the required decoder by editing the decoder string. Double click on the 'decoder' field, enter your preferred decoder and then hit Enter. Accepted decoder strings are 'RTCM_2.x', 'RTCM_3.x' and 'RTNET'.</li>
    4579   <li>In case you need to log the raw data as it is, BNC allows users to by-pass its decoders and directly save the input in daily logfiles. To do this, specify the decoder string as 'ZERO'. The generated filenames are created from the characters of the streams mountpoints plus two-digit numbers each for year, month, and day. Example: Setting the 'decoder' string for mountpoint WTZZ0 to 'ZERO' and running BNC on March 29, 2007 would save raw data in a file named WTZZ0_070329.</li>
    4580   <li>BNC can also retrieve streams from virtual reference stations (VRS). To initiate these streams, an approximate rover position needs to be sent in NMEA format to the Ntrip Broadcaster. In return, a user-specific data stream is generated, typically by Network RTK software. VRS streams are indicated by a 'yes' in the source-table as well as in the 'nmea' column on the 'Streams' canvas in BNC's main window. They are customized exactly to the latitude and longitude transmitted to the Ntrip Broadcaster via NMEA GGA sentences.<br>
    4581       If NMEA GGA sentences are not coming from a serially connected GNSS rover, BNC simulates them from the default latitude and longitude of the source-table as shown in the 'lat' and 'long' columns on the 'Streams' canvas. However, in many cases you would probably want to change these defaults according to your requirement. Double-click on 'lat' and 'long' fields, enter the values you wish to send and then hit Enter. The format is in positive north latitude degrees (e.g. for northern hemisphere: 52.436, for southern hemisphere: -24.567) and eastern longitude degrees (example: 358.872 or -1.128). Only streams with a 'yes' in their 'nmea' column can be edited. The position should preferably be a point within the VRS service area of the network. RINEX files generated from these streams will contain an additional COMMENT line in the header beginning with 'NMEA' showing the 'lat' and 'long' used.<br>
    4582       Note that when running BNC in a Local Area Network (LAN), NMEA strings may be blocked by a proxy server, firewall or virus scanner when not using the Ntrip Version 2 transport protocol.</li>
     5298  <li>BNC automatically allocates one of its internal decoders to a stream based on the stream's 'format' and 'format-details' as given in the source-table.
     5299      However, there might be cases where you need to override the automatic selection due to an incorrect source-table for example.
     5300      BNC allows users to manually select the required decoder by editing the decoder string. Double click on the 'decoder' field,
     5301      enter your preferred decoder and then hit Enter. Accepted decoder strings are 'RTCM_2.x', 'RTCM_3.x' and 'RTNET'.</li>
     5302  <li>In case you need to log the raw data as it is, BNC allows users to by-pass its decoders and directly save the input in daily logfiles.
     5303      To do this, specify the decoder string as 'ZERO'. The generated filenames are created from the characters of the streams mountpoints plus
     5304      two-digit numbers each for year, month, and day. Example: Setting the 'decoder' string for mountpoint WTZZ00DEU0 to 'ZERO' and
     5305      running BNC on December 01, 2022 would save raw data in a file named WTZZ00DEU0_221201.</li>
     5306  <li>BNC can also retrieve streams from virtual reference stations (VRS). To initiate these streams, an approximate rover position needs to be sent
     5307      in NMEA format to the Ntrip Broadcaster. In return, a user-specific data stream is generated, typically by Network RTK software.
     5308      VRS streams are indicated by a 'yes' in the source-table as well as in the 'nmea' column on the 'Streams' canvas in BNC's main window.
     5309      They are customized exactly to the latitude and longitude transmitted to the Ntrip Broadcaster via NMEA GGA sentences. If NMEA GGA sentences
     5310      are not coming from a serially connected GNSS rover, BNC simulates them from the default latitude and longitude of the source-table as shown
     5311      in the 'lat' and 'long' columns on the 'Streams' canvas. However, in many cases you would probably want to change these defaults according to
     5312      your requirement. Double-click on 'lat' and 'long' fields, enter the values you wish to send and then hit Enter. The format is
     5313      in positive north latitude degrees (e.g. for northern hemisphere: 52.436, for southern hemisphere: -24.567) and
     5314      eastern longitude degrees (example: 358.872 or -1.128). Only streams with a 'yes' in their 'nmea' column can be edited. The position should
     5315      preferably be a point within the VRS service area of the network. RINEX files generated from these streams will contain an additional COMMENT line
     5316      in the header beginning with 'NMEA' showing the 'lat' and 'long' used. Note that when running BNC in a Local Area Network (LAN),
     5317      NMEA strings may be blocked by a proxy server, firewall or virus scanner when not using the Ntrip Version 2 transport protocol.</li>
    45835318</ul>
    45845319
    45855320<p><h4 id="streamdelete">2.17.2 Delete Stream</h4></p>
    45865321<p>
    4587 To remove a stream from the 'Streams' canvas in the main window, highlight it by clicking on it and hit the 'Delete Stream' button. You can also remove multiple streams simultaneously by highlighting them using +Shift or +Ctrl.</p>
     5322To remove a stream from the 'Streams' canvas in the main window, highlight it by clicking on it and hit the 'Delete Stream' button.
     5323You can also remove multiple streams simultaneously by highlighting them using +Shift or +Ctrl.
     5324</p>
    45885325
    45895326<p><h4 id="streamconf">2.17.3 Reconfigure Stream Selection On-the-fly</h4></p>
     
    45915328The streams selection can be changed on-the-fly without interrupting uninvolved threads in the running BNC process.
    45925329</p>
    4593 
    4594 <p>
    4595 <b>Window mode:</b> Hit 'Reread &amp; Save Configuration' while BNC is in window mode and already processing data to let changes of your stream selection immediately become effective.
    4596 <p>
    4597 <b>No window mode:</b> When operating BNC online in 'no window' mode (command line option -nw), you force BNC to reread its 'mountPoints' configuration option from disk at pre-defined intervals. Select '1 min', '1 hour', or '1 day' as 'Reread configuration' option to reread the 'mountPoints' option every full minute, hour, or day. This lets a 'mountPoints' option edited in between in the configuration file become effective without terminating uninvolved threads. See section 'Configuration Examples' for configuration file examples and section 'Reread Configuration' for a list of other on-the-fly changeable options.
     5330<p>
     5331<b>Window mode:</b> Hit 'Reread &amp; Save Configuration' while BNC is in window mode and already processing data
     5332to let changes of your stream selection immediately become effective.
     5333<p>
     5334<b>No window mode:</b> When operating BNC online in 'no window' mode (command line option -nw),
     5335you force BNC to reread its 'mountPoints' configuration option from disk at pre-defined intervals.
     5336Select '1 min', '1 hour', or '1 day' as 'Reread configuration' option to reread the 'mountPoints' option
     5337every full minute, hour, or day. This lets a 'mountPoints' option edited in between in the configuration file
     5338become effective without terminating uninvolved threads. See section 'Configuration Examples' for
     5339configuration file examples and section 'Reread Configuration' for a list of other on-the-fly changeable options.
    45985340</p>
    45995341
    46005342<p><h4 id="logs">2.18 Logging Canvas</h4></p>
    46015343<p>
    4602 The 'Logging Canvas' above the bottom menu bar on the main window labeled 'Log', 'Throughput', 'Latency', and 'PPP Plot' provides control of BNC's activities. Tabs are available for continuously showing logfile content, for a plot controlling the bandwidth consumption, a plot showing stream latencies, and for time series plots of PPP results.
     5344The 'Logging Canvas' above the bottom menu bar on the main window labeled 'Log', 'Throughput', 'Latency', and 'PPP Plot'
     5345provides control of BNC's activities. Tabs are available for continuously showing logfile content,
     5346for a plot controlling the bandwidth consumption, a plot showing stream latencies, and for time series plots of PPP results.
    46035347</p>
    46045348
     
    46105354<p><h4 id="throughput">2.18.2 Throughput</h4></p>
    46115355<p>
    4612 The bandwidth consumption per stream is shown in the 'Throughput' tab in bits per second (bps) or kilobits per second (kbps). The following figure shows an example for the bandwidth consumption of incoming streams.
    4613 </p>
    4614 
    4615 <p><img src="IMG/screenshot08.png"/></p>
    4616 <p>Figure 34: Bandwidth consumption of RTCM streams received by BNC</p>
    4617 
     5356The bandwidth consumption per stream is shown in the 'Throughput' tab in bits per second (bps) or kilobits per second (kbps).
     5357The following figure shows an example for the bandwidth consumption of incoming streams.
     5358</p>
     5359<p><img src="IMG/Figure33.png"width=1000/></p>
     5360<p>Figure 33: Bandwidth consumption of RTCM streams received by BNC</p>
    46185361<p><h4 id="latency">2.18.3 Latency</h4></p>
    46195362<p>
    4620 The latency of observations in each incoming stream is shown in the 'Latency' tab in milliseconds or seconds. Streams not carrying observations (e.g. those providing only Broadcast Ephemeris messages) or having an outage are not considered here and shown in red color. Note that the calculation of correct latencies requires the clock of the host computer to be properly synchronized. The next figure shows an example for the latency of incoming streams.
    4621 </p>
    4622 
    4623 <p><img src="IMG/screenshot07.png"/></p>
    4624 <p>Figure 35: Latency of RTCM streams received by BNC</p>
     5363The latency of observations in each incoming stream is shown in the 'Latency' tab in milliseconds or seconds.
     5364Streams not carrying observations (e.g. those providing only Broadcast Ephemeris messages) or having an outage
     5365are not considered here and shown in red color. Note that the calculation of correct latencies requires the
     5366clock of the host computer to be properly synchronized. The next figure shows an example for the latency
     5367of incoming streams.
     5368</p>
     5369<p><img src="IMG/Figure34.png"width=1000/></p>
     5370<p>Figure 34: Latency of RTCM streams received by BNC</p>
    46255371
    46265372<p><h4 id="ppptab">2.18.4 PPP Plot</h4></p>
    46275373<p>
    4628 Precise Point Positioning time series of North (red), East (green) and Up (blue) coordinate components are shown in the 'PPP Plot' tab when a 'Mountpoint' option is defined under PPP (4). Values are referred to a priori reference coordinates. The time as given in format [hh:mm] refers to GPS Time. The sliding PPP time series window covers a period of 5 minutes. Note that it may take up to 30 seconds or more until the first PPP solutions becomes available. The following figure shows the screenshot of a PPP time series plot of North, East and Up coordinate displacements.
    4629 </p>
    4630 
    4631 <p><img src="IMG/screenshot13.png"/></p>
    4632 <p>Figure 36: Example for time series plot of displacements produced by BNC</p>
     5374Precise Point Positioning time series of North (red), East (green) and Up (blue) coordinate components are shown in the 'PPP Plot' tab when
     5375a 'Mountpoint' option is defined under PPP (4). Values are referred to a priori reference coordinates. The time as given in format [hh:mm]
     5376refers to GPS Time. The sliding PPP time series window covers a period of 5 minutes. Note that it may take up to 30 seconds or more until
     5377the first PPP solutions becomes available. The following figure shows the screenshot of a PPP time series plot of North, East and Up
     5378coordinate displacements.
     5379</p>
     5380<p><img src="IMG/Figure35.png"width=1000/></p>
     5381<p>Figure 35: Example for time series plot of displacements produced by BNC</p>
    46335382
    46345383<p><h4 id="bottom">2.19 Bottom Menu Bar</h4></p>
    46355384<p>
    4636 The bottom menu bar allows to add or delete streams to or from BNC's configuration and to start or stop it. It also provides access to BNC's online help function. The 'Add Stream' button opens a window that allows users to select one of several input communication links, see figure below.
    4637 </p>
    4638 
    4639 <p><img src="IMG/screenshot06.png"/></p>
    4640 <p>Figure 37: Steam input communication links accepted by BNC</p>
     5385The bottom menu bar allows to add or delete streams to or from BNC's configuration and to start or stop it.
     5386It also provides access to BNC's online help function. The 'Add Stream' button opens a window that allows users
     5387to select one of several input communication links, see figure below.
     5388</p>
     5389<p><img src="IMG/Figure36.png"width=400/></p>
     5390<p>Figure 36: Steam input communication links accepted by BNC</p>
    46415391
    46425392<p><h4 id="streamadd">2.19.1 Add Stream</h4></p>
     
    46465396
    46475397<p><h4 id="streamcaster">2.19.1.1 Add Stream - Coming from Caster</h4></p>
    4648 
    4649 <p>
    4650 Button 'Add Stream' &gt; 'Coming from Caster' opens a window that allows users to select data streams from an Ntrip Broadcaster according to their mountpoints and show a distribution map of offered streams.
     5398<p>
     5399Button 'Add Stream' &gt; 'Coming from Caster' opens a window that allows users to select data streams from an Ntrip Broadcaster according
     5400to their mountpoints and show a distribution map of offered streams.
    46515401</p>
    46525402
    46535403<p><h4 id="streamhost">2.19.1.1.1 Caster Host and Port - mandatory</h4></p>
    46545404<p>
    4655 Enter the Ntrip Broadcaster host IP and port number. Note that EUREF and IGS operate Ntrip Broadcasters at <u>http://euref-ip.net/home</u>, <u>http://igs-ip.net/home</u>, <u>http://products.igs-ip.net/home</u> and <u>http://mgex.igs-ip.net/home</u>.
     5405Enter the Ntrip Broadcaster host IP and port number. Note that EUREF and IGS operate Ntrip Broadcasters
     5406<a href="https://euref-ip.net/home" target="_blank">https://euref-ip.net/home</a>,
     5407<a href="https://igs-ip.net/home" target="_blank">https://igs-ip.net/home</a> and
     5408<a href="https://products.igs-ip.net/home" target="_blank">https://products.igs-ip.net/home</a>.
    46565409</p>
    46575410
    46585411<p><h4 id="streamtable">2.19.1.1.2 Casters Table - optional</h4></p>
    46595412<p>
    4660 It may be that you are not sure about your Ntrip Broadcaster's host and port number or you are interested in other broadcaster installations operated elsewhere. Hit 'Show' for a table of known broadcasters maintained at <u>rtcm-ntrip.org/home</u>. A window opens which allows selecting a broadcaster for stream retrieval, see figure below.
    4661 </p>
    4662 
    4663 <p><img src="IMG/screenshot04.png"/></p>
    4664 
    4665 <p>Figure 38: BNC's 'Select Broadcaster' table</p>
     5413It may be that you are not sure about your Ntrip Broadcaster's host and port number or you are interested in other
     5414broadcaster installations operated elsewhere. Hit 'Show' for a table of known broadcasters maintained at
     5415<a href="https://rtcm-ntrip.org/home " target="_blank">https://rtcm-ntrip.org/home </a>.
     5416A window opens which allows selecting a broadcaster for stream retrieval, see figure below.
     5417</p>
     5418<p><img src="IMG/Figure37.png"width=1000/></p>
     5419<p>Figure 37: BNC's 'Select Broadcaster' table</p>
    46665420
    46675421<p><h4 id="streamuser">2.19.1.1.3 User and Password - mandatory for protected streams</h4></p>
    46685422<p>
    4669 Streams on Ntrip Broadcasters may be protected. Enter a valid 'User' ID and 'Password' for access to protected streams. Accounts are usually provided per Ntrip Broadcaster through a registration procedure. Register through <u>http://register.rtcm-ntrip.org</u> for access to protected streams from EUREF and IGS.
     5423Streams on Ntrip Broadcasters may be protected. Enter a valid 'User' ID and 'Password' for access to protected streams.
     5424Accounts are usually provided per Ntrip Broadcaster through a registration procedure.
     5425Register through <a href="https://register.rtcm-ntrip.org" target="_blank">https://register.rtcm-ntrip.org</a>
     5426for access to protected streams from EUREF and IGS.
    46705427</p>
    46715428
    46725429<p><h4 id="gettable">2.19.1.1.4 Get Table</h4></p>
    46735430<p>
    4674 Use the 'Get Table' button to download the source-table from the Ntrip Broadcaster. Pay attention to data fields 'format' and 'format-details'. Keep in mind that BNC can only decode and convert streams that come in RTCM Version 2, RTCM Version 3, or RTNET format. For access to observations, Broadcast Ephemeris and Broadcast Corrections in RTCM format, streams must contain a selection of appropriate message types as listed in the Annex, cf. data field 'format-details' for available message types and their repetition rates in brackets. Note that in order to produce RINEX Navigation files, RTCM Version 3 streams containing message types 1019 (GPS) and 1020 (GLONASS) and 1043 (SBAS) and 1044 (QZSS) and 1045, 1046 (Galileo) and 63 (BDS/BeiDou, tentative message number) are required. Select your streams line by line, use +Shift and +Ctrl when necessary. The figure below provides an example source-table.
    4675 </p>
    4676 
    4677 <p>
    4678 The content of data field 'nmea' tells you whether a stream retrieval needs to be initiated by BNC through sending an NMEA-GGA message carrying approximate position coordinates (Virtual Reference Station, VRS).
    4679 </p>
    4680 
     5431Use the 'Get Table' button to download the source-table from the Ntrip Broadcaster. Pay attention to data fields 'format' and 'format-details'.
     5432Keep in mind that BNC can only decode and convert streams that come in RTCM Version 2, RTCM Version 3, or RTNET format.
     5433For access to observations, Broadcast Ephemerides and Broadcast Corrections in RTCM format, streams must contain a selection of
     5434appropriate message types as listed in the Annex; cf. data field 'format-details' for available message types and their repetition rates in brackets.
     5435Note that in order to produce RINEX Navigation files, RTCM Version 3 streams containing message types
     5436<ul>
     5437<li> 1019 (GPS) or </li>
     5438<li> 1020 (GLONASS) or </li>
     5439<li> 1041 (IRNSS) or </li>
     5440<li> 1042 (BDS/BeiDou) or </li>
     5441<li> 1043 (SBAS) or </li>
     5442<li> 1044 (QZSS) or </li>
     5443<li> 1045 (Galileo F/NAV) or </li>
     5444<li> 1046 (Galileo I/NAV). </li>
     5445</ul>
     5446are required. Select your streams line by line, use +Shift and +Ctrl when necessary. The figure below provides an example source-table.
     5447</p>
     5448<p>
     5449The content of data field 'nmea' tells you whether a stream retrieval needs to be initiated by BNC through sending an NMEA-GGA message
     5450carrying approximate position coordinates (Virtual Reference Station, VRS).
     5451</p>
    46815452<p>
    46825453Hit 'OK' to return to the main window. If you wish, you can click on 'Add Stream' and repeat the process of retrieving streams from different casters.
    46835454</p>
    4684 
    4685 <p><img src="IMG/screenshot05.png"/></p>
    4686 <p>Figure 39: Broadcaster source-table shown by BNC</p>
     5455<p><img src="IMG/Figure38.png"width=1000/></p>
     5456<p>Figure 38: Broadcaster source-table shown by BNC</p>
    46875457
    46885458<p><h4 id="ntripv">2.19.1.1.5 Ntrip Version - mandatory</h4></p>
    46895459<p>
    4690 Some limitations and deficiencies of the Ntrip Version 1 stream transport protocol are solved in Ntrip Version 2. Improvements mainly concern a full HTTP compatibility in view of requirements coming from proxy servers. Version 2 is backwards compatible to Version 1. Options implemented in BNC are:
    4691 </p>
    4692 
     5460Some limitations and deficiencies of the Ntrip Version 1 stream transport protocol are solved in Ntrip Version 2.
     5461Improvements mainly concern a full HTTP compatibility in view of requirements coming from proxy servers.
     5462Version 2 is backwards compatible to Version 1. Options implemented in BNC are:
     5463</p>
    46935464<p>
    46945465<table>
    4695   <tr></tr>
    46965466  <tr><td><b>Option &nbsp;  &nbsp; </b></td><td><b>Meaning</b></td></tr>
    4697   <tr><td>&nbsp; &nbsp; 1</td><td>Ntrip Version 1, TCP/IP</td></tr>
    4698   <tr><td>&nbsp; &nbsp; 2</td><td>Ntrip Version 2 in TCP/IP mode</td></tr>
    4699   <tr><td>&nbsp; &nbsp; 2s</td><td>Ntrip Version 2 in TCP/IP mode via SSL</td></tr>
    4700   <tr><td>&nbsp; &nbsp; R</td><td>Ntrip Version 2 in RTSP/RTP mode</td></tr>
    4701   <tr><td>&nbsp; &nbsp; U</td><td>Ntrip Version 2 in UDP mode</td></tr>
     5467  <tr><td>&nbsp; &nbsp; 1  </td><td>Ntrip Version 1, TCP/IP</td></tr>
     5468  <tr><td>&nbsp; &nbsp; 2  </td><td>Ntrip Version 2 in TCP/IP mode</td></tr>
     5469  <tr><td>&nbsp; &nbsp; 2s </td><td>Ntrip Version 2 in TCP/IP mode via SSL</td></tr>
     5470  <tr><td>&nbsp; &nbsp; R  </td><td>Ntrip Version 2 in RTSP/RTP mode</td></tr>
     5471  <tr><td>&nbsp; &nbsp; U  </td><td>Ntrip Version 2 in UDP mode</td></tr>
    47025472</table>
    47035473</p>
    4704 
    4705 <p>
    4706 If Ntrip Version 2 is supported by the broadcaster:
    4707 </p>
    4708 <ul>
    4709 <li>Try using option '2' if your streams are otherwise blocked by a proxy server operated in front of BNC.</li>
    4710 <li>When using Ntrip Version 2 via SSL (option '2s') you need to specify the appropriate 'Caster port' for that. It is usually port number 443. Clarify 'SSL' options offered in panel 'Network'.</li>
    4711 <li>Option 'R' or 'U' may be selected if latency is more important than completeness for your application. Note that the latency reduction is likely to be in the order of 0.5 sec or less. Note further that options 'R' (RTSP/RTP mode) and 'U' (UDP mode) are not accepted by proxy servers and a mobile Internet Service Provider may not support it.</li>
    4712 </ul>
    4713 <p>
    4714 Select option '1' if you are not sure whether the broadcaster supports Ntrip Version 2.</li>
    4715 </p>
    4716 
     5474<p>
     5475Try using option '2' if your streams are otherwise blocked by a proxy server operated in front of BNC.
     5476</p>
     5477<p>
     5478When using Ntrip Version 2 via SSL (option '2s') you need to specify the appropriate 'Caster port' for that.
     5479It is usually port number 443. Clarify 'SSL' options offered in panel 'Network'.
     5480</p>
     5481<p>
     5482Option 'R' or 'U' may be selected if latency is more important than completeness for your application.
     5483Note that the latency reduction is likely to be in the order of 0.5 sec or less.
     5484Note further that options 'R' (RTSP/RTP mode) and 'U' (UDP mode) are not accepted by proxy servers and
     5485a mobile Internet Service Provider may not support it.
     5486</p>
    47175487<p><h4 id="castermap">2.19.1.1.6 Map - optional</h4></p>
    47185488<p>
    4719 Button 'Map' opens a window to show a distribution map of the caster's streams. You may like to zoom in or out using the mouse. Left button: draw a rectangle to zoom, right button: zoom out, middle button: zoom back.
    4720 </p>
    4721 
    4722 <p><img src="IMG/screenshot24.png"/></p>
    4723 <p>Figure 40: Stream distribution map shown by BNC as derived from Ntrip Broadcaster source-table</p>
     5489Button 'Map' opens a window to show a distribution map of the caster's streams. You may like to zoom in or out using the mouse.
     5490Left button: draw a rectangle to zoom, right button: zoom out, middle button: zoom back.
     5491</p>
     5492<p><img src="IMG/Figure39.png"width=1000/></p>
     5493<p>Figure 39: Stream distribution map shown by BNC as derived from Ntrip Broadcaster source-table</p>
    47245494
    47255495<p><h4 id="streamip">2.19.1.2 Add Stream - Coming from TCP/IP Port</h4></p>
    47265496<p>
    4727 Button 'Add Stream' &gt; 'Coming from TCP/IP Port' allows to retrieve streams via TCP directly from an IP address without using the Ntrip transport protocol. For that you:
     5497Button 'Add Stream' &gt; 'Coming from TCP/IP Port' allows to retrieve streams via TCP directly from an IP address
     5498without using the Ntrip transport protocol. For that you:
    47285499<ul>
    47295500  <li>Enter the IP address of the stream providing host.</li>
    47305501  <li>Enter the IP port number of the stream providing host.</li>
    4731   <li>Specify a mountpoint. Recommended is a 4-character station ID. Example: FFMJ</li>
     5502  <li>Specify a mountpoint. Recommended is a 9-character station ID. Example: FFMJ00DEU</li>
    47325503  <li>Specify the stream format. Available options are 'RTCM_2', 'RTCM_3', 'RTNET', and 'ZERO'.</li>
    4733   <li>Enter the approximate latitude of the stream providing rover in degrees. Example: 45.32.</li>
    4734   <li>Enter the approximate longitude of the stream providing rover in degrees. Example: -15.20.</li>
    4735 </ul>
    4736 </p>
    4737 <p>
    4738 Streams directly received from a TCP/IP port show up with an 'N' for 'No Ntrip' in the 'Streams' canvas on BNC's main window. Latitude and longitude are to be entered just for informal reasons.
    4739 <p>
    4740 
     5504  <li>Enter the approximate latitude of the stream providing rover in degrees. Example: 50.09.</li>
     5505  <li>Enter the approximate longitude of the stream providing rover in degrees. Example: 8.66.</li>
     5506</ul>
     5507</p>
     5508<p>
     5509Streams directly received from a TCP/IP port show up with an 'N' for 'No Ntrip' in the 'Streams' canvas on BNC's main window.
     5510Latitude and longitude are to be entered just for informal reasons.
     5511<p>
    47415512</p>
    47425513Note that this option works only if no proxy server is involved in the communication link.
    47435514</p>
    4744 
    47455515<p><h4 id="streamudp">2.19.1.3 Add Stream - Coming from UDP Port</h4></p>
    47465516<p>
     
    47485518<ul>
    47495519  <li>Enter the local port number where the UDP stream arrives.</li>
    4750   <li>Specify a mountpoint. Recommended is a 4-character station ID. Example: FFMJ</li>
     5520  <li>Specify a mountpoint. Recommended is a 9-character station ID. Example: FFMJ00DEU</li>
    47515521  <li>Specify the stream format. Available options are 'RTCM_2', 'RTCM_3', 'RTNET', and 'ZERO'.</li>
    4752   <li>Enter the approximate latitude of the stream providing rover in degrees. Example: 45.32.</li>
    4753   <li>Enter the approximate longitude of the stream providing rover in degrees. Example: -15.20.</li>
     5522  <li>Enter the approximate latitude of the stream providing rover in degrees. Example: 50.09.</li>
     5523  <li>Enter the approximate longitude of the stream providing rover in degrees. Example: 8.66.</li>
    47545524</ul>
    47555525</p>
     
    47625532Button 'Add Stream' &gt; 'Coming from Serial Port' allows to retrieve streams from a GNSS receiver via serial port without using the Ntrip transport protocol. For that you:
    47635533<ul>
    4764   <li>Specify a mountpoint. Recommended is a 4-character station ID. Example: FFMJ</li>
     5534  <li>Specify a mountpoint. Recommended is a 9-character station ID. Example: FFMJ00DEU</li>
    47655535  <li>Specify the stream format. Available options are 'RTCM_2', 'RTCM_3', 'RTNET', and 'ZERO'.</li>
    4766   <li>Enter the approximate latitude of the stream providing receiver in degrees. Example: 45.32.</li>
    4767   <li>Enter the approximate longitude of the stream providing receiver in degrees. Example: -15.20.</li>
     5536  <li>Enter the approximate latitude of the stream providing rover in degrees. Example: 50.09.</li>
     5537  <li>Enter the approximate longitude of the stream providing rover in degrees. Example: 8.66.</li>
    47685538  <li>Enter the serial 'Port name' selected on your host for communication with the receiver. Valid port names are
    4769 <pre>
    4770 Windows:       COM1, COM2
    4771 Linux:         /dev/ttyS0, /dev/ttyS1
    4772 FreeBSD:       /dev/ttyd0, /dev/ttyd1
    4773 Digital Unix:  /dev/tty01, /dev/tty02
    4774 HP-UX:         /dev/tty1p0, /dev/tty2p0
    4775 SGI/IRIX:      /dev/ttyf1, /dev/ttyf2
    4776 SunOS/Solaris: /dev/ttya, /dev/ttyb
    4777 </pre>
     5539  <table>
     5540  <tr><td>&nbsp; &nbsp; Windows:       </td><td>COM1, COM2</td></tr>
     5541  <tr><td>&nbsp; &nbsp; Linux:         </td><td>/dev/ttyS0, /dev/ttyS1</td></tr>
     5542  <tr><td>&nbsp; &nbsp; FreeBSD:       </td><td>/dev/ttyd0, /dev/ttyd1</td></tr>
     5543  <tr><td>&nbsp; &nbsp; Digital Unix:  </td><td>/dev/tty01, /dev/tty02</td></tr>
     5544  <tr><td>&nbsp; &nbsp; HP-UX:         </td><td>/dev/tty1p0, /dev/tty2p0</td></tr>
     5545  <tr><td>&nbsp; &nbsp; SGI/IRIX;      </td><td>/dev/ttyf1, /dev/ttyf2</td></tr>
     5546  <tr><td>&nbsp; &nbsp; SunOS/Solaris: </td><td>/dev/ttya, /dev/ttyb</td></tr>
     5547</table>
    47785548</li>
    47795549  <li>Select a 'Baud rate' for the serial input. Note that using a high baud rate is recommended.</li>
     
    47845554</ul>
    47855555</p>
    4786 
    47875556<p>
    47885557When selecting one of the serial communication options listed above, make sure that you pick those configured to the serially connected GNSS receiver.
    47895558</p>
    4790 
    4791 <p>
    4792 Streams received from a serially connected GNSS receiver show up with an 'S' (for <u>S</u>erial Port, no Ntrip) in the 'Streams' canvas section on BNC's main window. Latitude and longitude are to be entered just for informal reasons.
    4793 <p>
    4794 
     5559<p>
     5560Streams received from a serially connected GNSS receiver show up with an 'S' (for <u>S</u>erial Port, no Ntrip) in the 'Streams' canvas
     5561section on BNC's main window. Latitude and longitude are to be entered just for informal reasons.
     5562<p>
    47955563<p>
    47965564The following figure shows a BNC example setup for pulling a stream via serial port on a Windows operating system.
    47975565</p>
    4798 <p><img src="IMG/screenshot15.png"/></p>
    4799 <p>Figure 41: BNC configuration for pulling a stream via serial port</p>
     5566<p><img src="IMG/Figure40.png"width=400/></p>
     5567<p>Figure 40: BNC configuration for pulling a stream via serial port</p>
    48005568
    48015569<p><h4 id="streamsdelete">2.19.2 Delete Stream</h4></p>
     
    48065574<p><h4 id="streamsmap">2.19.3 Map</h4></p>
    48075575<p>
    4808 Button 'Map' opens a window to show a distribution map of the streams selected for retrieval as listed under the 'Streams' canvas. You may like to zoom in or out using the mouse. Left button: draw a rectangle to zoom, right button: zoom out, middle button: zoom back.
     5576Button 'Map' opens a window to show a distribution map of the streams selected for retrieval as listed under the 'Streams' canvas.
     5577You may like to zoom in or out using the mouse. Left button: draw a rectangle to zoom, right button: zoom out, middle button: zoom back.
    48095578</p>
    48105579
    48115580<p><h4 id="start">2.19.4 Start</h4></p>
    48125581<p>
    4813 Hit 'Start' to start retrieving, decoding or converting GNSS data streams in real-time. Note that 'Start' generally forces BNC to begin with fresh RINEX files which might overwrite existing files when necessary unless option 'Append files' is ticked.
     5582Hit 'Start' to start retrieving, decoding or converting GNSS data streams in real-time.
     5583Note that 'Start' generally forces BNC to begin with fresh RINEX files which might overwrite existing files when necessary
     5584unless option 'Append files' is ticked.
    48145585</p>
    48155586
     
    48215592<p><h4 id="contexthelp">2.19.6 Help? = Shift+F1</h4></p>
    48225593<p>
    4823 BNC comes with a <i>What's This</i> help system providing information about its functionality and usage. Short descriptions are available for any widget and program option. Focus to the relevant object and press Shift+F1 to request help information. A help text appears immediately; it disappears as soon as the user does something else. The dialogs on some operating systems may provide a '?' button that users can click; click the relevant widget to pop up the help text.
    4824 </p>
    4825 
     5594BNC comes with a <i>What's This</i> help system providing information about its functionality and usage.
     5595Short descriptions are available for any widget and program option. Focus to the relevant object and press Shift+F1 to request help information.
     5596A help text appears immediately; it disappears as soon as the user does something else.
     5597The dialogs on some operating systems may provide a '?' button that users can click; click the relevant widget to pop up the help text.
     5598</p>
    48265599<p><h4 id="cmd">2.20 Command Line Options</h4></p>
    48275600<p>
    4828 Command line options are available to run BNC in 'no window' mode or let it read previously recorded input offline from one or several files for debugging or post processing purposes. It is also possible to introduce a specific configuration filename instead of using the default filename 'BNC.bnc'. The self-explaining content of the configuration file can easily be edited.
    4829 </p>
    4830 
    4831 <p>
    4832 In addition to reading processing options from the involved configuration file, BNC can optionally read any configuration option from command line. Running BNC with command line option 'help'
    4833 </p>
    4834 
     5601Command line options are available to run BNC in 'no window' mode or let it read previously recorded input offline from one or
     5602several files for debugging or post processing purposes. It is also possible to introduce a specific configuration filename
     5603instead of using the default filename 'BNC.bnc'. The self-explaining content of the configuration file can easily be edited.
     5604</p>
     5605<p>
     5606In addition to reading processing options from the involved configuration file, BNC can optionally read any configuration option
     5607from command line. Running BNC with command line option 'help'
     5608</p>
    48355609<p>
    48365610Example:<br><br>
    48375611&nbsp; &nbsp; &nbsp; bnc --help (MS Windows: bnc.exe --help | more)
    48385612</p>
    4839 
    48405613<p>
    48415614provides a list of all available command line options.
    48425615</p>
    4843 
    48445616<p><h4 id="cmdVersion">2.20.1 Version - optional</h4></p>
    48455617<p>
    48465618Command line option '--version' lets BNC print its version number.
    48475619</p>
    4848 
    48495620<p>
    48505621Example:<br><br>
    48515622&nbsp; &nbsp; &nbsp; bnc --version (MS Windows: bnc.exe --version | more)
    48525623</p>
    4853 
    48545624<p><h4 id="cmdDisplay">2.20.2 Display - optional</h4></p>
    48555625<p>
    48565626On systems which support graphics, command line option '--display' forces BNC to present the BNC window on the specified display.
    48575627</p>
    4858 
    48595628<p>
    48605629Example:<br><br>
    48615630&nbsp; &nbsp; &nbsp; bnc.exe --display localhost:10.0
    48625631</p>
    4863 
    48645632<p><h4 id="nw">2.20.3 No Window Mode - optional</h4></p>
    48655633<p>
    4866 Apart from its regular windows mode, BNC can be started on all systems as a batch job with command line option '-nw'. BNC will then run in 'no window' mode, using processing options from its configuration file on disk. Terminate BNC using Windows Task Manager when running it in 'no window' mode on Windows systems.
    4867 </p>
    4868 
     5634Apart from its regular windows mode, BNC can be started on all systems as a batch job with command line option '-nw'.
     5635BNC will then run in 'no window' mode, using processing options from its configuration file on disk.
     5636Terminate BNC using Windows Task Manager when running it in 'no window' mode on Windows systems.
     5637</p>
    48695638<p>
    48705639Example:<br><br>
    48715640&nbsp; &nbsp; &nbsp; bnc.exe --nw
    48725641</p>
    4873 
    4874 <p>
     5642<p>
     5643The following Linux command line produces RINEX QC plots (see Estey and Meertens 1999) offline in 'no window' mode
     5644and saves them in directory '/home/user'. Introducing a dummy configuration file /dev/null makes sure that no configuration options
     5645previously saved on disc are used:
    48755646It is obvious that BNC requires graphics support when started in interactive
    48765647mode. However, note that graphics support is also required when producing plots in
     
    48805651is used. The following is an example shell script to execute BNC in batch mode
    48815652for producing QC plots from RINEX files. It could be used via 'crontab':
    4882 </p>
    4883 <pre>
    4884    #!/bin/bash
    4885 
    4886    # Save string localhost
    4887    echo "localhost" > /home/user/hosts
    4888 
    4889    # Start virtual X-Server, save process ID
    4890    /usr/bin/Xvfb :29 -auth /home/user/hosts -screen 0 1280x1024x8 &
    4891    psID=`echo $!`
    4892 
    4893    # Run BNC application with defined display variable
    4894    /home/user/BNC/bnc --conf /dev/null --key reqcAction Analyze --key reqcObsFile ons12090.12o --key reqcNavFile brdc2090.12p --key reqcOutLogFile multi.txt --key reqcPlotDir /home/user --display localhost:29 --nw
    4895 
    4896    # BNC done, kill X-server process
    4897    kill $psID
    4898 </pre>
     5653
     5654<pre><p style="font-family:Monospace">
     5655#!/bin/bash
     5656
     5657../bnc -nw -conf /dev/null -display :1 --platform offscreen\
     5658       -key reqcAction Analyze \
     5659       -key reqcObsFile Input/MAO000USA_R_20221720000_01D_30S_MO.rnx \
     5660       -key reqcNavFile Input/MAO000USA_R_20221720000_01D_MN.rnx \
     5661       -key reqcSkyPlotSignals "G:1&2&5 R:1&2 E:1&5&7 C:2&6 J:1&2" \
     5662       -key reqcOutLogFile Output/RinexQc.log \
     5663       -key reqcPlotDir Output 2>/dev/null
     5664
     5665</p></pre>
    48995666
    49005667<p><h4 id="post">2.20.4 File Mode - optional</h4></p>
    49015668<p>
    4902 Although BNC is primarily a real-time online tool, for debugging purposes it can be run offline to read data from a file previously saved through option 'Raw output file' (Record &amp; Replay functionality). Enter the following command line option for that
    4903 </p>
    4904 
     5669Although BNC is primarily a real-time online tool, for debugging purposes it can be run offline to read data from a file
     5670previously saved through option 'Raw output file' (Record &amp; Replay functionality). Enter the following command line option for that
     5671</p>
    49055672<p>
    49065673&nbsp; &nbsp; &nbsp; --file &lt;<u>inputFileName</u>&gt;
    49075674</p>
    4908 
    49095675and specify the full path to an input file containing previously saved data. Example:<br><br>
    4910 &nbsp; &nbsp; &nbsp; ./bnc --file /home/user/raw.output_110301
    4911 </p>
    4912 
     5676&nbsp; &nbsp; &nbsp; ./bnc --file /home/user/raw.output_221202
     5677</p>
    49135678<p>
    49145679Note that when running BNC offline, it will use options for file saving, interval, sampling, PPP etc. from its configuration file.
    49155680</p>
    4916 
    49175681<p>Note further that option '--file' forces BNC to apply the '-nw' option for running in 'no window' mode.
    49185682</p>
    4919 
    49205683<p><h4 id="conffile">2.20.5 Configuration File - optional</h4></p>
    49215684The default configuration filename is 'BNC.bnc'. You may change this name at startup time using command line option '--conf &lt;<u>confFileName</u>&gt;'. This allows running several BNC jobs in parallel on the same host using different sets of configuration options. <u>confFileName</u> stands either for the full path to a configuration file or just for a filename. If you introduce only a filename, the corresponding file will be saved in the current working directory from where BNC is started.
    49225685</p>
    4923 
    49245686<p>
    49255687Example:<br><br>
    49265688&nbsp; &nbsp; &nbsp; ./bnc --conf MyConfig.bnc
    49275689</p>
    4928 
    49295690<p>
    49305691This leads to a BNC job using configuration file 'MyConfig.bnc'. The configuration file will be saved in the current working directory.
    49315692</p>
    4932 
    49335693<p><h4 id="confopt">2.20.6 Configuration Options - optional</h4></p>
    49345694<p>
    49355695BNC applies options from the configuration file but allows updating every one of them on the command line while the content of the configuration file remains unchanged. Note the following syntax for Command Line Interface (CLI) options:
    49365696</p>
    4937 
    49385697<p>
    49395698&nbsp; &nbsp; &nbsp; --key &lt;keyName&gt; &lt;keyValue&gt;
    49405699</p>
    4941 
    4942 <p>
    4943 Parameter &lt;keyName&gt; stands for the key name of an option contained in the configuration file and &lt;keyValue&gt; stands for the value you want to assign to it. The following is a syntax example for a complete command line:
    4944 </p>
    4945 
     5700<p>
     5701Parameter &lt;keyName&gt; stands for the key name of an option contained in the configuration file and &lt;keyValue&gt;
     5702stands for the value you want to assign to it. The following is a syntax example for a complete command line:
     5703</p>
    49465704<p>
    49475705&nbsp; &nbsp; &nbsp; bnc --nw --conf &lt;confFileName&gt --key &lt;keyName1&gt; &lt;keyValue1&gt; --key &lt;keyName2&gt; &lt;keyValue2&gt; ...
    49485706</p>
    4949 
    4950 <p>
    4951 Configuration options which are part of the configuration files PPP section must be prefixed by 'PPP/'. As an example, option 'minObs' from the PPP section of the BNC configuration file would be specified as 'PPP/minObs' on a command line.
    4952 </p>
    4953 
    4954 <p>
    4955 Values for configuration options can be introduced via command line exactly as they show up in the configuration file. However, any value containing one or more blank characters must be enclosed by quotation marks when specified on command line.
    4956 </p>
    4957 
     5707<p>
     5708Configuration options which are part of the configuration files PPP section must be prefixed by 'PPP/'.
     5709As an example, option 'minObs' from the PPP section of the BNC configuration file would be specified as
     5710</p>
     5711<p>
     5712&nbsp; &nbsp; &nbsp; 'PPP/minObs'
     5713</p>
     5714on a command line.
     5715<p>
     5716Values for configuration options can be introduced via command line exactly as they show up in the configuration file.
     5717However, any value containing one or more blank characters must be enclosed by quotation marks when specified on command line.
     5718</p>
    49585719<p><h3 id="annex">3. Annex</h3></p>
    49595720
    49605721<p><h4 id="rtcm">3.1 RTCM Standards</h4></p>
    4961 
    4962 <p>
    4963 The Radio Technical Commission for Maritime Services (RTCM) is an international non-profit scientific, professional and educational organization. Special Committees provide a forum in which governmental and non-governmental members work together to develop technical standards and consensus recommendations in regard to issues of particular concern. RTCM is engaged in the development of international standards for maritime radionavigation and radiocommunication systems. The output documents and reports prepared by RTCM Committees are published as RTCM Recommended Standards. Topics concerning Differential Global Navigation Satellite Systems (DGNSS) are handled by the Special Committee SC 104.
    4964 <p>
    4965 Personal copies of RTCM Recommended Standards can be ordered through <u>http://www.rtcm.org/orderinfo.php</u>.
    4966 </p>
    4967 
     5722<p>
     5723The Radio Technical Commission for Maritime Services (RTCM) is an international non-profit scientific, professional and educational organization.
     5724Special Committees provide a forum in which governmental and non-governmental members work together to develop
     5725technical standards and consensus recommendations in regard to issues of particular concern.
     5726RTCM is engaged in the development of international standards for maritime radionavigation and radiocommunication systems.
     5727The output documents and reports prepared by RTCM Committees are published as RTCM Recommended Standards.
     5728Topics concerning Differential Global Navigation Satellite Systems (DGNSS) are handled by the Special Committee SC 104.
     5729<p>
     5730Personal copies of RTCM Recommended Standards can be ordered through
     5731<a href="https://rtcm.myshopify.com/collections/differential-global-navigation-satellite-dgnss-standards" target="_blank">https://rtcm.myshopify.com/collections/differential-global-navigation-satellite-dgnss-standards</a>
     5732
     5733</p>
    49685734<p><h4 id="ntrip1">3.1.1 Ntrip Version 1</h4></p>
    4969 
    4970 <p>
    4971 'Networked Transport of RTCM via Internet Protocol' Version 1.0 (Ntrip) stands for an application-level protocol streaming Global Navigation Satellite System (GNSS) data over the Internet. Ntrip is a generic, stateless protocol based on the Hypertext Transfer Protocol HTTP/1.1. The HTTP objects are enhanced to GNSS data streams.
    4972 </p>
    4973 
    4974 <p>
    4975 Ntrip Version 1 is an RTCM standard designed for disseminating differential correction data (e.g. in the RTCM-104 format) or other kinds of GNSS streaming data to stationary or mobile users over the Internet, allowing simultaneous PC, Laptop, PDA, or receiver connections to a broadcasting host. Ntrip supports wireless Internet access through Mobile IP Networks like GSM, GPRS, EDGE, or UMTS.
    4976 </p>
    4977 
    4978 <p>
    4979 Ntrip is implemented in three system software components: Ntrip Clients, Ntrip Servers and Ntrip Broadcasters. The Ntrip Broadcaster is the actual HTTP server program whereas Ntrip Client and Ntrip Server are acting as HTTP clients.
    4980 </p>
    4981 
     5735<p>
     5736'Networked Transport of RTCM via Internet Protocol' Version 1.0 (Ntrip) stands for an application-level protocol streaming
     5737Global Navigation Satellite System (GNSS) data over the Internet. Ntrip is a generic, stateless protocol based on the
     5738Hypertext Transfer Protocol HTTP/1.1. The HTTP objects are enhanced to GNSS data streams.
     5739</p>
     5740<p>
     5741Ntrip Version 1 is an RTCM standard designed for disseminating differential correction data (e.g. in the RTCM-104 format) or
     5742other kinds of GNSS streaming data to stationary or mobile users over the Internet, allowing simultaneous PC, Laptop, PDA,
     5743or receiver connections to a broadcasting host. Ntrip supports wireless Internet access through Mobile IP Networks like GSM, GPRS, EDGE, or UMTS.
     5744</p>
     5745
     5746<p>
     5747Ntrip is implemented in three system software components: Ntrip Clients, Ntrip Servers and Ntrip Broadcasters.
     5748The Ntrip Broadcaster is the actual HTTP server program whereas Ntrip Client and Ntrip Server are acting as HTTP clients.
     5749</p>
    49825750<p>
    49835751Ntrip is an open none-proprietary protocol. Major characteristics of Ntrip's dissemination technique are:
     
    49905758</ul>
    49915759</p>
    4992 
    4993 <p>
    4994 The Ntrip Broadcaster maintains a source-table containing information on available Ntrip streams, networks of Ntrip streams and Ntrip Broadcasters. The source-table is sent to an Ntrip Client on request. Source-table records are dedicated to one of the following: Data Streams (record type STR), Casters (record type CAS), or Networks of streams (record type NET).
    4995 </p>
    4996 
    4997 <p>
    4998 Source-table records of type STR contain the following data fields: 'mountpoint', 'identifier', 'format', 'format-details', 'carrier', 'nav-system', 'network', 'country', 'latitude', 'longitude', 'nmea', 'solution', 'generator', 'compr-encryp', 'authentication', 'fee', 'bitrate', 'misc'.
    4999 </p>
    5000 <p>
    5001 Source-table records of type NET contain the following data fields: 'identifier', 'operator', 'authentication', 'fee', 'web-net', 'web-str', 'web-reg', 'misc'.
    5002 </p>
    5003 <p>
    5004 Source-table records of type CAS contain the following data fields: 'host', 'port', 'identifier', 'operator', 'nmea', 'country', 'latitude', 'longitude', 'misc'.
    5005 </p>
    5006 
     5760<p>
     5761The Ntrip Broadcaster maintains a source-table containing information on available Ntrip streams, networks of Ntrip streams and Ntrip Broadcasters.
     5762See at <a href="https://software.rtcm-ntrip.org/wiki/Sourcetable" target="_blank">https://software.rtcm-ntrip.org/wiki/Sourcetable</a> for details.
     5763</p>
     5764<p>
     5765Source-table records are dedicated to one of the following:
     5766<ul>
     5767  <li>Data Streams (record type STR, for details see at: <a href="https://software.rtcm-ntrip.org/wiki/STR" target="_blank">https://software.rtcm-ntrip.org/wiki/STR</a> </li>
     5768  <li>Casters (record type CAS, for details see at: <a href="https://software.rtcm-ntrip.org/wiki/CAS" target="_blank">https://software.rtcm-ntrip.org/wiki/CAS</a> </li>
     5769  <li>Networks of streams (record type NET, for details see at: <a href="https://software.rtcm-ntrip.org/wiki/NET" target="_blank">https://software.rtcm-ntrip.org/wiki/NET</a> </li>
     5770</ul>
     5771</p>
     5772The source-table is sent to an Ntrip Client on request.
     5773</p>
    50075774<p><h4 id="ntrip2">3.1.2 Ntrip Version 2</h4></p>
    5008 
    50095775<p>
    50105776The major changes of Ntrip Version 2 compared to Version 1.0 are:
    50115777</p>
    5012 
    50135778<ul>
    50145779  <li>Cleared and fixed design problems and HTTP protocol violations;</li>
     
    50195784  <li>RTSP communication.</li>
    50205785</ul>
    5021 
    5022 <p>Ntrip Version 2 allows to communicate either in TCP/IP mode or in RTSP/RTP mode or in UDP mode whereas Version 1 is limited to TCP/IP only. It furthermore allows using the Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL) cryptographic protocols for secure Ntrip communication over the Internet.
    5023 </p>
    5024 
     5786<p>
     5787Ntrip Version 2 allows to communicate either in TCP/IP mode or in RTSP/RTP mode or in UDP mode whereas Version 1 is limited to TCP/IP only.
     5788</p>
     5789<p>
     5790It furthermore allows using the Transport Layer Security (TLS) for secure Ntrip communication over the Internet.
     5791</p>
    50255792<p><h4 id="rtcm2">3.1.3 RTCM Version 2</h4></p>
    50265793<p>
    5027 Transmitting GNSS carrier phase data can be done through RTCM Version 2 messages. Please note that only RTCM Version 2.2 and 2.3 streams may include GLONASS data. Messages that may be of interest here are:
    5028 </p>
    5029 
    5030 <ul>
    5031   <li>Type 1 message is the range correction message and is the primary message in code-phase differential positioning (DGPS). It is computed in the base receiver by computing the error in the range measurement for each tracked SV.</li>
    5032   <li>Type 2 message is automatically generated when a new set of satellite ephemeris is downloaded to the base receiver. It is the computed difference between the old ephemeris and the new ephemeris. Type 2 messages are used when the base station is transmitting Type 1 messages.</li>
    5033   <li>Type 3 and 22 messages are the base station position and the antenna offset. Type 3 and 22 are used in RTK processing to perform antenna reduction.</li>
    5034   <li>Type 6 message is a null frame filler message that is provided for data links that require continuous transmission of data, even if there are no corrections to send. As many Type 6 messages are sent as required to fill in the gap between two correction messages (type 1). Message 6 is not sent in burst mode.</li>
    5035   <li>Type 9 message serves the same purpose as Type 1, but does not require a complete satellite set. As a result, Type 9 messages require a more stable clock than a station transmitting Type 1 's, because the satellite corrections have different time references.</li>
    5036   <li>Type 16 message is simply a text message entered by the user that is transmitted from the base station to the rover. It is used with code-phase differential.</li>
     5794Transmitting GNSS carrier phase data can be done through RTCM Version 2 messages.
     5795Please note that only RTCM Version 2.2 and 2.3 streams may include GLONASS data. Messages that may be of interest here are:
     5796</p>
     5797<ul>
     5798  <li>Type 1 message is the range correction message and is the primary message in code-phase differential positioning (DGPS).
     5799      It is computed in the base receiver by computing the error in the range measurement for each tracked SV.</li>
     5800  <li>Type 2 message is automatically generated when a new set of satellite ephemeris is downloaded to the base receiver.
     5801      It is the computed difference between the old ephemeris and the new ephemeris.
     5802      Type 2 messages are used when the base station is transmitting Type 1 messages.</li>
     5803  <li>Type 3 and 22 messages are the base station position and the antenna offset.
     5804      Type 3 and 22 are used in RTK processing to perform antenna reduction.</li>
     5805  <li>Type 6 message is a null frame filler message that is provided for data links that require continuous transmission of data,
     5806      even if there are no corrections to send. As many Type 6 messages are sent as required to fill in the gap between two correction messages (type 1).
     5807      Message 6 is not sent in burst mode.</li>
     5808  <li>Type 9 message serves the same purpose as Type 1, but does not require a complete satellite set.
     5809      As a result, Type 9 messages require a more stable clock than a station transmitting Type 1 's,
     5810      because the satellite corrections have different time references.</li>
     5811  <li>Type 16 message is simply a text message entered by the user that is transmitted from the base station to the rover.
     5812      It is used with code-phase differential.</li>
    50375813  <li>Type 18 and 20 messages are RTK uncorrected carrier phase data and carrier phase corrections.</li>
    50385814  <li>Type 19 and 21 messages are the uncorrected pseudo-range measurements and pseudo-range corrections used in RTK.</li>
     
    50435819<p><h4 id="rtcm3">3.1.4 RTCM Version 3</h4></p>
    50445820<p>
    5045 RTCM Version 3 has been developed as a more efficient alternative to RTCM Version 2. Service providers and vendors have asked for a standard that would be more efficient, easy to use, and more easily adaptable to new situations. The main complaint was that the Version 2 parity scheme was wasteful of bandwidth. Another complaint was that the parity is not independent from word to word. Still another was that even with so many bits devoted to parity, the actual integrity of the message was not as high as it should be. Plus, 30-bit words are awkward to handle. The Version 3 standard is intended to correct these weaknesses.
     5821RTCM Version 3 has been developed as a more efficient alternative to RTCM Version 2.
     5822Service providers and vendors have asked for a standard that would be more efficient, easy to use, and more easily adaptable to new situations.
     5823The main complaint was that the Version 2 parity scheme was wasteful of bandwidth. Another complaint was that the parity is not independent
     5824from word to word. Still another was that even with so many bits devoted to parity, the actual integrity of the message was not as high
     5825as it should be. Plus, 30-bit words are awkward to handle. The Version 3 standard is intended to correct these weaknesses.
    50465826</p>
    50475827
     
    50625842  <li>Type 1012, GLONASS L1 and L2 code and phase and ambiguities and carrier-to-noise ratio.</li>
    50635843  <li>Type 1013, Modified Julian Date, leap second, configured message types and interval.</li>
    5064   <li>Type 1014 and 1017, Network RTK (MAK) messages.</li>
    50655844  <li>Type 1019, GPS ephemeris.</li>
    50665845  <li>Type 1020, GLONASS ephemeris.</li>
     5846  <li>Type 1041  IRNSS ephemeris.</li>
     5847  <li>Type 1042, BDS/BeiDou ephemeris.</li>
    50675848  <li>Type 1043, SBAS ephemeris.</li>
    50685849  <li>Type 1044, QZSS ephemeris.</li>
    50695850  <li>Type 1045, Galileo F/NAV ephemeris.</li>
    50705851  <li>Type 1046, Galileo I/NAV ephemeris.</li>
    5071   <li>Type   63, BeiDou ephemeris, tentative.</li>
    5072   <li>Type 4088 and 4095, Proprietary messages.</li>
    5073 </ul>
    5074 </p>
    5075 
    5076 <p>
    5077 The following are so-called 'State Space Representation' (SSR) messages:
     5852  <li>Type 4076, Proprietary messages of the International IGS Service.</li>
     5853</ul>
     5854</p>
     5855
     5856<p>
     5857The following are so-called 'State Space Representation' (SSR) messages defined or proposed within RTCM SC-104:
    50785858<ul>
    50795859  <li>Type 1057, GPS orbit corrections to Broadcast Ephemeris</li>
     
    51305910
    51315911<p>
    5132 The following are so-called 'Multiple Signal Messages' (MSM):
     5912The following are so-called 'Multiple Signal Messages' (MSM) defined within RTCM SC-104:
    51335913<ul>
    51345914  <li>Type 1071, Compact GPS pseudo-ranges</li>
     
    51395919  <li>Type 1076, Full GPS pseudo-ranges and carrier phases plus signal strength (high resolution)</li>
    51405920  <li>Type 1077, Full GPS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li>
     5921
    51415922  <li>Type 1081, Compact GLONASS pseudo-ranges</li>
    51425923  <li>Type 1082, Compact GLONASS carrier phases</li>
     
    51465927  <li>Type 1086, Full GLONASS pseudo-ranges and carrier phases plus signal strength (high resolution)</li>
    51475928  <li>Type 1087, Full GLONASS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li>
     5929
    51485930  <li>Type 1091, Compact Galileo pseudo-ranges</li>
    51495931  <li>Type 1092, Compact Galileo carrier phases</li>
     
    51535935  <li>Type 1096, Full Galileo pseudo-ranges and carrier phases plus signal strength (high resolution)</li>
    51545936  <li>Type 1097, Full Galileo pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li>
     5937
     5938  <li>Type 1101, Compact SBAS pseudo-ranges</li>
     5939  <li>Type 1102, Compact SBAS carrier phases</li>
     5940  <li>Type 1103, Compact SBAS pseudo-ranges and carrier phases</li>
     5941  <li>Type 1104, Full SBAS pseudo-ranges and carrier phases plus signal strength</li>
     5942  <li>Type 1105, Full SBAS pseudo-ranges, carrier phases, Doppler and signal strength</li>
     5943  <li>Type 1106, Full SBAS pseudo-ranges and carrier phases plus signal strength (high resolution)</li>
     5944  <li>Type 1107, Full SBAS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li>
     5945
    51555946  <li>Type 1121, Compact BeiDou pseudo-ranges</li>
    51565947  <li>Type 1122, Compact BeiDou carrier phases</li>
     
    51605951  <li>Type 1126, Full BeiDou pseudo-ranges and carrier phases plus signal strength (high resolution)</li>
    51615952  <li>Type 1127, Full BeiDou pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li>
     5953
    51625954  <li>Type 1111, Compact QZSS pseudo-ranges</li>
    51635955  <li>Type 1112, Compact QZSS carrier phases</li>
     
    51705962</p>
    51715963
    5172 <p>
    5173 The following are proposed 'Multiple Signal Messages' (MSM) under discussion for standardization:
    5174 <ul>
    5175   <li>Type 1101, Compact SBAS pseudo-ranges</li>
    5176   <li>Type 1102, Compact SBAS carrier phases</li>
    5177   <li>Type 1103, Compact SBAS pseudo-ranges and carrier phases</li>
    5178   <li>Type 1104, Full SBAS pseudo-ranges and carrier phases plus signal strength</li>
    5179   <li>Type 1105, Full SBAS pseudo-ranges, carrier phases, Doppler and signal strength</li>
    5180   <li>Type 1106, Full SBAS pseudo-ranges and carrier phases plus signal strength (high resolution)</li>
    5181   <li>Type 1107, Full SBAS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li>
    5182 </ul>
    5183 </p>
    5184 
    51855964<p><h4 id="confList">3.2 Command Line Help</h3></p>
    5186 
    5187 <p>
    5188 Command line option '--help' provides a complete list of all configuration parameters which can be specified via BNC's Command Line Interface (CLI). Note that command line options overrule configuration options specified in the configuration file. The following is the output produced when running BNC with command line option '--help':
     5965<p>
     5966Command line option '--help' provides a complete list of all configuration parameters which can be specified via BNC's Command Line Interface (CLI).
     5967Note that command line options overrule configuration options specified in the configuration file.
     5968The following is the output produced when running BNC with command line option '--help':
    51895969</p>
    51905970
     
    53696149<b>Upload Corrections Panel keys:</b>
    53706150   uploadMountpointsOut   {Upload corrections table [character string, semicolon separated list, each element in quotation marks, example:
    5371                           "igs-ip.net,2101,IGS01,2,user,pass,IGS14,IGS-SSR,0,/home/user/BNCOUTPUT${V3PROD}.sp3,BNCOUTPUT${V3PROD}.clk,258,1,0;
     6151                          "igs-ip.net,2101,IGS01,2,user,pass,IGS20,IGS-SSR,0,/home/user/BNCOUTPUT${V3PROD}.sp3,BNCOUTPUT${V3PROD}.clk,258,1,0;
    53726152                           euref-ip.net,2101,EUREF01,2,user,pass,ETRF2000,IGS-SSR,0,,,258,2,0"]}
    53736153   uploadIntr             {Length of SP3 and Clock RINEX file interval [character string: 1 min|2 min|5 min|10 min|15 min|30 min|1 hour|1 day]}
     
    54286208                           //user:pass@igs-ip.net:2101/FFMJ1 RTCM_3.1 DEU 50.09 8.66 no 2"
    54296209(7) bnc --key cmbStreams "SSRA00BKG1 BKG 1.0;SSRA00CNE1 CNES 1.0"
    5430 (8) bnc --key uploadMountpointsOut "products.igs-ip.net,98756,TEST,2,user,passwd,IGS14,IGS-SSR,2,/Users/weber/BNCOUTPUT${V3PROD}.clk,,33,3,2;
     6210(8) bnc --key uploadMountpointsOut "products.igs-ip.net,98756,TEST,2,user,passwd,IGS20,IGS-SSR,2,/Users/weber/BNCOUTPUT${V3PROD}.clk,,33,3,2;
    54316211                                    euref-ip.net,333,TEST2,2,user,passwd,ETRF12000,IGS-SSR,2,,,33,5,5"
    54326212(9) bnc --key PPP/staTable "FFMJ00DEU0,100.0,100.0,100.0,100.0,100.0,100.0,0.1,3e-6,0.1,7777;
     
    54376217<b>Links:</b><br>
    54386218<table>
    5439   <tr><td>Ntrip &nbsp;</td><td><a href="http://igs.bkg.bund.de/ntrip/index" target="_blank">http://igs.bkg.bund.de/ntrip/index</a></td></tr>
    5440   <tr><td>IGS Real-time Service &nbsp;</td><td><a href="http://rts.igs.org" target="_blank">http://rts.igs.org</a></td></tr>
    5441   <tr><td>Distribution of IGS-IP streams &nbsp;</td><td><a href="http://www.igs.oma.be/real_time/" target="_blank">http://www.igs.oma.be/real_time/</a></td></tr>
    5442   <tr><td>Completeness and latency of IGS-IP data &nbsp;</td><td><a href="http://www.igs.oma.be/highrate/" target="_blank">http://www.igs.oma.be/highrate/</a></td></tr>
    5443   <tr><td>Ntrip Broadcaster overview &nbsp;</td><td><a href="http://rtcm-ntrip.org/home" target="_blank">http://rtcm-ntrip.org/home</a></td></tr>
    5444   <tr><td>Ntrip Open Source software code &nbsp;</td><td><a href="http://software.rtcm-ntrip.org" target="_blank">http://software.rtcm-ntrip.org</a></td></tr>
    5445   <tr><td>EUREF-IP Project &nbsp;</td><td><a href="http://www.epncb.oma.be/euref_IP" target="_blank">http://www.epncb.oma.be/euref_IP</a></td></tr>
    5446   <tr><td>Real-time IGS Pilot Project &nbsp;</td><td><a href="http://www.rtigs.net/pilot" target="_blank">http://www.rtigs.net/pilot</a></td></tr>
    5447   <tr><td>Radio Technical Commission for Maritime Services &nbsp;</td><td><a href="http://www.rtcm.org" target="_blank">http://www.rtcm.org</a></td></tr>
     6219  <tr><td>Ntrip &nbsp;</td><td><a href="https://igs.bkg.bund.de/ntrip/index" target="_blank">https://igs.bkg.bund.de/ntrip/index</a></td></tr>
     6220  <tr><td>IGS Real-Rime Service (RTS) &nbsp;</td><td><a href="https://igs.org/rts/" target="_blank">https://igs.org/rts/</a></td></tr>
     6221  <tr><td>Ntrip Broadcaster overview &nbsp;</td><td><a href="https://rtcm-ntrip.org/home" target="_blank">https://rtcm-ntrip.org/home</a></td></tr>
     6222  <tr><td>Ntrip Open Source software code &nbsp;</td><td><a href="https://software.rtcm-ntrip.org" target="_blank">https://software.rtcm-ntrip.org</a></td></tr>
     6223  <tr><td>Radio Technical Commission for Maritime Services &nbsp;</td><td><a href="https://www.rtcm.org/" target="_blank">https://www.rtcm.org/</a></td></tr>
    54486224</table>
    54496225<br>
     
    54616237<tr><td>RTCM SC-104 (2011)</td><td>Amendment 1 to RTCM Standard 10410.1 Networked Transport of RTCM via Internet Protocol (Ntrip) - Version 2.0. RTCM Papter 139-2011-SC104-STD, 2011.</td></tr>
    54626238
    5463 <tr><td>Rupprecht, W. (2000)</td><td>DGPS-IP. <a href="http://www.wsrcc.com/wolfgang/gps/dgps-ip.html" target="_blank">http://www.wsrcc.com/wolfgang/gps/dgps-ip.html</a>, 2000.</td></tr>
     6239<tr><td>Rupprecht, W. (2000)</td><td>DGPS-IP. <u>http://www.wsrcc.com/wolfgang/gps/dgps-ip.html</u>, 2000.</td></tr>
     6240
     6241<tr><td>St&uuml;rze, A., L. Mervart, W. Söhne, G. Weber, G. Wübbena (2012)</td><td>Real-Time PPP using open CORS Networks and RTCM Standards. 3rd International Conference on Machine Control & Guidance, March 27-29, 2012  </td></tr>
    54646242
    54656243<tr><td>Weber, G., D. Dettmering and H. Gebhard (2005a)</td><td>Networked Transport of RTCM via Internet Protocol (NTRIP). In: Sanso F. (Ed.): A Window on the Future, Proceedings of the IAG General Assembly, Sapporo, Japan, 2003, Springer Verlag, Symposia Series, Vol. 128, p. 60-64, 2005.</td></tr>
     
    54766254
    54776255<tr><td>Weber, G., L. Mervart, A. St&uuml;rze, A. R&uuml;lke and D. St&ouml;cker (2016)</td><td>BKG Ntrip Client, Version 2.12. Mitteilungen des Bundesamtes f&uuml;r Kartographie und Geod&auml;sie, Vol. 49, Frankfurt am Main, 2016.</td><tr>
    5478 
    54796256</table>
    54806257
     
    55056282  <tr><td>FTP</td><td>File Transfer Protocol</td></tr>
    55066283  <tr><td>GDA2020</td><td>Geodetic Datum Australia 2020</td></tr>
    5507   <tr><td>GM</td><td>Google Maps</td></tr>
    55086284  <tr><td>GNSS</td><td>Global Navigation Satellite System</td></tr>
    55096285  <tr><td>GNU</td><td>GNU's Not Unix</td></tr>
     
    55196295  <tr><td>IAG</td><td>International Association of Geodesy</td></tr>
    55206296  <tr><td>ICECAST</td><td>Streaming Media Server</td></tr>
    5521   <tr><td>IGS14</td><td>IGS Reference Frame 2014</td></tr>
     6297  <tr><td>IGS20</td><td>IGS Reference Frame 2020</td></tr>
    55226298  <tr><td>IGS</td><td>International GNSS Service</td></tr>
    55236299  <tr><td>IOD</td><td>Issue of Data</td></tr>
    55246300  <tr><td>IP</td><td>Internet Protocol</td></tr>
    5525   <tr><td>ITRF2014</td><td>International Terrestrial Reference Frame 2014</td></tr>
     6301  <tr><td>ITRF2020</td><td>International Terrestrial Reference Frame 2020</td></tr>
    55266302  <tr><td>L3</td><td>Ionosphere-Free Linear Combination Of Phase Observations</td></tr>
    55276303  <tr><td>LAN</td><td>Local Area Network</td></tr>
Note: See TracChangeset for help on using the changeset viewer.