- Timestamp:
- Dec 2, 2022, 10:54:25 PM (2 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/BNC/src/bnchelp.html
r9854 r9936 172 172 2.13 <a href=#pppclient><b>PPP Client</b></a><br> 173 173 2.13.1 <a href=#pppInp><b>PPP (1): Input and Output</b></a><br> 174 2.13.1.1 <a href=#pppdatasource>Data Source</a><br> 175 2.13.1.2 <a href=#ppprnxobs>RINEX Observation File</a><br> 176 2.13.1.3 <a href=#ppprnxnav>RINEX Navigation File</a><br> 177 2.13.1.4 <a href=#pppcorrstream>Corrections Stream</a><br> 178 2.13.1.5 <a href=#pppcorrfile>Corrections File</a><br> 179 2.13.1.6 <a href=#pppantexfile>ANTEX File</a><br> 180 2.13.1.7 <a href=#pppmarkcoor>Coordinates File</a><br> 181 2.13.1.8 <a href=#pppv3filename>Version 3 Filenames</a><br> 182 2.13.1.9 <a href=#ppplogfile>Logfile Directory</a><br> 183 2.13.1.10 <a href=#pppnmeafile>NMEA Directory</a><br> 184 2.13.1.11 <a href=#pppsnxtrofile>SNX TRO Directory</a><br> 185 2.13.1.11.1 <a href=#pppsnxtrointr>Interval</a><br> 186 2.13.1.11.2 <a href=#pppsnxtrosampl>Sampling</a><br> 187 2.13.1.11.3 <a href=#pppsnxAc>Analysis Center</a><br> 188 2.13.1.11.4 <a href=#pppsnxSol>Solution ID</a><br> 189 190 2.13.2 <a href=#pppStation><b>PPP (2): Processed Stations</b></a><br> 191 2.13.2.1 <a href=#pppsite>Station</a><br> 192 2.13.2.2 <a href=#pppnehsigma>Sigma North/East/Up</a><br> 193 2.13.2.3 <a href=#pppnehnoise>Noise North/East/Up</a><br> 194 2.13.2.4 <a href=#ppptropsigma>Tropo Sigma</a><br> 195 2.13.2.5 <a href=#ppptropnoise>Tropo Noise</a><br> 196 2.13.2.6 <a href=#pppnmeaport>NMEA Port</a><br> 197 2.13.3 <a href=#pppOptions><b>PPP (3): Processing Options</b></a><br> 198 2.13.3.1 <a href=#ppplinecombi>Linear Combinations</a><br> 199 2.13.3.2 <a href=#pppcodeobs>Code Observations</a><br> 200 2.13.3.3 <a href=#pppphaseobs>Phase Observations</a><br> 201 2.13.3.4 <a href=#pppeleweight>Elevation Dependent Weighting</a><br> 202 2.13.3.5 <a href=#pppminobs>Minimum Number of Observations</a><br> 203 2.13.3.6 <a href=#pppmineleva>Minimum Elevation</a><br> 204 2.13.3.7 <a href=#pppwaitclockcorr>Wait for Clock Corrections</a><br> 205 2.13.3.8 <a href=#pppseeding>Seeding</a><br> 174 2.13.1.1 <a href=#pppdatasource>Data Source</a><br> 175 2.13.1.2 <a href=#pppcorrstream>Corrections Stream</a><br> 176 2.13.1.3 <a href=#pppcorrfile>Corrections File</a><br> 177 2.13.1.4 <a href=#pppionostream>Ionosphere Stream</a><br> 178 2.13.1.5 <a href=#pppionofile>Ionosphere File</a><br> 179 2.13.1.6 <a href=#ppprnxobs>RINEX Observation File</a><br> 180 2.13.1.7 <a href=#ppprnxnav>RINEX Navigation File</a><br> 181 2.13.1.8 <a href=#pppantexfile>ANTEX File</a><br> 182 2.13.1.9 <a href=#pppmarkcoor>Coordinates File</a><br> 183 2.13.1.10 <a href=#pppblqfile>BLQ File</a><br> 184 2.13.1.11 <a href=#ppplogfile>Logfile Directory</a><br> 185 2.13.1.12 <a href=#pppnmeafile>NMEA Directory</a><br> 186 2.13.1.13 <a href=#pppsnxtrofile>SNX TRO Directory</a><br> 187 2.13.1.13.1 <a href=#pppsnxtrointr>Interval</a><br> 188 2.13.1.13.2 <a href=#pppsnxtrosampl>Sampling</a><br> 189 2.13.1.13.3 <a href=#pppsnxAc>Analysis Center</a><br> 190 2.13.1.13.4 <a href=#pppsnxSol>Solution ID</a><br> 191 2.13.2 <a href=#pppOptions><b>PPP (2): Processing Options</b></a><br> 192 2.13.2.1 <a href=#pppobs>GNSS Observations</a><br> 193 2.13.2.2 <a href=#pppcodeobs>Code Observations</a><br> 194 2.13.2.3 <a href=#pppphaseobs>Phase Observations</a><br> 195 2.13.2.4 <a href=#pppeleweight>Elevation Dependent Weighting</a><br> 196 2.13.2.5 <a href=#pppminobs>Minimum Number of Observations</a><br> 197 2.13.2.6 <a href=#pppmineleva>Minimum Elevation</a><br> 198 2.13.2.7 <a href=#pppwaitclockcorr>Wait for Clock Corrections</a><br> 199 2.13.2.8 <a href=#pppseeding>Seeding</a><br> 200 2.13.2.9 <a href=#ppppseudoobs>Pseudo Observations</a><br> 201 2.13.2.10 <a href=#ppppseudogimobs>GIM Pseudo Observations</a><br> 202 2.13.3 <a href=#pppStation><b>PPP (3): Processed Stations</b></a><br> 203 2.13.3.1 <a href=#pppsite>Station</a><br> 204 2.13.3.2 <a href=#pppnehsigma>Sigma North/East/Up</a><br> 205 2.13.3.3 <a href=#pppnehnoise>Noise North/East/Up</a><br> 206 2.13.3.4 <a href=#ppptropsigma>Tropo Sigma</a><br> 207 2.13.3.5 <a href=#ppptropnoise>Tropo Noise</a><br> 208 2.13.3.6 <a href=#pppnmeaport>NMEA Port</a><br> 209 2.13.3.6 <a href=#pppsignalpriorities>Signal Priorities</a><br> 206 210 2.13.4 <a href=#pppPlots><b>PPP (4): Plots</b></a><br> 207 211 2.13.4.1 <a href=#ppptimeseries>PPP Plot</a><br> 208 212 2.13.4.2 <a href=#pppaudioresp>Audio Response</a><br> 209 213 2.13.4.3 <a href=#ppptrackmap>Track Map</a><br> 210 2.13.4.3.1 <a href=#pppmaptype>Google/OSM</a><br>211 214 2.13.4.4 <a href=#pppdotprop>Dot-properties</a><br> 212 215 2.13.4.4.1 <a href=#pppdotsize>Size</a><br> … … 221 224 2.15 <a href=#upclk><b>Upload Corrections</b></a><br> 222 225 2.15.1 <a href=#upadd>Add, Delete Row</a><br> 223 2.15.2 <a href=#uphost>Host, Port, Mountpoint, Password</a><br>226 2.15.2 <a href=#uphost>Host, Port, Mountpoint, Ntrip Version, User and Password </a><br> 224 227 2.15.3 <a href=#upsystem>System</a><br> 225 228 2.15.4 <a href=#upformat>Format</a><br> … … 227 230 2.15.6 <a href=#upsp3>SP3 File</a><br> 228 231 2.15.7 <a href=#uprinex>RNX File</a><br> 229 2.15.8 <a href=#pidsidiod>PID, SID, IOD</a><br> 230 231 2.15.9 <a href=#upinter>Interval</a><br> 232 2.15.10 <a href=#upclksmpl>Sampling</a><br> 233 2.15.10.1 <a href=#upclkorb>Orbits</a><br> 234 2.15.10.2 <a href=#upclksp3>SP3</a><br> 235 2.15.10.3 <a href=#upclkrnx>RINEX</a><br> 236 2.15.11 <a href=#upcustom>Custom Trafo</a><br> 237 2.15.12 <a href=#upantex>ANTEX File</a><br> 232 2.15.8 <a href=#upsinex>BSX File</a><br> 233 2.15.9 <a href=#pidsidiod>PID, SID, IOD</a><br> 234 2.15.10 <a href=#upinter>Interval</a><br> 235 2.15.11 <a href=#upclksmpl>Sampling</a><br> 236 2.15.11.1 <a href=#upclkorb>Orbits</a><br> 237 2.15.11.2 <a href=#upclksp3>SP3</a><br> 238 2.15.11.3 <a href=#upclkrnx>RINEX</a><br> 239 2.15.11.4 <a href=#upbiassnx>SINEX</a><br> 240 2.15.12 <a href=#upcustom>Custom Trafo</a><br> 241 2.15.13 <a href=#upantex>ANTEX File</a><br> 238 242 2.16 <a href=#upeph><b>Upload Ephemeris</b></a><br> 239 243 2.16.1 <a href=#brdcserver>Host & Port</a><br> 240 2.16.2 <a href=#brdcmount>Mountpoint, User, Password</a><br>244 2.16.2 <a href=#brdcmount>Mountpoint, Ntrip Version, User, Password</a><br> 241 245 2.16.3 <a href=#brdcsys>Satellite System </a><br> 242 246 2.16.4 <a href=#brdcsmpl>Sampling</a><br> … … 297 301 <tr><td>6</td><td>Management of configuration options in BNC</td><td>1.6</td></tr> 298 302 <tr><td>7</td><td>BNC's 'Network' panel configured to ignore eventually occurring SSL error messages</td><td>2.2.2</td></tr> 299 <tr><td>8</td><td>BNC translating incoming streams to 15 min RINEX Version 3files</td><td>2.4</td></tr>303 <tr><td>8</td><td>BNC translating incoming RTCM Version 3 Observation streams to 15 min RINEX Version 4 Observation files</td><td>2.4</td></tr> 300 304 <tr><td>9</td><td>Example for creating RINEX quality check analysis graphics output with BNC</td><td>2.6.5</td></tr> 301 305 <tr><td>10</td><td>Example for satellite availability, elevation and PDOP plots as a result of a RINEX quality check analysis with BNC</td><td>2.6.5</td></tr> … … 304 308 <tr><td>13</td><td>Example for BNC's 'RINEX Editing Options' window</td><td>2.6.7</td></tr> 305 309 <tr><td>14</td><td>Example for RINEX file concatenation with BNC</td><td>2.6.7</td></tr> 306 307 <tr><td>9</td><td>BNC converting Broadcast Ephemeris stream to RINEX Version 3 Navigation files</td><td>2.5.5</td></tr> 308 309 310 <tr><td>16</td><td>Example for comparing two SP3 files with satellite orbit and clock data using BNC</td><td>2.7.3</td></tr> 310 <tr><td>15</td><td>Example for comparing two SP3 files with satellite orbit and clock data using BNC</td><td>2.7</td></tr> 311 <tr><td>16</td><td>Graphical results from an example comparison of two SP3 files with satellite orbit and clock data using BNC</td><td>2.7.3</td></tr> 311 312 <tr><td>17</td><td>Example for pulling, saving and output of Broadcast Corrections using BNC</td><td>2.8.3</td></tr> 312 313 <tr><td>18</td><td>Synchronized BNC output via IP port to feed a GNSS real-time engine</td><td>2.9</td></tr> 313 314 <tr><td>19</td><td>Flowcharts, BNC forwarding a stream to a serially connected receiver; sending NMEA sentences is mandatory for VRS streams</td><td>2.10</td></tr> 314 <tr><td>20</td><td>BNC pulling a VRS stream to feed a serially connected RTK rover</td><td>2.10</td></tr>315 <tr><td>20</td><td>BNC pulling a RTCM Version 3 stream to feed a serial connected receiver with observations from a nearby reference station for conventional RTK</td><td>2.10</td></tr> 315 316 <tr><td>21</td><td>RTCM message numbers, latencies and observation types logged by BNC</td><td>2.12</td></tr> 316 317 <tr><td>22</td><td>Real-time Precise Point Positioning with BNC, PPP Panel 1</td><td>2.13.1</td></tr> 317 <tr><td>23</td><td>Precise Point Positioning with BNC, PPP Panel 2, using RTKPLOT for visualization</td><td>2.13.2</td></tr> 318 <tr><td>24</td><td>Precise Point Positioning with BNC, PPP Panel 3</td><td>2.13.3</td></tr> 319 <tr><td>25</td><td>Precise Point Positioning with BNC in 'Quick-Start' mode, PPP Panel 4</td><td>2.13.3.8</td></tr> 320 <tr><td>26</td><td>Track of positions from BNC with Google Maps in background</td><td>2.13.4.3</td></tr> 321 <tr><td>27</td><td>Example for background map from Google Maps and OpenStreetMap (OSM) resources</td><td>2.13.4.3.1</td></tr> 322 <tr><td>28</td><td>BNC combining Broadcast Correction streams</td><td>2.14</td></tr> 323 <tr><td>29</td><td>INTERNAL' PPP with BNC using a combination of Broadcast Corrections</td><td>2.14</td></tr> 324 <tr><td>30</td><td>Setting BNC's Custom Transformation Parameters window, example for 'ITRF2008->GDA94'</td><td>2.15.3</td></tr> 325 <tr><td>31</td><td>BNC producing Broadcast Corrections from incoming precise orbits and clocks and uploading them to an Ntrip Broadcaster</td><td>2.15.11</td></tr> 326 <tr><td>32</td><td>BNC uploading a combined Broadcast Correction stream</td><td>2.15.11</td></tr> 327 <tr><td>33</td><td>BNC producing Broadcast Ephemeris stream from globally distributed RTCM streams; upload in RTCM format to an Ntrip Broadcaster</td><td>2.16.3</td></tr> 328 <tr><td>34</td><td>Bandwidth consumption of RTCM streams received by BNC</td><td>2.18.2</td></tr> 329 <tr><td>35</td><td>Latency of RTCM streams received by BNC</td><td>2.18.3</td></tr> 330 <tr><td>36</td><td>Example for time series plot of displacements produced by BNC</td><td>2.18.4</td></tr> 331 <tr><td>37</td><td>Steam input communication links accepted by BNC</td><td>2.19</td></tr> 332 <tr><td>38</td><td>BNC's 'Select Broadcaster' table</td><td>2.19.1.1.2</td></tr> 333 <tr><td>39</td><td>Broadcaster source-table shown by BNC</td><td>2.19.1.1.4</td></tr> 334 <tr><td>40</td><td>Stream distribution map shown by BNC as derived from Ntrip Broadcaster source-table</td><td>2.19.1.1.6</td></tr> 335 <tr><td>41</td><td>BNC configuration for pulling a stream via serial port</td><td>2.19.1.4</td></tr> 318 <tr><td>23</td><td>Precise Point Positioning with BNC, PPP Panel 2</td><td>2.13.2</td></tr> 319 <tr><td>24</td><td>Precise Point Positioning with BNC in 'Quick-Start' mode, PPP Panel 4</td><td>2.13.2.10</td></tr> 320 <tr><td>25</td><td>Precise Point Positioning with BNC, PPP Panel 3</td><td>2.13.3</td></tr> 321 <tr><td>26</td><td>Track of positions from BNC with OpenStreetMap in background</td><td>2.13.4.3</td></tr> 322 <tr><td>27</td><td>BNC combining Broadcast Correction streams</td><td>2.14</td></tr> 323 <tr><td>28</td><td>'INTERNAL' PPP with BNC using a combination of Broadcast Corrections</td><td>2.14</td></tr> 324 <tr><td>29</td><td>BNC producing Broadcast Corrections from incoming precise orbits and clocks and uploading them to an Ntrip Broadcaster</td><td>2.15</td></tr> 325 <tr><td>30</td><td>Setting BNC's Custom Transformation Parameters window</td><td>2.15.3</td></tr> 326 <tr><td>31</td><td>BNC uploading a combined Broadcast Correction stream</td><td>2.15.12</td></tr> 327 <tr><td>32</td><td>BNC producing Broadcast Ephemeris streams from globally distributed RTCM streams; upload in RTCM format to an Ntrip Broadcaster</td><td>2.16.3</td></tr> 328 <tr><td>33</td><td>Bandwidth consumption of RTCM streams received by BNC</td><td>2.18.2</td></tr> 329 <tr><td>34</td><td>Latency of RTCM streams received by BNC</td><td>2.18.3</td></tr> 330 <tr><td>35</td><td>Example for time series plot of displacements produced by BNC</td><td>2.18.4</td></tr> 331 <tr><td>36</td><td>Steam input communication links accepted by BNC</td><td>2.19</td></tr> 332 <tr><td>37</td><td>BNC's 'Select Broadcaster' table</td><td>2.19.1.1.2</td></tr> 333 <tr><td>38</td><td>Broadcaster source-table shown by BNC</td><td>2.19.1.1.4</td></tr> 334 <tr><td>39</td><td>Stream distribution map shown by BNC as derived from Ntrip Broadcaster source-table</td><td>2.19.1.1.6</td></tr> 335 <tr><td>40</td><td>BNC configuration for pulling a stream via serial port</td><td>2.19.1.4</td></tr> 336 336 </table> 337 337 </p> … … 585 585 </table> 586 586 <br> 587 588 587 <p><h4 id="introFlow">1.3 Data Flow</h4></p> 589 590 588 <p> 591 589 BNC can be used in different contexts with varying data flows. Typical real-time communication follows the Ntrip protocol … … 597 595 serial or TCP communication link for the purpose of Precise Point Positioning. 598 596 </p> 599 <p><img src="IMG/Figure01.png" width=" 900"></p>597 <p><img src="IMG/Figure01.png" width="1000"></p> 600 598 <p>Figure 1: Flowchart, BNC connected to a GNSS rover for Precise Point Positioning</p> 601 599 <p> … … 604 602 <p> 605 603 </p> 606 <p><img src="IMG/Figure02.png"width= 900/></p>604 <p><img src="IMG/Figure02.png"width=1000/></p> 607 605 <p>Figure 2: Flowchart, BNC converting RTCM streams to RINEX batches</p> 608 606 <p> … … 613 611 <p> 614 612 </p> 615 <p><img src="IMG/Figure03.png"width= 900/></p>613 <p><img src="IMG/Figure03.png"width=1000/></p> 616 614 <p>Figure 3: Flowchart, BNC feeding a real-time GNSS engine and uploading encoded Broadcast Corrections</p> 617 615 <p> … … 621 619 <p> 622 620 </p> 623 <p><img src="IMG/Figure04.png"width= 900/></p>621 <p><img src="IMG/Figure04.png"width=1000/></p> 624 622 <p>Figure 4: Flowchart, BNC combining Broadcast Correction streams</p> 625 623 … … 634 632 using processing options from a previously saved configuration or from command line. 635 633 </p> 636 637 634 <p> 638 635 Unless it runs offline, BNC … … 647 644 </ul> 648 645 </p> 649 650 646 <p> 651 647 The main window of BNC shows a 'Top menu bar' section, a 'Settings' sections with panels to set processing options, 652 648 a 'Streams' section, a section for 'Log' tabs, and a 'Bottom menu bar' section, see figure below. 653 649 </p> 654 <p><img src="IMG/Figure05.png"width= 900/></p>650 <p><img src="IMG/Figure05.png"width=1000/></p> 655 651 <p>Figure 5: Sections on BNC's main window</p> 656 652 … … 664 660 and the '-display' command line option. 665 661 </p> 666 667 662 <p> 668 663 The usual handling of BNC is that you first select a number of streams ('Add Stream'). Any stream configured to BNC … … 672 667 panel is empty, the affected functionality is deactivated. 673 668 </p> 674 675 669 <p> 676 670 Records of BNC's activities are shown in the 'Log' tab which is part of the 'Log' canvas. The bandwidth consumption … … 678 672 of that canvas and shown in the 'Throughput', 'Latency' and 'PPP Plot' tabs. 679 673 </p> 680 681 674 <p> 682 675 Configuration options are usually first set using BNC's Graphical User Interface (GUI), then saved in a configuration … … 684 677 file and applied using the program's Command Line Interface (CLI). 685 678 </p> 686 687 679 <h4 id="introInst">1.5 Installation</h4> 688 680 <p> … … 691 683 Please ensure that you always use the latest version of the program. 692 684 </p> 693 694 685 <p> 695 686 <b>Windows:</b> A dynamically compiled shared library build for Mircrosoft Windows systems is provided as … … 699 690 After installation your 'bnc.exe' file shows up e.g. under 'All Programs'. 700 691 </p> 701 702 692 <p> 703 693 <b>Linux:</b> Shared library builds for BNC are provided for a selection of Linux distributions. 704 694 Download the ZIP archive for a version which fits to your Linux system, unzip the archive and run the included BNC binary. 705 695 </p> 706 707 696 <p> 708 697 <b>Mac OS X Build:</b> … … 713 702 You could also start BNC via Command Line Interface (CLI) using command <i>'/Applications/bnc.app/Contents/MacOS/bnc'</i>. 714 703 </p> 715 716 704 <h4 id="introCompile">1.5.1 Compilation</h4> 717 718 705 <p> 719 706 BNC has been written as Open Source and published under GNU General Public License (GPL). The latest source code can … … 727 714 version is installed. 728 715 </p> 729 730 716 <p><b>Static versus Shared Libraries</b><br> 731 717 You can produce static or shared library builds of BNC. <b>Static</b> builds are sufficient in case you do not want 732 BNC to produce track maps on top of Google Map (GM) or OpenStreetMap (OSM). GM/OSMusage would require the733 QtWeb Kitlibrary which can only be part of BNC builds from <b>shared</b> Qt libraries. Hence, having a shared library718 BNC to produce track maps on top of OpenStreetMap (OSM). The usage would require the 719 QtWebEngineWidges library which can only be part of BNC builds from <b>shared</b> Qt libraries. Hence, having a shared library 734 720 Qt installation available is a precondition for producing a shared library build of BNC. 735 721 </p> … … 799 785 <li>Extend the Windows environment variable PATH by C:\Qt\4.8.5\bin.</li> 800 786 </ol> 801 802 787 <p> 803 788 Steps (11)-(15) can be repeated whenever a BNC update becomes available. Running bnc.exe on a windows system 804 789 requires (1) when using the NTRIP Version 2s option for stream transfer over TLS/SSL. 805 790 </p> 806 807 791 <p> 808 792 <b>Linux Systems</b><br> … … 817 801 </pre> 818 802 You will find a build of BNC in directory BNC. 819 820 821 803 <p> 822 804 <b>Mac OS X Systems</b><br> … … 876 858 See annexed 'Command Line Help' for a complete set of configuration options. 877 859 </p> 878 879 860 <p> 880 861 BNC maintains configuration options at three different levels: 881 862 </p> 882 883 863 <ul> 884 864 <li>GUI, input fields level</li> … … 886 866 <li>Configuration file, disk level</li> 887 867 </ul> 888 889 <p><img src="IMG/Figure06.png"width=900/></p> 868 <p><img src="IMG/Figure06.png"width=1000/></p> 890 869 <p>Figure 6: Management of configuration options in BNC:<br> 891 870 <table> … … 914 893 915 894 <p><h4 id="introExamples">1.6.1 Examples</h4></p> 916 917 895 <p> 918 896 BNC comes with a number of configuration examples which can be used on all operating systems. … … 924 902 <li>You could also start BNC using a command line for naming a specific configuration file (suggested e.g. for Mac systems):<br> 925 903 /Applications/bnc.app/Contents/MacOS/bnc --conf <configFileName></li> 926 <li>On non-graphical systems or when running BNC in batch mode in the background you may start the program using a command line with a configuration file option in '<u>n</u>o <u>w</u>indow' mode (example for Windows systems):<br> 904 <li>On non-graphical systems or when running BNC in batch mode in the background you may start the program using a command line 905 with a configuration file option in '<u>n</u>o <u>w</u>indow' mode (example for Windows systems):<br> 927 906 bnc.exe --conf <configFileName> --nw</li> 928 907 </ul> … … 954 933 955 934 <p> 956 Note that the account for an Ntrip Broadcaster is usually limited to pulling a specified maximum number of streams at the same time. As running some of the example configurations requires pulling several streams, it is suggested to make sure that you do not exceed your account's limits. 957 </p> 958 959 <p> 960 Make also sure that sub-directories 'Input' and 'Output' which are part of the example configurations exist on your system or adjust the affected example configuration options according to your needs. 961 </p> 962 963 <p> 964 Some BNC options require Antenna Phase Center variations as made available from IGS through so-called ANTEX files at <a href="https://files.igs.org/pub/station/general/igs14.atx" target="_blank">https://files.igs.org/pub/station/general/igs14.atx</a>. 965 An example ANTEX file 'igs14.atx' is part of the BNC package for convenience. 935 Note that the account for an Ntrip Broadcaster is usually limited to pulling a specified maximum number of streams at the same time. 936 As running some of the example configurations requires pulling several streams, it is suggested to make sure that you do not exceed your account's limits. 937 </p> 938 939 <p> 940 Make also sure that sub-directories 'Input' and 'Output' which are part of the example configurations exist on your system or adjust 941 the affected example configuration options according to your needs. 942 </p> 943 944 <p> 945 Some BNC options require Antenna Phase Center variations as made available from IGS through so-called ANTEX files 946 at <a href="https://files.igs.org/pub/station/general/igs20.atx" target="_blank">https://files.igs.org/pub/station/general/igs20.atx</a>. 947 An example ANTEX file 'igs20.atx' is part of the BNC package for convenience. 966 948 </p> 967 949 … … 1107 1089 IGS-SSR messages to finally upload them to an Ntrip Broadcaster. The 1108 1090 Broadcast Correction stream is referred to satellite Antenna Phase Center (APC) 1109 and reference system IGS 14. Orbits are saved on disk in SP3 format and clocks1091 and reference system IGS20. Orbits are saved on disk in SP3 format and clocks 1110 1092 are saved in Clock RINEX format. 1111 1093 </li> … … 1118 1100 an Ntrip Broadcaster. The Broadcast Correction stream is referred to 1119 1101 satellite Antenna Phase Center (APC) and not to satellite Center of 1120 Mass (CoM). Its reference system is IGS 14. Orbits are saved in SP3 format1102 Mass (CoM). Its reference system is IGS20. Orbits are saved in SP3 format 1121 1103 (referred to CoM) and clocks in Clock RINEX format. 1122 1104 </li> … … 1248 1230 <p><h4 id="introLBack">Looking Back</h4></p> 1249 1231 <p> 1250 A basic function of BNC is streaming GNSS data over the open Internet using the Ntrip transport protocol. Employing IP streaming for satellite positioning goes back to the beginning of our century. Wolfgang Rupprecht has been the first person who developed TCP/IP server software under the acronym of DGPS-IP (Rupprecht 2000) and published it under GNU General Public License (GPL). While connecting marine beacon receivers to PCs with permanent access to the Internet he transmitted DGPS corrections in an RTCM format to support Differential GPS positioning over North America. With approximately 200 bits/sec the bandwidth requirement for disseminating beacon data was comparatively small. Each stream was transmitted over a unique combination of IP address and port. Websites informed about existing streams and corresponding receiver positions. 1251 </p> 1252 <p> 1253 To cope with an increasing number of transmitting GNSS reference stations, the Federal Agency for Cartography and Geodesy (BKG) together with the Informatik Centrum Dortmund (ICD) in Germany developed a streaming protocol for satellite navigation data called 'Networked Transport of RTCM via Internet Protocol' (Ntrip). The protocol was built on top of the HTTP standard and included the provision of meta data describing the stream content. Any stream could now be globally transmitted over just one IP port: HTTP port 80. Stream availability and content details became part of the transport protocol. The concept was first published in 2003 (Weber and Honkala 2004, Weber et al. 2005a) and was based on three software components, namely an NtripServer pushing data from a reference station to an NtripCaster and an NtripClient pulling data from the stream splitting caster to support a rover receiver. (Note that from a socket-programmers perspective NtripServer and NtripClient both act as clients; only the NtripCaster operates as socket-server.) Ntrip could essentially benefit from Internet Radio developments. It was the ICECAST multimedia server, which provided the bases for BKG's 'Professional Ntrip Broadcaster' with software published first in 2003 and of course again as Open Source under GPL. 1254 </p> 1255 <p> 1256 For BKG as a governmental agency, making Ntrip an Open Industry Standard has been an objective from the very beginning. The 'Radio Technical Commission for Maritime Services' (RTCM) accepted 'Ntrip Version 1' in 2004 as 'RTCM Recommended Standard' (Weber et al. 2005b). Nowadays there is almost no geodetic GNSS receiver which does not come with integrated NtripClient and NtripServer functionality as part of the firmware. Hundreds of NtripCaster implementations are operated world-wide for highly accurate satellite navigation through RTK networks. Thousands of reference stations upload observations via NtripServer to central computing facilities for any kind of NtripClient application. In 2011 'Ntrip Version 2' was released (RTCM SC-104 2011) which cleared and fixed some design problems and HTTP protocol violations. It also supports TCP/IP via SSL and adds optional communication over RTSP/RTP and UDP. 1232 A basic function of BNC is streaming GNSS data over the open Internet using the Ntrip transport protocol. 1233 Employing IP streaming for satellite positioning goes back to the beginning of our century. 1234 Wolfgang Rupprecht has been the first person who developed TCP/IP server software under the acronym of 1235 DGPS-IP (Rupprecht 2000) and published it under GNU General Public License (GPL). 1236 While connecting marine beacon receivers to PCs with permanent access to the Internet he 1237 transmitted DGPS corrections in an RTCM format to support Differential GPS positioning over North America. 1238 With approximately 200 bits/sec the bandwidth requirement for disseminating beacon data was comparatively small. 1239 Each stream was transmitted over a unique combination of IP address and port. 1240 Websites informed about existing streams and corresponding receiver positions. 1241 </p> 1242 <p> 1243 To cope with an increasing number of transmitting GNSS reference stations, the Federal Agency for Cartography and Geodesy (BKG) 1244 together with the Informatik Centrum Dortmund (ICD) in Germany developed a streaming protocol for satellite navigation data called 1245 'Networked Transport of RTCM via Internet Protocol' (Ntrip). The protocol was built on top of the HTTP standard and included the 1246 provision of meta data describing the stream content. Any stream could now be globally transmitted over just one IP port: HTTP port 80. 1247 Stream availability and content details became part of the transport protocol. The concept was first published in 2003 1248 (Weber and Honkala 2004, Weber et al. 2005a) and was based on three software components, namely an NtripServer pushing data from 1249 a reference station to an NtripCaster and an NtripClient pulling data from the stream splitting caster to support a rover receiver. 1250 (Note that from a socket-programmers perspective NtripServer and NtripClient both act as clients; only the NtripCaster operates as socket-server.) 1251 Ntrip could essentially benefit from Internet Radio developments. It was the ICECAST multimedia server, which provided the bases 1252 for BKG's 'Professional Ntrip Broadcaster' with software published first in 2003 and of course again as Open Source under GPL. 1253 </p> 1254 <p> 1255 For BKG as a governmental agency, making Ntrip an Open Industry Standard has been an objective from the very beginning. 1256 The 'Radio Technical Commission for Maritime Services' (RTCM) accepted 'Ntrip Version 1' in 2004 as 'RTCM Recommended Standard' (Weber et al. 2005b). 1257 Nowadays there is almost no geodetic GNSS receiver which does not come with integrated NtripClient and NtripServer functionality as part of the firmware. 1258 Hundreds of NtripCaster implementations are operated world-wide for highly accurate satellite navigation through RTK networks. 1259 Thousands of reference stations upload observations via NtripServer to central computing facilities for any kind of NtripClient application. 1260 In 2011 'Ntrip Version 2' was released (RTCM SC-104 2011) which cleared and fixed some design problems and HTTP protocol violations. 1261 It also supports TCP/IP via SSL and adds optional communication over RTSP/RTP and UDP. 1257 1262 </p> 1258 1263 <p> … … 1270 1275 </p> 1271 1276 <p> 1272 Adding real-time Precise Point Positioning (PPP) support to BNC began in 2010 as an important completion in view of developing an Open RTCM Standard for that. According to the State Space Representation (SSR) model, new Version 3 messages are proposed to provide e.g. satellite orbit and clock corrections and ionospheric corrections as well as biases for code and phase data. The ultimate goal for SSR standardization is to reach centimeter level accuracy within seconds as an alternative to Network RTK methods such as VRS, FKP, and MAC. Because of interoperability aspects, an Open Standard in this area is of particular interest for clients. Regarding stand-alone PPP in BNC, it is worth mentioning that the program is not and can never be in competition with a receiver manufacturer's proprietary solution. Only software or services that are part of a receiver firmware could have the potential of becoming a thread for commercial interests. However, implementing or not implementing an Open PPP approach in a firmware is and will always remain a manufacturer's decision. 1273 </p> 1274 <p> 1275 Implementing some post processing capability is essential for debugging real-time software in case of problems. So certain real-time options in BNC were complemented to work offline through reading data from files. Moreover, beginning in 2012, the software was extended to support Galileo, BeiDou, and QZSS besides GPS and GLONASS. With that, the Open Source tool BNC could be used for RINEX Version 3 file editing, concatenation and quality checks, a post processing functionality demanded by the IGS Multi-GNSS Experiment and not really covered at that time by UNAVCO's famous TEQC program with its limitation on GPS. 1276 </p> 1277 1278 <p> 1279 The well-established, mature codebase is mostly written in C++ language. Its publication under GNU GPL is thought to be well-suited for test, validation and demonstration of new approaches in precise real-time satellite navigation when IP streaming is involved. Commissioned by a German governmental agency, the overall intention has been to push the development of RTCM Recommended Standards to the benefit of IAG institutions and services such as IGS and the interested public in general. 1277 Adding real-time Precise Point Positioning (PPP) support to BNC began in 2010 as an important completion in view of developing an 1278 Open RTCM Standard for that. According to the State Space Representation (SSR) model, new Version 3 messages are proposed to provide e.g. 1279 satellite orbit and clock corrections and ionospheric corrections as well as biases for code and phase data. 1280 The ultimate goal for SSR standardization is to reach centimeter level accuracy within seconds as an alternative to Network RTK methods 1281 such as VRS, FKP, and MAC. Because of interoperability aspects, an Open Standard in this area is of particular interest for clients. 1282 Regarding stand-alone PPP in BNC, it is worth mentioning that the program is not and can never be in competition with a receiver 1283 manufacturer's proprietary solution. Only software or services that are part of a receiver firmware could have the potential of 1284 becoming a thread for commercial interests. However, implementing or not implementing an Open PPP approach in a firmware is and 1285 will always remain a manufacturer's decision. 1286 </p> 1287 <p> 1288 Implementing some post processing capability is essential for debugging real-time software in case of problems. 1289 So certain real-time options in BNC were complemented to work offline through reading data from files. 1290 Moreover, beginning in 2012, the software was extended to support Galileo, BeiDou, and QZSS besides GPS and GLONASS. 1291 With that, the Open Source tool BNC could be used for RINEX Version 3 file editing, concatenation and quality checks, 1292 a post processing functionality demanded by the IGS Multi-GNSS Experiment and not really covered at that time by 1293 UNAVCO's famous TEQC program with its limitation on GPS. 1294 </p> 1295 1296 <p> 1297 The well-established, mature codebase is mostly written in C++ language. 1298 Its publication under GNU GPL is thought to be well-suited for test, validation and demonstration of new 1299 approaches in precise real-time satellite navigation when IP streaming is involved. Commissioned by a 1300 German governmental agency, the overall intention has been to push the development of RTCM Recommended Standards 1301 to the benefit of IAG institutions and services such as IGS and the interested public in general. 1280 1302 </p> 1281 1303 1282 1304 <p><h3 id="optsettings">2. Settings Details</h3></p> 1283 1305 <p> 1284 The general documentation approach is to create a separate chapter for each processing option in a sequence which follows the layout of BNC's Graphical User Interface (GUI). The advantage is that searching for help by means of the document's Table of Contents (TOC) is quite convenient. A rather comprehensive number of TOC entries is the accepted downside of this approach. 1285 </p> 1286 <p> 1287 The following chapters describe how to set BNC program options. They explain the 'Top Menu Bar', the 'Settings Canvas' with the processing options, the content of the 'Streams Canvas' and 'Logging Canvas', and the 'Bottom Menu Bar'. 1306 The general documentation approach is to create a separate chapter for each processing option in a sequence which follows the layout of 1307 BNC's Graphical User Interface (GUI). The advantage is that searching for help by means of the document's Table of Contents (TOC) is 1308 quite convenient. A rather comprehensive number of TOC entries is the accepted downside of this approach. 1309 </p> 1310 <p> 1311 The following chapters describe how to set BNC program options. They explain the 'Top Menu Bar', the 'Settings Canvas' with the 1312 processing options, the content of the 'Streams Canvas' and 'Logging Canvas', and the 'Bottom Menu Bar'. 1288 1313 </p> 1289 1314 1290 1315 <p><h4 id="topmenu">2.1 Top Menu Bar</h4></p> 1291 1316 <p> 1292 The top menu bar allows selecting a font for the BNC windows, save configured options, or quit the program execution. It also provides access to the program's documentation. 1317 The top menu bar allows selecting a font for the BNC windows, save configured options, or quit the program execution. 1318 It also provides access to the program's documentation. 1293 1319 </p> 1294 1320 … … 1350 1376 Tick 'Ignore SSL authorization errors' if you generally trust the server and do not want to be bothered with this. Note that SSL communication is usually done over port 443. 1351 1377 </p> 1352 1353 <p><img src="IMG/Figure07.png"width=900/></p> 1378 <p><img src="IMG/Figure07.png"width=800/></p> 1354 1379 <p>Figure 7: BNC's 'Network' panel configured to ignore eventually occurring SSL error messages</p> 1355 1380 … … 1467 1492 </p> 1468 1493 1469 <p><img src="IMG/Figure08.png"width= 900/></p>1470 <p>Figure 8: BNC translating incoming observation streams to 15 min RINEX Version 4 Observation files</p>1494 <p><img src="IMG/Figure08.png"width=1000/></p> 1495 <p>Figure 8: BNC translating incoming RTCM Version 3 Observation streams to 15 min RINEX Version 4 Observation files</p> 1471 1496 1472 1497 <p><h4 id="rnxname">2.4.1 RINEX Filenames</h4></p> … … 1689 1714 As an example the 'Signal priority' of 'CWPX_?' is explained in more detail: 1690 1715 <ul> 1691 <li>Signals with attribute 'C' enjoy the highest priority. If such a RINEX Version 3/4 observation becomes available, it is presented as RINEX Version 2 observation if that is the format you wish to see. Observations with other attributes are being ignored.</li> 1692 <li>If no signal with 'C' attribute is available but we have an observation with 'W' attribute, BNC presents that one as RINEX Version 2 observation and ignores all observations with other attributes. The same applies mutatis mutandis to observations with P and X attributes.</li> 1693 <li>If no signal with 'C', 'W', 'P', or 'X' attribute is available but a signal with undefined generation attribute (underscore character, '_') exists, BNC presents that one as RINEX Version 2 observation. Note that observation attributes should actually always be available in RINEX Version 3/4. Hence the underscore character makes only sense in a few very special cases.</li> 1694 <li>If no signal with 'C', 'W', 'P', 'X', or '_' generation attribute exists then the question mark '?' tells BNC to present the first of any other appearing signal as RINEX Version 2 observation.</li> 1716 <li>Signals with attribute 'C' enjoy the highest priority. If such a RINEX Version 3/4 observation becomes available, 1717 it is presented as RINEX Version 2 observation if that is the format you wish to see. Observations with other attributes are being ignored.</li> 1718 <li>If no signal with 'C' attribute is available but we have an observation with 'W' attribute, BNC presents that one as RINEX Version 2 observation 1719 and ignores all observations with other attributes. The same applies mutatis mutandis to observations with P and X attributes.</li> 1720 <li>If no signal with 'C', 'W', 'P', or 'X' attribute is available but a signal with undefined generation attribute (underscore character, '_') exists, 1721 BNC presents that one as RINEX Version 2 observation. Note that observation attributes should actually always be available in RINEX Version 3/4. 1722 Hence the underscore character makes only sense in a few very special cases.</li> 1723 <li>If no signal with 'C', 'W', 'P', 'X', or '_' generation attribute exists then the question mark '?' tells BNC to present the first of any other 1724 appearing signal as RINEX Version 2 observation.</li> 1695 1725 </ul> 1696 1726 </p> … … 1737 1767 <p><h4 id="ephdir">2.5.1 Directory - optional</h4></p> 1738 1768 <p> 1739 Specify a path for saving Broadcast Ephemeris data in RINEX Navigation files. If the specified directory does not exist, BNC will not create RINEX Navigation files. Default value for Ephemeris 'Directory' is an empty option field, meaning that no RINEX Navigation files will be created. 1769 Specify a path for saving Broadcast Ephemeris data in RINEX Navigation files. If the specified directory does not exist, 1770 BNC will not create RINEX Navigation files. Default value for Ephemeris 'Directory' is an empty option field, meaning that 1771 no RINEX Navigation files will be created. 1740 1772 </p> 1741 1773 … … 1747 1779 <p><h4 id="ephport">2.5.3 Port - optional</h4></p> 1748 1780 <p> 1749 BNC can output Broadcast Ephemeris in RINEX Version 3 format on your local host (IP 127.0.0.1) through an IP 'Port'. Specify an IP port number to activate this function. The default is an empty option field, meaning that no ASCII ephemeris output via IP port is generated. 1781 BNC can output Broadcast Ephemeris in RINEX Version 3 format on your local host (IP 127.0.0.1) through an IP 'Port'. 1782 Specify an IP port number to activate this function. The default is an empty option field, meaning that no ASCII ephemeris output via IP port is generated. 1750 1783 </p> 1751 1784 <p> … … 1765 1798 <p><h4 id="reqc">2.6 RINEX Editing & QC</h4></p> 1766 1799 <p> 1767 Besides stream conversion from RTCM to RINEX, BNC allows editing RINEX files or concatenate their content. RINEX Observation and Navigation files can be handled. BNC can also carry out a RINEX file Quality Check. In summary and besides Stream <u><b>T</b></u>ranslation, this functionality in BNC covers 1800 Besides stream conversion from RTCM to RINEX, BNC allows editing RINEX files or concatenate their content. RINEX Observation and Navigation files can be handled. 1801 BNC can also carry out a RINEX file Quality Check. In summary and besides Stream <u><b>T</b></u>ranslation, this functionality in BNC covers 1768 1802 <ul> 1769 1803 <li>File <u><b>E</b></u>diting and concatenation</li> … … 1777 1811 </ul> 1778 1812 </ul> 1779 and hence follows UNAVCO's famous TEQC program (see Estey and Meertens 1999). The remarkable thing about BNC in this context is that it supports RINEX Version 3 under GNU General Public License with full GUI support and graphics output. 1813 and hence follows UNAVCO's famous TEQC program (see Estey and Meertens 1999). The remarkable thing about BNC in this context is that it supports RINEX Version 3 1814 under GNU General Public License with full GUI support and graphics output. 1780 1815 </p> 1781 1816 … … 1783 1818 <p>Select an action. Options are 'Edit/Concatenate' and 'Analyze'. 1784 1819 <ul> 1785 <li>Select 'Edit/Concatenate' if you want to edit RINEX file content according to options specified under 'Set Edit Options' or if you want to concatenate several RINEX files.</li> 1820 <li>Select 'Edit/Concatenate' if you want to edit RINEX file content according to options specified under 'Set Edit Options' or if you want 1821 to concatenate several RINEX files.</li> 1786 1822 <li>Select 'Analyze' if you are interested in a quality check of your RINEX file content.</li> 1787 1823 </ul> … … 1794 1830 </p> 1795 1831 <p> 1796 When specifying several input files, BNC will concatenate their contents. In case of RINEX Observation input files with different observation type header records, BNC will output only one set of adjusted observation type records in the RINEX header which fits to the whole file content. 1832 When specifying several input files, BNC will concatenate their contents. In case of RINEX Observation input files 1833 with different observation type header records, BNC will output only one set of adjusted observation type records in 1834 the RINEX header which fits to the whole file content. 1797 1835 </p> 1798 1836 1799 1837 <p><h4 id="reqcout">2.6.3 Output Files - optional if 'Action' is set to 'Edit/Concatenate'</h4></p> 1800 1838 <p> 1801 If 'Edit/Concatenate' is selected, specifying the full path to output RINEX Observation file(s) and specifying the full path to output RINEX Navigation file(s) is optional. Default are empty option fields, meaning that no RINEX files will be saved on disk. 1839 If 'Edit/Concatenate' is selected, specifying the full path to output RINEX Observation file(s) and specifying the full 1840 path to output RINEX Navigation file(s) is optional. Default are empty option fields, meaning that no RINEX files will be saved on disk. 1802 1841 </p> 1803 1842 1804 1843 <p><h4 id="reqclog">2.6.4 Logfile - optional</h4></p> 1805 1844 <p> 1806 Specify the name of a logfile to save information on RINEX file Editing/Concatenation or Analysis. Default is an empty option field, meaning that no logfile will be saved. 1845 Specify the name of a logfile to save information on RINEX file Editing/Concatenation or Analysis. Default is an empty option field, 1846 meaning that no logfile will be saved. 1807 1847 </p> 1808 1848 … … 2155 2195 An example configuration with plot results can be seen below. 2156 2196 </p> 2157 2158 <p><img src="IMG/Figure09.png"width=900/></p> 2197 <p><img src="IMG/Figure09.png"width=1000/></p> 2159 2198 <p>Figure 9: Example for creating RINEX quality check analysis graphics output with BNC</p> 2160 2199 2161 <p><img src="IMG/Figure10.png"width= 900/></p>2200 <p><img src="IMG/Figure10.png"width=1000/></p> 2162 2201 <p>Figure 10: Example for satellite availability, elevation and PDOP plots as a result of a RINEX quality check analysis with BNC</p> 2163 2202 2164 <p><img src="IMG/Figure11.png"width= 900/></p>2203 <p><img src="IMG/Figure11.png"width=1000/></p> 2165 2204 <p>Figure 11: Sky plot examples for multipath, part of RINEX quality check analysis with BNC</p> 2166 2205 2167 <p><img src="IMG/Figure12.png"width= 900/></p>2206 <p><img src="IMG/Figure12.png"width=1000/></p> 2168 2207 <p>Figure 12: Sky plot examples for signal-to-noise ratio, part of RINEX quality check analysis with BNC</p> 2169 2208 … … 2226 2265 <p>Figure 13: Example for BNC's 'RINEX Editing Options' window</p> 2227 2266 2228 <p><img src="IMG/Figure14.png"width= 900/></p>2267 <p><img src="IMG/Figure14.png"width=1000/></p> 2229 2268 <p>Figure 14: Example for RINEX file concatenation with BNC</p> 2230 2269 2231 2270 <p><h4 id="reqccommand">2.6.8 Command Line, No Window - optional</h4></p> 2232 2271 <p> 2233 BNC applies options from the configuration file but allows updating every one of them on the command line while the content of the configuration file remains unchanged, see section on 'Command Line Options'. Note the following syntax for Command Line Interface (CLI) options: 2272 BNC applies options from the configuration file but allows updating every one of them on the command line 2273 while the content of the configuration file remains unchanged, see section on 'Command Line Options'. 2274 Note the following syntax for Command Line Interface (CLI) options: 2234 2275 </p> 2235 2276 <pre> … … 2237 2278 </pre> 2238 2279 <p> 2239 Parameter <keyName> stands for the name of an option contained in the configuration file and <keyValue> stands for the value you want to assign to it. This functionality may be helpful in the 'RINEX Editing & QC' context when running BNC on a routine basis for maintaining a RINEX file archive. 2240 </p> 2241 The following example for a Linux platform calls BNC in 'no window' mode with a local configuration file 'rnx.conf' for concatenating four 15min RINEX files from station TLSE residing in the working directory to produce an hourly RINEX Version 3 file with 30 seconds sampling interval: 2242 </p> 2280 Parameter <keyName> stands for the name of an option contained in the configuration file 2281 and <keyValue> stands for the value you want to assign to it. 2282 This functionality may be helpful in the 'RINEX Editing & QC' context when running BNC on a routine basis 2283 for maintaining a RINEX file archive. 2284 </p> 2285 <p> 2286 You may use asterisk '*' and/or question mark '?' wildcard characters as shown with the following globbing command line option 2287 to specify a selection of files in the working directory: 2243 2288 <pre> 2244 ./bnc --nw --conf rnx.conf --key reqcAction Edit/Concatenate --key reqcObsFile2245 "tlse119b00.12o,tlse119b15.12o,tlse119b30.12o,tlse119b45.12o" --key 2246 reqcOutObsFile tlse119b.12o --key reqcRnxVersion 3 --key reqcSampling 302289 --key reqcObsFile "Input/BRUX00BEL_S_2021125*_15M_01S_MO.rnx" 2290 or: 2291 --key reqcObsFile Input/BRUX00BEL_S_2021125\*_15M_01S_MO.rnx 2247 2292 </pre> 2248 <p> 2249 You may use asterisk '*' and/or question mark '?' wildcard characters as shown with the following globbing command line option to specify a selection of files in the working directory: 2293 </p> 2294 <p> 2295 The following example for a Linux platform calls BNC in 'no window' mode with a local configuration file 'rnx.conf' 2296 for concatenating four 15min RINEX files from station BRUX00BEL residing in the 'Input' directory to produce an hourly RINEX Version 3 file 2297 with 30 seconds sampling interval: 2298 2250 2299 <pre> 2251 --key reqcObsFile "tlse*" 2252 or: 2253 --key reqcObsFile tlse\* 2300 /home/user/bnc --nw --conf rnx.conf \ 2301 --key reqcAction Edit/Concatenate \ 2302 --key reqcObsFile Input/BRUX00BEL_S_2021125\*_15M_01S_MO.rnx \ 2303 --key reqcOutLogFile Output/RinexConcat.log \ 2304 --key reqcRnxVersion 3 \ 2305 --key reqcSampling 30 \ 2306 --key reqcOutLogFile Output/RinexConcat.log \ 2307 --key reqcOutObsFile Output/BRUX00BEL_S_20211251100_01H_01S_MO.rnx 2254 2308 </pre> 2255 2309 </p> 2256 2257 <p>The following Linux command line produces RINEX QC plots (see Estey and Meertens 1999) offline in 'no window' mode and saves them in directory '/home/user'. Introducing a dummy configuration file /dev/null makes sure that no configuration options previously saved on disc are used:</p> 2310 <p> 2311 The following Linux command line produces RINEX QC plots (see Estey and Meertens 1999) offline in 'no window' mode 2312 and saves them in directory '/home/user'. Introducing a dummy configuration file /dev/null makes sure that no configuration options 2313 previously saved on disc are used: 2314 </p> 2258 2315 <pre> 2259 /home/user/bnc --conf /dev/null --key reqcAction Analyze --key reqcObsFile 2260 CUT02070.12O --key reqcNavFile BRDC2070.12P --key reqcOutLogFile CUT0.txt --key 2261 reqcPlotDir /home/user --nw 2316 /home/user/bnc --nw --conf /dev/null -display :1 --platform offscreen \ 2317 --key reqcAction Analyze \ 2318 --key reqcObsFile Input/MAO000USA_R_20221720000_01D_30S_MO.rnx \ 2319 --key reqcNavFile Input/MAO000USA_R_20221720000_01D_MN.rnx \ 2320 --key reqcSkyPlotSignals "G:1&2&5 R:1&2 E:1&5&7 C:2&6 J:1&2" \ 2321 --key reqcOutLogFile Output/RinexQc.log \ 2322 --key reqcPlotDir Output 2>/dev/null 2262 2323 </pre> 2263 2324 </p> … … 2265 2326 </p> 2266 2327 <pre> 2267 /home/user/bnc --conf /dev/null --key reqcAction Analyze --key reqcObsFile 2268 CUT02070.12O --key reqcNavFile BRDC2070.12P --key reqcOutLogFile CUT0.txt --key 2269 --key startTab 4 --key autoStart 2 2328 /home/user/bnc --conf /dev/null \ 2329 --key reqcAction Analyze \ 2330 --key reqcObsFile Input/MAO000USA_R_20221720000_01D_30S_MO.rnx \ 2331 --key reqcNavFile Input/MAO000USA_R_20221720000_01D_MN.rnx \ 2332 --key reqcSkyPlotSignals "G:1&2&5 R:1&2 E:1&5&7 C:2&6 J:1&2" \ 2333 --key reqcOutLogFile Output/RinexQc.log \ 2334 --key startTab 4 --key autoStart 2 2270 2335 </pre> 2271 2336 </p> 2272 2337 2273 2338 <p> 2274 The following is a list of available key names for '<u>R</u>INEX <u>E</u>diting & <u>QC</u>' (short: REQC, pronounced 'rek') options and their meaning, cf. section 'Configuration Examples': 2339 The following is a list of available key names for '<u>R</u>INEX <u>E</u>diting & <u>QC</u>' (short: REQC, pronounced 'rek') options 2340 and their meaning, cf. section 'Configuration Examples': 2275 2341 </p> 2276 2342 <table> … … 2312 2378 </table> 2313 2379 2314 <p><h4 id="sp3comp">2.6.7 SP3 Comparison</h4></p> 2315 <p> 2316 BNC allows to compare the contents of two files with GNSS orbit and clock data in SP3 format. SP3 ASCII files basically contain a list of records over a certain period of time. Each record carries a time tag, the XYZ position of the satellite's Center of Mass at that time and the corresponding satellite clock value. Both SP3 files may contain some records for different epochs. If so, then BNC only compares records for identical epochs. BNC accepts that a specific GNSS system or a specific satellite is only available from one of the SP3 files. Note that BNC does not interpolate orbits when comparing SP3 files. 2317 </p> 2318 <p> 2319 To compare satellite clocks provided by the two files, BNC first converts coordinate differences dX,dY,dZ into along track, out-of-plane, and radial components. It then corrects the clock differences for the radial components of coordinate differences. RMS values of clock differences are finally calculated after introducing at first one offset 'per epoch for all satellites' and secondly one offset 'per satellite for all epochs'. 2320 </p> 2380 <p><h4 id="sp3comp">2.7 SP3 Comparison</h4></p> 2381 <p> 2382 BNC allows to compare the contents of two files with GNSS orbit and clock data in SP3 format. 2383 SP3 ASCII files basically contain a list of records over a certain period of time. 2384 Each record carries a time tag, the XYZ position of the satellite's Center of Mass at that time and 2385 the corresponding satellite clock value. Both SP3 files may contain some records for different epochs. 2386 If so, then BNC only compares records for identical epochs. BNC accepts that a specific GNSS system 2387 or a specific satellite is only available from one of the SP3 files. 2388 Note that BNC does not interpolate orbits when comparing SP3 files. 2389 </p> 2390 <p> 2391 To compare satellite clocks provided by the two files, BNC first converts coordinate differences dX,dY,dZ 2392 into along track, out-of-plane, and radial components. It then corrects the clock differences for the radial components 2393 of coordinate differences. RMS values of clock differences are finally calculated after introducing at first one offset 2394 'per epoch for all satellites' and secondly one offset 'per satellite for all epochs'. 2395 </p> 2396 <p><img src="IMG/Figure15.png"width=800/></p> 2397 <p>Figure 15: Example for comparing two SP3 files with satellite orbit and clock data using BNC</p> 2321 2398 2322 2399 <p><h4 id="sp3input">2.7.1 Input SP3 Files - optional</h4></p> … … 2327 2404 <p><h4 id="sp3exclude">2.7.2 Exclude Satellites - optional</h4></p> 2328 2405 <p> 2329 You may want to exclude one or more satellites in your SP3 files from the comparison. Or you may like to exclude all satellites of a specific GNSS system from the comparison. The following are example strings to be entered for excluding satellites from the comparison. 2406 You may want to exclude one or more satellites in your SP3 files from the comparison. 2407 Or you may like to exclude all satellites of a specific GNSS system from the comparison. 2408 The following are example strings to be entered for excluding satellites from the comparison. 2330 2409 <ul> 2331 2410 <li>G05,G31 (excluding GPS satellites with PRN 5 and 31)</li> … … 2347 2426 The following is an example for a SP3 Comparison logfile: 2348 2427 </p> 2349 <pre> 2350 2351 ! SP3 File 1: esr18283.sp3 2352 ! SP3 File 2: rt218283.sp3 2428 <pre><p style="font-family:Monospace"> 2429 ! SP3 File 1: Input/CNE1SSRRTS_20222410000_01D_05S_ORB.sp3 2430 ! SP3 File 2: Input/BKG1SSRRTS_20222410000_01D_05S_ORB.sp3 2353 2431 ! 2354 ! MJD PRN radial along out clk clkRed iPRN 2355 ! ---------------------------------------------------------------- 2356 57043.000000 G01 -0.0001 -0.0318 -0.0354 0.0266 0.0267 1 2357 57043.000000 G02 -0.0062 -0.0198 0.0111 0.0082 0.0143 2 2358 57043.000000 G03 0.0052 0.0060 0.0032 0.0386 0.0334 3 2359 57043.000000 G04 -0.0049 -0.0193 -0.0071 -0.1696 -0.1648 4 2360 57043.000000 G05 0.0027 0.0154 0.0275 0.0345 0.0318 5 2361 57043.000000 G06 0.0247 -0.0398 -0.0111 0.0483 0.0236 6 2362 57043.000000 G07 -0.0052 0.2854 -0.0975 -0.0940 -0.0888 7 2363 57043.000000 G08 -0.0247 0.0937 -0.0184 -0.1563 -0.1316 8 2364 57043.000000 G09 0.0152 0.0583 0.0086 -0.0144 -0.0296 9 2365 ... 2366 ... 2367 ... 2432 ! Epoch PRN radial along out clk clkRed iPRN 2433 ! ---------------------------------------------------------------------------- 2434 .. 2435 2022-08-29_08:01:30.000 E02 -0.0023 0.1159 -0.0047 0.0187 0.0210 60 2436 2022-08-29_08:01:30.000 E03 -0.0567 -0.0411 0.0146 -0.0093 0.0474 61 2437 2022-08-29_08:01:30.000 E04 0.0695 -0.0406 0.0880 -0.0219 -0.0914 62 2438 2022-08-29_08:01:30.000 E05 -0.1042 0.1161 -0.0503 -0.0101 0.0942 63 2439 2022-08-29_08:01:30.000 E07 0.0354 0.0384 -0.0346 0.0134 -0.0219 65 2440 2022-08-29_08:01:30.000 E08 -0.0312 0.0312 -0.0481 0.0130 0.0442 66 2441 2022-08-29_08:01:30.000 E09 -0.0548 0.1941 0.0263 -0.0113 0.0436 67 2442 2022-08-29_08:01:30.000 E12 0.0402 -0.0023 0.0012 -0.0051 -0.0454 70 2443 2022-08-29_08:01:30.000 E13 0.0420 -0.0608 -0.0525 -0.0006 -0.0427 71 2444 2022-08-29_08:01:30.000 E15 0.0478 0.0348 -0.0353 -0.0122 -0.0600 73 2445 2022-08-29_08:01:30.000 E21 0.0639 0.0033 0.0292 -0.0167 -0.0806 79 2446 2022-08-29_08:01:30.000 E24 0.0900 -0.1113 -0.0385 0.0047 -0.0853 82 2447 2022-08-29_08:01:30.000 E25 0.0106 0.0340 -0.0564 0.0023 -0.0083 83 2448 2022-08-29_08:01:30.000 E26 0.0598 0.0506 -0.0983 -0.0011 -0.0609 84 2449 2022-08-29_08:01:30.000 E27 0.0763 -0.0972 -0.0480 0.0041 -0.0722 85 2450 2022-08-29_08:01:30.000 E30 0.0385 0.0266 0.0028 0.0092 -0.0293 88 2451 2022-08-29_08:01:30.000 E31 0.1017 -0.1834 -0.0211 0.0021 -0.0997 89 2452 2022-08-29_08:01:30.000 E33 0.0827 0.0385 -0.0741 -0.0060 -0.0887 91 2453 2022-08-29_08:01:30.000 E36 0.0099 -0.0769 0.0384 0.0269 0.0170 94 2454 2455 .. 2368 2456 ! 2369 2457 ! RMS[m] 2370 2458 ! 2371 ! PRN radial along out nOrb clk clkRed nClk Offset 2372 ! --------------------------------------------------------------------- 2373 ! G01 0.0151 0.0377 0.0196 96 0.0157 0.0154 96 0.0152 2374 ! G02 0.0083 0.0278 0.0228 96 0.0097 0.0124 96 -0.0626 2375 ! G03 0.0105 0.0311 0.0307 96 0.0352 0.0309 96 0.0898 2376 ! G04 0.0113 0.0334 0.0154 94 0.0725 0.0707 94 -0.5087 2377 ! G05 0.0103 0.0319 0.0299 96 0.0417 0.0403 96 0.1185 2378 ! G06 0.0182 0.0509 0.0302 96 0.0218 0.0166 96 0.0040 2379 ! G07 0.0337 0.1632 0.0463 96 0.0483 0.0435 96 0.3031 2380 ! G08 0.0228 0.0741 0.0321 88 0.0616 0.0561 88 -0.2232 2381 ... 2382 ... 2383 ... 2384 ! R20 0.0637 0.2115 0.1131 96 0.1580 0.1345 96 0.7371 2385 ! R21 0.0475 0.1657 0.0880 96 0.1123 0.0840 96 -0.4133 2386 ! R22 0.0125 0.1249 0.0646 96 0.0414 0.0444 96 -0.7375 2387 ! R23 0.0435 0.1503 0.0573 96 0.0987 0.1099 96 0.6620 2388 ! R24 0.0278 0.2026 0.1186 96 0.1446 0.1303 96 -1.1470 2459 ! PRN radial along out nOrb clk clkRed nClk Offset 2460 ! ---------------------------------------------------------------------- 2461 ! E02 0.0072 0.1160 0.0267 165 0.0110 0.0158 165 -0.0345 2462 ! E03 0.0610 0.0387 0.0151 165 0.0083 0.0617 165 -0.0376 2463 ! E04 0.0830 0.0619 0.0819 165 0.0112 0.0828 165 0.0649 2464 ! E05 0.0966 0.1193 0.0418 165 0.0058 0.0965 165 -0.0073 2465 ! E07 0.0296 0.0309 0.0389 165 0.0102 0.0296 165 -0.0904 2466 ! E08 0.0371 0.0193 0.0424 165 0.0080 0.0372 165 -0.1017 2467 ! E09 0.0436 0.1744 0.0422 165 0.0044 0.0433 165 -0.0300 2468 ! E12 0.0490 0.0033 0.0107 165 0.0042 0.0489 165 -0.1174 2469 ! E13 0.0336 0.0393 0.0661 165 0.0046 0.0341 165 -0.0683 2470 ! E15 0.0548 0.0273 0.0375 165 0.0064 0.0547 165 0.0536 2471 ! E21 0.0667 0.0116 0.0301 165 0.0079 0.0671 165 -0.0384 2472 ! E24 0.0913 0.1101 0.0332 165 0.0050 0.0913 165 0.0946 2473 ! E25 0.0099 0.0412 0.0628 165 0.0033 0.0101 165 0.0797 2474 ! E26 0.0621 0.0516 0.0946 165 0.0033 0.0622 165 0.0300 2475 ! E27 0.0734 0.0841 0.0522 165 0.0052 0.0733 165 0.1015 2476 ! E30 0.0382 0.0380 0.0072 165 0.0046 0.0384 165 0.0682 2477 ! E31 0.0937 0.1700 0.0234 165 0.0089 0.0943 165 0.1110 2478 ! E33 0.0926 0.0340 0.0654 165 0.0032 0.0926 165 0.0010 2479 ! E36 0.0059 0.0630 0.0456 165 0.0089 0.0073 165 -0.0790 2480 .. 2389 2481 ! 2390 ! Total 0.0262 0.0938 0.0492 5268 0.0620 0.0561 5268 2482 ! Total 0.0552 0.0877 0.0690 10395 0.0075 0.0551 10395 2483 </p> 2391 2484 </pre> 2392 2485 <p> … … 2395 2488 2396 2489 <table> 2397 <tr><td>' MJD' </td><td>Modified Julian Date</td></tr>2490 <tr><td>'Epoch' </td><td>Epoch Date and Time</td></tr> 2398 2491 <tr><td>'PRN' </td><td>Satellite specification</td></tr> 2399 2492 <tr><td>'radial' </td><td>Radial component of orbit coordinate difference [m]</td></tr> … … 2419 2512 <tr><td>'Offset' </td><td>Clock offset [m]</td></tr> 2420 2513 </table> 2421 2422 2514 <br> 2423 2424 <p><img src="IMG/screenshot36.png"/></p> 2425 <p>Figure 16: Example for comparing two SP3 files with satellite orbit and clock data using BNC</p> 2515 <p><img src="IMG/Figure16.png"width=1000/></p> 2516 <p>Figure 16: Graphical results from an example comparison of two SP3 files with satellite orbit and clock data using BNC</p> 2426 2517 2427 2518 <p><h4 id="correct">2.8 Broadcast Corrections</h4></p> 2428 2519 <p> 2429 Differential GNSS and RTK operation using RTCM streams is currently based on corrections and/or raw measurements from single or multiple reference stations. This approach to differential positioning uses 'observation space' information. The representation with the RTCM standard can be called 'Observation Space Representation' (OSR). 2430 </p> 2431 <p> 2432 An alternative to the observation space approach is the so-called 'state space' approach. The principle here is to provide information on individual error sources. It can be called 'State Space Representation' (SSR). For a rover position, state space information concerning precise satellite clocks, orbits, ionosphere, troposphere et cetera can be converted into observation space and used to correct the rover observables for more accurate positioning. Alternatively, the state information can be used directly in the rover's processing or adjustment model. 2433 </p> 2434 <p> 2435 RTCM is currently developing Version 3 messages to transport SSR corrections in real-time. They refer to satellite Antenna Phase Center (APC). SSR messages adopted or recently proposed concern: 2436 2520 Differential GNSS and RTK operation using RTCM streams is currently based on corrections and/or raw measurements from single or 2521 multiple reference stations. This approach to differential positioning uses 'observation space' information. 2522 The representation with the RTCM standard can be called 'Observation Space Representation' (OSR). 2523 </p> 2524 <p> 2525 An alternative to the observation space approach is the so-called 'state space' approach. The principle here is to provide 2526 information on individual error sources. It can be called 'State Space Representation' (SSR). 2527 For a rover position, state space information concerning precise satellite clocks, orbits, ionosphere, troposphere et cetera 2528 can be converted into observation space and used to correct the rover observables for more accurate positioning. 2529 Alternatively, the state information can be used directly in the rover's processing or adjustment model. 2530 </p> 2531 <p> 2532 RTCM is currently developing Version 3 messages to transport SSR corrections in real-time. They may refer to satellite Antenna Phase Center (APC) 2533 or Center of Mass (CoM). Because the development was stagnating in RTCM over years, IGS has developed similar SSR messages in parallel. 2534 Available and unter development are: 2437 2535 <ul> 2438 2536 <li>SSR, Step I:</li> … … 2446 2544 <li>Code biases</li> 2447 2545 </ul> 2448 <li>SSR, Step II :</li>2546 <li>SSR, Step II (will change in 2023):</li> 2449 2547 <ul> 2450 2548 <li>Phase biases</li> … … 2454 2552 2455 2553 <p> 2456 RTCM Version 3 streams carrying these messages may be used e.g. to support real-time Precise Point Positioning (PPP) applications. 2457 </p> 2458 <p> 2459 When using clocks from Broadcast Ephemeris (with or without applied corrections) or clocks from SP3 files, it may be important to understand that they are not corrected for the conventional periodic relativistic effect. Chapter 10 of the IERS Conventions 2003 mentions that the conventional periodic relativistic correction to the satellite clock (to be added to the broadcast clock) is computed as 2460 </p> 2461 2554 SSR streams carrying these messages may be used e.g. to support real-time Precise Point Positioning (PPP) applications. 2555 </p> 2556 <p> 2557 Orbit corrections are provided in along-track, out-of-plane and radial components. 2558 These components are defined in the Earth-Centered, Earth-Fixed reference frame of the Broadcast Ephemeris. 2559 For an observer in this frame, the along-track component is aligned in both direction and sign with the velocity vector, 2560 the out-of-plane component is perpendicular to the plane defined by the satellite position and velocity vectors, and 2561 the radial direction is perpendicular to the along track and out-of-plane ones. The three components form a right-handed orthogonal system. 2562 </p> 2563 2564 <p> 2565 After applying corrections, the satellite position and clock is referred to the 'ionospheric free' phase center of the antenna 2566 which is compatible with the broadcast orbit reference. 2567 </p> 2568 2569 <p> 2570 The orbit and clock corrections do not include local effects like Ocean Loading, Solid Earth Tides or tropospheric delays. 2571 However, accurate single frequency applications can be corrected for global ionospheric effects using so-call VTEC messages 2572 for global ionospheric state parameters. 2573 </p> 2574 2575 <p> 2576 While we have a plain ASCII standard for saving Broadcast Ephemeris in RINEX Navigation files, we do not have an equivalent standard 2577 for corrections to Broadcast Ephemeris. Hence, BNC saves Broadcast Correction files following its own format definition. 2578 </p> 2579 <p> 2580 The filename convention for Broadcast Correction files follows the convention for RINEX Version 3/4 files 2581 except for the two characters of the data type as well as for the characters of the filename suffix, which is set to 'ssr': 2582 The file below contains one day's data. 'MN' stands for 'Multi Constellation Clock' data. 2583 </p> 2462 2584 <pre> 2463 dt = -2 (R * V) / c<sup>2</sup> 2585 SSRA00CNE1_S_20222750000_01D_MC.ssr 2586 SSRA00DLR1_S_20222740000_01D_MC.ssr 2464 2587 </pre> 2465 2466 <p> 2467 where R * V is the scalar product of the satellite position and velocity and c is the speed of light. This can also be found in the GPS Interface Specification, IS-GPS-200, Revision D, 7 March 2006. 2468 </p> 2469 2470 <p> 2471 Orbit corrections are provided in along-track, out-of-plane and radial components. These components are defined in the Earth-Centered, Earth-Fixed reference frame of the Broadcast Ephemeris. For an observer in this frame, the along-track component is aligned in both direction and sign with the velocity vector, the out-of-plane component is perpendicular to the plane defined by the satellite position and velocity vectors, and the radial direction is perpendicular to the along track and out-of-plane ones. The three components form a right-handed orthogonal system. 2472 </p> 2473 2474 <p> 2475 After applying corrections, the satellite position and clock is referred to the 'ionospheric free' phase center of the antenna which is compatible with the broadcast orbit reference. 2476 </p> 2477 2478 <p> 2479 The orbit and clock corrections do not include local effects like Ocean Loading, Solid Earth Tides or tropospheric delays. However, accurate single frequency applications can be corrected for global ionospheric effects using so-call VTEC messages for global ionospheric state parameters. 2480 </p> 2481 2482 <p> 2483 While we have a plain ASCII standard for saving Broadcast Ephemeris in RINEX Navigation files, we do not have an equivalent standard for corrections to Broadcast Ephemeris. Hence, BNC saves Broadcast Correction files following its own format definition. The filename convention for Broadcast Correction files follows the convention for RINEX Version 2 files except for the last character of the filename suffix which is set to 'C'. 2484 </p> 2485 2486 <p> 2487 BNC's Broadcast Correction files contain blocks of records in plain ASCII format. Each block covers information about one specific topic and starts with an 'Epoch Record'. 2488 </p> 2588 BNC's Broadcast Correction files contain blocks of records in plain ASCII format. 2589 Each block covers information about one specific topic and starts with an 'Epoch Record'. 2489 2590 <p> 2490 2591 <b>The 'Epoch Record' of a Broadcast Correction block</b> … … 2494 2595 The leading 'Epoch Record' of each block in a Broadcast Correction file contains 11 parameters. Example: 2495 2596 </p> 2496 <pre> 2497 > ORBIT 2015 06 17 11 43 35.0 2 53 CLK93 2498 </pre> 2499 <p> 2597 <pre><p style="font-family:Monospace"> 2598 > ORBIT 2022 10 01 23 59 45.0 2 110 SSRA00CNE1 2599 </p></pre> 2500 2600 Their meaning is as follows: 2501 </p>2502 2601 <ol type="1"> 2503 2602 <li>Special character '>' is the first character in each 'Epoch Record' (as we have it in RINEX Version 3)</li> … … 2531 2630 <li>Mountpoint, source/stream indicator</li> 2532 2631 </ol> 2533 Each of the following 'satellite records' in such a block carries information for one specific satellite. Undefined parameters in the 'satellite records' could be set to zero "0.000". 2632 Each of the following 'satellite records' in such a block carries information for one specific satellite. 2633 Undefined parameters in the 'satellite records' could be set to zero "0.000". 2534 2634 2535 2635 <p> 2536 2636 <b>Example for block 'ORBIT' carrying orbit corrections</b> 2537 2637 </p> 2538 <pre> 2539 > ORBIT 2015 06 17 11 43 35.0 2 53 CLK93 2540 G01 9 0.5134 0.3692 0.6784 0.0000 -0.0000 -0.0000 2541 G02 25 57.6817 139.0492 -91.3456 0.5436 -0.6931 1.0173 2542 G03 79 -32.1768 191.8368 -121.6540 0.2695 0.2296 0.4879 2543 ... 2544 G32 82 1.8174 1.1704 0.2200 -0.0002 -0.0000 -0.0001 2545 R01 59 0.7819 -0.6968 0.7388 -0.0001 0.0004 0.0004 2546 R02 59 0.5816 -0.5800 -0.2004 0.0001 -0.0006 0.0001 2547 R03 59 0.4635 -0.9104 -0.3832 0.0001 0.0001 0.0005 2548 ... 2549 R24 59 0.5935 2.0732 -0.6884 -0.0000 0.0004 0.0003 2550 </pre> 2551 <p> 2638 <pre><p style="font-family:Monospace"> 2639 > ORBIT 2022 10 01 23 59 45.0 2 110 SSRA00CNE1 2640 G01 93 -0.1588 -0.8664 -0.0600 0.2210 -0.1200 -0.0400 2641 G02 33 0.0491 -1.7468 0.5608 0.1820 0.0040 0.0200 2642 G03 72 -0.1495 -0.5408 0.2372 0.1190 -0.1640 0.1200 2643 G04 183 0.1435 -0.1232 0.5380 0.0090 -0.1400 0.1080 2644 G06 94 -0.2037 -2.1956 -0.1688 0.2540 -0.1280 0.0480 2645 .. 2646 R01 11 -0.7444 2.7684 -2.6576 -1.7740 -0.0480 -1.6440 2647 R02 11 -0.0127 0.9224 -0.5828 -0.0830 0.4400 -0.2480 2648 R03 11 1.1832 0.5412 1.0988 0.6670 0.8160 0.7280 2649 R04 11 0.3613 -1.5672 1.3608 0.1840 -0.4520 0.9440 2650 .. 2651 E01 110 -0.0509 -0.1328 -0.1212 0.0010 -0.0960 0.0000 2652 E02 110 -0.1341 -0.3820 0.3552 -0.0040 -0.1200 0.0120 2653 E03 110 0.0744 -0.2620 -0.3392 0.0160 -0.1280 -0.0120 2654 E04 110 -0.0925 0.1708 -0.0212 0.0200 -0.0520 0.0120 2655 .. 2656 C01 115 2.3749 0.8224 -3.0080 0.0360 -0.0440 -0.0320 2657 C02 115 4.4831 0.7836 -3.3052 0.0070 -0.0120 0.4240 2658 <p></pre> 2659 2552 2660 Records in this block provide the following satellite specific information: 2553 2661 <ul> … … 2567 2675 </p> 2568 2676 2569 <p> 2570 <pre> 2571 > CLOCK 2015 06 17 11 43 35.0 2 53 CLK93 2572 G01 9 0.5412 0.0000 0.0000 2573 G02 25 11.1811 0.0000 0.0000 2574 G03 79 45.0228 0.0000 0.0000 2575 ... 2576 G32 82 -1.5324 0.0000 0.0000 2577 R01 59 4.2194 0.0000 0.0000 2578 R02 59 2.0535 0.0000 0.0000 2579 R03 59 1.8130 0.0000 0.0000 2580 ... 2581 R24 59 2.7409 0.0000 0.0000 2677 <pre><p style="font-family:Monospace"> 2678 > CLOCK 2022 10 01 23 59 45.0 2 110 SSRA00CNE1 2679 G01 93 0.1498 0.0000 0.0000 2680 G02 33 -0.3686 0.0000 0.0000 2681 G03 72 0.2208 0.0000 0.0000 2682 G04 183 -0.9087 0.0000 0.0000 2683 .. 2684 R01 11 3.2911 0.0000 0.0000 2685 R02 11 2.7534 0.0000 0.0000 2686 R03 11 -3.0149 0.0000 0.0000 2687 R04 11 -4.2644 0.0000 0.0000 2688 .. 2689 E01 110 -0.1014 0.0000 0.0000 2690 E02 110 0.3910 0.0000 0.0000 2691 E03 110 -0.2841 0.0000 0.0000 2692 E04 110 0.0697 0.0000 0.0000 2693 .. 2694 C01 115 0.0000 0.0000 0.0000 2695 C02 115 -7.1950 0.0000 0.0000 2696 </p> 2582 2697 </pre> 2583 2698 <p> … … 2591 2706 </ul> 2592 2707 </p> 2593 2594 2708 <p> 2595 2709 <b>Example for block 'CODE_BIAS' carrying code biases</b> 2596 2710 </p> 2597 <pre> 2598 > CODE_BIAS 2015 06 17 11 43 35.0 2 53 CLK93 2599 G01 5 1C -3.3100 1W -3.7500 2W -6.1900 2X -5.7800 5I -5.4200 2600 G02 5 1C 3.6000 1W 3.9300 2W 6.4800 2X 0.0000 5I 0.0000 2601 G03 5 1C -2.1600 1W -2.6500 2W -4.3600 2X -4.4800 5I -5.3400 2602 ... 2603 G32 5 1C -1.5800 1W -1.1000 2W -1.8200 2X 0.0000 5I 0.0000 2604 R01 4 1C -2.4900 1P -2.4900 2C -3.1500 2P -4.1200 2605 R02 4 1C 0.3900 1P 0.2100 2C 0.4000 2P 0.3400 2606 R03 4 1C 2.4800 1P 2.2800 2C 3.7800 2P 3.7700 2607 ... 2608 R24 4 1C 2.7000 1P 2.7800 2C 3.9800 2P 4.6000 2609 </pre> 2711 <pre><p style="font-family:Monospace"> 2712 > CODE_BIAS 2022 10 01 23 59 45.0 2 110 SSRA00CNE1 2713 G01 7 1C -2.6900 1P -2.8300 1W -3.1000 2L -3.8000 2S -3.8000 2W -5.1000 5Q -0.6300 2714 G02 4 1C 3.1700 1P 3.1400 1W 3.6600 2W 6.0300 2715 G03 7 1C -2.0500 1P -1.8800 1W -2.2600 2L -3.0300 2S -2.9800 2W -3.7200 5Q -0.6400 2716 G04 7 1C 0.6300 1P 0.7000 1W 0.4800 2L 1.9200 2S 1.9100 2W 0.8000 5Q 0.5200 2717 .. 2718 R01 4 1C -2.6700 1P -2.5800 2C -3.6100 2P -4.2500 2719 R02 4 1C -0.2300 1P -0.2700 2C -0.4400 2P -0.4400 2720 R03 4 1C 1.3200 1P 1.2700 2C 2.0100 2P 2.0900 2721 R04 4 1C 1.7100 1P 1.5700 2C 2.5700 2P 2.5800 2722 .. 2723 E01 4 1C -0.1500 5Q -0.2700 6C -1.0300 7Q -0.2300 2724 E02 4 1C 0.3000 5Q 0.5300 6C -0.3000 7Q 0.6800 2725 E03 4 1C -0.9000 5Q -1.6100 6C -0.6600 7Q -1.5700 2726 E04 4 1C 0.9400 5Q 1.6900 6C 0.9500 7Q 1.6500 2727 .. 2728 C01 3 2I 0.5900 6I 0.8900 7I -5.2500 2729 C02 3 2I 4.4700 6I 6.7600 7I 1.9700 2730 </p></pre> 2610 2731 <p> 2611 2732 Records in this block provide the following satellite specific information: … … 2626 2747 <b>Example for block 'PHASE_BIAS' carrying phase biases</b> 2627 2748 </p> 2628 <pre> 2629 > PHASE_BIAS 20 15 06 17 11 43 35.0 2 31 CLK932749 <pre><p style="font-family:Monospace"> 2750 > PHASE_BIAS 2022 10 01 23 59 45.0 2 110 SSRA00CNE1 2630 2751 0 1 2631 G01 245.39062500 0.00000000 3 1C 3.9518 1 2 6 2W 6.3177 1 2 6 5I 6.8059 1 2 6 2632 G02 250.31250000 0.00000000 3 1C -4.0900 1 2 5 2W -6.7044 1 2 5 5I 0.0000 1 2 5 2633 G03 281.95312500 0.00000000 3 1C 2.9327 1 2 4 2W 4.6382 1 2 4 5I 5.4120 1 2 4 2634 ... 2635 G32 290.39062500 0.00000000 3 1C 1.2520 1 2 5 2W 2.0554 1 2 5 5I 0.0000 1 2 5 2636 </pre> 2752 G01 157.50000000 0.00000000 3 1C -0.6023 1 2 7 2W -0.8679 1 2 7 5I -0.8614 1 2 7 2753 G02 13.35937500 0.00000000 2 1C 0.7878 1 2 4 2W 1.1236 1 2 4 2754 G03 114.60937500 0.00000000 3 1C 0.5267 1 2 5 2W 0.6362 1 2 5 5I 0.5909 1 2 5 2755 G04 142.73437500 0.00000000 3 1C -0.2596 1 2 4 2W -0.3408 1 2 4 5I -0.3128 1 2 4 2756 .. 2757 R01 61.87500000 0.00000000 0 2758 R02 63.28125000 0.00000000 0 2759 R03 81.56250000 0.00000000 0 2760 R04 104.76562500 0.00000000 0 2761 .. 2762 E01 311.48437500 0.00000000 4 1C -0.3417 1 2 7 5Q -0.4521 1 2 7 7Q -3.1509 1 2 7 6C -3.4182 1 2 7 2763 E02 228.51562500 0.00000000 4 1C -0.2393 1 2 5 5Q -0.5462 1 2 5 7Q -2.9695 1 2 5 6C -3.3839 1 2 5 2764 E03 137.10937500 0.00000000 4 1C -0.1708 1 2 4 5Q -0.1185 1 2 4 7Q -2.6085 1 2 4 6C -3.0863 1 2 4 2765 E04 42.89062500 0.00000000 4 1C 0.5145 1 2 11 5Q 0.6448 1 2 11 7Q -2.0412 1 2 11 6C -2.5102 1 2 11 2766 .. 2767 C01 0.00000000 0.00000000 3 2I -0.2411 0 2 6 7I 2.9125 0 2 6 6I -0.3651 0 2 6 2768 C02 0.00000000 0.00000000 3 2I 0.5378 0 2 15 7I 4.1515 0 2 15 6I 0.7121 0 2 15 2769 </p></pre> 2637 2770 <p> 2638 2771 The second record in this block provides the following consistency information: … … 2669 2802 <b>Example for block 'VTEC' carrying ionospheric corrections</b> 2670 2803 </p> 2671 <pre> 2672 > VTEC 2015 06 17 11 43 35.0 6 1 CLK93 2673 1 6 6 450000.0 2674 17.6800 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2675 4.5200 8.8700 0.0000 0.0000 0.0000 0.0000 0.0000 2676 -4.6850 -0.3050 1.1700 0.0000 0.0000 0.0000 0.0000 2677 -2.2250 -1.3900 -1.0250 -0.1300 0.0000 0.0000 0.0000 2678 0.8750 -0.3800 0.2700 -0.1300 0.0400 0.0000 0.0000 2679 1.2150 0.9050 -1.0100 0.3700 -0.1450 -0.2450 0.0000 2680 -0.8200 0.4850 0.2300 -0.1750 0.3400 -0.0900 -0.0400 2681 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2682 0.0000 -0.0700 0.0000 0.0000 0.0000 0.0000 0.0000 2683 0.0000 0.5800 -1.4150 0.0000 0.0000 0.0000 0.0000 2684 0.0000 -0.6200 -0.1500 0.2600 0.0000 0.0000 0.0000 2685 0.0000 0.0700 -0.0900 -0.0550 0.1700 0.0000 0.0000 2686 0.0000 0.5000 0.3050 -0.5700 -0.5250 -0.2750 0.0000 2687 0.0000 0.0850 -0.4700 0.0600 0.0700 0.1600 0.0400 2688 </pre> 2804 <pre><p style="font-family:Monospace" 2805 > VTEC 2022 10 02 00 00 00.0 6 1 SSRA00CNE1 2806 1 12 12 450000.0 2807 22.6900 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2808 0.2000 11.6050 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2809 -8.7500 -0.0200 2.0250 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2810 -0.2900 -1.5900 0.3700 -0.1750 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2811 3.1850 -0.1150 -0.2350 0.0050 0.0300 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2812 -0.1050 1.3550 -0.4000 -0.3400 -0.0150 -0.2550 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2813 -1.1200 0.0800 0.1100 -0.1350 0.0650 -0.0050 0.0400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2814 0.1600 -0.3650 0.4200 0.0750 -0.0400 -0.0350 0.0950 0.3000 0.0000 0.0000 0.0000 0.0000 0.0000 2815 0.6950 -0.0750 0.0500 0.0450 -0.0800 0.0600 -0.0500 0.0200 -0.0100 0.0000 0.0000 0.0000 0.0000 2816 0.0200 0.0150 -0.0800 -0.0500 0.0600 0.0200 -0.0900 -0.1000 0.0400 -0.1050 0.0000 0.0000 0.0000 2817 -0.2600 -0.2800 -0.0550 -0.0100 0.1200 -0.0150 -0.0200 -0.0050 -0.0250 -0.0750 0.0200 0.0000 0.0000 2818 0.1850 -0.0400 0.1250 0.0100 0.0000 -0.0250 0.0600 0.0700 0.0000 0.0050 -0.0250 -0.0050 0.0000 2819 -0.0500 -0.0200 0.0850 0.0700 -0.0850 0.0350 -0.0350 0.0350 -0.0250 0.0200 0.0200 0.0300 0.0250 2820 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2821 0.0000 1.5350 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2822 0.0000 0.1150 -1.3850 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2823 0.0000 -2.0150 0.2500 0.9750 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2824 0.0000 0.0450 0.3200 0.1500 0.2200 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2825 0.0000 1.0400 -0.0950 -0.0600 0.1100 -0.2750 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2826 0.0000 -0.1150 -0.5000 -0.0650 -0.1800 -0.0300 0.0100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2827 0.0000 -0.5200 -0.0100 -0.0150 -0.0300 -0.1350 0.0100 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000 2828 0.0000 0.0900 0.1400 0.0550 0.0450 0.0300 0.1300 0.0250 0.0650 0.0000 0.0000 0.0000 0.0000 2829 0.0000 0.0800 0.0350 0.0600 0.0150 -0.0700 -0.0100 -0.0100 0.0100 0.1000 0.0000 0.0000 0.0000 2830 0.0000 -0.1550 -0.1400 0.0250 -0.0100 -0.0450 -0.0250 0.0200 -0.0800 0.0150 -0.1000 0.0000 0.0000 2831 0.0000 0.0550 -0.0100 -0.0300 0.0050 0.1250 -0.0450 -0.0150 -0.0100 0.0250 -0.0200 -0.0600 0.0000 2832 0.0000 0.0750 -0.1400 0.0850 -0.0200 -0.0150 0.0750 0.0000 0.0050 0.0200 0.0250 0.0100 0.0450 2833 </p></pre> 2689 2834 <p> 2690 2835 The second record in this block provides four parameters: … … 2703 2848 <p><h4 id="corrdir">2.8.1 Directory, ASCII - optional</h4></p> 2704 2849 <p> 2705 Specify a directory for saving Broadcast Corrections in files. If the specified directory does not exist, BNC will not create Broadcast Correction files. Default value for Broadcast Correction 'Directory' is an empty option field, meaning that no Broadcast Correction files will be created. 2850 Specify a directory for saving Broadcast Corrections in files. If the specified directory does not exist, 2851 BNC will not create Broadcast Correction files. Default value for Broadcast Correction 'Directory' is 2852 an empty option field, meaning that no Broadcast Correction files will be created. 2706 2853 </p> 2707 2854 … … 2713 2860 <p><h4 id="corrport">2.8.3 Port - optional</h4></p> 2714 2861 <p> 2715 BNC can output epoch by epoch synchronized Broadcast Corrections in ASCII format on your local host (IP 127.0.0.1) through an IP 'Port'. Specify an IP port number to activate this function. The default is an empty option field, meaning that no Broadcast Correction output via IP port is generated. 2716 </p> 2717 <p> 2718 The output format is similar to the format used for saving Broadcast Corrections in a file. 2719 </p> 2720 <p> 2721 The following is an example output for the stream from mountpoint CLK93: 2722 <pre> 2723 > ORBIT 2015 06 19 16 41 00.0 2 53 CLK93 2724 G01 85 0.5891 -0.5124 -0.0216 -0.0001 -0.0002 0.0000 2725 G02 25 -150.1820 11.4676 84.5216 0.4130 -0.6932 1.0159 2726 G03 79 15.1999 141.9932 -156.4244 0.6782 -0.8607 -0.8211 2727 ... 2728 G32 39 1.8454 0.4888 -0.3876 -0.0001 -0.0001 0.0001 2729 R01 79 -0.0506 1.9024 -0.0120 0.0004 0.0002 -0.0000 2730 R02 79 0.1623 0.9012 0.3984 0.0001 0.0001 0.0002 2731 R03 79 0.3247 -2.6704 -0.0240 0.0005 -0.0002 0.0002 2732 ... 2733 R24 79 0.7046 -0.5088 -0.0160 -0.0000 0.0000 -0.0002 2734 > CLOCK 2015 06 19 16 41 00.0 2 53 CLK93 2735 G01 85 -116.9441 0.0000 0.0000 2736 G02 25 -110.4472 0.0000 0.0000 2737 G03 79 -96.8299 0.0000 0.0000 2738 ... 2739 G32 39 -119.2757 0.0000 0.0000 2740 R01 79 1.5703 0.0000 0.0000 2741 R02 79 -1.4181 0.0000 0.0000 2742 R03 79 0.2072 0.0000 0.0000 2743 ... 2744 R24 79 1.1292 0.0000 0.0000 2745 > CODE_BIAS 2015 06 19 16 41 00.0 0 56 CLK93 2746 E11 3 1B 1.3800 5Q 2.4800 7Q 2.5000 2747 E12 3 1B 0.3900 5Q 0.6900 7Q 0.5300 2748 E19 3 1B -1.7800 5Q -3.1900 7Q -3.0700 2749 G01 5 1C -3.3100 1W -3.7500 2W -6.1900 2X -5.7800 5I -5.4200 2750 G02 5 1C 3.6000 1W 3.9300 2W 6.4800 2X 0.0000 5I 0.0000 2751 G03 5 1C -2.1600 1W -2.6500 2W -4.3600 2X -4.4800 5I -5.3400 2752 ... 2753 G32 5 1C -1.5800 1W -1.1000 2W -1.8200 2X 0.0000 5I 0.0000 2754 R01 4 1C -2.4900 1P -2.4900 2C -3.1500 2P -4.1200 2755 R02 4 1C 0.3900 1P 0.2100 2C 0.4000 2P 0.3400 2756 R03 4 1C 2.4800 1P 2.2800 2C 3.7800 2P 3.7700 2757 ... 2758 R24 4 1C 2.7000 1P 2.7800 2C 3.9800 2P 4.6000 2759 > PHASE_BIAS 2015 06 19 16 41 00.0 2 31 CLK93 2760 0 1 2761 G01 309.37500000 0.00000000 3 1C 3.9922 1 2 6 2W 6.3568 1 2 6 5I 6.8726 1 2 6 2762 G02 263.67187500 0.00000000 3 1C -4.0317 1 2 7 2W -6.6295 1 2 7 5I 0.0000 1 2 7 2763 G03 267.89062500 0.00000000 3 1C 3.1267 1 2 4 2W 4.9126 1 2 4 5I 5.6478 1 2 4 2764 ... 2765 G32 255.93750000 0.00000000 3 1C 1.3194 1 2 5 2W 2.1448 1 2 5 5I 0.0000 1 2 5 2766 > VTEC 2015 06 19 16 41 00.0 6 1 CLK93 2767 1 6 6 450000.0 2768 16.7450 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2769 4.9300 8.1600 0.0000 0.0000 0.0000 0.0000 0.0000 2770 -4.4900 0.2550 1.0950 0.0000 0.0000 0.0000 0.0000 2771 -2.2450 -1.9500 -0.7950 -0.4700 0.0000 0.0000 0.0000 2772 1.0250 -0.9000 -0.0900 0.1050 0.1450 0.0000 0.0000 2773 1.5500 0.9750 -0.8150 0.3600 0.0350 -0.0900 0.0000 2774 -0.4050 0.8300 0.0800 -0.0650 0.2200 0.0150 -0.1600 2775 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2776 0.0000 -0.1250 0.0000 0.0000 0.0000 0.0000 0.0000 2777 0.0000 1.0050 -0.7750 0.0000 0.0000 0.0000 0.0000 2778 0.0000 -0.2300 0.7150 0.7550 0.0000 0.0000 0.0000 2779 0.0000 -0.4100 -0.1250 0.2400 0.2700 0.0000 0.0000 2780 0.0000 0.0850 -0.3400 -0.0500 -0.2200 -0.0750 0.0000 2781 0.0000 0.2000 -0.2850 -0.0150 -0.0250 0.0900 0.0650 2782 </pre> 2783 </p> 2784 <p> 2785 The source code for BNC comes with an example Perl script 'test_tcpip_client.pl' that allows to read BNC's Broadcast Corrections from the IP port for verification. 2786 </p> 2787 2788 <p><img src="IMG/screenshot37.png"/></p> 2862 BNC can output epoch by epoch synchronized Broadcast Corrections in ASCII format on your local host (IP 127.0.0.1) 2863 through an IP 'Port'. Specify an IP port number to activate this function. The default is an empty option field, 2864 meaning that no Broadcast Correction output via IP port is generated. 2865 </p> 2866 <p> 2867 The output format is the same to the format used for saving Broadcast Corrections in a file. 2868 </p> 2869 <p> 2870 The source code for BNC comes with an example Perl script 'test_tcpip_client.pl' that allows to read 2871 BNC's Broadcast Corrections from the IP port for verification. 2872 </p> 2873 2874 <p><img src="IMG/Figure17.png"width=1000/></p> 2789 2875 <p>Figure 17: Example for pulling, saving and output of Broadcast Corrections using BNC</p> 2790 2876 … … 2792 2878 2793 2879 <p> 2794 BNC can produce synchronized or unsynchronized observations epoch by epoch from all stations and satellites to feed a real-time GNSS network engine. Observations can be streamed out through an IP port and/or saved in a local file. The output is always in the same plain ASCII format and sorted per incoming stream. 2795 </p> 2796 2797 <p> 2798 Each epoch in the synchronized output begins with a line containing the GPS Week Number and the seconds within the GPS Week. Following lines begin with the mountpoint string of the stream which provides the observations followed by a satellite number. Specifications for satellite number, code, phase, doppler and signal strength data follow definitions presented in the RINEX Version 3 documentation. In case of phase observations, a 'Slip Counter' is added. The end of an epoch is indicated by an empty line. 2799 </p> 2800 2801 <p> 2802 A valid 'Slip Counter' is only presented for observations from RTCM Version 2 streams (Cummulative Loss of Lock Indicator). In RTCM Version 3 streams a 'Lock Time Indicator' is available instead. This parameter indicates a measure of the amount of time that has elapsed during which the receiver has maintained continuous lock on that satellite signal. If a cycle slip occurs during the previous measurement cycle, the 'Lock Time Indicator' will be reset to zero. But, this 'Lock Time Indicator' ist defined with different resolution for different RTCM version 3 observation types (MSMi, legacy messages). 2803 </p> 2804 2805 <p> 2806 From the RTCM version 3 'Lock Time Indicator' a valid 'Lock Time' can be computed with the respective calculation rule. This parameter provides a measure of the amount of time that has elapsed during which the receiver has maintained continuous lock on that satellite signal in seconds. If a cycle slip occurs during the previous measurement cycle, the 'Lock Time' will decrease. This information will be used, to provide a 'Slip Counter' for RTCM Version 3 observations as well. With it, we have an output format that is independent from the RTCM version of the observations. The 'Lock Time' output can be activated optional. 2807 </p> 2808 2809 <p> 2810 The following table describes the format of BNC's synchronized output of GNSS observations which consists of 'Epoch Records' and 'Observation Records'. Each Epoch Record is followed by one or more Observation Records. The Observation Record is repeated for each satellite having been observed in the current epoch. The length of an Observation Record is given by the number of observation types for this satellite. 2880 BNC can produce synchronized or unsynchronized observations epoch by epoch from all stations and satellites to feed 2881 a real-time GNSS network engine. Observations can be streamed out through an IP port and/or saved in a local file. 2882 The output is always in the same plain ASCII format and sorted per incoming stream. 2883 </p> 2884 2885 <p> 2886 Each epoch in the synchronized output begins with a line containing the GPS Week Number and the seconds within the GPS Week. 2887 Following lines begin with the mountpoint string of the stream which provides the observations followed by a satellite number. 2888 Specifications for satellite number, code, phase, doppler and signal strength data follow definitions presented in the 2889 RINEX Version 3 documentation. In case of phase observations, a 'Slip Counter' is added. The end of an epoch is indicated by an empty line. 2890 </p> 2891 2892 <p> 2893 A valid 'Slip Counter' is only presented for observations from RTCM Version 2 streams (Cummulative Loss of Lock Indicator). 2894 In RTCM Version 3 streams a 'Lock Time Indicator' is available instead. This parameter indicates a measure of the amount 2895 of time that has elapsed during which the receiver has maintained continuous lock on that satellite signal. 2896 If a cycle slip occurs during the previous measurement cycle, the 'Lock Time Indicator' will be reset to zero. 2897 But, this 'Lock Time Indicator' ist defined with different resolution for different RTCM version 3 observation types (MSMi, legacy messages). 2898 </p> 2899 2900 <p> 2901 From the RTCM version 3 'Lock Time Indicator' a valid 'Lock Time' can be computed with the respective calculation rule. 2902 This parameter provides a measure of the amount of time that has elapsed during which the receiver has maintained continuous 2903 lock on that satellite signal in seconds. If a cycle slip occurs during the previous measurement cycle, the 'Lock Time' will decrease. 2904 This information will be used, to provide a 'Slip Counter' for RTCM Version 3 observations as well. With it, we have an output 2905 format that is independent from the RTCM version of the observations. The 'Lock Time' output can be activated optional. 2906 </p> 2907 2908 <p> 2909 The following table describes the format of BNC's synchronized output of GNSS observations which consists of 'Epoch Records' 2910 and 'Observation Records'. Each Epoch Record is followed by one or more Observation Records. The Observation Record is repeated 2911 for each satellite having been observed in the current epoch. The length of an Observation Record is given by the number of 2912 observation types for this satellite. 2811 2913 </p> 2812 2914 … … 2856 2958 <tr><td>Observation Code</td><td><b>T</b>2W</td><td>1X,A3</td></tr> 2857 2959 <tr><td>Computed Lock Time </td><td>937.000</td><td>1X,F8.3</td></tr> 2858 2859 2960 </table> 2860 2961 </p> 2861 2962 2862 <p> 2863 The following is an example for synchronized file and IP port output, which presents observations from GPS, GLONASS, Galileo, BDS (BeiDou), QZSS, and SBAS satellites as collected through streams FFMJ1, WTZR0 and CUT07: <pre> 2864 > 1884 206010.0000000 2865 FFMJ1 G02 C1C 23286796.846 L1C 122372909.535 127 S1C 49.000 C2W 23286793.846 L2W 95355531.583 127 S2W 36.000 2963 The following is an example epoch for synchronized file and IP port output, which presents observations 2964 from GPS, GLONASS, Galileo, BDS (BeiDou), and QZSS satellites as collected through the stream CUT000AUS0: 2965 <pre><p style="font-family:Monospace"> 2966 > 2235 161041.0000000 2967 CUT000AUS0 G05 C1C 22397546.124 L1C 117700392.329 0 D1C -1640.054 S1C 43.812 C2W 22397552.729 L2W 91714594.476 0 S2W 40.500 C2X 22397553.316 L2X 91714226.480 0 S2X 42.312 2968 CUT000AUS0 G07 C1C 25034166.757 L1C 131554935.204 0 D1C -2648.320 S1C 35.875 C2W 25034175.115 L2W 102510355.979 0 S2W 16.312 C2X 25034174.119 L2X 102511007.981 0 S2X 33.188 2969 CUT000AUS0 G13 C1C 20632879.971 L1C 108426200.511 0 D1C 1654.761 S1C 49.188 C2W 20632886.032 L2W 84487953.991 0 S2W 39.625 2970 CUT000AUS0 G14 C1C 20965039.130 L1C 110171908.246 0 D1C -1943.579 S1C 47.125 C2W 20965046.213 L2W 85848259.985 0 S2W 38.312 C2X 20965046.165 L2X 85847926.992 0 S2X 49.688 C5X 20965051.615 L5X 82271015.564 0 S5X 53.375 2971 CUT000AUS0 G15 C1C 22787067.176 L1C 119746749.144 0 D1C 2849.917 S1C 44.125 C2W 22787072.695 L2W 93309160.157 0 S2W 41.688 C2X 22787072.244 L2X 93309423.169 0 S2X 41.375 2972 CUT000AUS0 G17 C1C 22121616.350 L1C 116249765.638 0 D1C 2427.573 S1C 45.875 C2W 22121622.093 L2W 90584239.708 0 S2W 43.000 C2X 22121621.190 L2X 90584535.701 0 S2X 41.812 2973 CUT000AUS0 G19 C1C 23142771.219 L1C 121616393.429 0 D1C 3092.017 S1C 40.000 C2W 23142777.011 L2W 94766026.444 0 S2W 25.500 2974 CUT000AUS0 G20 C1C 23782796.965 L1C 124978693.104 0 D1C -2903.804 S1C 37.188 C2W 23782803.282 L2W 97386261.663 0 S2W 19.312 2975 CUT000AUS0 G24 C1C 25377344.828 L1C 133359519.706 0 D1C 2260.874 S1C 32.625 C2W 25377355.059 L2W 103916508.791 0 S2W 23.188 C2X 25377354.491 L2X 103915493.811 0 S2X 36.125 C5X 25377356.208 L5X 99585948.817 0 S5X 39.375 2976 CUT000AUS0 G30 C1C 22338975.386 L1C 117392908.228 0 D1C -1822.832 S1C 44.688 C2W 22338984.492 L2W 91475025.743 0 S2W 33.125 C2X 22338984.476 L2X 91474721.733 0 S2X 45.375 C5X 22338985.207 L5X 87662740.132 0 S5X 48.812 2977 CUT000AUS0 R04 C1C 23881837.357 L1C 127885658.422 0 D1C -4453.798 S1C 40.812 C1P 23881835.733 L1P 127885658.404 0 S1P 38.625 C2C 23881844.628 L2C 99466667.235 0 S2C 38.375 C2P 23881844.445 L2P 99467375.252 0 S2P 36.688 2978 CUT000AUS0 R05 C1C 19993055.353 L1C 106874582.378 0 D1C -2706.814 S1C 53.500 C1P 19993054.520 L1P 106874858.394 0 S1P 52.125 C2C 19993059.406 L2C 83123912.722 0 S2C 48.188 C2P 19993059.047 L2P 83124682.719 0 S2P 47.875 2979 CUT000AUS0 R06 C1C 20263132.945 L1C 108127358.039 0 D1C 2084.428 S1C 43.312 C1P 20263130.042 L1P 108128324.023 0 S1P 41.812 2980 CUT000AUS0 R07 C1C 24129676.299 L1C 129167523.333 0 D1C 4208.592 S1C 40.625 C1P 24129674.854 L1P 129168613.333 0 S1P 39.625 C2C 24129680.090 L2C 100463556.008 0 S2C 34.812 C2P 24129680.907 L2P 100463507.006 0 S2P 34.375 2981 CUT000AUS0 R09 C1C 22647210.193 L1C 120935222.748 0 D1C 2451.996 S1C 44.312 C1P 22647208.752 L1P 120934301.732 0 S1P 42.625 C2C 22647213.052 L2C 94060688.797 0 S2C 40.875 C2P 22647212.494 L2P 94060910.813 0 S2P 39.625 2982 CUT000AUS0 R15 C1C 21378136.341 L1C 114238110.662 0 D1C -2695.283 S1C 50.875 C1P 21378136.614 L1P 114238720.680 0 S1P 49.188 C2C 21378140.999 L2C 88852381.654 0 S2C 46.000 C2P 21378141.210 L2P 88852004.661 0 S2P 45.125 2983 CUT000AUS0 R17 C1C 23445042.586 L1C 125459843.828 0 D1C 2139.073 S1C 42.188 C1P 23445040.392 L1P 125458606.837 0 S1P 40.625 C2C 23445044.755 L2C 97579282.106 0 S2C 38.375 C2P 23445045.002 L2P 97579658.104 0 S2P 37.312 2984 CUT000AUS0 R18 C1C 24487212.824 L1C 130713967.425 0 D1C 3289.885 S1C 38.688 C1P 24487211.697 L1P 130714476.414 0 S1P 37.312 C2C 24487222.117 L2C 101666522.038 0 S2C 36.625 C2P 24487222.877 L2P 101667012.053 0 S2P 37.000 2985 CUT000AUS0 R24 C1C 24406995.868 L1C 130515122.174 0 D1C -363.589 S1C 37.625 C1P 24406994.508 L1P 130514566.195 0 S1P 36.500 C2C 24407001.743 L2C 101511238.922 0 S2C 35.375 C2P 24407001.646 L2P 101511808.907 0 S2P 33.875 2986 CUT000AUS0 E07 C1X 24981018.132 L1X 131275662.874 0 D1X -2005.073 S1X 47.312 C7X 24981022.166 L7X 100587870.838 0 S7X 48.500 C8X 24981023.032 L8X 99309728.272 0 S8X 50.375 C5X 24981024.925 L5X 98030555.501 0 S5X 48.312 2987 CUT000AUS0 E19 C1X 26936516.560 L1X 141552478.497 0 D1X 2328.999 S1X 40.688 C7X 26936519.247 L7X 108462290.707 0 S7X 41.875 C8X 26936519.723 L8X 107083533.258 0 S8X 44.375 C5X 26936521.948 L5X 105704775.587 0 S5X 41.375 2988 CUT000AUS0 E21 C1X 24762234.566 L1X 130126590.523 0 D1X 1574.204 S1X 49.500 C7X 24762237.934 L7X 99707410.202 0 S7X 48.812 C8X 24762238.719 L8X 98439944.211 0 S8X 50.500 C5X 24762240.762 L5X 97172479.002 0 S5X 48.000 2989 CUT000AUS0 E27 C1X 23576704.592 L1X 123895989.025 0 D1X -851.299 S1X 52.625 C7X 23576706.467 L7X 94933319.817 0 S7X 51.375 C8X 23576707.753 L8X 93726498.714 0 S8X 53.375 C5X 23576709.755 L5X 92519764.395 0 S5X 51.812 2990 CUT000AUS0 E30 C1X 27140817.882 L1X 142626806.094 0 D1X -2516.660 S1X 41.812 C7X 27140820.356 L7X 109284744.583 0 S7X 42.125 C8X 27140821.870 L8X 107896108.822 0 S8X 45.312 C5X 27140823.870 L5X 106506823.863 0 S5X 42.688 2991 CUT000AUS0 J02 C1C 33315686.894 L1C 175075542.860 0 D1C 843.828 S1C 49.125 C2X 33315691.154 L2X 136421853.584 0 S2X 52.312 C5X 33315695.902 L5X 130737887.374 0 S5X 54.688 2992 CUT000AUS0 J03 C1C 42286566.136 L1C 222216744.902 0 D1C 1795.498 S1C 36.500 C2X 42286572.066 L2X 173156649.003 0 S2X 38.312 C5X 42286579.133 L5X 165941790.603 0 S5X 42.188 2993 CUT000AUS0 J07 C1C 37020705.829 L1C 194545830.880 0 D1C 3.584 S1C 39.625 C2X 37020708.694 L2X 151593502.133 0 S2X 47.812 C5X 37020714.323 L5X 145277106.855 0 S5X 51.500 2994 CUT000AUS0 C01 C2I 37452945.154 L2I 195027050.043 0 D2I -4.219 S2I 41.875 C6I 37452936.772 L6I 158475266.419 0 S6I 42.875 C7I 37452941.707 L7I 150807351.407 0 S7I 42.625 2995 CUT000AUS0 C02 C2I 37629590.702 L2I 195946381.957 0 D2I -65.684 S2I 37.625 C6I 37629580.568 L6I 159222468.315 0 S6I 41.688 C7I 37629584.237 L7I 151518158.493 0 S7I 42.500 2996 CUT000AUS0 C03 C2I 37043583.946 L2I 192895689.591 0 D2I -42.959 S2I 42.000 C6I 37043573.338 L6I 156743260.534 0 S6I 45.000 C7I 37043578.637 L7I 149159229.293 0 S7I 44.500 2997 CUT000AUS0 C04 C2I 38728082.770 L2I 201667622.637 0 D2I 16.230 S2I 36.812 C6I 38728071.971 L6I 163871475.478 0 S6I 40.312 C7I 38728076.953 L7I 155942209.993 0 S7I 39.375 2998 CUT000AUS0 C05 C2I 39585341.980 L2I 206131634.311 0 D2I -45.948 S2I 34.812 C6I 39585332.316 L6I 167498725.372 0 S6I 36.375 C7I 39585337.333 L7I 159393949.120 0 S7I 37.125 2999 CUT000AUS0 C06 C2I 36205815.127 L2I 188533341.895 0 D2I 293.803 S2I 47.625 C6I 36205801.585 L6I 153198815.977 0 S6I 47.000 C7I 36205808.771 L7I 145785979.158 0 S7I 46.812 3000 CUT000AUS0 C07 C2I 36955824.337 L2I 192438747.274 0 D2I 1083.432 S2I 43.688 C6I 36955809.966 L6I 156372256.627 0 S6I 44.625 C7I 36955818.699 L7I 148805860.823 0 S7I 45.500 3001 CUT000AUS0 C09 C2I 36538611.526 L2I 190266647.981 0 D2I 320.453 S2I 46.312 C6I 36538598.798 L6I 154607263.246 0 S6I 46.000 C7I 36538607.103 L7I 147126274.839 0 S7I 45.500 3002 CUT000AUS0 C10 C2I 37839575.262 L2I 197041085.539 0 D2I 1304.384 S2I 41.688 C6I 37839563.189 L6I 160112029.382 0 S6I 41.500 C7I 37839572.127 L7I 152364675.110 0 S7I 41.875 3003 CUT000AUS0 C11 C2I 26805755.942 L2I 139584609.535 0 D2I -416.109 S2I 32.312 C6I 26805745.652 L6I 113423929.526 0 S6I 35.312 C7I 26805755.187 L7I 107935674.616 0 S7I 36.125 3004 CUT000AUS0 C13 C2I 41051458.729 L2I 213765992.637 0 D2I -1850.508 S2I 34.000 C6I 41051455.342 L6I 173702372.800 0 S6I 32.875 C7I 41051464.924 L7I 165297417.662 0 S7I 34.000 3005 CUT000AUS0 C16 C2I 36059609.070 L2I 187772602.648 0 D2I 211.928 S2I 48.625 C6I 36059599.120 L6I 152579828.103 0 S6I 45.812 C7I 36059607.906 L7I 145196944.884 0 S7I 45.688 3006 CUT000AUS0 C19 C2I 25734075.834 L2I 134004287.472 0 D2I 2607.207 S2I 39.375 C6I 25734062.383 L6I 108889463.904 0 S6I 41.125 3007 CUT000AUS0 C20 C2I 22171840.147 L2I 115454153.788 0 D2I 259.834 S2I 50.688 C6I 22171825.517 L6I 93815970.330 0 S6I 50.000 3008 CUT000AUS0 C23 C2I 24439012.163 L2I 127260830.033 0 D2I -2096.363 S2I 44.688 C6I 24438995.765 L6I 103409879.739 0 S6I 44.875 3009 CUT000AUS0 C28 C2I 25427888.185 L2I 132409857.631 0 D2I 2314.521 S2I 38.625 C6I 25427881.814 L6I 107593860.548 0 S6I 38.688 3010 3011 > 2235 161042.0000000 3012 .. 3013 </p></pre> 3014 <p> 3015 The source code for BNC comes with a Perl script named 'test_tcpip_client.pl' that allows to read BNC's (synchronized or unsynchronized) 3016 ASCII observation output from the IP port and print it on standard output for verification. 3017 </p> 3018 3019 <p> 3020 Note that any socket connection of an application to BNC's synchronized or unsynchronized observation ports is recorded in the 'Log' tab 3021 on the bottom of the main window together with a connection counter, resulting in log records like 'New client connection on sync/usync port: # 1'. 3022 </p> 3023 3024 <p> 3025 The following figure shows the screenshot of a BNC configuration where a number of streams is pulled from different Ntrip Broadcasters 3026 to feed a GNSS engine via IP port output. 3027 </p> 3028 <p><img src="IMG/Figure18.png"width=1000/></p> 3029 <p>Figure 18: Synchronized BNC output via IP port to feed a GNSS real-time engine</p> 3030 3031 <p><h4 id="syncport">2.9.1 Port - optional</h4></p> 3032 <p> 3033 BNC can produce synchronized observations in ASCII format on your local host (IP 127.0.0.1) through an IP 'Port'. 3034 Synchronized means that BNC collects all observation data for a specific epoch, which become available within 3035 a certain number of seconds (see 'Wait for Full Obs Epoch' option). It then - epoch by epoch - outputs whatever has been received. 3036 The output comes block-wise per stream following the format specified in Table 2. Enter an IP port number here to activate this function. 3037 The default is an empty option field, meaning that no synchronized output is generated.</p> 3038 </p> 3039 3040 <p><h4 id="syncwait">2.9.2 Wait for Full Obs Epoch - mandatory if 'Port' is set</h4></p> 3041 <p> 3042 When feeding a real-time GNSS network engine waiting for synchronized observations epoch by epoch, BNC drops whatever is 3043 received later than 'Wait for full obs epoch' seconds. A value of 3 to 5 seconds could be an appropriate choice for that, 3044 depending on the latency of the incoming streams and the delay acceptable for your real-time GNSS product. 3045 Default value for 'Wait for full obs epoch' is 5 seconds. 3046 Note that 'Wait for full obs epoch' does not affect the RINEX Observation file content. Observations received later 3047 than 'Wait for full obs epoch' seconds will still be included in the RINEX Observation files. 3048 </p> 3049 3050 <p><h4 id="syncsample">2.9.3 Sampling - mandatory if 'File' or 'Port' is set</h4></p> 3051 <p> 3052 Select a synchronized observation output sampling interval in seconds. 3053 </p> 3054 3055 <p><h4 id="syncfile">2.9.4 File - optional</h4></p> 3056 <p> 3057 Specify the full path to a 'File' where synchronized observations are saved in plain ASCII format. 3058 The default value is an empty option field, meaning that no ASCII output file is created. 3059 Beware that the size of this file can rapidly increase depending on the number of incoming streams. 3060 To prevent it from becoming too large, the name of the file can be changed on-the-fly. 3061 This option is primarily meant for test and evaluation. 3062 </p> 3063 3064 <p><h4 id="syncuport">2.9.5 Port (unsynchronized) - optional</h4></p> 3065 <p> 3066 BNC can produce unsynchronized observations from all configured streams in ASCII format on your local host (IP 127.0.0.1) through an IP 'Port'. 3067 Unsynchronized means that BNC immediately forwards any received observation to the port. 3068 Nevertheless, the output is produced block-wise per stream. Specify an IP port number here to activate this function. 3069 The default is an empty option field, meaning that no unsynchronized output is generated. 3070 </p> 3071 <p> 3072 The following is an example for unsynchronized IP port output which presents observations from GPS, GLONASS, Galileo, BDS (BeiDou) 3073 as collected through stream WTZR00DEU0. The format for synchronized and unsynchronized output of observations is very much the same. 3074 However, unsynchronized output does not have 'Epoch Records' and 'Observation Records'. 3075 Instead each record contains the 'GPS Week Number' and 'GPS Second of Week' time tag between the mountpoint string and the satellite number, 3076 see Table 2 for format details. 3077 </p> 3078 3079 <pre><p style="font-family:Monospace"> 3080 WTZR00DEU0 2235 163641.0000000 C45 C2I 21792728.974 L2I 113480606.233 0 D2I -840.222 S2I 49.000 C6I 21792718.056 L6I 92212301.720 0 D6I -682.735 S6I 53.000 C5P 21792722.630 L5P 85519518.841 0 D5P -633.150 S5P 55.000 C1P 21792728.867 L1P 114521718.308 0 D1P -847.940 S1P 49.000 3081 WTZR00DEU0 2235 163641.0000000 C57 C2I 35241541.940 L2I 183511967.699 0 D2I 3312.134 S2I 38.000 3082 WTZR00DEU0 2235 163641.0000000 C60 C2I 40835714.048 L2I 212642400.538 0 D2I 3.107 S2I 42.000 C6I 40835695.000 L6I 172789282.775 0 D6I 2.563 S6I 38.000 3083 WTZR00DEU0 2235 163642.0000000 G02 C1C 21379575.238 L1C 112350466.503 0 D1C 1170.040 S1C 50.000 C2W 21379571.878 L2W 87545832.377 0 D2W 911.720 S2W 48.000 3084 WTZR00DEU0 2235 163642.0000000 G04 C1C 25299844.801 L1C 132951592.093 0 D1C 1200.923 S1C 39.000 C2W 25299844.872 L2W 103598643.930 0 D2W 935.786 S2W 37.000 C2S 25299845.337 L2S 103598633.949 0 D2S 935.788 S2S 39.000 C5Q 25299848.214 L5Q 99282039.251 0 D5Q 896.700 S5Q 41.000 3085 .. 3086 WTZR00DEU0 2235 163642.0000000 R02 C1C 24526502.578 L1C 130878135.690 0 D1C -3106.188 S1C 46.000 C2C 24526504.954 L2C 101794134.136 0 D2C -2415.923 S2C 38.000 C2P 24526504.597 L2P 101794114.124 0 D2P -2415.924 S2P 38.000 3087 WTZR00DEU0 2235 163642.0000000 R03 C1C 23652572.765 L1C 126614077.711 0 D1C -630.104 S1C 46.000 C2C 23652573.301 L2C 98477638.096 0 D2C -490.081 S2C 37.000 C2P 23652572.533 L2P 98477618.066 0 D2P -490.085 S2P 37.000 3088 .. 3089 WTZR00DEU0 2235 163642.0000000 E01 C1C 26930045.201 L1C 141518526.177 0 D1C -2534.602 S1C 49.000 C6C 26930047.720 L6C 114869006.985 0 D6C -2057.304 S6C 50.000 C7Q 26930046.237 L7Q 108436367.651 0 D7Q -1942.054 S7Q 45.000 C8Q 26930048.024 L8Q 107057942.802 0 D8Q -1917.406 S8Q 50.000 C5Q 26930049.615 L5Q 105679526.128 0 D5Q -1892.741 S5Q 48.000 3090 WTZR00DEU0 2235 163642.0000000 E03 C1C 28229782.305 L1C 148348501.362 0 D1C 39.942 S1C 44.000 C6C 28229782.234 L6C 120412744.902 0 D6C 32.553 S6C 43.000 C7Q 28229784.789 L7Q 113669639.982 0 D7Q 30.900 S7Q 42.000 C8Q 28229784.985 L8Q 112224686.556 0 D8Q 30.503 S8Q 44.000 C5Q 28229786.004 L5Q 110779744.311 0 D5Q 30.132 S5Q 40.000 3091 WTZR00DEU0 2235 163642.0000000 E05 C1C 27821824.684 L1C 146204675.792 0 D1C -2023.955 S1C 45.000 C6C 27821825.542 L6C 118672628.805 0 D6C -1642.884 S6C 44.000 C7Q 27821828.187 L7Q 112026972.544 0 D7Q -1550.945 S7Q 44.000 C8Q 27821828.937 L8Q 110602896.522 0 D8Q -1531.222 S8Q 46.000 C5Q 27821830.688 L5Q 109178838.676 0 D5Q -1511.462 S5Q 43.000 3092 WTZR00DEU0 2235 163642.0000000 E10 C1C 27845624.132 L1C 146329752.236 0 D1C 3297.279 S1C 45.000 C6C 27845627.045 L6C 118774160.378 0 D6C 2676.374 S6C 45.000 C7Q 27845628.224 L7Q 112122811.041 0 D7Q 2526.467 S7Q 43.000 C8Q 27845628.510 L8Q 110697518.817 0 D8Q 2494.409 S8Q 46.000 C5Q 27845629.171 L5Q 109272236.786 0 D5Q 2462.268 S5Q 44.000 3093 WTZR00DEU0 2235 163642.0000000 E12 C1C 25724560.188 L1C 135183502.970 0 D1C 2910.137 S1C 46.000 C6C 25724557.561 L6C 109726872.278 0 D6C 2362.124 S6C 47.000 C7Q 25724559.313 L7Q 103582176.389 0 D7Q 2229.792 S7Q 46.000 C8Q 25724560.152 L8Q 102265454.924 0 D8Q 2201.438 S8Q 49.000 C5Q 25724561.117 L5Q 100948736.643 0 D5Q 2173.094 S5Q 46.000 3094 WTZR00DEU0 2235 163642.0000000 E24 C1C 24759911.740 L1C 130114254.885 0 D1C 1790.491 S1C 51.000 C6C 24759911.615 L6C 105612232.912 0 D6C 1453.295 S6C 54.000 C7Q 24759910.847 L7Q 99697952.062 0 D7Q 1371.869 S7Q 53.000 C8Q 24759912.151 L8Q 98430607.507 0 D8Q 1354.441 S8Q 55.000 C5Q 24759913.206 L5Q 97163270.129 0 D5Q 1337.013 S5Q 52.000 3095 WTZR00DEU0 2235 163642.0000000 E26 C1C 26508097.314 L1C 139301027.368 0 D1C -2155.856 S1C 48.000 C6C 26508097.725 L6C 113069021.925 0 D6C -1749.953 S6C 50.000 C7Q 26508097.279 L7Q 106737162.256 0 D7Q -1651.940 S7Q 49.000 C8Q 26508097.904 L8Q 105380335.094 0 D8Q -1630.981 S8Q 51.000 C5Q 26508099.012 L5Q 104023515.114 0 D5Q -1610.036 S5Q 48.000 3096 .. 3097 WTZR00DEU0 2235 163642.0000000 C26 C2I 23510858.851 L2I 122427226.293 0 D2I 2283.809 S2I 49.000 C6I 23510855.528 L6I 99482138.474 0 D6I 1855.875 S6I 49.000 C5P 23510859.888 L5P 92261680.179 0 D5P 1721.110 S5P 50.000 C1P 23510858.387 L1P 123550408.663 0 D1P 2304.891 S1P 48.000 3098 WTZR00DEU0 2235 163642.0000000 C29 C2I 21580712.838 L2I 112376488.453 0 D2I 208.852 S2I 49.000 C6I 21580707.799 L6I 91315102.976 0 D6I 169.736 S6I 52.000 C5P 21580712.266 L5P 84687416.320 0 D5P 157.427 S5P 54.000 C1P 21580712.373 L1P 113407458.870 0 D1P 210.745 S1P 48.000 3099 WTZR00DEU0 2235 163642.0000000 C30 C2I 23959205.575 L2I 124761931.366 0 D2I -2657.024 S2I 49.000 C6I 23959203.305 L6I 101379299.287 0 D6I -2159.002 S6I 48.000 C5P 23959207.880 L5P 94021152.637 0 D5P -2002.326 S5P 49.000 C1P 23959204.699 L1P 125906536.640 0 D1P -2681.458 S1P 49.000 3100 .. 3101 WTZR00DEU0 2235 163642.0000000 C60 C2I 40835713.423 L2I 212642397.246 0 D2I 3.174 S2I 42.000 C6I 40835694.374 L6I 172789280.110 0 D6I 2.705 S6I 38.000 3102 WTZR00DEU0 2235 163643.0000000 G02 C1C 21379352.625 L1C 112349296.717 0 D1C 1169.503 S1C 50.000 C2W 21379349.266 L2W 87544920.854 0 D2W 911.301 S2W 49.000 3103 WTZR00DEU0 2235 163643.0000000 G04 C1C 25299616.345 L1C 132950391.648 0 D1C 1200.111 S1C 38.000 C2W 25299616.506 L2W 103597708.514 0 D2W 935.153 S2W 37.000 C2S 25299616.935 L2S 103597698.549 0 D2S 935.156 S2S 39.000 C5Q 25299619.758 L5Q 99281142.802 0 D5Q 896.365 S5Q 41.000 2866 3104 ... 2867 FFMJ1 G26 C1C 24796690.856 L1C 130307533.550 127 S1C 42.000 C2W 24796697.776 L2W 101538315.510 127 S2W 25.000 2868 FFMJ1 S20 C1C 38682850.302 L1C 203279786.777 127 S1C 42.000 2869 FFMJ1 S36 C1C 38288096.846 L1C 201205293.221 127 S1C 47.000 2870 FFMJ1 R03 C1C 23182737.548 L1C 124098947.838 127 S1C 48.000 C2P 23182746.288 L2P 96521352.130 127 S2P 42.000 2871 ... 2872 FFMJ1 R21 C1C 22201343.772 L1C 118803851.388 127 S1C 52.000 C2P 22201348.892 L2P 92402993.884 127 S2P 44.000 2873 CUT07 G01 C1C 25318977.766 L1C 133052476.488 521 D1C 2533.500 S1C 33.688 C2W 25318993.668 L2W 103677584.878 521 S2W 15.625 C2X 25318991.820 L2X 103676566.850 521 S2X 35.375 C5X 25318993.461 L5X 99357161.238 521 S5X 39.812 2874 ... 2875 CUT07 G27 C1C 20251005.351 L1C 106420601.969 627 D1C 250.937 S1C 50.312 C2W 20251014.512 L2W 82924447.644 627 S2W 45.125 C2X 20251014.246 L2X 82924648.644 627 S2X 53.188 C5X 20251015.480 L5X 79469461.619 627 S5X 56.375 2876 CUT07 R01 C1C 20312587.149 L1C 108583395.373 625 D1C -2456.703 S1C 52.875 C1P 20312586.192 L1P 108582844.382 625 S1P 51.000 C2C 20312593.422 L2C 84452892.610 625 S2C 43.625 C2P 20312593.836 L2P 84453114.622 625 S2P 42.312 2877 ... 2878 CUT07 R24 C1C 19732223.242 L1C 105517564.659 630 D1C -7.477 S1C 47.375 C1P 19732222.609 L1P 105517564.669 630 S1P 46.375 C2C 19732227.660 L2C 82069550.193 630 S2C 38.125 C2P 19732227.316 L2P 82068477.204 630 S2P 37.375 2879 CUT07 E11 C1X 28843071.547 L1X 151571208.816 405 D1X -2221.055 S1X 29.000 C7X 28843082.531 L7X 116138795.418 405 S7X 27.188 C8X 28843085.699 L8X 114662585.261 405 S8X 33.688 C5X 28843086.281 L5X 113186518.907 405 S5X 30.375 2880 ... 2881 CUT07 E30 C1X 28096037.289 L1X 147645296.835 630 D1X -2020.613 S1X 34.688 C7X 28096054.070 L7X 113131111.635 630 S7X 36.875 C8X 28096055.684 L8X 111692702.565 630 S8X 40.375 C5X 28096058.008 L5X 110254591.278 630 S5X 36.188 2882 CUT07 S27 C1C 40038220.843 L1C 210402303.982 616 D1C 104.688 S1C 36.125 C5I 40038226.375 L5I 157118241.003 616 S5I 40.875 2883 ... 2884 CUT07 S37 C1C 37791754.594 L1C 198596881.251 704 D1C 106.605 S1C 37.875 2885 CUT07 J01 C1C 33076065.781 L1C 173816471.106 674 D1C 169.765 S1C 48.375 C1Z 33076063.086 L1Z 173815528.437 674 S1Z 48.625 C6L 33076065.652 L6L 141084039.422 674 S6L 52.688 C2X 33076070.523 L2X 135440679.474 674 S2X 50.500 C5X 33076076.496 L5X 129797319.733 674 S5X 54.188 C1X 33076065.492 L1X 173815529.101 674 S1X 52.375 2886 CUT07 C01 C2I 37725820.914 L2I 196447455.374 704 D2I 90.898 S2I 41.312 C6I 37725810.168 L6I 159630204.932 704 S6I 44.875 C7I 37725815.196 L7I 151906389.245 704 S7I 45.812 2887 ... 2888 CUT07 C14 C2I 23351041.328 L2I 121594621.501 592 D2I 2422.203 S2I 45.688 C6I 23351032.926 L6I 98805869.415 592 S6I 48.500 C7I 23351041.996 L7I 94024977.673 592 S7I 45.688 2889 WTZR0 G02 C1C 23641481.864 L1C 124236803.604 127 S1C 47.500 C2W 23641476.604 L2W 96807881.233 127 S2W 39.250 2890 ... 2891 WTZR0 G26 C1C 24681555.676 L1C 129702453.534 127 S1C 43.750 C2W 24681561.256 L2W 101066873.870 127 S2W 37.750 2892 WTZR0 R03 C1C 22982596.508 L1C 123027564.682 127 S1C 47.000 C2P 22982598.368 L2P 95688085.627 127 S2P 43.250 2893 ... 2894 WTZR0 R21 C1C 22510252.692 L1C 120456902.811 127 S1C 47.500 C2P 22510253.132 L2P 93688698.401 127 S2P 44.000 2895 2896 > 1884 206011.0000000 2897 ... 2898 </pre> 2899 <p> 2900 The source code for BNC comes with a Perl script named 'test_tcpip_client.pl' that allows to read BNC's (synchronized or unsynchronized) ASCII observation output from the IP port and print it on standard output for verification. 2901 </p> 2902 2903 <p> 2904 Note that any socket connection of an application to BNC's synchronized or unsynchronized observation ports is recorded in the 'Log' tab on the bottom of the main window together with a connection counter, resulting in log records like 'New client connection on sync/usync port: # 1'. 2905 </p> 2906 2907 <p> 2908 The following figure shows the screenshot of a BNC configuration where a number of streams is pulled from different Ntrip Broadcasters to feed a GNSS engine via IP port output. 2909 </p> 2910 <p><img src="IMG/screenshot12.png"/></p> 2911 <p>Figure 18: Synchronized BNC output via IP port to feed a GNSS real-time engine</p> 2912 2913 <p><h4 id="syncport">2.9.1 Port - optional</h4></p> 2914 <p> 2915 BNC can produce synchronized observations in ASCII format on your local host (IP 127.0.0.1) through an IP 'Port'. Synchronized means that BNC collects all observation data for a specific epoch, which become available within a certain number of seconds (see 'Wait for Full Obs Epoch' option). It then - epoch by epoch - outputs whatever has been received. The output comes block-wise per stream following the format specified in Table 2. Enter an IP port number here to activate this function. The default is an empty option field, meaning that no synchronized output is generated.</p> 2916 </p> 2917 2918 <p><h4 id="syncwait">2.9.2 Wait for Full Obs Epoch - mandatory if 'Port' is set</h4></p> 2919 <p> 2920 When feeding a real-time GNSS network engine waiting for synchronized observations epoch by epoch, BNC drops whatever is received later than 'Wait for full obs epoch' seconds. A value of 3 to 5 seconds could be an appropriate choice for that, depending on the latency of the incoming streams and the delay acceptable for your real-time GNSS product. Default value for 'Wait for full obs epoch' is 5 seconds. 2921 </p> 2922 <p> 2923 Note that 'Wait for full obs epoch' does not affect the RINEX Observation file content. Observations received later than 'Wait for full obs epoch' seconds will still be included in the RINEX Observation files. 2924 </p> 2925 2926 <p><h4 id="syncsample">2.9.3 Sampling - mandatory if 'File' or 'Port' is set</h4></p> 2927 <p> 2928 Select a synchronized observation output sampling interval in seconds. A value of zero '0' tells BNC to send/store all received epochs. This is the default value. 2929 </p> 2930 2931 <p><h4 id="syncfile">2.9.4 File - optional</h4></p> 2932 <p> 2933 Specify the full path to a 'File' where synchronized observations are saved in plain ASCII format. The default value is an empty option field, meaning that no ASCII output file is created. 2934 </p> 2935 <p> 2936 Beware that the size of this file can rapidly increase depending on the number of incoming streams. To prevent it from becoming too large, the name of the file can be changed on-the-fly. This option is primarily meant for test and evaluation. 2937 </p> 2938 2939 <p><h4 id="syncuport">2.9.5 Port (unsynchronized) - optional</h4></p> 2940 <p> 2941 BNC can produce unsynchronized observations from all configured streams in ASCII format on your local host (IP 127.0.0.1) through an IP 'Port'. Unsynchronized means that BNC immediately forwards any received observation to the port. Nevertheless, the output is produced block-wise per stream. Specify an IP port number here to activate this function. The default is an empty option field, meaning that no unsynchronized output is generated. 2942 </p> 2943 <p> 2944 The following is an example for unsynchronized IP port output which presents observations from GPS and GLONASS as collected through stream WTZR0. The format for synchronized and unsynchronized output of observations is very much the same. However, unsynchronized output does not have 'Epoch Records' and 'Observation Records'. Instead each record contains the 'GPS Week Number' and 'GPS Second of Week' time tag between the mountpoint string and the satellite number, see Table 2 for format details. 2945 </p> 2946 2947 <pre> 2948 WTZR0 1884 209623.0000000 G02 C1C 22259978.112 L1C 116976955.890 127 S1C 49.250 C2W 22259974.472 L2W 91150855.991 127 S2W 44.500 2949 WTZR0 1884 209623.0000000 G03 C1C 24426736.058 L1C 128363272.624 127 S1C 43.500 C2W 24426741.838 L2W 100023289.335 127 S2W 39.000 2950 ... 2951 WTZR0 1884 209623.0000000 G29 C1C 25275897.592 L1C 132825869.191 90 S1C 35.250 C2W 25275893.692 L2W 103500567.110 8 S2W 28.500 2952 WTZR0 1884 209623.0000000 G30 C1C 23670676.284 L1C 124390283.441 127 S1C 46.750 C2W 23670679.784 L2W 96927531.685 127 S2W 39.500 2953 WTZR0 1884 209623.0000000 R04 C1C 20758122.104 L1C 111158778.398 127 S1C 50.000 C2P 20758121.664 L2P 86456803.800 127 S2P 47.000 2954 WTZR0 1884 209623.0000000 R05 C1C 19430829.552 L1C 103868912.028 127 S1C 45.750 C2P 19430829.672 L2P 80786936.849 127 S2P 46.750 2955 ... 2956 </pre> 3105 </p></pre> 2957 3106 2958 3107 <p><h4 id="serial">2.10 Serial Output</h4></p> 2959 3108 <p> 2960 You may use BNC to feed a serially connected device like a GNSS receiver. For that, an incoming stream can be forwarded to a serial port. Depending on the stream content, the receiver may use it for Differential GNSS, Precise Point Positioning or any other purpose supported by its firmware. 2961 </p> 2962 <p> 2963 Note that receiving a VRS stream requires the receiver sending NMEA sentences (option 'NMEA' set to 'Manual' or 'Auto') to the Ntrip Broadcaster. The following figure shows the data flow when pulling a VRS stream or a physical (non-VRS) stream. 2964 </p> 2965 2966 <p><img src="IMG/screenshot35.png"/></p> 3109 You may use BNC to feed a serially connected device like a GNSS receiver. For that, an incoming stream can be forwarded to a serial port. 3110 Depending on the stream content, the receiver may use it for Differential GNSS, Precise Point Positioning or any other purpose 3111 supported by its firmware. 3112 </p> 3113 <p> 3114 Note that receiving a VRS stream requires the receiver sending NMEA sentences (option 'NMEA' set to 'Manual' or 'Auto') to the Ntrip Broadcaster. 3115 The following figure shows the data flow when pulling a VRS stream or a physical (non-VRS) stream. 3116 </p> 3117 3118 <p><img src="IMG/Figure19.png"width=1000/></p> 2967 3119 <p>Figure 19: Flowcharts, BNC forwarding a stream to a serially connected receiver; sending NMEA sentences is mandatory for VRS streams</p> 2968 3120 2969 3121 <p> 2970 The following figure shows the screenshot of an example situation where BNC pulls a VRS stream from an Ntrip Broadcaster to feed a serially connected RTK rover. 2971 </p> 2972 2973 <p><img src="IMG/screenshot11.png"/></p> 2974 <p>Figure 20: BNC pulling a VRS stream to feed a serially connected RTK rover</p> 3122 The following figure shows the screenshot of an example situation where BNC pulls a VRS stream from an Ntrip Broadcaster 3123 to feed a serially connected RTK rover. 3124 </p> 3125 3126 <p><img src="IMG/Figure20.png"width=1000/></p> 3127 <p>Figure 20: BNC pulling a RTCM Version 3 stream to feed a serial connected receiver with observations from a nearby reference station for conventional RTK</p> 2975 3128 2976 3129 <p><h4 id="sermount">2.10.1 Mountpoint - optional</h4></p> … … 2979 3132 </p> 2980 3133 <p> 2981 When selecting one of the serial communication options listed below, make sure that you pick those configured to the serially connected receiver. 3134 When selecting one of the serial communication options listed below, make sure that you pick those configured to the 3135 serially connected receiver. 2982 3136 </p> 2983 3137 2984 3138 <p><h4 id="serport">2.10.2 Port Name - mandatory if 'Mountpoint' is set</h4></p> 2985 3139 <p> 2986 Enter the serial 'Port name' selected on your host for communication with the serially connected receiver. Valid port names are 2987 </p> 2988 <pre> 2989 Windows: COM1, COM2 2990 Linux: /dev/ttyS0, /dev/ttyS1 2991 FreeBSD: /dev/ttyd0, /dev/ttyd1 2992 Digital Unix: /dev/tty01, /dev/tty02 2993 HP-UX: /dev/tty1p0, /dev/tty2p0 2994 SGI/IRIX: /dev/ttyf1, /dev/ttyf2 2995 SunOS/Solaris: /dev/ttya, /dev/ttyb 2996 </pre> 3140 Enter the serial 'Port name' selected on your host for communication with the serially connected receiver. 3141 Valid port names are 3142 </p> 3143 <table> 3144 <tr><td>Windows: </td><td> COM1, COM2 </td></tr> 3145 <tr><td>Linux: </td><td> /dev/ttyS0, /dev/ttyS1 </td></tr> 3146 <tr><td>FreeBSD: </td><td> /dev/ttyd0, /dev/ttyd1 </td></tr> 3147 <tr><td>Digital Unix: </td><td> /dev/tty01, /dev/tty02 </td></tr> 3148 <tr><td>HP-UX: </td><td> /dev/tty1p0, /dev/tty2p0</td></tr> 3149 <tr><td>SGI/IRIX: </td><td> /dev/ttyf1, /dev/ttyf2 </td></tr> 3150 <tr><td>SunOS/Solaris:</td><td> /dev/ttya, /dev/ttyb </td></tr> 3151 </table> 2997 3152 <p> 2998 3153 Note that you must plug a serial cable in the port defined here before you start BNC. … … 3006 3161 <p><h4 id="serflow">2.10.4 Flow Control - mandatory if 'Mountpoint' is set</h4></p> 3007 3162 <p> 3008 Select a 'Flow control' for the serial output link. Note that your selection must equal the flow control configured to the serially connected device. Select 'OFF' if you do not know better. 3163 Select a 'Flow control' for the serial output link. Note that your selection must equal the flow control configured to the serially connected device. 3164 Select 'OFF' if you do not know better. 3009 3165 </p> 3010 3166 … … 3025 3181 3026 3182 <p><h4 id="serauto">2.10.8 NMEA - mandatory if 'Mountpoint' is set</h4></p> 3027 <p>The 'NMEA' option supports the so-called 'Virtual Reference Station' (VRS) concept which requires the receiver to send approximate position information to the Ntrip Broadcaster. Select 'no' if you do not want BNC to forward or upload any NMEA sentence to the Ntrip broadcaster in support of VRS. 3028 </p> 3029 <p>Select 'Auto' to automatically forward NMEA sentences of type GGA from your serially connected receiver to the Ntrip broadcaster and/or save them in a file. 3030 </p> 3031 <p>Select 'Manual GPGGA' or 'Manual GNGGA' if you want BNC to produce and upload GPGGA or GNGGA NMEA sentences to the Ntrip broadcaster because your serially connected receiver does not generate them. A Talker ID 'GP' proceeding the GGA string stands for GPS solutions while a Talker ID 'GN' stands for multi-constellation solutions. 3032 </p> 3033 <p>Note that selecting 'Auto' or 'Manual' works only for VRS streams which show up under the 'Streams' canvas on BNC's main window with 'nmea' stream attribute set to 'yes'. This attribute is either extracted from the Ntrip broadcaster's source-table or introduced by the user through editing the BNC configuration file. 3183 <p>The 'NMEA' option supports the so-called 'Virtual Reference Station' (VRS) concept which requires the receiver to send 3184 approximate position information to the Ntrip Broadcaster. Select 'no' if you do not want BNC to forward or upload any NMEA sentence 3185 to the Ntrip broadcaster in support of VRS. 3186 </p> 3187 <p> 3188 Select 'Auto' to automatically forward NMEA sentences of type GGA from your serially connected receiver to the Ntrip broadcaster 3189 and/or save them in a file. 3190 </p> 3191 <p>Select 'Manual GPGGA' or 'Manual GNGGA' if you want BNC to produce and upload GPGGA or GNGGA NMEA sentences to the Ntrip broadcaster 3192 because your serially connected receiver does not generate them. A Talker ID 'GP' proceeding the GGA string stands for GPS solutions 3193 while a Talker ID 'GN' stands for multi-constellation solutions. 3194 </p> 3195 <p> 3196 Note that selecting 'Auto' or 'Manual' works only for VRS streams which show up under the 'Streams' canvas on BNC's main window 3197 with 'nmea' stream attribute set to 'yes'. This attribute is either extracted from the Ntrip broadcaster's source-table or 3198 introduced by the user through editing the BNC configuration file. 3034 3199 </p> 3035 3200 3036 3201 <p><h4 id="serfile">2.10.9 File - optional if 'NMEA' is set to 'Auto'</h4></p> 3037 <p>Specify the full path to a file where NMEA sentences coming from your serially connected receiver are saved. Default is an empty option field, meaning that no NMEA sentences will be saved on disk. 3202 <p> 3203 Specify the full path to a file where NMEA sentences coming from your serially connected receiver are saved. 3204 Default is an empty option field, meaning that no NMEA sentences will be saved on disk. 3038 3205 </p> 3039 3206 <p><h4 id="serheight">2.10.10 Height - mandatory if 'NMEA' is set to 'Manual'</h4></p> 3040 3207 <p> 3041 Specify an approximate 'Height' above mean sea level in meters for the reference station introduced through 'Mountpoint'. Together with the latitude and longitude from the Ntrip broadcaster source-table, the height information is used to build GGA sentences to be sent to the Ntrip broadcaster. 3042 </p> 3043 <p>For adjusting latitude and longitude values of a VRS stream given in the 'Streams' canvas, you can double click the latitude/longitude data fields, specify appropriate values and then hit Enter. 3044 </p> 3045 <p>This option is only relevant when option 'NMEA' is set to 'Manual GPGGA' or 'Manual GNGGA' respectively. 3208 Specify an approximate 'Height' above mean sea level in meters for the reference station introduced through 'Mountpoint'. 3209 Together with the latitude and longitude from the Ntrip broadcaster source-table, the height information is used 3210 to build GGA sentences to be sent to the Ntrip broadcaster. 3211 </p> 3212 <p> 3213 For adjusting latitude and longitude values of a VRS stream given in the 'Streams' canvas, 3214 you can double click the latitude/longitude data fields, specify appropriate values and then hit Enter. 3215 </p> 3216 <p> 3217 This option is only relevant when option 'NMEA' is set to 'Manual GPGGA' or 'Manual GNGGA' respectively. 3046 3218 </p> 3047 3219 … … 3051 3223 </p> 3052 3224 <p> 3053 A sampling rate of '0' means that a GGA sentence will be sent only once to initialize the requested VRS stream. Note that some VRS systems need GGA sentences at regular intervals. 3225 A sampling rate of '0' means that a GGA sentence will be sent only once to initialize the requested VRS stream. 3226 Note that some VRS systems need GGA sentences at regular intervals. 3054 3227 </p> 3055 3228 3056 3229 <p><h4 id="advnote">2.11 Outages</h4></p> 3057 3230 <p> 3058 At any time an incoming stream might become unavailable or corrupted. In such cases, it is important that the BNC operator and/or the stream providers become aware of the situation so that measures can be taken to restore the stream. Furthermore, continuous attempts to decode a corrupted stream can generate unnecessary workload for BNC. Outages and corruptions are handled by BNC as follows: 3059 </p> 3060 <p> 3061 <u>Stream outages:</u> BNC considers a connection to be broken when there are no incoming data detected for more than 20 seconds. When this occurs, BNC will try to reconnect at a decreasing rate. It will first try to reconnect with 1 second delay and again in 2 seconds if the previous attempt failed. If the attempt is still unsuccessful, it will try to reconnect within 4 seconds after the previous attempt and so on. The waiting time doubles each time with a maximum of 256 seconds. 3062 </p> 3063 <p> 3064 <u>Stream corruption:</u> Not all chunks of bits transferred to BNC's internal decoder may return valid observations. Sometimes several chunks might be needed before the next observation can be properly decoded. BNC buffers all outputs (both valid and invalid) from the decoder for a short time span (size derived from the expected 'Observation rate') to then determine whether a stream is valid or corrupted. 3065 </p> 3066 <p> 3067 Outage and corruption events are reported in the 'Log' tab. They can also be passed on as parameters to a shell script or batch file to generate an advisory note to BNC's operator or affected stream providers. This functionality lets users utilize BNC as a real-time performance monitor and alarm system for a network of GNSS reference stations. 3231 At any time an incoming stream might become unavailable or corrupted. In such cases, it is important that the BNC operator 3232 and/or the stream providers become aware of the situation so that measures can be taken to restore the stream. 3233 Furthermore, continuous attempts to decode a corrupted stream can generate unnecessary workload for BNC. 3234 Outages and corruptions are handled by BNC as follows: 3235 </p> 3236 <p> 3237 <u>Stream outages:</u> BNC considers a connection to be broken when there are no incoming data detected for more than 20 seconds. 3238 When this occurs, BNC will try to reconnect at a decreasing rate. It will first try to reconnect with 1 second delay and 3239 again in 2 seconds if the previous attempt failed. If the attempt is still unsuccessful, it will try to reconnect 3240 within 4 seconds after the previous attempt and so on. The waiting time doubles each time with a maximum of 256 seconds. 3241 </p> 3242 <p> 3243 <u>Stream corruption:</u> Not all chunks of bits transferred to BNC's internal decoder may return valid observations. 3244 Sometimes several chunks might be needed before the next observation can be properly decoded. 3245 BNC buffers all outputs (both valid and invalid) from the decoder for a short time span 3246 (size derived from the expected 'Observation rate') to then determine whether a stream is valid or corrupted. 3247 </p> 3248 <p> 3249 Outage and corruption events are reported in the 'Log' tab. They can also be passed on as parameters to a shell script 3250 or batch file to generate an advisory note to BNC's operator or affected stream providers. 3251 This functionality lets users utilize BNC as a real-time performance monitor and alarm system for a network of GNSS reference stations. 3068 3252 </p> 3069 3253 3070 3254 <p><h4 id="obsrate">2.11.1 Observation Rate - optional</h4></p> 3071 3255 <p> 3072 BNC can collect all returns (success or failure) coming from a decoder within a certain short time span to then decide whether a stream has an outage or its content is corrupted. This procedure needs a rough a priori estimate of the expected observation rate of the incoming streams.</p><p>An empty option field (default) means that you do not want explicit information from BNC about stream outages and incoming streams that cannot be decoded. 3256 BNC can collect all returns (success or failure) coming from a decoder within a certain short time span to then decide whether 3257 a stream has an outage or its content is corrupted. This procedure needs a rough a priori estimate of the expected 3258 observation rate of the incoming streams. 3259 </p> 3260 <p>An empty option field (default) means that you do not want explicit information from BNC about stream outages and 3261 incoming streams that cannot be decoded. 3073 3262 </p> 3074 3263 3075 3264 <p><h4 id="advfail">2.11.2 Failure Threshold - mandatory if 'Observation rate' is set</h4></p> 3076 3265 <p> 3077 Event 'Begin_Failure' will be reported if no data is received continuously for longer than the 'Failure threshold' time. Similarly, event 'Begin_Corrupted' will be reported when corrupted data is detected by the decoder continuously for longer than this 'Failure threshold' time. The default value is set to 15 minutes and is recommended as to not inundate users with too many event reports. 3078 </p> 3079 <p> 3080 Note that specifying a value of zero '0' for the 'Failure threshold' will force BNC to report any stream failure immediately. Note also that for using this function you need to specify the 'Observation rate'. 3266 Event 'Begin_Failure' will be reported if no data is received continuously for longer than the 'Failure threshold' time. 3267 Similarly, event 'Begin_Corrupted' will be reported when corrupted data is detected by the decoder continuously for 3268 longer than this 'Failure threshold' time. The default value is set to 15 minutes and is recommended as to not inundate 3269 users with too many event reports. 3270 </p> 3271 <p> 3272 Note that specifying a value of zero '0' for the 'Failure threshold' will force BNC to report any stream failure immediately. 3273 Note also that for using this function you need to specify the 'Observation rate'. 3081 3274 </p> 3082 3275 3083 3276 <p><h4 id="advreco">2.11.3 Recovery Threshold - mandatory if 'Observation rate' is set</h4></p> 3084 3277 <p> 3085 Once a 'Begin_Failure' or 'Begin_Corrupted' event has been reported, BNC will check when the stream again becomes available or uncorrupted. Event 'End_Failure' or 'End_Corrupted' will be reported as soon as valid observations are detected continuously throughout the 'Recovery threshold' time span. The default value is set to 5 minutes and is recommended as to not inundate users with too many event reports. 3086 </p> 3087 <p> 3088 Note that specifying a value of zero '0' for the 'Recovery threshold' will force BNC to report any stream recovery immediately. Note also that for using this function you need to specify the 'Observation rate'. 3278 Once a 'Begin_Failure' or 'Begin_Corrupted' event has been reported, BNC will check when the stream again becomes available or uncorrupted. 3279 Event 'End_Failure' or 'End_Corrupted' will be reported as soon as valid observations are detected continuously throughout 3280 the 'Recovery threshold' time span. The default value is set to 5 minutes and is recommended as to not inundate users with too many event reports. 3281 </p> 3282 <p> 3283 Note that specifying a value of zero '0' for the 'Recovery threshold' will force BNC to report any stream recovery immediately. 3284 Note also that for using this function you need to specify the 'Observation rate'. 3089 3285 </p> 3090 3286 3091 3287 <p><h4 id="advscript">2.11.4 Script - optional if 'Observation rate' is set</h4></p> 3092 3288 <p> 3093 As mentioned before, BNC can trigger a shell script or a batch file to be executed when one of the described events is reported. This script can be used to email an advisory note to network operator or stream providers. To enable this feature, specify the full path to the script or batch file in the 'Script' field. The affected stream's mountpoint and type of event reported ('Begin_Outage', 'End_Outage', 'Begin_Corrupted' or 'End_Corrupted') will then be passed on to the script as command line parameters (%1 and %2 on Windows systems or $1 and $2 on Unix/Linux/Mac OS X systems) together with date and time information. 3289 As mentioned before, BNC can trigger a shell script or a batch file to be executed when one of the described events is reported. 3290 This script can be used to email an advisory note to network operator or stream providers. To enable this feature, 3291 specify the full path to the script or batch file in the 'Script' field. The affected stream's mountpoint and type of event 3292 reported ('Begin_Outage', 'End_Outage', 'Begin_Corrupted' or 'End_Corrupted') will then be passed on to the script as 3293 command line parameters (%1 and %2 on Windows systems or $1 and $2 on Unix/Linux/Mac OS X systems) together with date and time information. 3094 3294 </p> 3095 3295 <p> … … 3098 3298 <p> 3099 3299 Examples for command line parameter strings passed on to the advisory 'Script' are: 3100 <pre> 3101 FFMJ0 Begin_Outage 08-02-21 09:25:59 3102 FFMJ0 End_Outage 08-02-21 11:36:02 Begin was 08-02-21 09:25:59 3103 </pre> 3104 </p> 3300 <pre><p style="font-family:Monospace"> 3301 FFMJ00DEU0 Begin_Outage 22-02-21 09:25:59 3302 FFMJ00DEU0 End_Outage 22-02-21 11:36:02 Begin was 22-02-21 09:25:59 3303 </p></pre> 3105 3304 <p> 3106 3305 Sample script for Unix/Linux/Mac OS X systems: 3107 3306 </p> 3108 <pre> 3307 <pre><p style="font-family:Monospace"> 3109 3308 #!/bin/bash 3110 3309 sleep $((60*RANDOM/32767)) … … 3116 3315 EOF 3117 3316 mail -s "NABU: $1" email@address < mail.txt 3118 </p re>3119 < /p>3120 <p> 3121 Note the sleep command in this script, which causes the system to wait for a random period of up to 60 seconds before sending the email.This should avoid overloading your mail server in case of a simultaneous failure of many streams.3317 </p></pre> 3318 <p> 3319 Note the sleep command in this script, which causes the system to wait for a random period of up to 60 seconds before sending the email. 3320 This should avoid overloading your mail server in case of a simultaneous failure of many streams. 3122 3321 </p> 3123 3322 … … 3128 3327 3129 3328 <p> 3130 The following figure shows RTCM message numbers and observation types contained in stream 'CUT07' and the message latencies recorded every 2 seconds. 3131 </p> 3132 <p><img src="IMG/screenshot14.png"/></p> 3329 The following figure shows RTCM message numbers and observation types contained in stream 'CUT000AUS0' and the message latencies 3330 recorded every 2 seconds. 3331 </p> 3332 <p><img src="IMG/Figure21.png"width=1000/></p> 3133 3333 <p>Figure 21: RTCM message numbers, latencies and observation types logged by BNC</p> 3134 3334 … … 3136 3336 <p><h4 id="miscmount">2.12.1 Mountpoint - optional </h4></p> 3137 3337 <p> 3138 Specify a mountpoint to apply one or several of the 'Miscellaneous' options to the corresponding stream. Enter 'ALL' if you want to apply these options to all configured streams. An empty option field (default) means that you do not want BNC to apply any of these options. 3338 Specify a mountpoint to apply one or several of the 'Miscellaneous' options to the corresponding stream. 3339 Enter 'ALL' if you want to apply these options to all configured streams. An empty option field (default) means 3340 that you do not want BNC to apply any of these options. 3139 3341 </p> 3140 3342 3141 3343 <p><h4 id="miscperf">2.12.2 Log Latency - optional </h4></p> 3142 3344 <p> 3143 BNC can average latencies per stream over a certain period of GPS time, the 'Log latency' interval. Mean latencies are calculated from the individual latencies of one (first incoming) observation or Broadcast Correction per second. The mean latencies are then saved in BNC's logfile. Note that computing correct latencies requires the clock of the host computer to be properly synchronized. Note further that visualized latencies from the 'Latency' tab on the bottom of the main window represent individual latencies and not the mean latencies for the logfile. 3345 BNC can average latencies per stream over a certain period of GPS time, the 'Log latency' interval. 3346 Mean latencies are calculated from the individual latencies of one (first incoming) observation or 3347 Broadcast Correction per second. The mean latencies are then saved in BNC's logfile. 3348 Note that computing correct latencies requires the clock of the host computer to be properly synchronized. 3349 Note further that visualized latencies from the 'Latency' tab on the bottom of the main window represent 3350 individual latencies and not the mean latencies for the logfile. 3144 3351 </p> 3145 3352 <p> … … 3154 3361 </pre> 3155 3362 <p> 3156 <b>Statistics:</b> BNC counts the number of GPS seconds covered by at least one observation. It also estimates an observation rate (independent from the a priori specified 'Observation rate') from all observations received throughout the first full 'Log latency' interval. Based on this rate, BNC estimates the number of data gaps when appearing in subsequent intervals. 3157 </p> 3158 <p> 3159 Latencies of observations or corrections to Broadcast Ephemeris and statistical information can be recorded in the 'Log' tab at the end of each 'Log latency' interval. A typical output from a 1 hour 'Log latency' interval would be: 3363 <b>Statistics:</b> BNC counts the number of GPS seconds covered by at least one observation. 3364 It also estimates an observation rate (independent from the a priori specified 'Observation rate') 3365 from all observations received throughout the first full 'Log latency' interval. Based on this rate, 3366 BNC estimates the number of data gaps when appearing in subsequent intervals. 3367 </p> 3368 <p> 3369 Latencies of observations or corrections to Broadcast Ephemeris and statistical information can be recorded in the 'Log' tab 3370 at the end of each 'Log latency' interval. A typical output from a 1 hour 'Log latency' interval would be: 3160 3371 </p> 3161 3372 <pre> 3162 08-03-17 15:59:47 BRUS0: Mean latency 1.47 sec, min 0.66, max 3.02, rms 0.35, 3585 epochs, 15gaps3373 22-11-09 11:59:42 CUT000AUS0 Observations: Mean latency 0.48 sec, min 0.25, max 0.97, rms 0.50, 3600 epochs, 0 gaps 3163 3374 </pre> 3164 3375 <p> 3165 Select a 'Log latency' interval to activate this function or select the empty option field if you do not want BNC to log latencies and statistical information. 3376 Select a 'Log latency' interval to activate this function or select the empty option field if you do not want BNC 3377 to log latencies and statistical information. 3166 3378 </p> 3167 3379 … … 3169 3381 <p><h4 id="miscscan">2.12.3 Scan RTCM - optional</h4></p> 3170 3382 <p> 3171 When configuring a GNSS receiver for RTCM stream generation, the firmware's setup interface may not provide details about RTCM message types and observation types. As reliable information concerning stream content should be available e.g. for Ntrip Broadcaster operators to maintain the broadcaster's source-table, BNC allows to scan RTCM streams for incoming message types and printout some of the contained meta-data. Contained observation types are also printed because such information is required a priori for the conversion of RTCM Version 3 MSM streams to RINEX Version 3 files. The idea for this option arose from 'inspectRTCM', a comprehensive stream analyzing tool written by D. Stöcker. 3383 When configuring a GNSS receiver for RTCM stream generation, the firmware's setup interface may not provide details about 3384 RTCM message types and observation types. As reliable information concerning stream content should be available e.g. 3385 for Ntrip Broadcaster operators to maintain the broadcaster's source-table, BNC allows to scan RTCM streams for 3386 incoming message types and printout some of the contained meta-data. Contained observation types are also printed because 3387 such information is required a priori for the conversion of RTCM Version 3 MSM streams to RINEX Version 3 files. 3172 3388 </p> 3173 3389 <p> … … 3188 3404 3189 3405 <p> 3190 Note that in RTCM Version 2 message types 18 and 19 carry only the observables of one frequency. Hence it needs two type 18 and 19 messages per epoch to transport observations from dual frequency receivers. 3191 </p> 3192 3193 <p> 3194 Please note further that RTCM Version 3 message types 1084 for GLONASS do not contain GLONASS channel numbers. Observations from these messages can only be decoded when you include 1020 GLONASS ephemeris messages to your stream which contain the channels. You could also consider adding a second stream carrying 1087 GLONASS observation messages or 1020 GLONASS ephemeris messages as both contain the GLONASS channel numbers. 3195 </p> 3196 <p> 3197 3198 <p>Logged time stamps refer to message reception time and allow understanding repetition rates. Enter 'ALL' if you want to log this information from all configured streams. Beware that the size of the logfile can rapidly increase depending on the number of incoming RTCM streams. 3199 </p> 3200 <p>This option is primarily meant for test and evaluation. Use it to figure out what exactly is produced by a specific GNSS receiver's configuration. An empty option field (default) means that you do not want BNC to print message type numbers and antenna information carried in RTCM streams. 3201 </p> 3202 3406 Note that in RTCM Version 2 message types 18 and 19 carry only the observables of one frequency. 3407 Hence it needs two type 18 and 19 messages per epoch to transport observations from dual frequency receivers. 3408 </p> 3409 3410 <p> 3411 Please note further that RTCM Version 3 message types 1084 for GLONASS do not contain GLONASS channel numbers. 3412 The same is true for most of the GLONASS MSM messages, expect for MSM5 and MSM7, where the GLONASS channel number is available 3413 as extended information. Such observations can only be decoded when you include 1020 GLONASS ephemeris messages to your stream, 3414 which contain the channels. You could also add another stream carrying 1087 GLONASS observation messages or 3415 1020 GLONASS ephemeris messages to get the GLONASS channel numbers. 3416 </p> 3417 3418 <p> 3419 Logged time stamps refer to message reception time and allow understanding repetition rates. 3420 Enter 'ALL' if you want to log this information from all configured streams. 3421 Beware that the size of the logfile can rapidly increase depending on the number of incoming RTCM streams. 3422 </p> 3423 <p>This option is primarily meant for test and evaluation. Use it to figure out what exactly is produced 3424 by a specific GNSS receiver's configuration. An empty option field (default) means that you do not want BNC 3425 to print message type numbers and antenna information carried in RTCM streams. 3426 </p> 3203 3427 3204 3428 <p><h4 id="miscport">2.12.4 Port - optional</h4></p> 3205 3429 <p> 3206 BNC can output streams related to the above specified 'Mountpoint' through a TCP/IP port of your local host. Enter a port number to activate this function. The stream content remains untouched. BNC does not decode or reformat the data for this output. 3207 </p> 3208 <p> 3209 Be careful when keyword 'ALL' is specified as 'Mountpoint' for involving all incoming streams together because the affiliation of data to certain streams gets lost in the output. 3210 </p> 3430 BNC can output streams related to the above specified 'Mountpoint' through a TCP/IP port of your local host. 3431 Enter a port number to activate this function. The stream content remains untouched. BNC does not decode or reformat the data for this output. 3432 </p> 3433 3211 3434 <p> 3212 3435 An empty option field (default) means that you do not want BNC to apply the TCP/IP port output option. 3213 3436 </p> 3214 3437 3215 3216 3438 <p><h4 id="pppclient">2.13 PPP Client</h4></p> 3217 3439 <p> 3218 BNC can derive coordinates for rover positions following the Precise Point Positioning (PPP) approach. It uses code or code plus phase data from one or more GNSS systems in ionosphere-free linear combinations P3, L3, or P3&L3. Besides pulling streams of observations from a dual frequency GNSS receiver, this 3219 <ul> 3220 <li>Requires pulling in addition a stream carrying satellite orbit and clock corrections to Broadcast Ephemeris in the form of RTCM Version 3 'State Space Representation' (SSR) messages. Note that for BNC these Broadcast Corrections need to be referred to the satellite's Antenna Phase Center (APC). Streams providing such messages are listed on <u>http://igs.bkg.bund.de/ntrip/orbits</u> (Caissy et al. 2012). Stream 'CLK11' on Ntrip Broadcaster 'products.igs-ip.net:2101' is an example.</li> 3221 <li>May require pulling a stream carrying Broadcast Ephemeris available as RTCM Version 3 message types 1019, 1020, 1043, 1044, 1045, 1046 and 63 (tentative). This becomes a must only when the stream coming from the receiver does not contain Broadcast Ephemeris or provides them only at very low repetition rate. Streams providing such messages are listed on <u>http://igs.bkg.bund.de/ntrip/ephemeris</u>. Stream 'RTCM3EPH' on caster 'products.igs-ip.net:2101' is an example.</li> 3222 </ul> 3223 Note that Broadcast Ephemeris parameters pass a plausibility check in BNC which allows to ignore incorrect or outdated ephemeris data when necessary, leaving a note 'WRONG EPHEMERIS' or 'OUTDATED EPHEMERIS' in the logfile. 3224 </p> 3225 3226 <p>When using the PPP option, it is important to understand which effects are corrected by BNC. 3227 </p> 3228 <ul> 3229 <li>BNC does correct for Solid Earth Tides and Phase Windup.</li> 3230 <li>Satellite Antenna Phase Center offsets are corrected.</li> 3231 <li>Satellite Antenna Phase Center variations are neglected because this is a small effect usually less than 2 centimeters.</li> 3232 <li>Observations can be corrected for a Receiver Antenna Offset and Receiver Antenna Phase Center Variation. Depending on whether or not these corrections are applied, the estimated position is either that of the receiver's Antenna Phase Center or that of the receiver's Antenna Reference Point.</li> 3233 <li>Ocean and atmospheric loading is neglected. Atmospheric loading is pretty small. Ocean loading is usually also a small effect but may reach up to about 10 centimeters for coastal stations.</li> 3234 <li>Rotational deformation due to polar motion (Polar Tides) is not corrected because this is a small effect usually less than 2 centimeters.</li> 3235 </ul> 3236 </p> 3237 3238 <p> 3239 The provider of an orbit/clock correction stream may switch with his service at any time from a duty to a backup server installation. This shall be noted in the SSR stream through a change of the Issue Of Data (IOD SSR) parameter. The PPP option in BNC will immediately reset all ambiguities in such a situation. 3240 </p> 3241 3440 BNC can derive coordinates for rover positions following different Precise Point Positioning (PPP) methods: 3441 <ul> 3442 <li>Uncombined PPP</li> 3443 <li>Ionosphere-free PPP</li> 3444 <li>Decoupled Clock Model (DCM) with Code Biases</li> 3445 <li>Decoupled Clock Model with Phase Biases</li> 3446 </ul> 3447 Therefore it uses code data (Pi), phase data (Li) or code&phase data (Pi&Li) from one or more GNSS. 3448 Besides pulling streams of observations from a dual frequency GNSS receiver, this 3449 <ul> 3450 <li>Requires pulling in addition a stream carrying satellite orbit and clock corrections to Broadcast Ephemeris in the form of 3451 RTCM-SSR or IGS-SSR messages. Note that for BNC these Broadcast Corrections need to be referred to the satellite's 3452 Antenna Phase Center (APC). Streams providing such messages are listed on 3453 <a href="https://igs.bkg.bund.de/ntrip/#rtcm-corr" target="_blank">https://igs.bkg.bund.de/ntrip/#rtcm-corr</a> 3454 Stream 'SSRA00BKG0' (RTCM-SSR) or 'SSRA00BKG1' (IGS-SSR) on Ntrip Broadcaster 'products.igs-ip.net:2101' is an example.</li> 3455 <li>May require pulling a stream carrying Broadcast Ephemeris available as RTCM Version 3 message types 1019, 1020, 1043, 1044, 1045, 1046, etc.. 3456 This becomes a must only when the stream coming from the receiver does not contain Broadcast Ephemeris or provides them only 3457 at very low repetition rate. Streams providing such messages are listed on 3458 <a href="https://igs.bkg.bund.de/ntrip/#rtcm-eph" target="_blank">https://igs.bkg.bund.de/ntrip/#rtcm-eph</a> 3459 Stream 'BCEP00BKG0' on caster 'products.igs-ip.net:2101' is an example.</li> 3460 </ul> 3461 Note that Broadcast Ephemeris parameters pass a plausibility check in BNC which allows to ignore incorrect or outdated ephemeris data 3462 when necessary, leaving a note 'WRONG EPHEMERIS' or 'OUTDATED EPHEMERIS' in the logfile. Unhealthy ephemeris data sets are remaining 3463 and leaving a note 'UNHEALTHY' in the logfile. 3464 </p> 3465 When using the PPP option, BNC does correct for: 3466 <ul> 3467 <li>Solid Earth Tides and Phase Windup</li> 3468 <li>Satellite Antenna Phase Center offsets and variations</li> 3469 <li>Receiver Antenna Phase Center offsets and variations: 3470 Depending on whether or not these corrections are applied, the estimated position is either that of the receiver's 3471 Antenna Phase Center or that of the receiver's Antenna Reference Point</li> 3472 <li>Ocean and atmospheric loading: 3473 Atmospheric loading is pretty small but Ocean loading may reach up to about 10 centimeters for coastal stations</li> 3474 </ul> 3475 <p> 3476 Rotational deformation due to polar motion (Polar Tides) is not corrected because this is a small effect usually less than 2 centimeters. 3477 </p> 3478 <p> 3479 The provider of an orbit/clock correction stream may switch with his service at any time from a duty to a backup server installation. 3480 This shall be noted in the SSR stream through a change of the Issue Of Data (IOD SSR) parameter. 3481 The PPP option in BNC will immediately reset all ambiguities in such a situation. 3482 </p> 3242 3483 <p> 3243 3484 PPP options are specified in BNC through the following four panels. 3244 3485 <ul> 3245 3486 <li>PPP (1): Input and output, specifying real-time or post processing mode and associated data sources</li> 3246 <li>PPP (2): Processed stations, specifying sigmas and noise of a priori coordinates and NMEA stream output</li> 3247 <li>PPP (3): Processing options, specifying general PPP processing options</li> 3487 <li>PPP (2): Processing options, specifying general PPP processing options</li> 3488 <li>PPP (3): Processed stations, specifying sigmas and noise of a priori coordinates and troposphere paremeters, 3489 NMEA stream output and signal priorities</li> 3248 3490 <li>PPP (4): Plots, specifying visualization through time series and track maps</li> 3249 3491 </ul> … … 3254 3496 This panel provides options for specifying the input and output streams and files required by BNC for real-time or post processing PPP. 3255 3497 </p> 3256 3257 <p><img src="IMG/screenshot03.png"/></p> 3498 <p><img src="IMG/Figure22.png"width=1000/></p> 3258 3499 <p>Figure 22: Real-time Precise Point Positioning with BNC, PPP Panel 1</p> 3259 3500 … … 3262 3503 Choose between input from 'Real-time Streams' or 'RINEX Files' for PPP with BNC in real-time or post processing mode. 3263 3504 </p> 3264 3265 <p> 3266 <u>Real-time Streams</u><br> 3267 When choosing 'Real-time Streams' BNC will do PPP solutions in real-time. This requires pulling GNSS observation streams, Broadcast Ephemeris messages and a stream containing corrections to Broadcast Ephemeris. Streams must come in RTCM Version 3 format. 3268 </p> 3269 <p> 3505 <p><u>Real-time Streams</u>: When choosing 'Real-time Streams' BNC will do PPP solutions in real-time. 3506 This requires pulling GNSS observation streams, Broadcast Ephemeris messages and a stream containing corrections to Broadcast Ephemerides. 3507 Streams with observation and navigation data have to be in RTCM Version 3 format. Correction streams have to be in RTCM-SSR or IGS-SSR format. 3270 3508 If you do not pull Broadcast Corrections, BNC will switch with its solution to 'Single Point Positioning' (SPP) mode. 3271 3509 </p> 3272 3273 <p> 3274 <u>RINEX Files</u><br> 3275 This input mode allows to specify RINEX Observation, RINEX Navigation and Broadcast Correction files. BNC accepts RINEX Version 2 as well as RINEX Version 3 Observation or Navigation file formats. Files carrying Broadcast Corrections must have the format produced by BNC through the 'Broadcast Corrections' panel. 3276 </p> 3277 <p> 3278 Specifying only a RINEX Observation and a RINEX Navigation file and no Broadcast Correction file leads BNC to a 'Single Point Positioning' (SPP) solution. 3279 <p> 3280 <u>Debugging</u><br> 3281 Note that for debugging purposes, BNC's real-time PPP functionality can also be used offline. Apply the 'File Mode' 'Command Line' option for that to read a file containing synchronized observations, orbit and clock correctors, and Broadcast Ephemeris. Example: 3510 <p><u>RINEX Files</u>: This input mode allows to specify RINEX Observation, RINEX Navigation and Broadcast Correction files. 3511 BNC accepts RINEX Version 2 as well as RINEX Version 3 Observation or Navigation file formats. 3512 Files carrying Broadcast Corrections must have the format produced by BNC through the 'Broadcast Corrections' panel. 3513 Specifying only a RINEX Observation and a RINEX Navigation file and no Broadcast Correction file leads BNC to a 3514 'Single Point Positioning' (SPP) solution. 3515 <p> 3516 Note that for debugging purposes, BNC's real-time PPP functionality can also be used offline. 3517 Apply the 'File Mode' 'Command Line' option for that to read a file containing synchronized observations, 3518 orbit and clock correctors, and Broadcast Ephemeris. Example: 3282 3519 <pre> 3283 3520 Windows: bnc.exe --conf c:\temp\PPP.bnc --file c:\temp\RAW 3284 3521 </pre> 3285 3522 Such a file (here: 'RAW') must be saved beforehand using BNC's 'Raw output file' option. 3286 </li> 3287 </ul> 3288 </p> 3289 3290 <p><h4 id="ppprnxobs">2.13.1.2 RINEX Observation File - mandatory if 'Data source' is set to 'RINEX Files'</h4></p> 3291 <p> 3292 Specify a RINEX Observation file. The file format can be RINEX Version 2 or RINEX Version 3. 3293 </p> 3294 3295 <p><h4 id="ppprnxnav">2.13.1.3 RINEX Navigation File - mandatory if 'Data source' is set to 'RINEX Files'</h4></p> 3296 <p> 3297 Specify a RINEX Navigation file. The file format can be RINEX Version 2 or RINEX Version 3. 3298 </p> 3299 3300 <p><h4 id="pppcorrstream">2.13.1.4 Corrections Stream - optional if 'Data source' is set to 'Real-Time Streams'</h4></p> 3301 <p> 3302 Specify a Broadcast 'Corrections stream' from the list of selected 'Streams' you are pulling if you want BNC to correct your satellite ephemeris accordingly. Note that the stream's orbit and clock corrections must refer to the satellite Antenna Phase Center (APC). Streams providing such corrections are made available e.g. through the International GNSS Service (IGS) and listed on <u>http://igs.bkg.bund.de/ntrip/orbits</u>. The stream format must be RTCM Version 3 containing so-called SSR messages. Streams 'IGS03' and 'CLK11' supporting GPS plus GLONASS are examples. 3303 </p> 3304 <p> 3523 </p> 3524 <p><h4 id="pppcorrstream">2.13.1.2 Corrections Stream - optional if 'Data source' is set to 'Real-Time Streams'</h4></p> 3525 <p> 3526 Specify a Broadcast 'Corrections stream' from the list of selected 'Streams' you are pulling if you want BNC to correct your 3527 satellite ephemeris and observations accordingly. Note that the stream's orbit and clock corrections must refer to the 3528 satellite Antenna Phase Center (APC). Streams providing such corrections are made available e.g. through the 3529 International GNSS Service (IGS) and can for example be be pulled from <a href="https://products.igs-ip.net" target="_blank">https://products.igs-ip.net</a> 3530 The stream format must be RTCM-SSR or IGS-SSR containing so-called SSR messages. Streams 'SSRA03IGS1' and 'SSRA00BKG1' are examples 3531 using the IGS-SSR format. 3305 3532 If you do not specify a 'Corrections stream', BNC will fall back from a PPP solution to a Single Point Positioning (SPP) solution. 3306 3533 </p> 3307 3308 <p><h4 id="pppcorrfile">2.13.1.5 Corrections File - optional if 'Data source' is set to 'RINEX Files'</h4></p> 3309 <p> 3310 Specify a Broadcast 'Corrections file' as saved beforehand using BNC. The file content is basically the ASCII representation of a RTCM Version 3 Broadcast Correction (SSR) stream. 3311 </p> 3312 <p> 3313 If you do not specify a 'Correction file', BNC will fall back from a PPP solution to a Single Point Positioning (SPP) solution. 3314 </p> 3315 3316 <p><h4 id="pppantexfile">2.13.1.6 ANTEX File - optional</h4></p> 3317 <p> 3318 IGS provides a file containing absolute phase center corrections for GNSS satellite and receiver antennas in ANTEX format. Entering the full path to such an ANTEX file is required for correcting observations in PPP for Antenna Phase Center offsets and variations. Note that for applying such corrections you need to specify the receiver's antenna name and radome in BNC's 'Coordinates file'. 3319 </p> 3320 <p> 3321 Default value for 'ANTEX file' is an empty option field, meaning that you do not want to correct observations for Antenna Phase Center offsets and variations. 3322 </p> 3323 3534 <p><h4 id="pppcorrfile">2.13.1.3 Corrections File - optional if 'Data source' is set to 'RINEX Files'</h4></p> 3535 <p> 3536 Specify a Broadcast 'Corrections file' as saved beforehand using BNC. The file content is basically the ASCII representation of a 3537 RTCM-SSR or a IGS-SSR Broadcast Correction stream. If you do not specify a 'Correction file', BNC will fall back from a PPP solution 3538 to a Single Point Positioning (SPP) solution. 3539 </p> 3540 <p><h4 id="pppionostream">2.13.1.4 Ionosphere Stream - optional if 'Data source' is set to 'Real-Time Streams'</h4></p> 3541 <p> 3542 Specify a 'Ionosphere stream' which provides VTEC informations in SSR format from the list of selected 'Streams' you are pulling 3543 if you want BNC to correct your observations accordingly. Streams providing such VTEC informations are made available e.g. through the 3544 International GNSS Service (IGS) and can for example be be pulled from <a href="https://products.igs-ip.net" target="_blank">https://products.igs-ip.net</a> 3545 The stream format must be RTCM-SSR or IGS-SSR containing so-called SSR messages. Streams 'IONO00IGS1' and 'IONO00UPC1' are examples 3546 using the IGS-SSR format. 3547 If you do not specify a 'Ionosphere stream' via this option, BNC will use VTEC informations from the Corrections stream 'mountpoint', 3548 if available. 3549 </p> 3550 <p><h4 id="pppionofile">2.13.1.5 Ionosphere File - optional if 'Data source' is set to 'RINEX Files'</h4></p> 3551 <p> 3552 Specify a 'Ionosphere file' as saved beforehand using BNC. The file content is basically the ASCII representation of a 3553 RTCM-SSR or a IGS-SSR Ionosphere stream. 3554 </p> 3555 <p><h4 id="ppprnxobs">2.13.1.6 RINEX Observation File - mandatory if 'Data source' is set to 'RINEX Files'</h4></p> 3556 <p> 3557 Specify a RINEX Observation file. The file format can be RINEX Version 2, RINEX Version 3 or RINEX Version 4. 3558 </p> 3559 <p><h4 id="ppprnxnav">2.13.1.7 RINEX Navigation File - mandatory if 'Data source' is set to 'RINEX Files'</h4></p> 3560 <p> 3561 Specify a RINEX Navigation file.The file format can be RINEX Version 2, RINEX Version 3 or RINEX Version 4. 3562 </p> 3563 <p><h4 id="pppantexfile">2.13.1.8 ANTEX File - optional</h4></p> 3564 <p> 3565 IGS provides a file containing absolute phase center corrections for GNSS satellite and receiver antennas in ANTEX format. 3566 Such so-called ANTEX files are available from IGS through 3567 at <a href="https://files.igs.org/pub/station/general/" target="_blank">https://files.igs.org/pub/station/general/</a>. 3568 An example ANTEX file 'igs20.atx' is part of the BNC package for convenience. 3569 </p> 3570 <p> 3571 Entering the full path to such an ANTEX file is required for correcting observations in PPP for Antenna Phase Center offsets 3572 and variations. Note that for applying such corrections you need to specify the receiver's antenna name and radome in BNC's 'Coordinates file'. 3573 </p> 3574 <p> 3575 Default value for 'ANTEX file' is an empty option field, meaning that you do not want to correct observations for 3576 Antenna Phase Center offsets and variations. 3577 </p> 3324 3578 <p><h4 id="pppmarkcoor">2.13.1.7 Coordinates File - optional </h4></p> 3325 3579 <p> 3326 Enter the full path to an ASCII file which specifies all observation streams or files from stationary or mobile receivers you possibly may want to process. Specifying a 'Coordinates file' is optional. If it exists, it should contain one record per stream or file with the following parameters separated by blank characters: 3327 </p> 3328 <p> 3580 Enter the full path to an ASCII file which specifies all observation streams or files from stationary or mobile receivers 3581 you possibly may want to process. 3582 </p> 3583 <p> 3584 Specifying a 'Coordinates file' is optional. If it exists, it should contain one record per stream or file 3585 with the following parameters separated by blank characters: 3586 </p> 3329 3587 <ul> 3330 3588 <li>Input data source, to be specified either through 3331 3589 <ul> 3332 3590 <li>the 'Mountpoint' of an RTCM stream (when in real-time PPP mode), or</li> 3333 <li>the first four characters of the RINEX observations file (when in post processing PPP mode).</li>3591 <li>the first four (RINEX Version 2) or nine (RINEX Version 3 and 4) characters of the RINEX observations file (when in post processing PPP mode).</li> 3334 3592 </ul> 3335 Having at least this first parameter in each record is mandatory.</li><br> 3336 <li>Only for static observations from a stationary receiver:<br>Approximate a priori XYZ coordinate [m] of the station's marker; specify '0.0 0.0 0.0' if unknown or when observations come from a mobile receiver.</li><br> 3337 <li>Nort, East and Up component [m] of antenna eccentricity which is the difference between Antenna Reference Point (ARP) and a nearby marker position; when specifying the antenna eccentricity BNC will produce coordinates referring to the marker position and not referring to ARP; specify '0.0 0.0 0.0' if eccentricity is unknown or the ARP itself is understood as the marker.</li><br> 3338 <li>Receiver's antenna name as defined in your ANTEX file (see below); Observations will be corrected for the Antenna Phase Center (APC) offsets and variations, which may result in a reduction of a few centimeters at max; the specified name must consist of 20 characters; add trailing blanks if the antenna name has less than 20 characters; examples:<br><pre> 3339 'JPSREGANT_SD_E ' (no radome) 3340 'LEIAT504 NONE' (no radome) 3341 'LEIAR25.R3 LEIT' (radome is LEIT)</pre> 3342 Leave antenna name blank if you do not want to correct observations for APC offsets and variations or if you do not know the antenna name.</li><br> 3343 <li>Receiver type following the naming convention for IGS equipment as defined in <a href="https://igscb.jpl.nasa.gov/igscb/station/general/rcvr_ant.tab" target="_blank">https://igscb.jpl.nasa.gov/igscb/station/general/rcvr_ant.tab</a>. 3344 Specifying the receiver type is only required when saving SINEX Troposphere files. In those files it becomes part of the 'SITE/RECEIVER' specifications, see section 3345 'SNX TRO Directory'.</li> 3346 </ul> 3347 </p> 3593 Having at least this first parameter in each record is mandatory.</li><br> 3594 <li>For static observations from a stationary receiver an approximate a priori XYZ coordinate [m] of the station's marker should be specified. <br> 3595 If such an approximate a priori XYZ coordinate is unknown or when observations come from a mobile receiver, '0.0 0.0 0.0' shall be used instead.</li> 3596 <br> 3597 <li>The North, East and Up component [m] of antenna eccentricity, which is the difference between the Antenna Reference Point (ARP) 3598 and a nearby marker position, can be specified.<br> 3599 Please note, when specifying the antenna eccentricity, BNC will produce coordinates referring to the marker position and not referring to the ARP.<br> 3600 If the eccentricity is unknown or the ARP itself is understood as the marker, '0.0 0.0 0.0' shall be specified instead.</li> 3601 <br> 3602 <li>Receiver's antenna name as defined in your ANTEX file (see below). 3603 The specified name must consist of 20 characters. Add trailing blanks if the antenna name has less than 20 characters. <br>Examples:<br> 3604 <pre><p style="font-family:Monospace"> 3605 'JPSREGANT_SD_E ' (no radome) 3606 'LEIAT504 NONE' (no radome) 3607 'LEIAR25.R3 LEIT' (radome is LEIT) 3608 </p></pre> 3609 Observations will be corrected for the receiver Antenna Phase Center (APC) offsets and variations.<br> 3610 Leave antenna name blank if you do not want to correct observations for APC offsets and variations or if you do not know the antenna name.</li> 3611 <br> 3612 <li>Receiver type following the naming convention for IGS equipment as defined in 3613 <a href="https://files.igs.org/pub/station/general/rcvr_ant.tab" target="_blank">https://files.igs.org/pub/station/general/rcvr_ant.tab</a>.<br> 3614 <li>Specifying the receiver type is only required when saving SINEX Troposphere files. In those files it becomes part of the 'SITE/RECEIVER' specifications, 3615 see section 'SNX TRO Directory'.</li> 3616 </ul> 3348 3617 <p> 3349 3618 Records in the 'Coordinates' file with exclamation mark '!' in the first column or blank records will be understood as comment lines and ignored. 3350 3619 </p> 3351 3620 <p> 3352 The following is the content of an example 'Coordinates file'. Here each record describes the mountpoint of a stream available from the global IGS real-time reference station network. A priori coordinates are followed by North/East/Up eccentricity components of the ARP 3353 followed by the antenna name and radome in use. 3354 </p> 3621 The following is the content of an example 'Coordinates file'. Here each record describes the mountpoint of a stream 3622 available from the global IGS real-time reference station network. 3623 A priori coordinates are followed by North/East/Up eccentricity components of the ARP, 3624 followed by the antenna name and radome in use, and followed by the receiver name. 3625 </p> 3626 <pre><p style="font-family:Monospace"> 3627 ! --------------------------------------------------------------------------------------------------------------------------------! 3628 ! Apriori coordinates with eccentricities, antenna and receiver, Reference System IGS20 3629 ! --------------------------------------------------------------------------------------------------------------------------------! 3630 ! Station X[m] Y[m] Z[m] North[m] EAST[m] UP[m] Antenna_______Radom Receiver 3631 ! --------------------------------------------------------------------------------------------------------------------------------! 3632 ! REAL-TIME ! 3633 FFMJ00DEU0 4053455.62808 617729.94590 4869395.88436 0.0000 0.0000 0.0450 LEIAR25.R4 LEIT JAVAD TRE_G3TH DELTA 3634 FFMJ01DEU0 4053455.62808 617729.94590 4869395.88436 0.0000 0.0000 0.0450 LEIAR25.R4 LEIT LEICA GR50 3635 WTZR00DEU0 4075580.27823 931854.08861 4801568.30495 0.0000 0.0000 0.0710 LEIAR25.R3 LEIT LEICA GR25 3636 ! RINEX ! 3637 FFMJ00DEU 4053455.62808 617729.94590 4869395.88436 0.0000 0.0000 0.0450 LEIAR25.R4 LEIT JAVAD TRE_G3TH DELTA 3638 FFMJ01DEU 4053455.62808 617729.94590 4869395.88436 0.0000 0.0000 0.0450 LEIAR25.R4 LEIT LEICA GR50 3639 WTZR00DEU 4075580.27823 931854.08861 4801568.30495 0.0000 0.0000 0.0710 LEIAR25.R3 LEIT LEICA GR25 3640 VM01 0.0 0.0 0.0 0.0000 0.0000 0.0000 3641 ! REAL-TIME TEST ! 3642 TRDS00NOR0 2820170.56469 513486.25161 5678936.13675 5.5460 0.0070 0.0180 TRM55971.00 NONE TRIMBLE NETR9 3643 </p></pre> 3644 In this file 3645 <ul> 3646 <li> Record 'FFMJ00DEU0' describes a stream from a stationary receiver with known a priori marker coordinates, antenna eccentricities, 3647 antenna and radome type, and receiver type.</li> 3648 <li> Record 'FFMJ00DEU' indicates that a RINEX version 3 or 4 observations file for post processing PPP is available for station 'FFMJ00DEU' 3649 with known a priori marker coordinates, antenna eccentricities, antenna and radome type, and receiver type.</li> 3650 <li> The 4-character station ID 'VM01' indicates that a RINEX version 2 observations file, resultant from a mobile rover receiver, 3651 is available for post processing PPP. Hence a priori coordinates are unknown although antenna eccentricities, antenna and radome type, 3652 and receiver type are known.</li> 3653 <li> Record 'TRDS00NOR0' describes a stream from a stationary receiver with known a priori marker coordinates, antenna eccentricities, 3654 antenna and receiver type but without radom.</li> 3655 </ul> 3656 <p> 3657 Note again that the only mandatory parameters in this file are the 'Station' parameters in the first column, 3658 each standing for an observation stream's mountpoint or the 9/4-character station ID of a RINEX filename. 3659 </p> 3660 3661 <p><h4 id="pppblqfile">2.13.1.8 BLQ File - optional </h4></p> 3662 <p> 3663 Specify a 'BLQ file' containing the ocean loading coefficients for all stations you want to process. 3664 These coefficients can be obtained from the ocean loading service under request trough the web site 3665 <a href="http://holt.oso.chalmers.se/loading/" target="_blank">http://holt.oso.chalmers.se/loading/</a> 3666 . 3667 BNC computes time series of tidal displacements for the respective stations using that input file. 3668 </p> 3669 3670 3671 <p><h4 id="ppplogfile">2.13.1.9 Logfile Directory - optional</h4></p> 3672 <p> 3673 Essential PPP results are shown in the 'Log' tab on the bottom of BNC's main window. Depending on the processing options, 3674 the following values are presented about once per second (example): 3675 <pre><p style="font-family:Monospace"> 3676 ... 3677 22-11-17 21:42:02 2022-11-17_21:42:20.000 WTZR00DEU0 X = 4075580.2851 Y = 931854.1072 Z = 4801568.3290 NEU: +0.0075 +0.0166 +0.0253 TRP: +2.1833 +0.0026 3678 22-11-17 21:42:03 2022-11-17_21:42:21.000 WTZR00DEU0 X = 4075580.2848 Y = 931854.1070 Z = 4801568.3289 NEU: +0.0077 +0.0164 +0.0250 TRP: +2.1833 +0.0028 3679 22-11-17 21:42:04 2022-11-17_21:42:22.000 WTZR00DEU0 X = 4075580.2859 Y = 931854.1078 Z = 4801568.3292 NEU: +0.0070 +0.0170 +0.0260 TRP: +2.1833 +0.0031 3680 22-11-17 21:42:05 2022-11-17_21:42:23.000 WTZR00DEU0 X = 4075580.2850 Y = 931854.1056 Z = 4801568.3294 NEU: +0.0081 +0.0150 +0.0252 TRP: +2.1833 +0.0034 3681 22-11-17 21:42:06 2022-11-17_21:42:24.000 WTZR00DEU0 X = 4075580.2871 Y = 931854.1059 Z = 4801568.3291 NEU: +0.0063 +0.0149 +0.0265 TRP: +2.1833 +0.0037 3682 22-11-17 21:42:07 2022-11-17_21:42:25.000 WTZR00DEU0 X = 4075580.2868 Y = 931854.1048 Z = 4801568.3298 NEU: +0.0072 +0.0139 +0.0266 TRP: +2.1833 +0.0040 3683 22-11-17 21:42:08 2022-11-17_21:42:26.000 WTZR00DEU0 X = 4075580.2868 Y = 931854.1048 Z = 4801568.3269 NEU: +0.0053 +0.0139 +0.0245 TRP: +2.1833 +0.0042 3684 22-11-17 21:42:09 2022-11-17_21:42:27.000 WTZR00DEU0 X = 4075580.2876 Y = 931854.1038 Z = 4801568.3266 NEU: +0.0047 +0.0127 +0.0245 TRP: +2.1833 +0.0046 3685 22-11-17 21:42:10 2022-11-17_21:42:28.000 WTZR00DEU0 X = 4075580.2861 Y = 931854.1026 Z = 4801568.3265 NEU: +0.0059 +0.0119 +0.0234 TRP: +2.1833 +0.0049 3686 22-11-17 21:42:11 2022-11-17_21:42:29.000 WTZR00DEU0 X = 4075580.2850 Y = 931854.1030 Z = 4801568.3248 NEU: +0.0055 +0.0125 +0.0215 TRP: +2.1833 +0.0053 3687 22-11-17 21:42:12 2022-11-17_21:42:30.000 WTZR00DEU0 X = 4075580.2842 Y = 931854.1011 Z = 4801568.3253 NEU: +0.0068 +0.0109 +0.0210 TRP: +2.1833 +0.0056 3688 ... 3689 </p></pre> 3690 <p> 3691 Each row reports the PPP result of one epoch. It begins with a UTC time stamp (yy-mm-dd hh:mm:ss) which tells us when the result was produced. 3692 A second time stamp (yyyy-mm-dd_hh:mm:ss) describes the PPP's epoch in 'GPS Time'. It is followed by the derived XYZ position in [m], 3693 its North, East and Up displacement compared to an introduced a priori coordinate, and the estimated tropospheric delay [m] (model plus correction). 3694 </p> 3695 <p> 3696 If you require more information, you can specify a 'Logfile directory' to save daily logfiles per station (filename suffix 'ppp') 3697 with additional processing details on disk. 3698 </p> 3699 <pre><p style="font-family:Monospace"> 3700 PPP of Epoch 2022-11-17_21:47:08.000 3701 --------------------------------------------------------------- 3702 2022-11-17_21:47:08.000 BANCROFT: 4075580.023 931856.214 4801566.122 94.689 3703 3704 2022-11-17_21:47:08.000 SATNUM G 9 3705 2022-11-17_21:47:08.000 RES c1 G02 -0.1726 3706 2022-11-17_21:47:08.000 RES c1 G05 0.5544 3707 2022-11-17_21:47:08.000 RES c1 G16 -0.5058 3708 2022-11-17_21:47:08.000 RES c1 G18 -0.0158 3709 2022-11-17_21:47:08.000 RES c1 G20 -0.3456 3710 2022-11-17_21:47:08.000 RES c1 G25 0.0098 3711 2022-11-17_21:47:08.000 RES c1 G26 0.3615 3712 2022-11-17_21:47:08.000 RES c1 G29 0.0823 3713 2022-11-17_21:47:08.000 RES c1 G31 0.0791 3714 2022-11-17_21:47:08.000 RES c2 G02 0.2043 3715 2022-11-17_21:47:08.000 RES c2 G05 -0.1494 3716 2022-11-17_21:47:08.000 RES c2 G16 0.4594 3717 2022-11-17_21:47:08.000 RES c2 G18 0.0795 3718 2022-11-17_21:47:08.000 RES c2 G20 0.4275 3719 2022-11-17_21:47:08.000 RES c2 G25 0.1922 3720 2022-11-17_21:47:08.000 RES c2 G26 0.0648 3721 2022-11-17_21:47:08.000 RES c2 G29 -0.2369 3722 2022-11-17_21:47:08.000 RES c2 G31 0.0044 3723 2022-11-17_21:47:08.000 RES l1 G02 0.0008 3724 2022-11-17_21:47:08.000 RES l1 G05 0.0127 3725 2022-11-17_21:47:08.000 RES l1 G16 -0.0069 3726 2022-11-17_21:47:08.000 RES l1 G18 0.0011 3727 2022-11-17_21:47:08.000 RES l1 G20 -0.0063 3728 2022-11-17_21:47:08.000 RES l1 G25 -0.0025 3729 2022-11-17_21:47:08.000 RES l1 G26 0.0043 3730 2022-11-17_21:47:08.000 RES l1 G29 -0.0036 3731 2022-11-17_21:47:08.000 RES l1 G31 -0.0018 3732 2022-11-17_21:47:08.000 RES l2 G02 -0.0004 3733 2022-11-17_21:47:08.000 RES l2 G05 -0.0079 3734 2022-11-17_21:47:08.000 RES l2 G16 0.0042 3735 2022-11-17_21:47:08.000 RES l2 G18 -0.0007 3736 2022-11-17_21:47:08.000 RES l2 G20 0.0037 3737 2022-11-17_21:47:08.000 RES l2 G25 0.0013 3738 2022-11-17_21:47:08.000 RES l2 G26 -0.0025 3739 2022-11-17_21:47:08.000 RES l2 G29 0.0022 3740 2022-11-17_21:47:08.000 RES l2 G31 0.0011 3741 2022-11-17_21:47:08.000 SATNUM R 4 3742 2022-11-17_21:47:08.000 RES c1 R13 -0.0118 3743 2022-11-17_21:47:08.000 RES c1 R14 1.2099 3744 2022-11-17_21:47:08.000 RES c1 R15 -1.1385 3745 2022-11-17_21:47:08.000 RES c1 R24 -1.1821 3746 2022-11-17_21:47:08.000 RES c2 R13 0.0502 3747 2022-11-17_21:47:08.000 RES c2 R14 -0.4755 3748 2022-11-17_21:47:08.000 RES c2 R15 1.0857 3749 2022-11-17_21:47:08.000 RES c2 R24 0.4894 3750 2022-11-17_21:47:08.000 RES l1 R13 0.0063 3751 2022-11-17_21:47:08.000 RES l1 R14 0.0114 3752 2022-11-17_21:47:08.000 RES l1 R15 0.0128 3753 2022-11-17_21:47:08.000 RES l1 R24 -0.0202 3754 2022-11-17_21:47:08.000 RES l2 R13 -0.0054 3755 2022-11-17_21:47:08.000 RES l2 R14 -0.0053 3756 2022-11-17_21:47:08.000 RES l2 R15 -0.0114 3757 2022-11-17_21:47:08.000 RES l2 R24 0.0121 3758 2022-11-17_21:47:08.000 SATNUM E 7 3759 2022-11-17_21:47:08.000 RES c1 E10 0.2013 3760 2022-11-17_21:47:08.000 RES c1 E12 -0.0202 3761 2022-11-17_21:47:08.000 RES c1 E24 0.1911 3762 2022-11-17_21:47:08.000 RES c1 E25 0.2827 3763 2022-11-17_21:47:08.000 RES c1 E26 -0.0250 3764 2022-11-17_21:47:08.000 RES c1 E31 0.3809 3765 2022-11-17_21:47:08.000 RES c1 E33 -0.0607 3766 2022-11-17_21:47:08.000 RES c2 E10 0.2610 3767 2022-11-17_21:47:08.000 RES c2 E12 0.0690 3768 2022-11-17_21:47:08.000 RES c2 E24 0.1595 3769 2022-11-17_21:47:08.000 RES c2 E25 0.0284 3770 2022-11-17_21:47:08.000 RES c2 E26 -0.0843 3771 2022-11-17_21:47:08.000 RES c2 E31 -0.1387 3772 2022-11-17_21:47:08.000 RES c2 E33 -0.0813 3773 2022-11-17_21:47:08.000 RES l1 E10 -0.0017 3774 2022-11-17_21:47:08.000 RES l1 E12 -0.0008 3775 2022-11-17_21:47:08.000 RES l1 E24 0.0017 3776 2022-11-17_21:47:08.000 RES l1 E25 -0.0012 3777 2022-11-17_21:47:08.000 RES l1 E26 0.0007 3778 2022-11-17_21:47:08.000 RES l1 E31 -0.0005 3779 2022-11-17_21:47:08.000 RES l1 E33 -0.0002 3780 2022-11-17_21:47:08.000 RES l2 E10 0.0010 3781 2022-11-17_21:47:08.000 RES l2 E12 0.0004 3782 2022-11-17_21:47:08.000 RES l2 E24 -0.0009 3783 2022-11-17_21:47:08.000 RES l2 E25 0.0005 3784 2022-11-17_21:47:08.000 RES l2 E26 -0.0005 3785 2022-11-17_21:47:08.000 RES l2 E31 0.0003 3786 2022-11-17_21:47:08.000 RES l2 E33 0.0001 3787 3788 2022-11-17_21:47:08.000 REC_CLK G 0.0000 +3.0126 +- 0.2920 3789 2022-11-17_21:47:08.000 REC_CLK R 0.0000 +11.1614 +- 1.7196 3790 2022-11-17_21:47:08.000 REC_CLK E 0.0000 -5.9155 +- 0.2753 3791 2022-11-17_21:47:08.000 TRP 2.1833 +0.0517 +- 0.0739 3792 2022-11-17_21:47:08.000 ION G02 0.0000 -5.7945 +- 0.2104 3793 2022-11-17_21:47:08.000 ION G05 0.0000 -3.1871 +- 0.2783 3794 2022-11-17_21:47:08.000 ION G16 0.0000 -2.8219 +- 0.3255 3795 2022-11-17_21:47:08.000 ION G18 0.0000 -2.5264 +- 0.2184 3796 2022-11-17_21:47:08.000 ION G20 0.0000 -2.8718 +- 0.3272 3797 2022-11-17_21:47:08.000 ION G25 0.0000 +2.9946 +- 0.2567 3798 2022-11-17_21:47:08.000 ION G26 0.0000 +1.4823 +- 0.2219 3799 2022-11-17_21:47:08.000 ION G29 0.0000 -3.7500 +- 0.2113 3800 2022-11-17_21:47:08.000 ION G31 0.0000 -3.7782 +- 0.2260 3801 2022-11-17_21:47:08.000 ION R12 0.0000 +5.1937 +- 2.5551 3802 2022-11-17_21:47:08.000 ION R13 0.0000 +3.0746 +- 1.3815 3803 2022-11-17_21:47:08.000 ION R14 0.0000 +0.8970 +- 1.3602 3804 2022-11-17_21:47:08.000 ION R15 0.0000 +5.8365 +- 1.9561 3805 2022-11-17_21:47:08.000 ION R24 0.0000 +4.9548 +- 1.3849 3806 2022-11-17_21:47:08.000 ION E10 0.0000 +2.9867 +- 0.2217 3807 2022-11-17_21:47:08.000 ION E12 0.0000 -0.6873 +- 0.1879 3808 2022-11-17_21:47:08.000 ION E24 0.0000 +0.5845 +- 0.1841 3809 2022-11-17_21:47:08.000 ION E25 0.0000 +3.1903 +- 0.3103 3810 2022-11-17_21:47:08.000 ION E26 0.0000 +0.4911 +- 0.3528 3811 2022-11-17_21:47:08.000 ION E31 0.0000 +3.8772 +- 0.1889 3812 2022-11-17_21:47:08.000 ION E33 0.0000 +0.8343 +- 0.1887 3813 2022-11-17_21:47:08.000 AMB l1 G02 0.0000 -23.6657 +- 2.3839 el = 65.27 epo = 126 3814 2022-11-17_21:47:08.000 AMB l1 G05 -18.0000 -10.8006 +- 2.6173 el = 24.29 epo = 126 3815 2022-11-17_21:47:08.000 AMB l1 G16 -5.0000 -8.3983 +- 2.9733 el = 16.95 epo = 126 3816 2022-11-17_21:47:08.000 AMB l1 G18 14.0000 -6.2637 +- 2.3943 el = 51.38 epo = 126 3817 2022-11-17_21:47:08.000 AMB l1 G20 20.0000 -8.9493 +- 2.9963 el = 15.90 epo = 126 3818 2022-11-17_21:47:08.000 AMB l1 G25 71.0000 +21.9859 +- 2.5119 el = 29.47 epo = 126 3819 2022-11-17_21:47:08.000 AMB l1 G26 14.0000 +14.7236 +- 2.4022 el = 48.19 epo = 126 3820 2022-11-17_21:47:08.000 AMB l1 G29 8.0000 -12.9052 +- 2.3846 el = 62.61 epo = 126 3821 2022-11-17_21:47:08.000 AMB l1 G31 -12.0000 -13.7575 +- 2.4113 el = 43.92 epo = 126 3822 2022-11-17_21:47:08.000 AMB l1 R12 134.0000 -11.4687 +- 19.4149 el = 7.00 epo = 72 3823 2022-11-17_21:47:08.000 AMB l1 R13 80.0000 -21.2997 +- 15.8981 el = 53.05 epo = 126 3824 2022-11-17_21:47:08.000 AMB l1 R14 45.0000 -32.1410 +- 15.8330 el = 60.69 epo = 126 3825 2022-11-17_21:47:08.000 AMB l1 R15 79.0000 -8.5602 +- 17.6318 el = 10.24 epo = 126 3826 2022-11-17_21:47:08.000 AMB l1 R24 86.0000 -11.0912 +- 15.9190 el = 54.30 epo = 126 3827 2022-11-17_21:47:08.000 AMB l1 E10 -25.0000 +69.2221 +- 2.2445 el = 33.75 epo = 126 3828 2022-11-17_21:47:08.000 AMB l1 E12 -34.0000 +50.0813 +- 2.1477 el = 57.80 epo = 126 3829 2022-11-17_21:47:08.000 AMB l1 E24 -36.0000 +56.4165 +- 2.1446 el = 69.89 epo = 126 3830 2022-11-17_21:47:08.000 AMB l1 E25 -27.0000 +69.8552 +- 2.8830 el = 15.51 epo = 126 3831 2022-11-17_21:47:08.000 AMB l1 E26 -20.0000 +54.7160 +- 3.4490 el = 10.89 epo = 126 3832 2022-11-17_21:47:08.000 AMB l1 E31 42.0000 +74.0156 +- 2.1497 el = 55.47 epo = 126 3833 2022-11-17_21:47:08.000 AMB l1 E33 -18.0000 +57.4397 +- 2.1506 el = 56.46 epo = 126 3834 2022-11-17_21:47:08.000 AMB l2 G02 -18.0000 -34.1382 +- 2.3954 el = 65.27 epo = 126 3835 2022-11-17_21:47:08.000 AMB l2 G05 -3.0000 -16.1458 +- 2.7261 el = 24.29 epo = 126 3836 2022-11-17_21:47:08.000 AMB l2 G16 -24.0000 -14.5440 +- 3.1164 el = 16.95 epo = 126 3837 2022-11-17_21:47:08.000 AMB l2 G18 5.0000 -11.4185 +- 2.4192 el = 51.38 epo = 126 3838 2022-11-17_21:47:08.000 AMB l2 G20 9.0000 -14.9204 +- 3.1420 el = 15.90 epo = 126 3839 2022-11-17_21:47:08.000 AMB l2 G25 69.0000 +24.5505 +- 2.5938 el = 29.47 epo = 126 3840 2022-11-17_21:47:08.000 AMB l2 G26 49.0000 +15.2478 +- 2.4320 el = 48.19 epo = 126 3841 2022-11-17_21:47:08.000 AMB l2 G29 14.0000 -20.5723 +- 2.3973 el = 62.61 epo = 126 3842 2022-11-17_21:47:08.000 AMB l2 G31 -18.0000 -20.6551 +- 2.4479 el = 43.92 epo = 126 3843 2022-11-17_21:47:08.000 AMB l2 R12 135.0000 +5.2598 +- 21.1165 el = 7.00 epo = 72 3844 2022-11-17_21:47:08.000 AMB l2 R13 74.0000 -8.5429 +- 15.9055 el = 53.05 epo = 126 3845 2022-11-17_21:47:08.000 AMB l2 R14 52.0000 -22.7534 +- 15.8155 el = 60.69 epo = 126 3846 2022-11-17_21:47:08.000 AMB l2 R15 41.0000 +9.1213 +- 18.5219 el = 10.24 epo = 126 3847 2022-11-17_21:47:08.000 AMB l2 R24 72.0000 +4.9855 +- 15.9258 el = 54.30 epo = 126 3848 2022-11-17_21:47:08.000 AMB l2 E10 -7.0000 +60.7498 +- 2.3202 el = 33.75 epo = 126 3849 2022-11-17_21:47:08.000 AMB l2 E12 -20.0000 +35.4043 +- 2.1634 el = 57.80 epo = 126 3850 2022-11-17_21:47:08.000 AMB l2 E24 -14.0000 +43.4891 +- 2.1513 el = 69.89 epo = 126 3851 2022-11-17_21:47:08.000 AMB l2 E25 -10.0000 +61.6943 +- 3.0445 el = 15.51 epo = 126 3852 2022-11-17_21:47:08.000 AMB l2 E26 -4.0000 +42.6730 +- 3.6063 el = 10.89 epo = 126 3853 2022-11-17_21:47:08.000 AMB l2 E31 90.0000 +67.0696 +- 2.1672 el = 55.47 epo = 126 3854 2022-11-17_21:47:08.000 AMB l2 E33 -4.0000 +45.4395 +- 2.1669 el = 56.46 epo = 126 3855 2022-11-17_21:47:08.000 WTZR00DEU0 X = 4075580.2593 +- 0.0736 Y = 931854.0817 +- 0.0473 Z = 4801568.2785 +- 0.0924 dN = -0.0022 +- 0.0493 dE = -0.0026 +- 0.0457 dU = -0.0331 +- 0.1080 3856 </p></pre> 3857 <p> 3858 Depending on selected processing options you find 'GPS Time' stamps (yyyy-mm-dd_hh:mm:ss.sss) followed by 3859 <table> 3860 <tr><td> SATNUM G </td><td> Number of satellites per contributing GNSS, here GPS</td></tr> 3861 <tr><td> RES ci/li </td><td> Code and phase residuals for contributing GNSS in [m] given per satellite</td></tr> 3862 <tr><td> REC_CLK G </td><td> Receiver clock errors for contributing GNSS in [m], here GPS</td></tr> 3863 <tr><td> TRP </td><td> A priori and correction values of tropospheric zenith delay in [m]</td></tr> 3864 <tr><td> ION </td><td> A priori and correction values of ionospheric delay in [m]</td></tr> 3865 <tr><td> AMB li </td><td> Floated ambiguities given per satellite with 'nEpo' = number of epochs since last ambiguity reset</td></tr> 3866 <tr><td> MOUNTPOINT</td><td> Here 'WTZR00DEU0' with XYZ position in [m] and dN/dE/dU in [m] for North, East, and Up displacements compared to a priori marker coordinates</td></tr> 3867 </table> 3868 <p> 3869 Estimated parameters are presented together with their formal errors as derived from the implemented filter. 3870 The PPP algorithm includes outlier and cycle slip detection. 3871 </p> 3872 3873 <p> 3874 Default value for 'Logfile directory' is an empty option field, meaning that you do not want to save daily PPP logfiles on disk. 3875 If a specified directory does not exist, BNC will not create PPP logfiles. 3876 </p> 3877 <p> 3878 BNC follows the RINEX Version 3 standard to create filenames for PPP logfiles (suffix 'ppp'), see section 'RINEX Filenames' for details: 3355 3879 <pre> 3356 ! 3357 ! Station X[m] Y[m] Z[m] North[m] EAST[m] UP[m] Antenna--------Radom Receiver 3358 ! ----------------------------------------------------------------------------------------------------- 3359 ADIS0 4913652.6612 3945922.7678 995383.4359 0.0000 0.0000 0.0010 TRM29659.00 NONE JPS LEGACY 3360 ALIC0 -4052052.5593 4212836.0078 -2545104.8289 0.0000 0.0000 0.0015 LEIAR25.R3 NONE LEICA GRX1200GGPRO 3361 BELF0 3685257.8823 -382908.8992 5174311.1067 0.0000 0.0000 0.0000 LEIAT504GG LEIS LEICA GRX1200GGPRO 3362 BNDY0 -5125977.4106 2688801.2966 -2669890.4345 0.0000 0.0000 0.0000 ASH701945E_M NONE TRIMBLE NETR5 3363 BRAZ0 4115014.0678 -4550641.6105 -1741443.8244 0.0000 0.0000 0.0080 LEIAR10 NONE LEICA GR25 3364 CTWN0 5023564.4285 1677795.7211 -3542025.8392 0.0000 0.0000 0.0000 ASH701941.B NONE TRIMBLE NETR5 3365 CUT07 -2364337.4408 4870285.6055 -3360809.6280 0.0000 0.0000 0.0000 TRM59800.00 SCIS TRIMBLE NETR9 3366 GANP0 3929181.3480 1455236.9105 4793653.9880 0.0000 0.0000 0.3830 TRM55971.00 NONE TRIMBLE NETR9 3367 HLFX0 2018905.6037 -4069070.5095 4462415.4771 0.0000 0.0000 0.1000 TPSCR.G3 NONE TPS NET-G3A 3368 LHAZ0 -106941.9272 5549269.8041 3139215.1564 0.0000 0.0000 0.1330 ASH701941.B NONE TPS E_GGD 3369 LMMF7 2993387.3587 -5399363.8649 1596748.0983 0.0000 0.0000 0.0000 TRM57971.00 NONE TRIMBLE NETR9 3370 MAO07 -5466067.0979 -2404333.0198 2242123.1929 0.0000 0.0000 0.0000 LEIAR25.R3 LEIT JAVAD TRE_G3TH DELTA 3371 NICO0 4359415.5252 2874117.1872 3650777.9614 0.0000 0.0000 0.0650 LEIAR25.R4 LEIT LEICA GR25 3372 NKLG7 6287385.7320 1071574.7606 39133.1088 -0.0015 -0.0025 3.0430 TRM59800.00 SCIS TRIMBLE NETR9 3373 NURK7 5516756.5103 3196624.9684 -215027.1315 0.0000 0.0000 0.1300 TPSCR3_GGD NONE JAVAD TRE_G3TH DELTA 3374 ONSA0 3370658.3928 711877.2903 5349787.0603 0.0000 0.0000 0.9950 AOAD/M_B OSOD JAVAD TRE_G3TH DELTA 3375 PDEL0 4551595.9072 -2186892.9495 3883410.9685 0.0000 0.0000 0.0000 LEIAT504GG NONE LEICA GRX1200GGPRO 3376 RCMN0 5101056.6270 3829074.4206 -135016.1589 0.0000 0.0000 0.0000 LEIAT504GG LEIS LEICA GRX1200GGPRO 3377 REUN0 3364098.9668 4907944.6121 -2293466.7379 0.0000 0.0000 0.0610 TRM55971.00 NONE TRIMBLE NETR9 3378 REYK7 2587384.0890 -1043033.5433 5716564.1301 0.0000 0.0000 0.0570 LEIAR25.R4 LEIT LEICA GR25 3379 RIO27 1429907.8578 -3495354.8953 -5122698.5595 0.0000 0.0000 0.0350 ASH700936C_M SNOW JAVAD TRE_G3TH DELTA 3380 SMR50 927077.1096 -2195043.5597 -5896521.1344 0.0000 0.0000 0.0000 TRM41249.00 TZGD TRIMBLE NETR5 3381 SUWN0 -3062023.1604 4055447.8946 3841818.1684 0.0000 0.0000 1.5700 TRM29659.00 DOME TRIMBLE NETR9 3382 TASH7 1695944.9208 4487138.6220 4190140.7391 0.0000 0.0000 0.1206 JAV_RINGANT_G3T NONE JAVAD TRE_G3TH DELTA 3383 UFPR0 3763751.6731 -4365113.9039 -2724404.5331 0.0000 0.0000 0.1000 TRM55971.00 NONE TRIMBLE NETR5 3384 UNB30 1761287.9724 -4078238.5659 4561417.8448 0.0000 0.0000 0.3145 TRM57971.00 NONE TRIMBLE NETR9 3385 WIND7 5633708.8016 1732017.9297 -2433985.5795 0.0000 0.0000 0.0460 ASH700936C_M SNOW JAVAD TRE_G3TH DELTA 3386 WTZR0 4075580.3797 931853.9767 4801568.2360 0.0000 0.0000 0.0710 LEIAR25.R3 LEIT LEICA GR25 3387 WUH27 -2267749.9761 5009154.5504 3221294.4429 0.0000 0.0000 0.1206 JAV_RINGANT_G3T NONE JAVAD TRE_G3TH DELTA 3388 YELL7 -1224452.8796 -2689216.1863 5633638.2832 0.0000 0.0000 0.1000 AOAD/M_T NONE JAVAD TRE_G3TH DELTA 3880 WTZR00DEU_20223220000_01D_01S.ppp 3389 3881 </pre> 3390 <p>3391 Note again that the only mandatory parameters in this file are the 'Station' parameters in the first column, each standing for an observation stream's mountpoint or the 4-character station ID of a RINEX filename. The following shows further valid examples for records of a 'Coordinates file'.3392 </p>3393 3394 <pre>3395 !3396 ! Station X[m] Y[m] Z[m] N[m] E[m] U[m] Antenna--------Radom Receiver3397 ! --------------------------------------------------------------------------------------------------3398 WTZR0 4075580.3797 931853.9767 4801568.2360 0.000 0.000 0.071 LEIAR25.R3 LEIT LEICA GR253399 CUT07 -2364337.4408 4870285.6055 -3360809.6280 0.000 0.000 0.000 TRM59800.00 SCIS3400 FFMJ1 4053455.7384 617729.8393 4869395.8214 0.000 0.000 0.0453401 TITZ1 3993780.4501 450206.8969 4936136.98863402 WARN3403 SASS1 0.0 0.0 0.0 0.000 0.000 0.031 TPSCR3_GGD CONE TRIMBLE NETR53404 </pre>3405 3406 <p>3407 In this file3408 </p>3409 <ul>3410 <li> Record 'WTZR0' describes a stream from a stationary receiver with known a priori marker coordinate, antenna eccentricity, antenna and radome type and receiver type.</li>3411 <li> Record 'CUT07' describes a stream from a stationary receiver with known a priori marker coordinate, antenna eccentricity and antenna and radome type. The receiver type is unknown.</li>3412 <li> Record 'FFMJ1' describes a stream from a stationary receiver with known a priori marker coordinate and antenna eccentricity but unknown antenna, radome and receiver type.</li>3413 <li> Record 'TITZ1' describes a stream coming from a stationary receiver where an a priori marker coordinate is known but antenna eccentricity, name and radome and receiver type are unknown.</li>3414 <li>The 4-character station ID 'WARN' indicates that a RINEX observations file for post processing PPP is available for station 'WARN' but an a priori marker coordinate as well as antenna eccentricity, name and radome are unknown.</li>3415 <li>Record 'SASS1' stands for a mountpoint where the stream comes from a mobile rover receiver. Hence an a priori coordinate is unknown although antenna eccentricity, name and radome and receiver type are known.</li>3416 </ul>3417 </p>3418 3419 <p><h4 id="pppv3filename">2.13.1.8 Version 3 Filenames - optional</h4></p>3420 <p>3421 Tick 'Version 3 filenames' to let BNC create so-called extended filenames for PPP logfiles, NMEA files and SINEX Troposphere files to follow the RINEX Version 3 standard, see section 'RINEX Filenames' for details.3422 </p>3423 <p>3424 Default is an empty check box, meaning to create filenames following the RINEX Version 2 standard. The file content is not affected by this option. It only concerns the filename notation.3425 </p>3426 <p>3427 The following are examples for Version 2 filenames:3428 <p>3429 </p>3430 <table>3431 <tr><td> CUT018671.nmea</td><td> NMEA filename, suffix 'nmea'</td></tr>3432 <tr><td> CUT018671.ppp</td><td> PPP logfile name, suffix 'ppp'</td></tr>3433 <tr><td> CUT018671J30.tro</td><td> SINEX Troposphere filename, suffix 'tro'</td></tr>3434 </table>3435 </p>3436 <p>3437 The following are examples for Version 3 filenames:<br>3438 </p>3439 <table>3440 <tr><td> CUT000AUS_U_20152920000_01D_01S.nmea</td><td> NMEA filename, suffix 'nmea'</td></tr>3441 <tr><td> CUT000AUS_U_20152920000_01D_01S.ppp</td><td> PPP logfile name, suffix 'ppp'</td></tr>3442 <tr><td> CUT000AUS_U_20152920945_15M_01S.tra</td><td> SINEX Troposphere filename, suffix 'tra'</td></tr>3443 </table>3444 </p>3445 3446 <p><h4 id="ppplogfile">2.13.1.9 Logfile Directory - optional</h4></p>3447 <p>3448 Essential PPP results are shown in the 'Log' tab on the bottom of BNC's main window. Depending on the processing options, the following values are presented about once per second (example):3449 <pre>3450 ...3451 15-10-21 13:23:38 2015-10-21_13:23:38.000 CUT07 X = -2364337.4505 Y = 4870285.6269 Z = -3360809.6481 NEU: -0.0046 -0.0006 +0.0306 TRP: +2.4018 +0.10063452 15-10-21 13:23:39 2015-10-21_13:23:39.000 CUT07 X = -2364337.4468 Y = 4870285.6244 Z = -3360809.6453 NEU: -0.0043 -0.0029 +0.0258 TRP: +2.4018 +0.09933453 15-10-21 13:23:40 2015-10-21_13:23:40.000 CUT07 X = -2364337.4455 Y = 4870285.6215 Z = -3360809.6466 NEU: -0.0070 -0.0027 +0.0238 TRP: +2.4018 +0.09783454 15-10-21 13:23:41 2015-10-21_13:23:41.000 CUT07 X = -2364337.4447 Y = 4870285.6248 Z = -3360809.6445 NEU: -0.0039 -0.0049 +0.0249 TRP: +2.4018 +0.09623455 15-10-21 13:23:42 2015-10-21_13:23:42.000 CUT07 X = -2364337.4426 Y = 4870285.6238 Z = -3360809.6424 NEU: -0.0031 -0.0063 +0.0223 TRP: +2.4018 +0.09503456 15-10-21 13:23:43 2015-10-21_13:23:43.000 CUT07 X = -2364337.4453 Y = 4870285.6386 Z = -3360809.6518 NEU: -0.0033 -0.0104 +0.0395 TRP: +2.4018 +0.09273457 15-10-21 13:23:44 2015-10-21_13:23:44.000 CUT07 X = -2364337.4435 Y = 4870285.6354 Z = -3360809.6487 NEU: -0.0027 -0.0106 +0.0348 TRP: +2.4018 +0.09083458 15-10-21 13:23:45 2015-10-21_13:23:45.000 CUT07 X = -2364337.4445 Y = 4870285.6381 Z = -3360809.6532 NEU: -0.0049 -0.0109 +0.0396 TRP: +2.4018 +0.08843459 15-10-21 13:23:46 2015-10-21_13:23:46.000 CUT07 X = -2364337.4437 Y = 4870285.6365 Z = -3360809.6548 NEU: -0.0073 -0.0109 +0.0389 TRP: +2.4018 +0.08553460 15-10-21 13:23:47 2015-10-21_13:23:47.000 CUT07 X = -2364337.4498 Y = 4870285.6317 Z = -3360809.6395 NEU: +0.0049 -0.0033 +0.0294 TRP: +2.4018 +0.08333461 ...3462 </pre>3463 </p>3464 <p>3465 Each row reports the PPP result of one epoch. It begins with a UTC time stamp (yy-mm-dd hh:mm:ss) which tells us when the result was produced. A second time stamp (yyyy-mm-dd_hh:mm:ss) describes the PPP's epoch in 'GPS Time'. It is followed by the derived XYZ position in [m], its North, East and Up displacement compared to an introduced a priori coordinate, and the estimated tropospheric delay [m] (model plus correction).3466 </p>3467 <p>3468 If you require more information, you can specify a 'Logfile directory' to save daily logfiles per station (filename suffix 'ppp') with additional processing details on disk.3469 </p>3470 3471 <p>3472 <pre>3473 Precise Point Positioning of Epoch 2015-10-21_13:23:47.0003474 ---------------------------------------------------------------3475 2015-10-21_13:23:47.000 SATNUM G 93476 2015-10-21_13:23:47.000 SATNUM R 63477 2015-10-21_13:23:47.000 SATNUM E 03478 2015-10-21_13:23:47.000 SATNUM C 93479 2015-10-21_13:23:47.000 RES C01 P3 0.32013480 2015-10-21_13:23:47.000 RES C02 P3 0.35973481 2015-10-21_13:23:47.000 RES C03 P3 -0.80033482 2015-10-21_13:23:47.000 RES C04 P3 2.76843483 2015-10-21_13:23:47.000 RES C05 P3 4.97383484 2015-10-21_13:23:47.000 RES C06 P3 0.18883485 2015-10-21_13:23:47.000 RES C07 P3 -2.86243486 2015-10-21_13:23:47.000 RES C08 P3 -2.90753487 2015-10-21_13:23:47.000 RES C10 P3 -1.56823488 2015-10-21_13:23:47.000 RES G05 P3 0.38283489 2015-10-21_13:23:47.000 RES G16 P3 -3.76023490 2015-10-21_13:23:47.000 RES G18 P3 0.84243491 2015-10-21_13:23:47.000 RES G20 P3 0.40623492 2015-10-21_13:23:47.000 RES G21 P3 0.86833493 2015-10-21_13:23:47.000 RES G25 P3 -1.33673494 2015-10-21_13:23:47.000 RES G26 P3 1.41073495 2015-10-21_13:23:47.000 RES G29 P3 1.18703496 2015-10-21_13:23:47.000 RES G31 P3 -0.56053497 2015-10-21_13:23:47.000 RES R01 P3 -0.14583498 2015-10-21_13:23:47.000 RES R02 P3 -2.11843499 2015-10-21_13:23:47.000 RES R14 P3 1.86343500 2015-10-21_13:23:47.000 RES R15 P3 -1.39643501 2015-10-21_13:23:47.000 RES R18 P3 0.55173502 2015-10-21_13:23:47.000 RES R24 P3 1.57503503 2015-10-21_13:23:47.000 RES C01 L3 -0.00403504 2015-10-21_13:23:47.000 RES C02 L3 0.00703505 2015-10-21_13:23:47.000 RES C03 L3 0.00933506 2015-10-21_13:23:47.000 RES C04 L3 -0.00173507 2015-10-21_13:23:47.000 RES C05 L3 -0.00083508 2015-10-21_13:23:47.000 RES C06 L3 -0.00313509 2015-10-21_13:23:47.000 RES C07 L3 -0.00163510 2015-10-21_13:23:47.000 RES C08 L3 -0.00893511 2015-10-21_13:23:47.000 RES C10 L3 0.00513512 2015-10-21_13:23:47.000 RES G05 L3 -0.04083513 2015-10-21_13:23:47.000 RES G16 L3 0.00433514 2015-10-21_13:23:47.000 RES G18 L3 0.00173515 2015-10-21_13:23:47.000 RES G20 L3 -0.01323516 2015-10-21_13:23:47.000 RES G21 L3 0.01883517 2015-10-21_13:23:47.000 RES G25 L3 -0.00593518 2015-10-21_13:23:47.000 RES G26 L3 0.00283519 2015-10-21_13:23:47.000 RES G29 L3 0.00623520 2015-10-21_13:23:47.000 RES G31 L3 0.00123521 2015-10-21_13:23:47.000 RES R01 L3 0.02603522 2015-10-21_13:23:47.000 RES R02 L3 -0.01213523 2015-10-21_13:23:47.000 RES R14 L3 0.00553524 2015-10-21_13:23:47.000 RES R15 L3 -0.04883525 2015-10-21_13:23:47.000 RES R18 L3 0.04753526 2015-10-21_13:23:47.000 RES R24 L3 0.01033527 3528 2015-10-21_13:23:47.000 CLK 45386.971 +- 0.1633529 2015-10-21_13:23:47.000 TRP 2.402 +0.083 +- 0.0133530 2015-10-21_13:23:47.000 OFFGLO 1.766 +- 0.2503531 2015-10-21_13:23:47.000 OFFGAL 0.000 +- 1000.0013532 2015-10-21_13:23:47.000 OFFBDS 29.385 +- 0.2183533 2015-10-21_13:23:47.000 AMB C01 239.913 +- 0.149 epo = 1803534 2015-10-21_13:23:47.000 AMB C04 151.821 +- 0.149 epo = 1803535 2015-10-21_13:23:47.000 AMB C05 137.814 +- 0.150 epo = 1803536 2015-10-21_13:23:47.000 AMB C06 -368.848 +- 0.149 epo = 1803537 2015-10-21_13:23:47.000 AMB C07 -102.508 +- 0.149 epo = 1803538 2015-10-21_13:23:47.000 AMB C08 -145.358 +- 0.150 epo = 1803539 2015-10-21_13:23:47.000 AMB C10 195.732 +- 0.149 epo = 1803540 2015-10-21_13:23:47.000 AMB G25 58.320 +- 0.159 epo = 1803541 2015-10-21_13:23:47.000 AMB G26 110.077 +- 0.159 epo = 1803542 2015-10-21_13:23:47.000 AMB G29 -555.466 +- 0.159 epo = 1803543 2015-10-21_13:23:47.000 AMB G31 -47.938 +- 0.159 epo = 1803544 2015-10-21_13:23:47.000 AMB R01 -106.913 +- 0.193 epo = 1803545 2015-10-21_13:23:47.000 AMB R02 168.316 +- 0.194 epo = 1803546 2015-10-21_13:23:47.000 AMB R24 189.793 +- 0.193 epo = 1803547 2015-10-21_13:23:47.000 AMB C02 -50.146 +- 0.149 epo = 1753548 2015-10-21_13:23:47.000 AMB G05 -185.211 +- 0.173 epo = 1753549 2015-10-21_13:23:47.000 AMB R14 -509.359 +- 0.194 epo = 1753550 2015-10-21_13:23:47.000 AMB R15 65.355 +- 0.194 epo = 1753551 2015-10-21_13:23:47.000 AMB R18 -105.206 +- 0.204 epo = 1703552 2015-10-21_13:23:47.000 AMB G16 215.751 +- 0.160 epo = 1653553 2015-10-21_13:23:47.000 AMB G18 -168.240 +- 0.159 epo = 1653554 2015-10-21_13:23:47.000 AMB G20 -284.129 +- 0.159 epo = 1653555 2015-10-21_13:23:47.000 AMB G21 -99.245 +- 0.159 epo = 1653556 2015-10-21_13:23:47.000 AMB C03 -117.727 +- 0.149 epo = 303557 3558 2015-10-21_13:23:47.000 CUT07 X = -2364337.4498 +- 0.0279 Y = 4870285.6317 +- 0.0388 Z = -3360809.6395 +- 0.0313 dN = 0.0049 +- 0.0248 dE = -0.0033 +- 0.0239 dU = 0.0294 +- 0.04563559 </pre>3560 <p>3561 Depending on selected processing options you find 'GPS Time' stamps (yyyy-mm-dd_hh:mm:ss.sss) followed by3562 <ul>3563 <li>SATNUM: Number of satellites per GNSS,</li>3564 <li>RES: Code and phase residuals for contributing GNSS systems in [m]<br>Given per satellite with cIF/lIF for ionosphere-free linear combination of code/phase observations,</li>3565 <li>CLK: Receiver clock errors in [m], </li>3566 <li>TRP: A priori and correction values of tropospheric zenith delay in [m],3567 <li>OFFGLO: Time offset between GPS time and GLONASS time in [m],3568 <li>OFFGAL: Time offset between GPS time and Galileo time in [m],3569 <li>OFFBDS: Time offset between GPS time and BDS time in [m],3570 <li>AMB: L3 biases, also known as 'floated ambiguities'<br>Given per satellite with 'nEpo' = number of epochs since last ambiguity reset,3571 <li>MOUNTPOINT: Here 'CUT07' with XYZ position in [m] and dN/dE/dU in [m] for North, East, and Up displacements compared to a priori marker coordinates.</li>3572 </ul>3573 Estimated parameters are presented together with their formal errors as derived from the implemented filter. The PPP algorithm includes outlier and cycle slip detection.3574 </p>3575 3576 <p>3577 Default value for 'Logfile directory' is an empty option field, meaning that you do not want to save daily PPP logfiles on disk. If a specified directory does not exist, BNC will not create PPP logfiles.3578 </p>3579 3882 3580 3883 <p><h4 id="pppnmeafile">2.13.1.10 NMEA Directory - optional</h4></p> 3581 3884 <p> 3582 You can specify a 'NMEA directory' to save daily NMEA files with Point Positioning results recorded as NMEA sentences. Such sentences are usually generated about once per second with pairs of 3885 You can specify a 'NMEA directory' to save daily NMEA files with Point Positioning results recorded as NMEA sentences. 3886 Such sentences are usually generated about once per second with pairs of 3583 3887 </p> 3584 3888 <p> … … 3590 3894 The following is an example for an NMEA output file from BNC. 3591 3895 </p> 3896 <pre><p style="font-family:Monospace"> 3897 $GPGGA,214523.00,4908.6520501,N,01252.7348655,E,1,21,0.6,665.993,M,0.0,M,,*56 3898 $GPRMC,214524.000,A,4908.6521,N,01252.7349,E,,,171122,,*09 3899 $GPGGA,214524.00,4908.6520504,N,01252.7348645,E,1,21,0.6,665.994,M,0.0,M,,*52 3900 $GPRMC,214525.000,A,4908.6521,N,01252.7349,E,,,171122,,*08 3901 $GPGGA,214525.00,4908.6520501,N,01252.7348639,E,1,21,0.6,665.993,M,0.0,M,,*5a 3902 $GPRMC,214526.000,A,4908.6521,N,01252.7349,E,,,171122,,*0b 3903 $GPGGA,214526.00,4908.6520509,N,01252.7348637,E,1,21,0.6,665.990,M,0.0,M,,*5c 3904 $GPRMC,214527.000,A,4908.6521,N,01252.7349,E,,,171122,,*0a 3905 $GPGGA,214527.00,4908.6520502,N,01252.7348627,E,1,21,0.6,665.990,M,0.0,M,,*57 3906 $GPRMC,214528.000,A,4908.6520,N,01252.7349,E,,,171122,,*04 3907 $GPGGA,214528.00,4908.6520499,N,01252.7348630,E,1,21,0.6,665.988,M,0.0,M,,*54 3908 $GPRMC,214529.000,A,4908.6520,N,01252.7349,E,,,171122,,*05 3909 $GPGGA,214529.00,4908.6520494,N,01252.7348627,E,1,21,0.6,665.985,M,0.0,M,,*53 3910 $GPRMC,214530.000,A,4908.6521,N,01252.7349,E,,,171122,,*0c 3911 $GPGGA,214530.00,4908.6520501,N,01252.7348622,E,1,21,0.6,665.984,M,0.0,M,,*52 3912 $GPRMC,214531.000,A,4908.6521,N,01252.7349,E,,,171122,,*0d 3913 $GPGGA,214531.00,4908.6520504,N,01252.7348629,E,1,21,0.6,665.987,M,0.0,M,,*5e 3914 ... 3915 </p></pre> 3916 3917 <p> 3918 BNC follows the RINEX Version 3 standard to create filenames for NMEA logfiles (suffix 'nmea'), see section 'RINEX Filenames' for details: 3592 3919 <pre> 3593 $GPRMC,112348,A,3200.233,S,11553.688,E,,,300615,,*A 3594 $GPGGA,112348,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*5D 3595 $GPRMC,112349,A,3200.233,S,11553.688,E,,,300615,,*B 3596 $GPGGA,112349,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*5C 3597 $GPRMC,112350,A,3200.233,S,11553.688,E,,,300615,,*3 3598 $GPGGA,112350,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*54 3599 $GPRMC,112351,A,3200.233,S,11553.688,E,,,300615,,*2 3600 $GPGGA,112351,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*55 3601 $GPRMC,112352,A,3200.233,S,11553.688,E,,,300615,,*1 3602 $GPGGA,112352,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*56 3603 $GPRMC,112353,A,3200.233,S,11553.688,E,,,300615,,*0 3604 $GPGGA,112353,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*57 3605 $GPRMC,112354,A,3200.233,S,11553.688,E,,,300615,,*7 3606 $GPGGA,112354,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*50 3607 $GPRMC,112355,A,3200.233,S,11553.688,E,,,300615,,*6 3608 $GPGGA,112355,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*51 3609 $GPRMC,112356,A,3200.233,S,11553.688,E,,,300615,,*5 3610 $GPGGA,112356,3200.2332035,S,11553.6880127,E,1,13,1.4,23.971,M,0.0,M,,*52 3611 ... 3920 WTZR00DEU_20223220000_01D_01S.nmea 3612 3921 </pre> 3613 <p> 3614 The default value for 'NMEA directory' is an empty option field, meaning that BNC will not save NMEA sentences into files.If a specified directory does not exist, BNC will not create NMEA files.3615 < /p>3616 3617 <p> 3618 Note that Tomoji Takasu has written a program named RTKPLOT for visualizing NMEA sentences from IP ports or files. It is available from <u>http://www.rtklib.com</u> and compatible withthe 'NMEA Directory' and port output of BNC's 'PPP' client option.3922 The default value for 'NMEA directory' is an empty option field, meaning that BNC will not save NMEA sentences into files. 3923 If a specified directory does not exist, BNC will not create NMEA files. 3924 <p> 3925 Note that Tomoji Takasu has written a program named RTKPLOT for visualizing NMEA sentences from IP ports or files. 3926 It is available from <a href="http://www.rtklib.com" target="_blank">http://www.rtklib.com</a> and compatible with 3927 the 'NMEA Directory' and port output of BNC's 'PPP' client option. 3619 3928 </p> 3620 3929 … … 3629 3938 3630 3939 <p> 3631 You can specify a 'SNX TRO Directory' for saving SINEX Troposphere files on disk, see <a href="https://igscb.jpl.nasa.gov/igscb/data/format/sinex_tropo.txt" target="_blank">https://igscb.jpl.nasa.gov/igscb/data/format/sinex_tropo.txt</a> for a documentation of the file format. Note that receiver type information for these files must be provided through the coordinates file described in section 'Coordinates file'. The following is an example for a troposphere file content: 3632 </p> 3633 3634 <pre> 3635 %=TRO 2.00 BKG 16:053:42824 BKG 16:053:42824 16:053:43199 P 00376 0 T 3940 You can specify a 'SNX TRO Directory' for saving SINEX Troposphere files on disk, see 3941 <a href="https://files.igs.org/pub/data/format/sinex_tro_v2.00.pdf" target="_blank">https://files.igs.org/pub/data/format/sinex_tro_v2.00.pdf</a> 3942 for a documentation of the file format. Note that receiver type information for these files must be provided through the coordinates file 3943 described in section 'Coordinates file'. The following is an example for a troposphere file content: 3944 </p> 3945 3946 <pre><p style="font-family:Monospace"> 3947 %=TRO 2.00 BKG 22:322:00000 BKG 22:322:00000 22:322:03599 P 03600 0 T 3636 3948 +FILE/REFERENCE 3637 3949 DESCRIPTION BNC generated SINEX TRO file 3638 3950 OUTPUT Total Troposphere Zenith Path Delay Product 3639 SOFTWARE BNC 2.1 23640 INPUT Ntrip streams, additional Orbit and Clock information from IGS033951 SOFTWARE BNC 2.13 3952 INPUT Observations: WTZR00DEU, SSR corrections: SSRA00BKG1 3641 3953 -FILE/REFERENCE 3642 3954 3643 3955 +SITE/ID 3644 *CODE PT DOMES____ T _STATION DESCRIPTION__ APPROX_LON_ APPROX_LAT_ _APP_H_3645 CUT0 A P AUS 115 53 41.3 -32 0 14.0 24.03956 *CODE PT DOMES____ T _STATION DESCRIPTION__ APPROX_LON_ APPROX_LAT_ _APP_H_ 3957 WTZR00DEU A P DEU 12 52 44.1 49 8 39.1 666.0 3646 3958 -SITE/ID 3647 3959 3648 3960 +SITE/RECEIVER 3649 *SITE PT SOLN T DATA_START__ DATA_END____ DESCRIPTION_________ S/N__ FIRMWARE___3650 CUT0 A 0001 P 16:053:42824 16:053:43199 TRM59800.00 SCIS----- -----------3961 *SITE PT SOLN T DATA_START__ DATA_END____ DESCRIPTION_________ S/N__ FIRMWARE___ 3962 WTZR00DEU A 1 P 22:322:00000 22:322:03599 LEICA GR25 ----- ----------- 3651 3963 -SITE/RECEIVER 3652 3964 3653 3965 +SITE/ANTENNA 3654 *SITE PT SOLN T DATA_START__ DATA_END____ DESCRIPTION_________ S/N__3655 CUT0 A 0001 P 16:053:42824 16:053:43199 TRM59800.00 SCIS-----3966 *SITE PT SOLN T DATA_START__ DATA_END____ DESCRIPTION_________ S/N__ 3967 WTZR00DEU A 1 P 22:322:00000 22:322:03599 LEIAR25.R3 LEIT ----- 3656 3968 -SITE/ANTENNA 3969 3970 +SITE/GPS_PHASE_CENTER 3971 * UP____ NORTH_ EAST__ UP____ NORTH_ EAST__ 3972 *DESCRIPTION_________ S/N__ L1->ARP(m)__________ L2->ARP(m)__________ AZ_EL____ 3973 LEIAR25.R3 LEIT ----- +.1617 +.0005 +.0001 +.1579 +.0001 -.0007 --------- 3974 -SITE/GPS_PHASE_CENTER 3975 3976 +SITE/GLONASS_PHASE_CENTER 3977 * UP____ NORTH_ EAST__ UP____ NORTH_ EAST__ 3978 *DESCRIPTION_________ S/N__ L1->ARP(m)__________ L2->ARP(m)__________ AZ_EL____ 3979 LEIAR25.R3 LEIT ----- +.1617 +.0005 +.0001 +.1579 +.0001 -.0007 --------- 3980 -SITE/GLONASS_PHASE_CENTER 3981 3982 +SITE/GALILEO_PHASE_CENTER 3983 * UP____ NORTH_ EAST__ UP____ NORTH_ EAST__ 3984 *DESCRIPTION_________ S/N__ L1->ARP(m)__________ L2->ARP(m)__________ AZ_EL____ 3985 LEIAR25.R3 LEIT ----- ------ ------ ------ ------ ------ ------ 3986 -SITE/GALILEO_PHASE_CENTER 3657 3987 3658 3988 +SITE/ECCENTRICITY 3659 3989 * UP______ NORTH___ EAST____ 3660 *SITE PT SOLN T DATA_START__ DATA_END____ AXE ARP->BENCHMARK(M)_________3661 CUT0 A 0001 P 16:053:42824 16:053:43199 UNE 0.0000 0.0000 0.00003990 *SITE PT SOLN T DATA_START__ DATA_END____ AXE ARP->BENCHMARK(M)_________ 3991 WTZR00DEU A 1 P 22:322:00000 22:322:03599 UNE 0.0710 0.0000 0.0000 3662 3992 -SITE/ECCENTRICITY 3663 3993 3664 3994 +TROP/COORDINATES 3665 *SITE PT SOLN T STA_X_______ STA_Y_______ STA_Z_______ SYSTEM REMARK3666 CUT0 A 0001 P -2364337.441 4870285.605 -3360809.628 ITRF08BKG3995 *SITE PT SOLN T STA_X_______ STA_Y_______ STA_Z_______ SYSTEM REMARK 3996 WTZR00DEU A 1 P 4075580.278 931854.089 4801568.305 IGS20 BKG 3667 3997 -TROP/COORDINATES 3668 3998 … … 3677 4007 3678 4008 +TROP/SOLUTION 3679 *SITE EPOCH_______ TROTOT STDEV 3680 CUT0 16:053:42824 0.0 0.0 3681 CUT0 16:053:42825 2401.7 100.0 3682 CUT0 16:053:42826 2401.8 100.0 3683 CUT0 16:053:42827 2401.8 99.9 3684 CUT0 16:053:42828 2402.1 99.9 3685 ... 4009 *SITE EPOCH_______ TROTOT STDEV 4010 WTZR00DEU 22:322:78171 2183.5 100.0 4011 WTZR00DEU 22:322:78172 2183.5 100.0 4012 WTZR00DEU 22:322:78173 2183.7 99.9 4013 WTZR00DEU 22:322:78174 2183.8 99.9 4014 WTZR00DEU 22:322:78175 2184.0 99.8 4015 WTZR00DEU 22:322:78176 2184.2 99.8 4016 WTZR00DEU 22:322:78177 2184.4 99.7 4017 WTZR00DEU 22:322:78178 2184.6 99.7 4018 WTZR00DEU 22:322:78179 2184.8 99.6 4019 WTZR00DEU 22:322:78180 2185.0 99.6 4020 WTZR00DEU 22:322:78181 2185.4 99.5 3686 4021 ... 3687 4022 -TROP/SOLUTION 3688 4023 %=ENDTROP 4024 </p></pre> 4025 For file naming, BNC follows the new format convention according to IGS products considering the site 4026 <a href="http://acc.igs.org/repro3/Long_Product_Filenames_v1.0.pdf" target="_blank">http://acc.igs.org/repro3/Long_Product_Filenames_v1.0.pdf</a>: 4027 <pre> 4028 AAAVPPPTTT_YYYYDOYHHMM_LEN_SMP_SITENAME_CNT.FMT 3689 4029 </pre> 3690 3691 <p> 3692 The default value for 'SNX TRO Directory' is an empty option field, meaning that BNC will not save SINEX Troposphere files. If a specified directory does not exist, BNC will not create SINEX Troposphere files. 4030 With 4031 <p> 4032 <table> 4033 <tr><td> AAA </td><td> Analysis Center abbrevaition</td></tr> 4034 <tr><td> V </td><td> Version / Solution identifier (0-9)</td></tr> 4035 <tr><td> PPP </td><td> Project/Campaign identification, here demonstration (DEM)</td></tr> 4036 <tr><td> TTT </td><td> Solution Type, here real-time streamed product(RTS)</td></tr> 4037 <tr><td> YYYYDOYHHMM</td><td> String representing beginning time of nominal data interval</td></tr> 4038 <tr><td> LEN </td><td> Intended product period of the file </td></tr> 4039 <tr><td> SMP </td><td> Data sampling rate</td></tr> 4040 <tr><td> SITENAME </td><td> 9-char site name</td></tr> 4041 <tr><td> CNT </td><td> Content type, here TRO</td></tr> 4042 <tr><td> FMT </td><td> File format, here tro</td></tr> 4043 </table> 4044 </p> 4045 A result for examle is: 4046 <pre> 4047 BKG1DEMRTS_20223222100_01H_01S_WTZR00DEU_TRO.tro 4048 </pre> 4049 4050 <p> 4051 The default value for 'SNX TRO Directory' is an empty option field, meaning that BNC will not save SINEX Troposphere files. 4052 If a specified directory does not exist, BNC will not create SINEX Troposphere files. 3693 4053 </p> 3694 4054 … … 3697 4057 Select the length of SINEX Troposphere files. 3698 4058 </p> 3699 3700 4059 <p> 3701 4060 Default 'Interval' for saving SINEX Troposphere files on disk is '1 day'. 3702 4061 </p> 3703 3704 4062 <p><h4 id="pppsnxtrosampl">2.13.1.11.2 Sampling - mandatory if 'SINEX TRO Directory' is set</h4></p> 3705 4063 <p> … … 3717 4075 <p><h4 id="pppsnxSol">2.13.1.11.4 Solution ID - Mandatory if 'SINEX TRO Directory' is set</h4></p> 3718 4076 <p> 3719 Specify a 4-character solution ID to allow a distingtion between different solutions per AC. String '0001' is an example. 3720 </p> 3721 3722 <p><h4 id="pppStation">2.13.2 PPP (2): Processed Stations</h4></p> 3723 3724 <p> 3725 This panel allows to enter parameters specific to each PPP process or thread. Individual sigmas for a priori coordinates and a noise for coordinate variations over time can be introduced. Furthermore, a sigma for model-based troposphere estimates and the corresponding noise for troposphere variations can be specified. Finally, local IP server ports can be defined for output of NMEA streams carrying PPP results. 3726 </p> 3727 3728 <p> 3729 BNC offers to create a table with one line per PPP process or thread to specify station-specific parameters. Hit the 'Add Station' button to create the table or add a new line to it. To remove a line from the table, highlight it by clicking it and hit the 'Delete Station' button. You can also remove multiple lines simultaneously by highlighting them using +Shift or +Ctrl.</p> 3730 </p> 3731 3732 <p> 3733 BNC will simultaneously produce PPP solutions for all stations listed in the 'Station' column of this table. 3734 </p> 3735 3736 <p><img src="IMG/screenshot17.png"/></p> 3737 <p>Figure 23: Precise Point Positioning with BNC, PPP Panel 2, using RTKPLOT for visualization</p> 3738 3739 <p><h4 id="pppsite">2.13.2.1 Station - mandatory</h4></p> 3740 <p> 3741 Hit the 'Add Station' button, double click on the 'Station' field, then specify an observation's mountpoint from the 'Streams' section or introduce the 4-character Station ID of your RINEX observation file and hit Enter. BNC will only produce PPP solutions for stations listed in this table. 3742 </p> 3743 3744 <p><h4 id="pppnehsigma">2.13.2.2 Sigma North/East/Up - mandatory</h4></p> 3745 <p> 3746 Enter sigmas in meters for the initial coordinate components. A value of 100.0 (default) may be an appropriate choice. However, this value may be significantly smaller (e.g. 0.01) when starting for example from a station with a well-known position in so-called Quick-Start mode. 3747 </p> 3748 3749 <p><h4 id="pppnehnoise">2.13.2.3 Noise North/East/Up - mandatory</h4></p> 3750 <p> 3751 Enter a white 'Noise' in meters for estimated coordinate components. A value of 100.0 (default) may be appropriate when considering possible sudden movements of a rover. 3752 </p> 3753 3754 <p><h4 id="ppptropsigma">2.13.2.4 Tropo Sigma - mandatory</h4></p> 3755 <p> 3756 Enter a sigma in meters for the a priori model based tropospheric delay estimation. A value of 0.1 (default) may be an appropriate choice. 3757 </p> 3758 3759 <p><h4 id="ppptropnoise">2.13.2.5 Tropo Noise - mandatory</h4></p> 3760 <p> 3761 Enter a white 'Noise' in meters per second to describe the expected variation of the tropospheric effect. Supposing 1Hz observation data, a value of 3e-6 (default) would mean that the tropospheric effect may vary for 3600 * 3e-6 = 0.01 meters per hour. 3762 </p> 3763 3764 <p><h4 id="pppnmeaport">2.13.2.6 NMEA Port - optional</h4></p> 3765 Specify the IP port number of a local port where Point Positioning results become available as NMEA sentences. The default value for 'NMEA Port' is an empty option field, meaning that BNC does not provide NMEA sentences via IP port. Note that NMEA file output and NMEA IP port output are the same. 3766 </p> 3767 <p> 3768 Note also that Tomoji Takasu has written a program named RTKPLOT for visualizing NMEA sentences from IP ports or files. It is available from <a href="http://www.rtklib.com" target="_blank">http://www.rtklib.com</a> and compatible with the NMEA file and port output of BNC's 'PPP' client option. 3769 </p> 3770 <p> 3771 Furthermore, NASA's 'World Wind' software (see <a href="http://worldwindcentral.com/wiki/NASA_World_Wind_Download" target="_blank">http://worldwindcentral.com/wiki/NASA_World_Wind_Download</a>) can be used for real-time visualization of positions provided through BNC's NMEA IP output port. You need the 'GPS Tracker' plug-in available from <a href="http://worldwindcentral.com/wiki/GPS_Tracker" target="_blank">http://worldwindcentral.com/wiki/GPS_Tracker</a> for that. The 'Word Wind' map resolution is not meant for showing centimeter level details. 3772 </p> 3773 3774 <p><h4 id="pppOptions">2.13.3 PPP (3): Processing Options</h4></p> 3775 <p>BNC allows using various Point Positioning processing options depending on the capability of the involved receiver and the application in mind. You can introduce specific sigmas for code and phase observations as well as for a priori coordinates and troposphere estimates. You could also carry out your PPP solution in Quick-Start mode or enforce BNC to restart a solution if the length of an outage exceeds a certain threshold. 4077 Specify a 1-character solution ID to allow a distingtion between different solutions per AC. String '1' is an example. 4078 </p> 4079 4080 <p><h4 id="pppOptions">2.13.2 PPP (2): Processing Options</h4></p> 4081 <p> 4082 BNC allows using various Point Positioning processing options depending on the capability of the involved receiver and the application in mind. 4083 You can introduce specific sigmas for code and phase observations as well as for a priori coordinates and troposphere estimates. 4084 You could also carry out your PPP solution in Quick-Start mode or enforce BNC to restart a solution if the length of an outage exceeds a certain threshold. 3776 4085 </p> 3777 4086 <p> … … 3779 4088 </p> 3780 4089 3781 <p><img src="IMG/screenshot18.png"/></p> 3782 <p>Figure 24: Precise Point Positioning with BNC, PPP Panel 3</p> 3783 3784 <p><h4 id="ppplinecombi">2.13.3.1 Linear Combinations - mandatory</h4></p> 3785 <p> 3786 <p> 3787 Specify on which ionosphere-free Linear Combinations (LCs) of observations you want to base ambiguity resolutions (Mervart et al. 2008). This implicitly defines the kind of GNSS observations you want to use. The specification is to be done per GNSS system ('GPS LCs', 'GLONASS LCs', 'Galileo LCs', 'BDS LCs'). 3788 </p> 3789 <p> 3790 <ul> 3791 <li>Selecting 'P3' means that you request BNC to use code data and the so-called P3 ionosphere-free linear combinations of code observations.</li> 3792 <li>'L3' means that you request BNC to use phase data and the so-called L3 ionosphere-free linear combinations of phase observations.</li> 3793 <li>'P3&L3' means that you request BNC to use both, code and phase data and the so-called P3 and L3 ionosphere-free linear combinations of code and phase observations.</li> 3794 </ul> 3795 </p> 3796 <p>Note that most geodetic GPS receivers support the observation of both, code and phase data. Hence, specifying 'P3&L3' would be a good choice for GPS when processing data from such a receiver. If multi-GNSS data processing is your intention, make sure your receiver supports GLONASS and/or Galileo and/or BDS observations besides GPS. Note also that the Broadcast Correction stream or file, which is required for PPP, also supports all the systems you have in mind. 4090 <p><img src="IMG/Figure23.png"width=1000/></p> 4091 <p>Figure 23: Precise Point Positioning with BNC, PPP Panel 2</p> 4092 4093 <p><h4 id="pppobs">2.13.2.1 GNSS Observations - mandatory</h4></p> 4094 <p> 4095 Specify on which kind of GNSS observations you want to use. The specification is to be done per GNSS system ('GPS', 'GLONASS', 'Galileo', 'BDS'). 4096 </p> 4097 <ul> 4098 <li> Specifying 'Pi' means that you request BNC to use code data of two frequencies.</li> 4099 <li> Specifying 'Li' means that you request BNC to use phase data of two frequencies.</li> 4100 <li> Specifying 'Pi&Li' means that you request BNC to use code and phase data of two frequencies.</li> 4101 </ul> 4102 <p> 4103 Note that most geodetic GPS receivers support the observation of both, code and phase data. 4104 Hence, specifying 'Pi&Li' would be a good choice for GPS when processing data from such a receiver. 4105 If multi-GNSS data processing is your intention, make sure your receiver supports GLONASS and/or Galileo and/or BDS observations besides GPS. 4106 Note also that the Broadcast Correction stream or file, which is required for PPP, also supports all the systems you have in mind. 3797 4107 </p> 3798 4108 <p>Specifying 'no' means that you do not at all want BNC to use observations from the affected GNSS system. 3799 4109 </p> 3800 4110 3801 <p><h4 id="pppcodeobs">2.13.3.2 Code Observations - mandatory</h4></p> 3802 <p> 3803 Enter a 'Sigma C1' for C1 code observations in meters. The bigger the sigma you enter, the less the contribution of C1 code observations to a PPP solution based on a combination of code and phase data. '2.0' meters is likely to be an appropriate choice. 3804 </p> 3805 <p> 3806 Specify a maximum for residuals 'Max Res C1' for C1 code observations in a PPP solution. '3.0' meters may be an appropriate choice for that. If the maximum is exceeded, contributions from the corresponding observation will be ignored in the PPP solution. 3807 </p> 3808 3809 3810 <p><h4 id="pppphaseobs">2.13.3.3 Phase Observations - mandatory</h4></p> 3811 <p> 3812 Enter a 'Sigma L1' for L1 phase observations in meters. The bigger the sigma you enter, the less the contribution of L1 phase observations to a PPP solutions based on a combination of code and phase data. '0.01' meters is likely to be an appropriate choice. 3813 </p> 3814 <p> 3815 Specify a maximum for residuals 'Max Res L1' for L1 phase observations in a PPP solution. '0.03' meters may be an appropriate choice for that. If the maximum is exceeded, contributions from the corresponding observation will be ignored in the PPP solution. 3816 </p> 3817 3818 <p> 3819 As the convergence characteristic of a PPP solution can be influenced by the ratio of sigmas for code and phase, you may like to introduce sigmas which differ from the default values. 3820 <ul> 3821 <li>Introducing a smaller sigma (higher accuracy) for code observations or a bigger sigma for phase observations leads to better results shortly after program start. However, it may take more time until you finally get the best possible solution.</li> 3822 <li>Introducing a bigger sigma (lower accuracy) for code observations or a smaller sigma for phase observations may lead to less accurate results shortly after program start and thus a prolonged period of convergence but could provide better positions in the long run.</li> 3823 </ul> 3824 </p> 3825 3826 <p><h4 id="pppeleweight">2.13.3.4 Elevation Dependent Weighting - mandatory</h4></p> 4111 <p><h4 id="pppcodeobs">2.13.2.2 Code Observations - mandatory</h4></p> 4112 <p> 4113 Enter a 'Sigma C1' for C1 code observations in meters. The bigger the sigma you enter, the less the contribution of C1 code observations to a PPP solution 4114 based on a combination of code and phase data. '2.0' meters is likely to be an appropriate choice. 4115 </p> 4116 <p> 4117 Specify a maximum for residuals 'Max Res C1' for C1 code observations in a PPP solution. '3.0' meters may be an appropriate choice for that. 4118 If the maximum is exceeded, contributions from the corresponding observation will be ignored in the PPP solution. 4119 </p> 4120 4121 <p><h4 id="pppphaseobs">2.13.2.3 Phase Observations - mandatory</h4></p> 4122 <p> 4123 Enter a 'Sigma L1' for L1 phase observations in meters. The bigger the sigma you enter, the less the contribution of 4124 L1 phase observations to a PPP solutions based on a combination of code and phase data. '0.01' meters is likely to be 4125 an appropriate choice. 4126 </p> 4127 <p> 4128 Specify a maximum for residuals 'Max Res L1' for L1 phase observations in a PPP solution. '0.03' meters may be an appropriate choice for that. 4129 If the maximum is exceeded, contributions from the corresponding observation will be ignored in the PPP solution. 4130 </p> 4131 <p> 4132 As the convergence characteristic of a PPP solution can be influenced by the ratio of sigmas for code and phase, 4133 you may like to introduce sigmas which differ from the default values. 4134 <ul> 4135 <li>Introducing a smaller sigma (higher accuracy) for code observations or a bigger sigma for phase observations leads to better 4136 results shortly after program start. However, it may take more time until you finally get the best possible solution.</li> 4137 <li>Introducing a bigger sigma (lower accuracy) for code observations or a smaller sigma for phase observations may lead to 4138 less accurate results shortly after program start and thus a prolonged period of convergence but could provide better 4139 positions in the long run.</li> 4140 </ul> 4141 </p> 4142 4143 <p><h4 id="pppeleweight">2.13.2.4 Elevation Dependent Weighting - mandatory</h4></p> 3827 4144 <p> 3828 4145 BNC allows elevation dependent weighting when processing GNSS observations. A weight function 3829 4146 </p> 3830 3831 4147 <p> P = cos² * z</p> 3832 3833 <p> 3834 with 'z' being the zenith distance to the involved satellite can be applied instead of the simple weight function 'P = 1'independent from satellite elevation angles.4148 <p> 4149 with 'z' being the zenith distance to the involved satellite can be applied instead of the simple weight function 'P = 1' 4150 independent from satellite elevation angles. 3835 4151 </p> 3836 4152 <ul> … … 3842 4158 </p> 3843 4159 3844 <p><h4 id="pppminobs">2.13. 3.5 Minimum Number of Observations - mandatory</h4></p>4160 <p><h4 id="pppminobs">2.13.2.5 Minimum Number of Observations - mandatory</h4></p> 3845 4161 <p> 3846 4162 Select the minimum number of observations you want to use per epoch. The minimum for parameter 'Min # of Obs' is 5. This is also the default. 3847 4163 </p> 3848 3849 <p><h4 id="pppmineleva">2.13.3.6 Minimum Elevation - mandatory</h4></p> 3850 <p> 3851 Select a minimum for satellite elevation angles. Selecting '10 deg' for option 'Min Elevation' may be an appropriate choice. 4164 <p><h4 id="pppmineleva">2.13.2.6 Minimum Elevation - mandatory</h4></p> 4165 <p> 4166 Select a minimum for satellite elevation angles. Selecting '7 deg' for option 'Min Elevation' may be an appropriate choice. 3852 4167 </p> 3853 4168 <p> … … 3855 4170 </p> 3856 4171 3857 <p><h4 id="pppwaitclockcorr">2.13.3.7 Wait for Clock Corrections - optional</h4></p> 3858 <p> 3859 Specifying 'no' for option 'Wait for clock corr.' means that BNC processes each epoch of data immediately after its arrival using satellite clock corrections available at that time. A non-zero value means that epochs of data are buffered and the processing of each epoch is postponed until satellite clock corrections not older than 'Wait for clock corr.' seconds are available. Specifying a value of half the update rate of the clock corrections (e.g. 5 sec) may be appropriate. Note that this causes an additional delay of the PPP solutions in the amount of half of the update rate. 3860 </p> 3861 <p> 3862 Using observations in sync with the corrections can avoid a possible high frequency noise of PPP solutions. Such noise could result from processing observations regardless of how late after a clock correction they were received. Note that applying the 'Wait for clock corr.' option significantly reduces the PPP computation effort for BNC. 3863 </p> 3864 <p> 3865 Default is an empty option field, meaning that you want BNC to process observations immediately after their arrival through applying the latest received clock correction. 3866 </p> 3867 3868 <p><h4 id="pppseeding">2.13.3.8 Seeding - optional if a priori coordinates specified in 'Coordinates file'</h4></p> 3869 <p> 3870 Enter the length of a startup period in seconds for which you want to fix the PPP solution to a known position, see option 'Coordinates file'. Constraining a priori coordinates is done in BNC through setting their white 'Noise' temporarily to zero. 3871 </p> 3872 <p> 3873 This so-called <b>Quick-Start</b> option allows the PPP solutions to rapidly converge after startup. It requires that the antenna remains unmoved on the known position throughout the defined period. A value of '60' seconds is likely to be an appropriate choice for 'Seeding'. Default is an empty option field, meaning that you do not want BNC to start in Quick-Start mode. 3874 <p> 3875 You may need to create your own reference coordinate beforehand through running BNC for an hour in normal mode before applying the 'Seeding' option. Do not forget to introduce realistic North/East/Up sigmas under panel 'PPP (2)' corresponding to the coordinate's precision. 3876 </p> 3877 4172 <p><h4 id="pppwaitclockcorr">2.13.2.7 Wait for Clock Corrections - optional</h4></p> 4173 <p> 4174 Specifying 'no' for option 'Wait for clock corr.' means that BNC processes each epoch of data immediately after its arrival using 4175 satellite clock corrections available at that time. A non-zero value means that epochs of data are buffered and the processing 4176 of each epoch is postponed until satellite clock corrections not older than 'Wait for clock corr.' seconds are available. 4177 Specifying a value of half the update rate of the clock corrections (e.g. 5 sec) may be appropriate. 4178 Note that this causes an additional delay of the PPP solutions in the amount of half of the update rate. 4179 </p> 4180 <p> 4181 Using observations in sync with the corrections can avoid a possible high frequency noise of PPP solutions. 4182 Such noise could result from processing observations regardless of how late after a clock correction they were received. 4183 Note that applying the 'Wait for clock corr.' option significantly reduces the PPP computation effort for BNC. 4184 </p> 4185 <p> 4186 Default is an empty option field, meaning that you want BNC to process observations immediately after their arrival 4187 through applying the latest received clock correction. 4188 </p> 4189 4190 <p><h4 id="pppseeding">2.13.2.8 Seeding - optional if a priori coordinates specified in 'Coordinates file'</h4></p> 4191 <p> 4192 Enter the length of a startup period in seconds for which you want to fix the PPP solution to a known position, see option 'Coordinates file'. 4193 Constraining a priori coordinates is done in BNC through setting their white 'Noise' temporarily to zero. 4194 </p> 4195 <p> 4196 This so-called <b>Quick-Start</b> option allows the PPP solutions to rapidly converge after startup. 4197 It requires that the antenna remains unmoved on the known position throughout the defined period. 4198 A value of '60' seconds is likely to be an appropriate choice for 'Seeding'. 4199 Default is an empty option field, meaning that you do not want BNC to start in Quick-Start mode. 4200 <p> 4201 You may need to create your own reference coordinate beforehand through running BNC for an hour in normal mode before applying 4202 the 'Seeding' option. Do not forget to introduce realistic North/East/Up sigmas under panel 'PPP (3)' corresponding to the 4203 coordinate's precision. 4204 </p> 3878 4205 <p> 3879 4206 'Seeding' has also a function for <b>bridging gaps</b> in PPP solutions from failures caused e.g. by longer lasting … … 3884 4211 </p> 3885 4212 4213 <p><h4 id="ppppseudoobs">2.13.2.9 Pseudo Observations - optional</h4></p> 4214 <p> 4215 Specify whether pseudo observations regarding the Ionosphere shall be used. Please note, this is useful, 4216 as soon as the ionospheric information is more accurate than the code data accuracy. 4217 4218 <p><h4 id="ppppseudogimobs">2.13.2.10 GIM Pseudo Observations - optional</h4></p> 4219 <p> 4220 Enter a 'Sigma GIM' for pseudo observations regarding the Ionosphere in meters. 4221 The bigger the sigma you enter, the less the contribution of GIM Pseudo observations to a PPP solutions 4222 based on a combination of code and phase data. '5.0' meters is likely to be an appropriate choice. 4223 </p> 4224 <p> 4225 Specify a maximum for residuals 'Max Res GIM' for pseudo observations regarding the Ionosphere in a PPP solution. 4226 '3.0' meters may be an appropriate choice for that. 4227 If the maximum is exceeded, contributions from the corresponding observation will be ignored in the PPP solution. 4228 </p> 3886 4229 <p> 3887 4230 The following figure provides the screenshot of an example PPP session with BNC. 3888 4231 </p> 3889 3890 <p><img src="IMG/screenshot22.png"/></p> 3891 <p>Figure 25: Precise Point Positioning with BNC in 'Quick-Start' mode, PPP Panel 4</p> 4232 <p><img src="IMG/Figure24.png"width=1000/></p> 4233 <p>Figure 24: Precise Point Positioning with BNC in 'Quick-Start' mode, PPP Panel 4</p> 4234 4235 <p><h4 id="pppStation">2.13.3 PPP (3): Processed Stations</h4></p> 4236 <p> 4237 This panel allows to enter parameters specific to each PPP process or thread. Individual sigmas for a priori coordinates and a 4238 noise for coordinate variations over time can be introduced. Furthermore, a sigma for model-based troposphere estimates and the 4239 corresponding noise for troposphere variations can be specified. Finally, local IP server ports can be defined for output of 4240 NMEA streams carrying PPP results. 4241 </p> 4242 4243 <p> 4244 BNC offers to create a table with one line per PPP process or thread to specify station-specific parameters. 4245 Hit the 'Add Station' button to create the table or add a new line to it. To remove a line from the table, 4246 highlight it by clicking it and hit the 'Delete Station' button. You can also remove multiple lines simultaneously 4247 by highlighting them using +Shift or +Ctrl.</p> 4248 </p> 4249 4250 <p> 4251 BNC will simultaneously produce PPP solutions for all stations listed in the 'Station' column of this table. 4252 </p> 4253 4254 <p><img src="IMG/Figure25.png"width=1000/></p> 4255 <p>Figure 25: Precise Point Positioning with BNC, PPP Panel 3</p> 4256 4257 <p><h4 id="pppsite">2.13.2.1 Station - mandatory</h4></p> 4258 <p> 4259 Hit the 'Add Station' button, double click on the 'Station' field, then specify an observation's mountpoint from the 4260 'Streams' section or introduce the 9-character Station ID of your RINEX observation file and hit Enter. 4261 BNC will only produce PPP solutions for stations listed in this table. 4262 </p> 4263 4264 <p><h4 id="pppnehsigma">2.13.2.2 Sigma North/East/Up - mandatory</h4></p> 4265 <p> 4266 Enter sigmas in meters for the initial coordinate components. A value of 100.0 (default) may be an appropriate choice. 4267 However, this value may be significantly smaller (e.g. 0.01) when starting for example from a station with a well-known position 4268 in so-called Quick-Start mode. 4269 </p> 4270 4271 <p><h4 id="pppnehnoise">2.13.2.3 Noise North/East/Up - mandatory</h4></p> 4272 <p> 4273 Enter a white 'Noise' in meters for estimated coordinate components. A value of 100.0 (default) may be appropriate when 4274 considering possible sudden movements of a rover. 4275 </p> 4276 4277 <p><h4 id="ppptropsigma">2.13.2.4 Tropo Sigma - mandatory</h4></p> 4278 <p> 4279 Enter a sigma in meters for the a priori model based tropospheric delay estimation. A value of 0.1 (default) may be an appropriate choice. 4280 </p> 4281 4282 <p><h4 id="ppptropnoise">2.13.2.5 Tropo Noise - mandatory</h4></p> 4283 <p> 4284 Enter a white 'Noise' in meters per second to describe the expected variation of the tropospheric effect. Supposing 1Hz observation data, 4285 a value of 3e-6 (default) would mean that the tropospheric effect may vary for 3600 * 3e-6 = 0.01 meters per hour. 4286 </p> 4287 4288 <p><h4 id="pppnmeaport">2.13.2.6 NMEA Port - optional</h4></p> 4289 <p> 4290 Specify the IP port number of a local port where Point Positioning results become available as NMEA sentences. The default value 4291 for 'NMEA Port' is an empty option field, meaning that BNC does not provide NMEA sentences via IP port. Note that NMEA file output 4292 and NMEA IP port output are the same. 4293 </p> 4294 <p> 4295 Note also that Tomoji Takasu has written a program named RTKPLOT for visualizing NMEA sentences from IP ports or files. 4296 It is available from <a href="http://www.rtklib.com" target="_blank">http://www.rtklib.com</a> and compatible with the 4297 NMEA file and port output of BNC's 'PPP' client option. 4298 </p> 4299 <p> 4300 Furthermore, NASA's 'World Wind' software 4301 (see <a href="http://worldwindcentral.com/wiki/NASA_World_Wind_Download" target="_blank">http://worldwindcentral.com/wiki/NASA_World_Wind_Download</a>) 4302 can be used for real-time visualization of positions provided through BNC's NMEA IP output port. 4303 You need the 'GPS Tracker' plug-in available from 4304 <a href="http://worldwindcentral.com/wiki/GPS_Tracker" target="_blank">http://worldwindcentral.com/wiki/GPS_Tracker</a> for that. 4305 The 'Word Wind' map resolution is not meant for showing centimeter level details. 4306 </p> 4307 4308 <p><h4 id="pppsignalpriorities">2.13.2.7 Signal Priotities - optional</h4></p> 4309 <p> 4310 Specify a list of signal priorities (2 frequencies per system) for the observations that shall be used for PPP. 4311 </p> 4312 <p> 4313 'Signal Priorities' can be specified as equal for all systems, as system specific or as system and frequency specific. 4314 For example: 4315 </p> 4316 <ul> 4317 <li>'CWPX_?' (General signal priorities valid for all GNSS)</li> 4318 <li>'E:IQX' (System specific signal priorities for Galileo)</li> 4319 <li>'G:12&PWCSLX G:5&IQX R:12&PC R:3&IQX' (System and frequency specific signal priorities)</li> 4320 </ul> 4321 </p> 4322 <p> 4323 Default is the following list of 'Signal Priorities': 4324 <ul><li>'G:12&CWPSLX R:12&CP E:1&CBX E:5&QIX C:26&IQX'</li></ul> 4325 </p> 4326 But please note, for the PPP models 'DCM with Phase Biases' or 'DCM with Code Biases' currrently only one code or phase bias 4327 per system (G,R,E,C)/modulation can be considered. Hence, for example the following list of 'Signal Priorities' would be valid: 4328 <ul> <li>'G:12&CW R:12&CP E:1&CX E:5&QX C:26&I'</li> </ul> 3892 4329 3893 4330 <p><h4 id="pppPlots">2.13.4 PPP (4): Plots</h4></p> 3894 4331 <p> 3895 4332 This panel presents options for visualizing PPP results as a time series plot or as a track map with PPP tracks on top 3896 of O SM or Googlemaps.4333 of OpenStreetMap (OSM) maps. 3897 4334 </p> 3898 4335 … … 3919 4356 <p><h4 id="ppptrackmap">2.13.4.3 Track Map - optional</h4></p> 3920 4357 <p> 3921 You may like to track your rover position using Google Maps orOpenStreetMap as a background map. Track maps can be4358 You may like to track your rover position using OpenStreetMap as a background map. Track maps can be 3922 4359 produced with BNC in 'Real-time Streams' mode or in 'RINEX Files' post processing mode with data coming from files. 3923 </p> 3924 <p> 3925 Even when in 'RINEX Files' post processing mode, you should not forget to go online with your host and specify a 3926 proxy under the 'Network' panel if that is operated in front of BNC. 3927 </p> 3928 <p> 3929 The 'Open Map' button opens a window showing a map according to the selected 'Google/OSM' option. 3930 </p> 3931 3932 <p><img src="IMG/screenshot32.png"/></p> 3933 <p>Figure 26: Track of positions from BNC with Google Maps in background</p> 3934 3935 <p><h4 id="pppmaptype">2.13.4.3.1 Google/OSM - mandatory before pushing 'Open Map'</h4></p> 3936 <p> 3937 Select either 'Google' or 'OSM' as the background map for your rover positions. 3938 </p> 3939 3940 <p><img src="IMG/screenshot41.png"/></p> 3941 <p>Figure 27: Example for background map from Google Maps and OpenStreetMap (OSM)</p> 4360 Even when in 'RINEX Files' post processing mode, you should not forget to go online with your host. 4361 </p> 4362 <p> 4363 The 'Open Map' button opens a window showing the map. 4364 </p> 4365 4366 <p><img src="IMG/Figure26.png"width=1000/></p> 4367 <p>Figure 26: Track of positions from BNC with OpenStreetMap in background</p> 3942 4368 3943 4369 <p><h4 id="pppdotprop">2.13.4.4 Dot-properties - mandatory before pushing 'Open Map'</h4></p> … … 3967 4393 <p> 3968 4394 BNC allows processing several orbit and clock correction streams in real-time to produce, encode, upload and save a 3969 combination of Broadcast Corrections from various providers . All corrections must refer to satellite3970 Antenna Phase Centers (APC). It is so far only the satellite clock corrections which are combined by BNC while orbit 3971 corrections in the combination product as well as product update ratesare just taken over from one of the incoming4395 combination of Broadcast Corrections from various providers (Weber and Mervart 2010). All corrections must refer to 4396 satellite Antenna Phase Centers (APC). It is so far only the satellite clock corrections, which are combined by BNC 4397 while orbit corrections in the combination product are just taken over from one of the incoming 3972 4398 Broadcast Correction streams. Combining only clock corrections using a fixed orbit reference imposes the potential 3973 to introduce some analysis inconsistencies. We may therefore eventually consider improvements on this approach. 3974 The clock combination can be based either on a plain 'Single-Epoch' or on a Kalman 'Filter' approach. 3975 </p> 3976 3977 <p> 3978 In the Kalman Filter approach, satellite clocks estimated by individual Analyses Centers (ACs) are used as pseudo 3979 observations within the adjustment process. Each observation is modeled as a linear function (actually a simple sum) 3980 of three estimated parameters: AC specific offset, satellite specific offset common to all ACs, and the actual satellite 3981 clock correction, which represents the result of the combination. These three parameter types differ in their statistical 3982 properties. The satellite clock offsets are assumed to be static parameters while AC specific and satellite specific 3983 offsets are stochastic parameters affected by white noise. 3984 </p> 3985 3986 <p> 3987 The solution is regularized by a set of minimal constraints. In case of a change of the 'SSR Provider ID', 3988 'SSR Solution ID', or 'IOD SSR' (see section 'Upload Corrections'), the satellite clock offsets belonging to the 3989 corresponding analysis center are reset in the adjustment. 3990 </p> 3991 3992 <p> 3993 Removing the AC-dependent biases as well as possible is a major issue with clock combinations. Since they vary in time, it can be tricky to do this. Otherwise, there will be artificial jumps in the combined clock stream if one or more AC contributions drop out for certain epochs. Here the Kalman Filter approach is expected to do better than the Single-Epoch approach. 3994 </p> 3995 <p> 3996 In view of IGS real-time products, the 'Combine Corrections' functionality has been integrated in BNC (Weber and Mervart 2010) because 3997 <ul> 3998 <li>The software with its Graphic User Interface and range of supported Operating Systems represents a perfect platform to process many Broadcast Correction streams in parallel;</li> 4399 to introduce some analysis inconsistencies. We will therefore consider improvements on this approach. 4400 </p> 4401 <p> 4402 The 'Combine Corrections' functionality may be of interrest because: 4403 <ul> 3999 4404 <li>Outages of single AC product streams can be mitigated through merging several incoming streams into a combined product;</li> 4000 4405 <li>Generating a combination product from several AC products allows detecting and rejecting outliers;</li> … … 4003 4408 <li>It enables a BNC PPP user to follow his own preference in combining streams from individual ACs for Precise Point Positioning;</li> 4004 4409 <li>It allows an instantaneous quality control of the combination process not only in the time domain but also in the space domain; this can be done by direct application of the combined stream in a PPP solution even without prior upload to an Ntrip Broadcaster;</li> 4005 <li>It provides the means to output SP3 and Clock RINEX files containing precise orbit and clock information for further processing using other tools than BNC.</li> 4006 </ul> 4007 </p> 4008 4009 <p> 4010 Note that the combination process requires real-time access to Broadcast Ephemeris. Therefore, in addition to the orbit 4011 and clock correction streams BNC must pull a stream carrying Broadcast Ephemeris in the form of RTCM Version 3 messages. 4012 Stream 'RTCM3EPH' on caster <a href="http://products.igs-ip.net" target="_blank">http://products.igs-ip.net</a> is an example for that. Note further that BNC will ignore incorrect 4013 or outdated Broadcast Ephemeris data when necessary, leaving a note 'WRONG EPHEMERIS' or 'OUTDATED EPHEMERIS' in the logfile. 4014 </p> 4015 4016 <p> 4017 A combination is carried out following a specified sampling interval. BNC waits for incoming Broadcast Corrections for the period of one such interval. Corrections received later than that will be ignored. If incoming streams have different rates, only epochs that correspond to the sampling interval are used. 4018 </p> 4019 4020 <p> 4021 With respect to IGS, it is important to understand that a major effect in the combination of GNSS orbit and clock correction streams is the selection of ACs to include. It is likely that a combination product could be improved in accuracy by using only the best two or three ACs. However, with only a few ACs to depend on, the reliability of the combination product could suffer and the risk of total failures increases. So there is an important tradeoff here that must be considered when selecting streams for a combination. The major strength of a combination product is its reliability and stable median performance which can be much better than that of any single AC product. 4022 </p> 4023 <p> 4024 This comment applies in situations where we have a limited number of solutions to combine and their quality varies significantly. The situation may be different when the total number of ACs is larger and the range of AC variation is smaller. In that case, a standard full combination is probably the best. 4410 <li>It provides the means to output SP3 and Clock RINEX files containing precise orbit and clock information as well as SINEX Bias files for further processing using other tools than BNC.</li> 4411 </ul> 4412 </p> 4413 The clock combination can be based either on a plain 'Single-Epoch' or on a Kalman 'Filter' approach. 4414 In the Kalman Filter approach, satellite clocks estimated by individual Analyses Centers (ACs) are used as pseudo 4415 observations within the adjustment process. Each observation is modeled as a linear function (actually a simple sum) 4416 of three estimated parameters: 4417 <pre> 4418 Clk_Corr = AC_Offset + Sat_Offset + Clk 4419 </pre> 4420 With 4421 <p> 4422 <table> 4423 <tr><td> AC_Offset </td><td> AC specific offset</td></tr> 4424 <tr><td> Sat_Offset</td><td> Satellite specific offset common to all ACs</td></tr> 4425 <tr><td> Clk </td><td> the actual satellite clock correction, which represents the result of the combination</td></tr> 4426 </table> 4427 </p> 4428 These three parameter types differ in their statistical properties. The satellite clock offsets are assumed to be static parameters 4429 while AC specific and satellite specific offsets are stochastic parameters affected by white noise. 4430 The solution is regularized by a set of minimal constraints. In case of a change of the 'SSR Provider ID', 4431 'SSR Solution ID', or 'IOD SSR' (see section 'Upload Corrections'), the satellite clock offsets belonging to the 4432 corresponding analysis center are reset in the adjustment. 4433 </p> 4434 <p> 4435 Removing the AC-dependent biases as well as possible is a major issue with clock combinations. 4436 Since they vary in time, it can be tricky to do this. Otherwise, there will be artificial jumps in the combined clock stream 4437 if one or more AC contributions drop out for certain epochs. Here the Kalman Filter approach is expected to do better than the 4438 Single-Epoch approach. 4025 4439 </p> 4026 4440 <p> 4027 4441 The following recursive algorithm is used to detect orbit outliers in the Kalman Filter combination when Broadcast Corrections are provided by several ACs:<br> 4028 Step 1: We do not produce a combination for a certain satellite if only one AC provides corrections for it.<br> 4029 Step 2: A mean satellite position is calculated as the average of positions from all ACs.<br> 4030 Step 3: For each AC and satellite, the 3D distance between individual and mean satellite position is calculated.<br> 4031 Step 4: We find the greatest difference between AC specific and mean satellite positions.<br> 4032 Step 5: If that is less than a threshold, the conclusion is that we do not have an outlier and can proceed to the next epoch.<br> 4033 Step 6: If that is greater than a threshold, then corrections of the affiliated AC are ignored for the affected epoch and the outlier detection restarts with step 1. 4034 </p> 4035 4036 <p> 4037 The following screenshot shows an example setup of BNC when combining Broadcast Correction streams CLK11, CLK21, CLK91, and CLK80. 4038 </p> 4039 4040 <p><img src="IMG/screenshot20.png"/></p> 4041 <p>Figure 28: BNC combining Broadcast Correction streams</p> 4042 <p></p> 4043 <p> 4044 Note that BNC can produce an internal PPP solution from combined Broadcast Corrections. For that you have to specify the keyword 'INTERNAL' as 'Corrections stream' in the PPP (1) panel. The following example combines correction streams IGS01 and IGS02 and simultaneously carries out a PPP solution with observations from stream FFMJ1 to allow monitoring the quality of the combination product in the space domain. 4045 </p> 4046 4047 <p><img src="IMG/screenshot23.png"/></p> 4048 <p>Figure 29: 'INTERNAL' PPP with BNC using a combination of Broadcast Corrections</p> 4442 <p> 4443 <table> 4444 <tr><td> Step 1 </td><td> We do not produce a combination for a certain satellite if only one AC provides corrections for it.</td></tr> 4445 <tr><td> Step 2 </td><td> A mean satellite position is calculated as the average of positions from all ACs.</td></tr> 4446 <tr><td> Step 3 </td><td> For each AC and satellite, the 3D distance between individual and mean satellite position is calculated.</td></tr> 4447 <tr><td> Step 4 </td><td> We find the greatest difference between AC specific and mean satellite positions.</td></tr> 4448 <tr><td> Step 5 </td><td> If that is less than a threshold, the conclusion is that we do not have an outlier and can proceed to the next epoch.</td></tr> 4449 <tr><td> Step 6 </td><td> If that is greater than a threshold, then corrections of the affiliated AC are ignored for the affected epoch and 4450 the outlier detection restarts with step 1.</td></tr> 4451 </table> 4452 </p> 4453 <p> 4454 The following screenshot shows an example setup of BNC when combining Broadcast Correction streams SSRA00BKG1 and SSRA00CNE1. 4455 </p> 4456 <p><img src="IMG/Figure27.png"width=1000/></p> 4457 <p>Figure 27: BNC combining Broadcast Correction streams</p> 4458 4459 <p> 4460 The combination process requires real-time access to Broadcast Ephemeris. Therefore, in addition to the orbit 4461 and clock correction streams BNC must pull a stream carrying Broadcast Ephemeris in the form of RTCM Version 3 messages. 4462 Stream 'BCEP00BKG0' on caster <a href="http://products.igs-ip.net" target="_blank">http://products.igs-ip.net</a> 4463 is an example for that. Note further that BNC will ignore incorrect or outdated Broadcast Ephemeris data when necessary, 4464 leaving a note 'WRONG EPHEMERIS' or 'OUTDATED EPHEMERIS' in the logfile. 4465 </p> 4466 <p> 4467 The combination is done system-wise for the following reference signals as specified in the IGS RTWG: 4468 <p> 4469 <table> 4470 <tr><td> GPS: </td><td> C1W/C2W</td></tr> 4471 <tr><td> GLONASS;</td><td> C1P/C2P</td></tr> 4472 <tr><td> Galileo:</td><td> C1C/C5Q</td></tr> 4473 <tr><td> BDS: </td><td> C2I/C6I</td></tr> 4474 <tr><td> QZSS: </td><td> C1C/C2L</td></tr> 4475 <tr><td> SBAS: </td><td> C1C/C5Q</td></tr> 4476 <tr><td> IRNSS: </td><td> nothing declared</td></tr> 4477 </table> 4478 </p> 4479 Assuming that the ACs generate ionosphere-free clocks based on their individual choosen signals, the ionosphere-free code biases 4480 for the reference signals as specified in the IGS RTWG are determined from the supplied code biases. 4481 These are subtracted from each of the clocks before combination, resulting in combined code-bias-free and ionosphere-free clocks. 4482 </p> 4483 <p> 4484 This can be used to set the ionosphere-free linearcombination of two Observable-specific Signal Biases (OSBs; 4485 those of the reference signals) to zero in order to calculate all other OSBs. 4486 For this, we use currently the satellite biases which are computed by the Institute of Geodesy and Geophysics (IGG) 4487 of the Chinese Academy of Sciences (CAS) and send them out as SSR code biases together with the combined clocks. 4488 These SINEX Bias files are archived at the CDDIS: 4489 <a href="https://cddis.nasa.gov/archive/gnss/products/bias/" target="_blank">https://cddis.nasa.gov/archive/gnss/products/bias/</a> 4490 </p> 4491 <p> 4492 A combination is carried out following a specified sampling interval. BNC waits for incoming Broadcast Corrections for the period 4493 of one such interval. Corrections received later than that will be ignored. If incoming streams have different rates, 4494 only epochs that correspond to the sampling interval are used. 4495 </p> 4496 <p> 4497 Note that BNC can produce an internal PPP solution from combined Broadcast Corrections. 4498 For that you have to specify the keyword 'INTERNAL' as 'Corrections stream' in the PPP (1) panel. 4499 The following example combines correction streams SSRA00BKG1 and SSRA00CNE1 and simultaneously carries out a PPP solution 4500 with observations from stream FFMJ01DEU0 to allow monitoring the quality of the combination product in the space domain. 4501 </p> 4502 <p><img src="IMG/Figure28.png"width=1000/></p> 4503 <p>Figure 28: 'INTERNAL' PPP with BNC using a combination of Broadcast Corrections</p> 4049 4504 4050 4505 <p><h4 id="combimounttab">2.14.1 Combine Corrections Table - optional</h4></p> 4051 4506 <p> 4052 Hit the 'Add Row' button, double click on the 'Mountpoint' field, enter a Broadcast Correction mountpoint from the 'Streams' section and hit Enter. Then double click on the 'AC Name' field to enter your choice of an abbreviation for the Analysis Center (AC) providing the Antenna Phase Center (APC) related correction stream. Finally, double click on the 'Weight' field to enter a weight to be applied to this stream in the combination. 4053 </p> 4054 4055 <p> 4056 The sequence of entries in the 'Combine Corrections' table is not of importance. Note that the orbit information in the final combination stream is just copied from one of the incoming streams. The stream used for providing the orbits may vary over time: if the orbit-providing stream has an outage then BNC switches to the next remaining stream for getting hold of the orbit information.</p> 4057 <p> 4058 It is possible to specify only one Broadcast Ephemeris correction stream in the 'Combine Corrections' table. Instead of combining corrections from several sources, BNC will then merge the single corrections stream with Broadcast Ephemeris to allow saving results in SP3 and/or Clock RINEX format when specified accordingly under the 'Upload Corrections' panel. Note that in such a BNC application you must not pull more than one Broadcast Ephemeris correction stream even if a second stream would provide the same corrections from a backup caster. 4507 Hit the 'Add Row' button, double click on the 'Mountpoint' field, enter a Broadcast Correction mountpoint from the 'Streams' section 4508 and hit Enter. Then double click on the 'AC Name' field to enter your choice of an abbreviation for the Analysis Center (AC) providing 4509 the Antenna Phase Center (APC) related correction stream. Finally, double click on the 'Weight' field to enter a weight to be applied 4510 to this stream in the combination.</p> 4511 <p> 4512 The sequence of entries in the 'Combine Corrections' table is not of importance. 4513 Note that the orbit information in the final combination stream is just copied from one of the incoming streams. 4514 The stream used for providing the orbits may vary over time: if the orbit-providing stream has an outage then BNC switches 4515 to the next remaining stream for getting hold of the orbit information.</p> 4516 <p> 4517 It is possible to specify only one Broadcast Ephemeris correction stream in the 'Combine Corrections' table. 4518 Instead of combining corrections from several sources, BNC will then merge the single corrections stream with 4519 Broadcast Ephemeris to allow saving results in SP3 and/or Clock RINEX format when specified accordingly under the 4520 'Upload Corrections' panel. Note that in such a BNC application you must not pull more than one Broadcast Ephemeris correction stream 4521 even if a second stream would provide the same corrections from a backup caster. 4059 4522 </p> 4060 4523 … … 4070 4533 <p><h4 id="combimethod">2.14.1.2 Method - mandatory if 'Combine Corrections' table is populated</h4></p> 4071 4534 <p> 4072 Select a clock combination method. Available options are Kalman 'Filter' and 'Single-Epoch. It is suggested to use the Kalman Filter approach in case the combined stream of Broadcast Corrections is intended for Precise Point Positioning. 4535 Select a clock combination method. Available options are Kalman 'Filter' and 'Single-Epoch. 4536 It is suggested to use the Kalman Filter approach in case the combined stream of Broadcast Corrections 4537 is intended for Precise Point Positioning. 4073 4538 </p> 4074 4539 4075 4540 <p><h4 id="combimax">2.14.1.3 Maximal Residuum - mandatory if 'Combine Corrections' table is populated</h4></p> 4076 4077 <p>BNC combines all incoming clocks according to specified weights. Individual clock estimates that differ by more than 'Maximal Residuum' meters from the average of all clocks will be ignored.<p> 4078 </p>It is suggested to specify a value of about 0.2 m for the Kalman Filter combination approach and a value of about 3.0 meters for the Single-Epoch combination approach.</p> 4079 <p>Default is a 'Maximal Residuum' of 999.0 meters.</p> 4541 <p> 4542 BNC combines all incoming clocks according to specified weights. Individual clock estimates that differ by more than 4543 'Maximal Residuum' meters from the average of all clocks will be ignored. 4544 It is suggested to specify a value of about 0.2 m for the Kalman Filter combination approach and 4545 a value of about 3.0 meters for the Single-Epoch combination approach. 4546 </p> 4547 <p> 4548 Default is a 'Maximal Residuum' of 999.0 meters.</p> 4080 4549 4081 4550 <p><h4 id="combismpl">2.14.1.4 Sampling - mandatory if 'Combine Corrections' table is populated</h4></p> 4082 <p>Specify a combination sampling interval. Orbit and clock corrections will be produced following that interval. A value of 10 sec may be an appropriate choice.</p> 4551 <p> 4552 Specify a combination sampling interval. Orbit and clock corrections will be produced following that interval. 4553 value of 10 sec may be an appropriate choice. 4554 </p> 4083 4555 4084 4556 <p><h4 id="upclk">2.15 Upload Corrections</h4></p> 4085 4557 <p> 4086 BNC can upload streams carrying orbit and clock corrections to Broadcast Ephemeris in radial, along-track and out-of-plane components if they are 4558 BNC can upload streams carrying orbit and clock corrections to Broadcast Ephemeris in radial, along-track and out-of-plane 4559 components if they are 4087 4560 <ol type="a"> 4088 <li>either generated by BNC as a combination of several individual Broadcast Correction streams coming from an number of real-time Analysis Centers (ACs), see section 'Combine Corrections',</li> 4089 <li>or generated by BNC while the program receives an ASCII stream of precise satellite orbits and clocks via IP port from a connected real-time GNSS engine. Such a stream would be expected in a plain ASCII format and the associated 'decoder' string would have to be 'RTNET', see format description below. </li> 4561 <li>either generated by BNC as a combination of several individual Broadcast Correction streams coming from an number of 4562 real-time Analysis Centers (ACs), see section 'Combine Corrections',</li> 4563 <li>or generated by BNC while the program receives an ASCII stream of precise satellite orbits and clocks via IP port 4564 from a connected real-time GNSS engine. Such a stream would be expected in a plain ASCII format and the associated 4565 'decoder' string would have to be 'RTNET', see format description below. </li> 4090 4566 </ol> 4091 The procedure taken by BNC to generate the orbit and clock corrections to Broadcast Ephemeris and upload them to an Ntrip Broadcaster is as follow: 4092 <ul> 4093 <li>Continuously receive up-to-date Broadcast Ephemeris carrying approximate orbits and clocks for all satellites. Read new Broadcast Ephemeris immediately whenever they become available. This information may come via a stream of RTCM messages generated from another BNC instance.</li> 4567 The procedure taken by BNC to generate the orbit and clock corrections to Broadcast Ephemeris and upload them to an 4568 Ntrip Broadcaster is as follow: 4569 <ul> 4570 <li>Continuously receive up-to-date Broadcast Ephemeris carrying approximate orbits and clocks for all satellites. 4571 Read new Broadcast Ephemeris immediately whenever they become available. This information may come via a stream of 4572 RTCM messages generated from another BNC instance.</li> 4094 4573 </ul> 4095 4574 Then, epoch by epoch: 4096 4575 <ul> 4097 <li>Continuously receive the best available orbit and clock estimates for all satellites in XYZ Earth-Centered-Earth-Fixed IGS14 reference system. Receive them every epoch in plain ASCII format as provided by a real-time GNSS engine such as RTNET or generate them following a combination approach. </li> 4576 <li>Continuously receive the best available orbit and clock estimates for all satellites in 4577 XYZ Earth-Centered-Earth-Fixed IGS20 reference system. 4578 Receive them every epoch in plain ASCII format as provided by a real-time GNSS engine such as RTNET or generate them 4579 following a combination approach. </li> 4098 4580 <li>Calculate XYZ coordinates from Broadcast Ephemeris orbits.</li> 4099 <li>Calculate differences dX,dY,dZ between Broadcast Ephemeris and IGS 14orbits.</li>4581 <li>Calculate differences dX,dY,dZ between Broadcast Ephemeris and IGS20 orbits.</li> 4100 4582 <li>Transform these differences into radial, along-track and out-of-plane corrections to Broadcast Ephemeris orbits.</li> 4101 <li>Calculate corrections to Broadcast Ephemeris clocks as differences between Broadcast Ephemeris clocks and IGS 14clocks.</li>4102 <li>Encode Broadcast Ephemeris orbit and clock corrections in RTCM Version 3 format.</li>4583 <li>Calculate corrections to Broadcast Ephemeris clocks as differences between Broadcast Ephemeris clocks and IGS20 clocks.</li> 4584 <li>Encode Broadcast Ephemeris orbit and clock corrections, biases and atmospheric parameters in 'State Space Reperesentation' messages'</li> 4103 4585 <li>Upload Broadcast Correction stream to Ntrip Broadcaster.</li> 4104 4586 </ul> 4105 4587 <p> 4106 The orbit and clock corrections to Broadcast Ephemeris are usually referred to the latest set of broadcast messages, which are generally also received in real-time by a GNSS rover. However, the use of the latest broadcast message is delayed for a period of 60 seconds, measured from the time of complete reception of ephemeris and clock parameters, in order to accommodate rover applications to obtain the same set of broadcast orbital and clock parameters. This procedure is recommended in the RTCM SSR standard. 4107 </p> 4108 4109 <p> 4110 Because the stream delivery process may put a significant load on the communication link between BNC and the real-time GNSS engine, it is recommended to run both programs on the same host. However, doing so is not compulsory. 4111 </p> 4112 <p> 4113 The usual handling of BNC when uploading a stream with Broadcast Corrections is that you first specify Broadcast Ephemeris and Broadcast Correction streams. You then specify an Ntrip Broadcaster for stream upload before you start the program. 4114 </p> 4115 4116 <p> 4117 <u>'RTNET' Stream Format</u><br> 4118 When uploading an SSR stream generated according to (b) then BNC requires precise GNSS orbits and clocks in the IGS Earth-Centered-Earth-Fixed (ECEF) reference system and in a specific ASCII format named 'RTNET' because the data may come from a real-time engine such as RTNET. The sampling interval for data transmission should not exceed 15 sec. Note that otherwise tools involved in IP streaming such as Ntrip Broadcasters or Ntrip Clients may respond with a timeout. 4119 </p> 4120 <p> 4121 Below you find an example for the 'RTNET' ASCII format coming from a real-time GNSS engine. Each epoch begins with an asterisk character followed by the time as year, month, day of month, hour, minute and second. Subsequent records can provide 4122 </p> 4123 4588 The orbit and clock corrections to Broadcast Ephemeris are usually referred to the latest set of broadcast messages, 4589 which are generally also received in real-time by a GNSS rover. However, the use of the latest broadcast message is 4590 delayed for a period of 60 seconds, measured from the time of complete reception of ephemeris and clock parameters, 4591 in order to accommodate rover applications to obtain the same set of broadcast orbital and clock parameters. 4592 This procedure is recommended in the RTCM SSR standard. 4593 </p> 4594 <p> 4595 Because the stream delivery process may put a significant load on the communication link between BNC and the real-time GNSS engine, 4596 it is recommended to run both programs on the same host. However, doing so is not compulsory. 4597 </p> 4598 <p> 4599 The usual handling of BNC when uploading a stream with Broadcast Corrections is that you first specify Broadcast Ephemeris and 4600 Broadcast Correction streams. You then specify an Ntrip Broadcaster for stream upload before you start the program. 4601 </p> 4602 4603 <p> 4604 <u>'RTNET' Stream Format:</u> When uploading an SSR stream generated according to (b) then BNC requires 4605 precise GNSS orbits and clocks in the IGS Earth-Centered-Earth-Fixed (ECEF) reference system and in a specific ASCII format 4606 named 'RTNET' because the data may come from a real-time engine such as RTNET. 4607 The sampling interval for data transmission should not exceed 15 sec. 4608 Note that otherwise tools involved in IP streaming such as Ntrip Broadcasters or Ntrip Clients may respond with a timeout. 4609 </p> 4610 <p> 4611 Below you find an example for the 'RTNET' ASCII format coming from a real-time GNSS engine. 4612 Each epoch begins with an asterisk character followed by the time as year, month, day of month, hour, minute and second. 4613 Subsequent records can provide 4614 </p> 4124 4615 <p> 4125 4616 <ul> … … 4127 4618 </ul> 4128 4619 </p> 4129 4130 4620 <p> 4131 4621 A set of parameters can be defined for each satellite as follows: … … 4136 4626 The following satellite specific keys and values are currently specified for that in BNC:<br><br> 4137 4627 <table> 4138 <tr><td> <i>Key </i></td><td><i>Values</i></td></tr>4139 <tr><td> APC</td><td>Satellite Antenna Phase Center coordinate components in meters</td></tr>4140 <tr><td> Clk</td><td>Satellite clock correction components in meters, meters per seconds and meters per sec² (relativistic correction applied like in broadcast clocks)</td></tr>4141 <tr><td> ClkSig</td><td>Standard deviation for satellite clock correction components in meters, meters per seconds and meters per sec² (required for Clock RINEX file only) /td></tr>4142 <tr><td> Vel</td><td>Satellite velocity components in meters per second</td></tr>4143 <tr><td> CoM</td><td>Satellite Center of Mass coordinate components in meters</td></tr>4144 <tr><td> Ura</td><td>User range accuracy value in meters</td></tr>4145 <tr><td> CodeBias</td><td>Satellite Code Biases in meters with two characters for frequency and tracking mode per bias as defined in RINEX 3and preceded by total number of biases</td></tr>4146 <tr><td> PhaseBias</td><td>Satellite Phase Biases in meters with two characters for frequency and tracking mode per bias as defined in RINEX 3, preceded by total number of biasesand followed by Signal Integer Indicator, Signals Wilde-Lane Integer Indicator as well as Signal Discontinuity Counter</td></tr>4147 <tr><td> YawAngle</td><td>Satellite Yaw Angle in radian, restricted to be in [0, 2π], which shall be used for the computation of phase wind-up correction</td></tr>4148 <tr><td> YawRate</td><td>Satellite Yaw Rate in radian per second which is the rate of Yaw Angle</td></tr>4628 <tr><td> <i>Key </i></td><td> <i>Values</i></td></tr> 4629 <tr><td> APC </td><td> Satellite Antenna Phase Center coordinate components in meters</td></tr> 4630 <tr><td> Clk </td><td> Satellite clock correction components in meters, meters per seconds and meters per sec² (relativistic correction applied like in broadcast clocks)</td></tr> 4631 <tr><td> ClkSig </td><td> Standard deviation for satellite clock correction components in meters, meters per seconds and meters per sec² (required for Clock RINEX file only) /td></tr> 4632 <tr><td> Vel </td><td> Satellite velocity components in meters per second</td></tr> 4633 <tr><td> CoM </td><td> Satellite Center of Mass coordinate components in meters</td></tr> 4634 <tr><td> Ura </td><td> User range accuracy value in meters</td></tr> 4635 <tr><td> CodeBias </td><td> Satellite Code Biases in meters with two characters for frequency and tracking mode per bias as defined in RINEX 3/4 and preceded by total number of biases</td></tr> 4636 <tr><td> PhaseBias</td><td> Satellite Phase Biases in meters with two characters for frequency and tracking mode per bias as defined in RINEX 3/4, preceded by total number of biases <br> and followed by Signal Integer Indicator, Signals Wilde-Lane Integer Indicator as well as Signal Discontinuity Counter</td></tr> 4637 <tr><td> YawAngle </td><td> Satellite Yaw Angle in radian, restricted to be in [0, 2π], which shall be used for the computation of phase wind-up correction</td></tr> 4638 <tr><td> YawRate </td><td> Satellite Yaw Rate in radian per second which is the rate of Yaw Angle</td></tr> 4149 4639 </table> 4150 4640 <p> … … 4160 4650 4161 4651 </pre> 4162 4163 4652 <p> 4164 4653 </ul> 4165 4654 The following non-satellite specific keys and values are currently specified in BNC:<br><br> 4166 4655 <table> 4167 <tr><td> <i>Key </i></td><td><i>Values</i></td></tr>4168 <tr><td> IND</td><td>Stands for phase bias information and is followed by Dispersive Bias Consistency Indicator and MW Consistency Indicator</td></tr>4169 <tr><td> VTEC</td><td>Stands for Vertical TEC information and is followed by Update Interval and Number of Ionospheric Layers</td></tr>4656 <tr><td> <i>Key </i></td><td><i> Values</i></td></tr> 4657 <tr><td> IND </td><td> Stands for phase bias information and is followed by Dispersive Bias Consistency Indicator and MW Consistency Indicator</td></tr> 4658 <tr><td> VTEC</td><td> Stands for Vertical TEC information and is followed by Update Interval and Number of Ionospheric Layers</td></tr> 4170 4659 </table> 4171 4660 <br> 4172 If key VTEC is specified, a data set for each layer contains within its first line the Layers Number, followed by Maximum Degree, Maximum Order and Layer Height. After that, Cosine and Sinus Spherical Harmonic Coefficients will follow, one block each. 4173 </p> 4174 4175 <p> 4176 Because each keyword is associated to a certain number of values, an 'old' BNC could be operated with an incoming 'new' RTNET stream containing so far unknown keys - they would just be skipped in BNC. 4661 If key VTEC is specified, a data set for each layer contains within its first line the Layers Number, 4662 followed by Maximum Degree, Maximum Order and Layer Height. After that, Cosine and Sinus Spherical Harmonic Coefficients 4663 will follow, one block each. 4664 </p> 4665 <p> 4666 Because each keyword is associated to a certain number of values, an 'old' BNC could be operated with an incoming 'new' 4667 RTNET stream containing so far unknown keys - they would just be skipped in BNC. 4177 4668 </p> 4178 4669 … … 4180 4671 Example for 'RTNET' stream content and format: 4181 4672 </p> 4182 4183 <p> 4184 <pre> 4185 * 2015 6 11 15 10 40.000000 4186 VTEC 0 1 0 6 6 450000.0 20.4660 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5.3590 9.6580 0.0000 0.0000 0.0000 0.0000 0.0000 -6.3610 -0.1210 1.1050 0.0000 0.0000 0.0000 0.0000 -2.7140 -1.8200 -0.9920 -0.6430 0.0000 0.0000 0.0000 1.9140 -0.5180 0.2530 0.0870 -0.0110 0.0000 0.0000 2.2950 1.0510 -0.9540 0.6220 -0.0720 -0.0810 0.0000 -0.9760 0.7570 0.2320 -0.2520 0.1970 -0.0680 -0.0280 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2720 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1100 -1.0170 0.0000 0.0000 0.0000 0.0000 0.0000 -1.1500 0.5440 0.9890 0.0000 0.0000 0.0000 0.0000 -0.3770 -0.1990 0.2670 -0.0470 0.0000 0.0000 0.0000 0.6550 -0.0130 -0.2310 -0.4810 -0.3510 0.0000 0.0000 0.2360 -0.0710 0.0280 0.1900 -0.0810 0.0710 4187 IND 0 1 4188 G01 APC 3 -14442611.532 -13311059.070 -18020998.395 Clk 1 -1426.920500 Vel 3 2274.647600 -28.980300 -1787.861900 CoM 3 -14442612.572 -13311059.518 -18020999.539 CodeBias 6 1W -3.760000 1C -3.320000 2W -6.200000 2X -5.780000 1H -3.350000 5I -5.430000 YawAngle 1 -0.315600 YawRate 1 0.0 PhaseBias 3 1C 3.9473 1 2 4 2W 6.3143 1 2 4 5I 6.7895 1 2 4 4189 G02 APC 3 -8859103.160 14801278.856 20456920.800 Clk 1 171219.083500 Vel 3 -2532.296700 -161.275800 -1042.884100 CoM 3 -8859103.418 14801279.287 20456921.395 CodeBias 6 1W 3.930000 1C 3.610000 2W 6.480000 2X 0.000000 1H 3.580000 5I 0.000000 YawAngle 1 -0.693500 YawRate 1 0.0 PhaseBias 2 1C -4.0902 1 2 4 2W -6.7045 1 2 4 4190 G03 APC 3 -13788295.679 -22525098.353 2644811.508 Clk 1 104212.074300 Vel 3 102.263400 -429.953400 -3150.231900 CoM 3 -13788296.829 -22525099.534 2644811.518 CodeBias 6 1W -2.650000 1C -2.160000 2W -4.360000 2X -4.480000 1H -2.070000 5I -5.340000 YawAngle 1 -0.428800 YawRate 1 0.0 PhaseBias 3 1C 2.9024 1 2 2 2W 4.6124 1 2 2 5I 5.3694 1 2 2 4673 <p> 4674 <pre><p style="font-family:Monospace"> 4675 * 2022 11 25 22 04 05.000 4676 G01 Clk 2 73898.6410 -0.00164097340 ClkSig 2 0.0024 0.00021199856 CoM 3 -3022799.7396 -14423300.4562 -22402573.0244 Vel 3 2691.3388 -619.5739 69.3300 APC 3 -3022799.9547 -14423299.6874 -22402571.6928 YawAngle 1 -2.756 CodeBias 3 1C -2.6653 1W -3.0640 2W -5.0462 4677 G02 Clk 2 -190714.4788 0.00054568041 ClkSig 2 0.0021 0.00021199856 CoM 3 6435781.3836 14022665.7384 22245045.6986 Vel 3 -2523.5253 881.5723 199.4389 APC 3 6435781.2094 14022665.3599 22245045.1006 YawAngle 1 -0.496 CodeBias 3 1C 3.1444 1W 3.6734 2W 6.0498 4678 G03 Clk 2 -112198.0483 -0.00041212052 ClkSig 2 0.0021 0.00021199856 CoM 3 -9558560.1056 -21678640.8679 -12237759.6868 Vel 3 1195.6635 968.3425 -2665.8087 APC 3 -9558559.9115 -21678639.4511 -12237758.9694 YawAngle 1 2.269 CodeBias 3 1C -1.9487 1W -2.1477 2W -3.5372 4679 G04 Clk 2 -23967.3447 0.00204827783 ClkSig 2 0.0016 0.00021199854 CoM 3 -925894.8383 -23797191.6947 11651418.9683 Vel 3 684.2944 -1338.1342 -2689.1911 APC 3 -925894.7893 -23797190.5964 11651418.4111 YawAngle 1 1.705 CodeBias 3 1C -0.1054 1W -0.2081 2W -0.3427 4191 4680 .. 4192 R01 APC 3 -6783489.153 -23668850.753 6699094.457 Clk 1 - 45875.658100 Vel 3 -267.103000 -885.983700 -3403.253200 CoM 3 -6783489.307 -23668853.173 6699095.274 CodeBias 4 1P -2.496400 1C -2.490700 2P -4.126600 2C -3.1562004193 R02 APC 3 -11292959.022 -10047039.425 20577343.288 Clk 1 41215.750900 Vel 3 -476.369400 -2768.936600 -1620.000600 CoM 3 -11292959.672 -10047040.710 20577345.344 CodeBias 4 1P 0.211200 1C 0.391300 2P 0.349100 2C 0.4063004194 R03 APC 3 -9226469.614 9363128.850 21908853.313 Clk 1 13090.322800 Vel 3 -369.088600 -2964.934500 1111.041000 CoM 3 -9226470.226 9363129.442 21908855.791 CodeBias 4 1P 2.283800 1C 2.483800 2P 3.775300 2C 3.7855004195 .. 4196 E11 APC 3 2965877.898 17754418.441 23503540.946 Clk 1 33955.329000 Vel 3 -1923.398100 1361.709200 -784.555800 CoM 3 2965878.082 17754418.669 23503541.507 CodeBias 3 1B 1.382100 5Q 2.478400 7Q 2.503300 4197 E 12 APC 3 -14807433.144 21753389.581 13577231.476 Clk 1 -389652.211900 Vel 3 -1082.464300 825.868400 -2503.982200 CoM 3 -14807433.366 21753389.966 13577231.926 CodeBias 3 1B 0.386600 5Q 0.693300 7Q 0.5347004198 E 19 APC 3 -15922225.351 8097517.292 23611910.403 Clk 1 -2551.650800 Vel 3 -183.377800 -2359.143700 684.105100 CoM 3 -15922225.569 8097517.329 23611910.995 CodeBias 3 1B -1.777000 5Q -3.186600 7Q -3.0691004199 .. 4200 E OE4201 </pre> 4202 </p> 4681 R01 Clk 2 5546.7099 0.00018335589 ClkSig 2 0.0023 0.00021199856 CoM 3 7112494.0294 23814532.0433 -5735875.7206 Vel 3 284.0303 745.9382 3452.4470 APC 3 7112493.8323 23814529.8302 -5735874.8944 YawAngle 1 1.728 CodeBias 4 1C -2.6149 1P -2.7107 2C -3.6969 2P -4.4809 4682 R02 Clk 2 -7008.2454 -0.00000635271 ClkSig 2 0.0023 0.00021199856 CoM 3 11244225.8582 10071470.3245 -20546784.7044 Vel 3 494.7088 2778.4611 1623.0780 APC 3 11244225.2057 10071469.5457 -20546782.4482 YawAngle 1 2.071 CodeBias 4 1C -0.1018 1P -0.3894 2C -0.6264 2P -0.6436 4683 R03 Clk 2 20366.1568 0.00020195972 ClkSig 2 0.0021 0.00021199856 CoM 3 9092586.5727 -9144390.0351 -21957806.0158 Vel 3 417.8656 2989.9043 -1076.1050 APC 3 9092586.1678 -9144388.9369 -21957803.7216 YawAngle 1 2.112 CodeBias 4 1C 0.5948 1P 0.9738 2C 1.2086 2P 1.6097 4684 R04 Clk 2 49846.8890 0.00042529794 ClkSig 2 0.0022 0.00021199856 CoM 3 1867488.4178 -22822850.6299 -11196789.3037 Vel 3 66.4046 1545.5179 -3134.6080 APC 3 1867488.7750 -22822848.4388 -11196788.1327 YawAngle 1 1.866 CodeBias 4 1C 1.0137 1P 1.2486 2C 1.6395 2P 2.0640 4685 ... 4686 E02 Clk 2 1444.2848 0.00069346607 ClkSig 2 0.0021 0.00021199856 CoM 3 -3377663.9278 18136033.0351 -23153818.3345 Vel 3 -1715.0309 -1566.2097 -974.6114 APC 3 -3377663.9510 18136032.5368 -23153817.7931 YawAngle 1 -0.010 CodeBias 5 1C 0.2681 1X 0.2629 5I 0.4302 5Q 0.4807 5X 0.4826 4687 E03 Clk 2 -186952.1234 -0.00113736360 ClkSig 2 0.0024 0.00021199856 CoM 3 -8254601.5653 28187191.4778 3641206.5123 Vel 3 114.7319 -350.5678 2966.0175 APC 3 -8254601.4684 28187190.7479 3641206.3909 YawAngle 1 1.300 CodeBias 5 1C -0.9944 1X -0.9846 5I -1.7540 5Q -1.7833 5X -1.7956 4688 E05 Clk 2 -36305.4464 0.00110429712 ClkSig 2 0.0027 0.00021199857 CoM 3 -16951710.6073 14279857.1039 19615600.3991 Vel 3 411.8010 -1924.3142 1755.9024 APC 3 -16951710.2715 14279856.6791 19615599.8561 YawAngle 1 1.240 CodeBias 5 1C -1.1095 1X -1.0961 5I -1.9636 5Q -1.9896 5X -1.9628 4689 E07 Clk 2 -664.2128 -0.00092754332 ClkSig 2 0.0025 0.00021199857 CoM 3 15638354.9447 7729299.3932 -23916035.7246 Vel 3 -463.7761 2352.3603 457.3356 APC 3 15638354.4877 7729299.1793 -23916035.2351 YawAngle 1 1.776 CodeBias 5 1C -1.6081 1X -1.5745 5I -2.8718 5Q -2.8838 5X -2.8389 4690 ..EOE 4691 </p></pre> 4203 4692 4204 4693 <p> 4205 4694 Note that the end of an epoch in the incoming stream is indicated by an ASCII string 'EOE' (for End Of Epoch). 4206 4695 </p> 4207 4208 <p> 4209 When using clocks from Broadcast Ephemeris (with or without applied corrections) or clocks from SP3 files, it may be important to understand that they are not corrected for the conventional periodic relativistic effect. Chapter 10 of the IERS Conventions 2003 mentions that the conventional periodic relativistic correction to the satellite clock (to be added to the broadcast clock) is computed as 4210 <pre> 4211 dt = -2 (R * V) / c<sup>2</sup> 4212 </pre> 4213 where R * V is the scalar product of the satellite position and velocity and c is the speed of light. This can also be found in the GPS Interface Specification, IS-GPS-200, Revision D, 7 March 2006. 4214 </p> 4696 <p> 4697 The following screenshot shows the encoding and uploading of several streams using precise orbits and clocks coming from a real-time network engine 4698 in 'RTNET' ASCII format. The streams are uploaded to Ntrip Broadcaster 'products.igs-ip.net'. They are referred to APC or CoM and IGS20 or DREF91. 4699 Required Broadcast Ephemeris are received via stream 'BCEP00BKG0'. 4700 </p> 4701 <p><img src="IMG/Figure29.png"width=1000/></p> 4702 <p>Figure 29: BNC producing Broadcast Corrections from incoming precise orbits and clocks and uploading them to an Ntrip Broadcaster</p> 4215 4703 4216 4704 <p><h4 id="upadd">2.15.1 Add, Delete Row - optional</h4></p> 4217 <p>Hit 'Add Row' button to add a row to the stream 'Upload Table' or hit the 'Delete' button to delete the highlighted row(s). 4218 </p> 4219 4220 <p> 4221 Having an empty 'Upload Table' is default and means that you do not want BNC to upload orbit and clock correction streams to any Ntrip Broadcaster. 4222 </p> 4223 4224 <p><h4 id="uphost">2.15.2 Host, Port, Mountpoint, Password - optional</h4></p> 4225 4226 <p>Specify the domain name or IP number of an Ntrip Broadcaster for uploading the stream. Furthermore, specify the caster's listening IP port, an upload mountpoint and an upload password. Note that Ntrip Broadcasters are often configured to provide access through more than one port, usually ports 80 and 2101. If you experience communication problems on port 80, you should try to use the alternative port(s). 4227 </p> 4228 4229 <p> 4230 BNC uploads a stream to the Ntrip Broadcaster by referring to a dedicated mountpoint that has been set by its operator. Specify the mountpoint based on the details you received for your stream from the operator. It is often a 4-character ID (capital letters) plus an integer number.</p> 4231 <p>The stream upload may be protected through an upload 'Password'. Enter the password you received from the Ntrip Broadcaster operator along with the mountpoint(s).</p> 4232 <p> 4233 If 'Host', 'Port', 'Mountpoint' and 'Password' are set, the stream will be encoded in RTCM's 'State Space Representation' (SSR) messages and uploaded to the specified broadcaster following the Ntrip Version 1 transport protocol. 4705 <p> 4706 Hit 'Add Row' button to add a row to the stream 'Upload Table' or hit the 'Delete' button to delete the highlighted row(s). 4707 Having an empty 'Upload Table' is default and means that you do not want BNC to upload orbit and clock correction streams 4708 to any Ntrip Broadcaster. 4709 </p> 4710 4711 <p><h4 id="uphost">2.15.2 Host, Port, Mountpoint, Ntrip Version, User and Password - optional</h4></p> 4712 <p> 4713 Specify the domain name or IP number of an Ntrip Broadcaster for uploading the stream. Furthermore, specify the caster's 4714 listening IP port and an upload mountpoint. Select the Ntrip Version that shall be used for data upload and, depending on this, 4715 an upload user (Ntrip Version 2 only) and an upload password. 4716 </p> 4717 <p> 4718 Note that Ntrip Broadcasters are often configured to provide access through more than one port, usually ports 80 and 2101. 4719 If you experience communication problems on port 80, you should try to use the alternative port(s). 4720 </p> 4721 <p> 4722 BNC uploads a stream to the Ntrip Broadcaster by referring to a dedicated mountpoint that has been set by its operator. 4723 Specify the mountpoint based on the details you received for your stream from the operator. 4724 It is often a 9-character ID (capital letters) plus an integer number. 4725 </p> 4726 <p> 4727 For stream upload the Ntrip Version can be chosen. An Ntrip version 1 upload is protected through an upload 'Password' only. 4728 For an Ntrip Version 2 upload an upload 'User' is required in addition. Enter user and password you received from the 4729 Ntrip Broadcaster operator along with the mountpoint(s). 4730 </p> 4731 <p> 4732 If 'Host', 'Port', 'Mountpoint', 'Ntrip' Version, 'User' and 'Password' are set, the stream will be encoded into 'State Space Representation' (SSR) 4733 messages and uploaded to the specified broadcaster following the specified Ntrip transport protocol options. 4234 4734 </p> 4235 4735 4236 4736 <p><h4 id="upsystem">2.15.3 System - mandatory if 'Host' is set</h4></p> 4237 4737 <p> 4238 BNC allows configuring several Broadcast Correction streams for upload so that they refer to different reference systems and different Ntrip Broadcasters. You may use this functionality for parallel support of a backup Ntrip Broadcaster or for simultaneous support of various regional reference systems. Available options for transforming orbit and clock corrections to specific target reference systems are 4239 <p> 4240 <ul> 4241 <li>IGS14 which stands for the GNSS-based IGS realization of the International Terrestrial Reference Frame 2014 (ITRF2014), and</li> 4242 <li>ETRF2000 which stands for the European Terrestrial Reference Frame 2000 adopted by EUREF, and</li> 4243 <li>GDA2020 which stands for the Geodetic Datum Australia 2020 as adopted for Australia, and</li> 4244 <li>SIRGAS2000 which stands for the Geodetic Datum adopted for Brazil, and</li> 4245 <li>DREF91 which stands for the Geodetic Datum adopted for Germany, and</li> 4246 <li>'Custom' which allows a transformation of Broadcast Corrections from the IGS14 system to any other system through specifying up to 14 Helmert Transformation Parameters.</li> 4247 </ul> 4248 </p> 4249 4250 <p> 4251 Because a mathematically strict transformation to a regional reference system is not possible on the BNC server side when a scale factor is involved, the program follows an approximate solution. While <u>orbits</u> are transformed in full accordance with given equations, a transformed <u>clock</u> is derived through applying correction term 4738 BNC allows configuring several Broadcast Correction streams for upload, so that they may refer to different reference systems 4739 and different Ntrip Broadcasters. You may use this functionality for parallel support of a backup Ntrip Broadcaster or 4740 for simultaneous support of various regional reference systems. Available options for transforming orbit and clock corrections 4741 to specific target reference systems are 4742 </p> 4743 <table> 4744 <tr><td> IGS20: </td><td> Stands for the GNSS-based IGS realization of the International Terrestrial Reference Frame 2020 (ITRF2020)</td></tr> 4745 <tr><td> ETRF2000: </td><td> Stands for the European Terrestrial Reference Frame 2000 adopted by EUREF</td></tr> 4746 <tr><td> GDA2020: </td><td> Stands for the Geodetic Datum Australia 2020 as adopted for Australia</td></tr> 4747 <tr><td> SIRGAS2000:</td><td> Stands for the Geodetic Datum adopted for Brazil</td></tr> 4748 <tr><td> DREF91: </td><td> Stands for the Geodetic Datum adopted for Germany</td></tr> 4749 <tr><td> Custom: </td><td> Allows a transformation of Broadcast Corrections from the IGS20 system to any other system through specifying 4750 up to 14 Helmert Transformation Parameters </td></tr> 4751 </table> 4752 <p> 4753 Because a mathematically strict transformation to a regional reference system is not possible on the BNC server side when a scale factor is involved, 4754 the program follows an approximate solution. While <u>orbits</u> are transformed in full accordance with given equations, 4755 a transformed <u>clock</u> is derived through applying correction term 4252 4756 </p> 4253 4757 <pre> … … 4255 4759 </pre> 4256 4760 <p> 4257 where s is the transformation scale, c is the speed of light, and ρ are the topocentric distance between an (approximate) center of the transformation's validity area and the satellite. 4258 </p> 4259 4260 <p> 4261 From a theoretical point of view, this kind of approximation leads to inconsistencies between orbits and clocks and is therefore not allowed (Huisman et al. 2012). However, it has been proved that resulting errors in Precise Point Positioning are on millimeter level for horizontal components and below one centimeter for height components. 4262 </p> 4263 4264 <p> 4265 <b>IGS14:</b> As the orbits and clocks coming from real-time GNSS engine are expected to be in the IGS14 system, no transformation is carried out if this option is selected. 4266 </p> 4267 4268 <p> 4269 <b>ETRF2000:</b> The formulas for the transformation 'ITRF2008->ETRF2000' are taken from 'Claude Boucher and Zuheir Altamimi 2008: Specifications for reference frame fixing in the analysis of EUREF GPS campaign', see <u>http://etrs89.ensg.ign.fr/memo-V8.pdf</u>. The following 14 Helmert Transformation Parameters were introduced: 4270 </p> 4271 <p> 4761 where s is the transformation scale, c is the speed of light, and ρ 4762 are the topocentric distance between an (approximate) center of the transformation's validity area and the satellite. 4763 </p> 4764 <p> 4765 From a theoretical point of view, this kind of approximation leads to inconsistencies between orbits and clocks 4766 and is therefore not allowed (Huisman et al. 2012). However, it has been proved that resulting errors in Precise Point Positioning 4767 are on millimeter level for horizontal components and below one centimeter for height components. 4768 </p> 4769 <p> 4770 <b>IGS20:</b> As the orbits and clocks coming from real-time GNSS engine are expected to be in the IGS20 system, 4771 no transformation is carried out if this option is selected. 4772 </p> 4773 <p> 4774 As long as no updated transformation parameters are available regarding IGS20, 4775 a transformation from 'ITRF2020->ITRF2014' is done in a fist step using the following 4776 14 Helmert Transformation Parameters, which are available at 4777 <a href="https://itrf.ign.fr/en/solutions/transformations" target="_blank">https://itrf.ign.fr/en/solutions/transformations</a> 4778 </p> 4779 <pre><p style="font-family:Monospace"> 4780 dx = -0.0014; 4781 dy = -0.0009; 4782 dz = 0.0014; 4783 4784 dxr = 0.0000; 4785 dyr = -0.0001; 4786 dzr = -0.0002; 4787 4788 ox = 0.0; 4789 oy = 0.0; 4790 oz = 0.0; 4791 4792 oxr = 0.0; 4793 oyr = 0.0; 4794 ozr = 0.0; 4795 4796 sc = -0.4200; 4797 scr = 0.0; 4798 4799 t0 = 2015.0; 4800 </p></pre> 4801 where 4272 4802 <pre> 4273 Translation in X at epoch To: 0.0521 m 4274 Translation in Y at epoch To: 0.0493 m 4275 Translation in Z at epoch To: -0.0585 m 4276 Translation rate in X: 0.0001 m/y 4277 Translation rate in Y: 0.0001 m/y 4278 Translation rate in Z: -0.0018 m/y 4279 Rotation in X at epoch To: 0.891 mas 4280 Rotation in Y at epoch To: 5.390 mas 4281 Rotation in Z at epoch To: -8.712 mas 4282 Rotation rate in X: 0.081 mas/y 4283 Rotation rate in Y: 0.490 mas/y 4284 Rotation rate in Z: -0.792 mas/y 4285 Scale at epoch To : 0.00000000134 4286 Scale rate: 0.00000000008 /y 4287 To: 2000.0 4803 <table> 4804 <tr><td> dx </td><td> Translation in X at epoch t0 [m]</td></tr> 4805 <tr><td> dy </td><td> Translation in Y at epoch t0 [m]</td></tr> 4806 <tr><td> dz </td><td> Translation in Z at epoch t0 [m]</td></tr> 4807 <tr><td> dxr </td><td> Translation rate in X at epoch t0 [m/y]</td></tr> 4808 <tr><td> dyr </td><td> Translation rate in Y at epoch t0 [m/y]</td></tr> 4809 <tr><td> dzr </td><td> Translation rate in Z at epoch t0 [m/y]</td></tr> 4810 <tr><td> oxr </td><td> Rotation in X at epoch t0 [mas]</td></tr> 4811 <tr><td> oyr </td><td> Rotation in Y at epoch t0 [mas]</td></tr> 4812 <tr><td> ozr </td><td> Rotation in Z at epoch t0 [mas]</td></tr> 4813 <tr><td> sc </td><td> Scale at epoch t0 [1e-9] </td> </tr> 4814 <tr><td> scr </td><td> Scale at epoch t0 [1e-9/y] </td> </tr> 4815 <tr><td> t0 </td><td> Reference Epoch [y]</td></tr> 4816 </table> 4288 4817 </pre> 4289 In order to perform a transformation 'ITRF2014->ETRF2000', a transformation from 'ITRF2014->ITRF2008' is done at first. 4290 </p> 4291 4292 <p> 4293 <b>GDA2020:</b> The formulas for the transformation 'ITRF2014->GDA2020' were provided via personal communication from Ryan Ruddick: 'Geocentric Datum of Australia 2020, Interim Release Note Version 1.01, Intergovernmental Committee on Surveying and Mapping (ICSM), Permanent Committee on Geodesy (PCG), 03 March 2017'. 4294 </p> 4295 <p> 4818 <p> 4819 <b>ETRF2000:</b> The transformation Parameters from ITRF2014 to ETRF2000 are taken from the EUREF Technical Note 1 4820 'EUREF Technical Note 1: Relationship and Transformation between 4821 the International and the European Terrestrial Reference Systems', Zuheir Altamimi, June 28, 2018: 4822 <a href="http://etrs89.ensg.ign.fr/pub/EUREF-TN-1.pdf" target="_blank">http://etrs89.ensg.ign.fr/pub/EUREF-TN-1.pdf</a>: 4823 </p> 4824 <pre><p style="font-family:Monospace"> 4825 dx = 0.0547; 4826 dy = 0.0522; 4827 dz = -0.0741; 4828 4829 dxr = 0.0001; 4830 dyr = 0.0001; 4831 dzr = -0.0019; 4832 4833 ox = 0.001701; 4834 oy = 0.010290; 4835 oz = -0.016632; 4836 4837 oxr = 0.000081; 4838 oyr = 0.000490; 4839 ozr = -0.000729; 4840 4841 sc = 2.12; 4842 scr = 0.11; 4843 4844 t0 = 2010.0; 4845 </p></pre> 4846 <p> 4847 <b>GDA2020:</b> The parameters for the transformation 'ITRF2014->GDA2020' were provided by Ryan Ruddick (Geoscience Australia): 4848 via personal communication: 4849 </p> 4850 <pre><p style="font-family:Monospace"> 4851 dx = 0.0; 4852 dy = 0.0; 4853 dz = 0.0; 4854 4855 dxr = 0.0; 4856 dyr = 0.0; 4857 dzr = 0.0; 4858 4859 ox = 0.0; 4860 oy = 0.0; 4861 oz = 0.0; 4862 4863 oxr = 0.00150379; 4864 oyr = 0.00118346; 4865 ozr = 0.00120716; 4866 4867 sc = 0.0; 4868 scr = 0.0; 4869 4870 t0 = 2020.0; 4871 </p></pre> 4872 <p> 4873 <b>SIRGAS2000:</b> The parameters for the transformation 'IGb14->SIRGAS2000' were provided from Sonia Costa, BRA via personal communication:</u>. 4874 </p> 4875 <pre><p style="font-family:Monospace"> 4876 dx = -0.0027; 4877 dy = -0.0025; 4878 dz = -0.0042; 4879 4880 dxr = 0.0; 4881 dyr = 0.0; 4882 dzr = 0.0; 4883 4884 ox = 0.0; 4885 oy = 0.0; 4886 oz = 0.0; 4887 4888 oxr = 0.0; 4889 oyr = 0.0; 4890 ozr = 0.0; 4891 4892 sc = 1.2; 4893 scr = 0.0; 4894 4895 t0 = 2000.0; 4896 </p></pre> 4897 <p> 4898 <b>DREF91:</b> The parameters for the transformation 'IGb14->DREF91' were provided from Peter Franke, BKG, Germany 4899 via personal communication: 4900 </p> 4901 <pre><p style="font-family:Monospace"> 4902 dx = 0.0547; 4903 dy = 0.0522; 4904 dz = -0.0741; 4905 4906 dxr = 0.0001; 4907 dyr = 0.0001; 4908 dzr = -0.0019; 4909 4910 // ERTF200 + rotation parameters (ETRF2000 => DREF91) 4911 ox = 0.001701 + 0.000658; 4912 oy = 0.010290 - 0.000208; 4913 oz = -0.016632 + 0.000755; 4914 4915 oxr = 0.000081; 4916 oyr = 0.000490; 4917 ozr = -0.000729; 4918 4919 sc = 2.12; 4920 scr = 0.11; 4921 4922 t0 = 2010.0; 4923 </p></pre> 4924 <p> 4925 <b>Custom:</b> Feel free to specify your own 14 Helmert Transformation parameters for transformations from IGS20/ITRF2020 into your own target system. 4926 </p> 4927 <p><img src="IMG/Figure30.png"width=700/></p> 4928 <p>Figure 30: Setting BNC's Custom Transformation Parameters window</p> 4929 4930 <p><h4 id="upformat">2.15.4 Format - mandatory if 'Host' is set</h4></p> 4931 <p> 4932 BNC may upload the Broadcast Correction streams using different Formats. Supported are: 4933 <p> 4934 <ul> 4935 <li>IGS-SSR which was developed within the IGS Real-Time Working Group (<a href="https://files.igs.org/pub/data/format/igs_ssr_v1.pdf" target="_blank">https://files.igs.org/pub/data/format/igs_ssr_v1.pdf</a>), and</li> 4936 <li>RTCM-SSR which stands for the standardized and proposed SSR Messages which are developed within the RTCM SC-104 Working Group 'State Space Representation' (<a href="https://rtcm.myshopify.com/collections/differential-global-navigation-satellite-dgnss-standards" target="_blank">https://rtcm.myshopify.com/collections/differential-global-navigation-satellite-dgnss-standards</a>).</li> 4937 </ul> 4938 </p> 4939 <p><h4 id="upcom">2.15.5 Center of Mass - optional</h4></p> 4940 <p> 4941 BNC allows to either refer Broadcast Corrections to the satellite's Center of Mass (CoM) or to the satellite's Antenna Phase Center (APC). 4942 By default, corrections refer to APC. Tick 'Center of Mass' to refer uploaded corrections to CoM. 4943 </p> 4944 <p><h4 id="upsp3">2.15.6 SP3 File - optional</h4></p> 4945 <p> 4946 Specify a path for saving the generated orbit corrections as SP3 orbit files 4947 (<a href="http://epncb.eu/ftp/data/format/sp3d.pdf" target="_blank">http://epncb.eu/ftp/data/format/sp3d.pdf</a>). 4948 The following is a path example for a Linux system: 4296 4949 <pre> 4297 Translation in X at epoch To: 0.0 m 4298 Translation in Y at epoch To: 0.0 m 4299 Translation in Z at epoch To: 0.0 m 4300 Translation rate in X: 0.0 m/y 4301 Translation rate in Y: 0.0 m/y 4302 Translation rate in Z: 0.0 m/y 4303 Rotation in X at epoch To: 0.0 mas 4304 Rotation in Y at epoch To: 0.0 mas 4305 Rotation in Z at epoch To: 0.0 mas 4306 Rotation rate in X: 1.50379 mas/y 4307 Rotation rate in Y: 1.18346 mas/y 4308 Rotation rate in Z: 1.20716 mas/y 4309 Scale at epoch To : 0.0 4310 Scale rate: 0.0/y 4311 To: 2020.0 4950 /home/user/BKG0MGXRTS${V3PROD}.sp3 4312 4951 </pre> 4313 </p> 4314 4315 <p> 4316 <b>SIRGAS2000:</b> The formulas for the transformation 'IGb14->SIRGAS2000' were provided via personal communication from CGED-Coordenacao de Geodesia, IBGE/DGC - Diretoria de Geociencias, Brazil.</u>. 4317 < /p>4318 < p>4952 If the specified directory does not exist, BNC will not create SP3 orbit files. 4953 </p> 4954 <p> 4955 For file naming, BNC follows the new format convention according to IGS products 4956 <a href="http://acc.igs.org/repro3/Long_Product_Filenames_v1.0.pdf" target="_blank">http://acc.igs.org/repro3/Long_Product_Filenames_v1.0.pdf</a>: 4957 </p> 4319 4958 <pre> 4320 Translation in X at epoch To: 0.0026 m 4321 Translation in Y at epoch To: 0.0018 m 4322 Translation in Z at epoch To: -0.0061 m 4323 Translation rate in X: 0.0000 m/y 4324 Translation rate in Y: 0.0000 m/y 4325 Translation rate in Z: 0.0000 m/y 4326 Rotation in X at epoch To: 0.0000 mas 4327 Rotation in Y at epoch To: 0.0000 mas 4328 Rotation in Z at epoch To: 0.0000 mas 4329 Rotation rate in X: 0.000 mas/y 4330 Rotation rate in Y: 0.000 mas/y 4331 Rotation rate in Z: 0.000 mas/y 4332 Scale at epoch To : 0.000 4333 Scale rate: 0.000000000000 /y 4334 To: 20000.4 4959 AAAVPPPTTT_YYYYDDDHHMM_LEN_SMP_CNT.FMT 4335 4960 </pre> 4336 </p> 4337 4338 <p> 4339 <b>DREF91:</b> 'Referenzkoordinaten fuer SAPOS, Empfehlungen der Projektgruppe SAPOS-Koordinatenmonitoring 2008', Personal communication with Peter Franke, BKG, Germany. The following 14 Helmert Transformation Parameters were introduced: 4340 </p> 4341 <p> 4961 With 4962 <p> 4963 <table> 4964 <tr><td> AAA </td><td> Analysis Center abbrevaition, here BKG</td></tr> 4965 <tr><td> V </td><td> Version / Solution identifier (0-9), here 0</td></tr> 4966 <tr><td> PPP </td><td> Project/Campaign identification, here Multi-GNSS product (MGX)</td></tr> 4967 <tr><td> TTT </td><td> Solution Type, here real-time streamed product (RTS)</td></tr> 4968 <tr><td> YYYYDOYHHMM</td><td> String representing beginning time of nominal data interval</td></tr> 4969 <tr><td> LEN </td><td> Intended product period of the file </td></tr> 4970 <tr><td> SMP </td><td> Data sampling rate</td></tr> 4971 <tr><td> CNT </td><td> Content type ORB</td></tr> 4972 <tr><td> FMT </td><td> File format, here sp3</td></tr> 4973 </table> 4974 </p> 4975 <p> 4976 Note that '${V3PROD}' produces the part 'YYYYDDDHHMM_LEN_SMP_CNT' of the filename according the 'Upload Corrections' setup. 4977 </p> 4978 A result for examle is: 4342 4979 <pre> 4343 Translation in X at epoch To: -0.0118 m 4344 Translation in Y at epoch To: 0.1432 m 4345 Translation in Z at epoch To: -0.1117 m 4346 Translation rate in X: 0.0001 m/y 4347 Translation rate in Y: 0.0001 m/y 4348 Translation rate in Z: -0.0018 m/y 4349 Rotation in X at epoch To: 3.291 mas 4350 Rotation in Y at epoch To: 6.190 mas 4351 Rotation in Z at epoch To: -11.012 mas 4352 Rotation rate in X: 0.081 mas/y 4353 Rotation rate in Y: 0.490 mas/y 4354 Rotation rate in Z: -0.792 mas/y 4355 Scale at epoch To : 0.00000001224 4356 Scale rate: 0.00000000008 /y 4357 To: 2000.0 4980 BKG0MGXRTS_20223330000_01D_01M_ORB.sp3 4358 4981 </pre> 4359 In order to perform a transformation 'ITRF2014->DREF91', a transformation from 'ITRF2014->ITRF2008' is done at first. 4360 </p> 4361 4362 <p> 4363 <b>Custom:</b> Feel free to specify your own 14 Helmert Transformation parameters for transformations from IGS14/ITRF2014 into your own target system. 4364 </p> 4365 4366 <p><img src="IMG/screenshot38.png"/></p> 4367 <p>Figure 30: Setting BNC's Custom Transformation Parameters window, example for 'ITRF2014->GDA94'</p> 4368 4369 <p><h4 id="upformat">2.15.4 Format - mandatory if 'Host' is set</h4></p> 4370 <p> 4371 BNC may upload the Broadcast Correction streams using different Formats. Supported are: 4372 <p> 4373 <ul> 4374 <li>IGS-SSR which was developed within the IGS Real-Time Working Group, and</li> 4375 <li>RTCM-SSR which stands for the standardized and proposed SSR Messages which are developed within the RTCM SC-104 Working Group State Space Representation.</li> 4376 </ul> 4377 </p> 4378 4379 <p><h4 id="upcom">2.15.5 Center of Mass - optional</h4></p> 4380 <p> 4381 BNC allows to either refer Broadcast Corrections to the satellite's Center of Mass (CoM) or to the satellite's Antenna Phase Center (APC). By default, corrections refer to APC. Tick 'Center of Mass' to refer uploaded corrections to CoM. 4382 </p> 4383 4384 <p><h4 id="upsp3">2.15.6 SP3 File - optional</h4></p> 4385 <p>Specify a path for saving the generated orbit corrections as SP3 orbit files. If the specified directory does not exist, BNC will not create SP3 orbit files. The following is a path example for a Linux system: 4386 4982 <p> 4983 Default is an empty option field, meaning that you do not want BNC to save the uploaded stream content in daily SP3 files. 4984 </p> 4985 <p> 4986 As a SP3 file content should be referred to the satellites' Center of Mass (CoM) while Broadcast Corrections are referred to the satellites' APC, 4987 an offset has to be applied which is available from an IGS ANTEX file (see option 'ANTEX File' below). 4988 Hence, you should specify the 'ANTEX File' path there if you want to save the stream content in SP3 format. 4989 If you do not specify an 'ANTEX File' path, the SP3 file content will be referred to the satellites APCs. 4990 </p> 4991 <p> 4992 Note that clocks in the SP3 orbit files are not corrected for the conventional periodic relativistic effect. 4993 </p> 4994 <p> 4995 In case the 'Combine Corrections' table contains only one Broadcast Correction stream, BNC will merge that stream with Broadcast Ephemeris 4996 to save results in files specified here through SP3 and/or Clock RINEX file path. In such a case you have to define only the SP3 and 4997 Clock RINEX file path and no further option in the 'Upload Corrections' table. 4998 </p> 4999 <p> 5000 Note that BNC outputs a complete list of SP3 'Epoch Header Records', even if no 'Position and Clock Records' are available for certain epochs 5001 because of stream outages. Note further that the 'Number of Epochs' in the first SP3 header record may not be correct because that number 5002 is not available when the file is created. Depending on your processing software (e.g. Bernese GNSS Software, BSW) it could therefore be necessary 5003 to correct an incorrect 'Number of Epochs' in the file before you use it in post processing. 5004 </p> 5005 5006 <p><h4 id="uprinex">2.15.7 RNX File - optional</h4></p> 5007 <p> 5008 The clock corrections generated by BNC for upload can be logged in Clock RINEX format 5009 <a href="https://files.igs.org/pub/data/format/rinex_clock304.txt" target="_blank">https://files.igs.org/pub/data/format/rinex_clock304.txt</a>:. 5010 </p> 5011 <p> 5012 Specify a path for saving the generated clock corrections as Clock RINEX files. The following is a path example for a Linux system: 4387 5013 <pre> 4388 /home/user/B NCOUTPUT${V3PROD}.sp35014 /home/user/BKG0MGXRTS${V3PROD}.clk 4389 5015 </pre> 4390 Note that '${V3PROD}' produces the time stamp in the filename, which is related to the RINEX version 3 filename concept. 4391 </p> 4392 <p> 4393 Default is an empty option field, meaning that you do not want BNC to save the uploaded stream content in daily SP3 files. 4394 </p> 4395 4396 <p> 4397 As a SP3 file content should be referred to the satellites' Center of Mass (CoM) while Broadcast Corrections are referred to the satellites' APC, an offset has to be applied which is available from an IGS ANTEX file (see option 'ANTEX File' below). Hence, you should specify the 'ANTEX File' path there if you want to save the stream content in SP3 format. If you do not specify an 'ANTEX File' path, the SP3 file content will be referred to the satellites APCs. 4398 </p> 4399 4400 <p> 4401 The filenames for the daily SP3 files follow the convention for SP3 filenames. The first three characters of each filename are set to 'BNC'. Note that clocks in the SP3 orbit files are not corrected for the conventional periodic relativistic effect. 4402 </p> 4403 4404 <p> 4405 In case the 'Combine Corrections' table contains only one Broadcast Correction stream, BNC will merge that stream with Broadcast Ephemeris to save results in files specified here through SP3 and/or Clock RINEX file path. In such a case you have to define only the SP3 and Clock RINEX file path and no further option in the 'Upload Corrections' table. 4406 </p> 4407 4408 <p> 4409 Note that BNC outputs a complete list of SP3 'Epoch Header Records', even if no 'Position and Clock Records' are available for certain epochs because of stream outages. Note further that the 'Number of Epochs' in the first SP3 header record may not be correct because that number is not available when the file is created. Depending on your processing software (e.g. Bernese GNSS Software, BSW) it could therefore be necessary to correct an incorrect 'Number of Epochs' in the file before you use it in post processing. 4410 </p> 4411 4412 <p><h4 id="uprinex">2.15.7 RNX File - optional</h4></p> 4413 <p> 4414 The clock corrections generated by BNC for upload can be logged in Clock RINEX format. The file naming follows the RINEX convention. 4415 </p> 4416 <p> 4417 Specify a path for saving the generated clock corrections as Clock RINEX files. If the specified directory does not exist, BNC will not create Clock RINEX files. The following is a path example for a Linux system: 5016 If the specified directory does not exist, BNC will not create Clock RINEX files. 5017 </p> 5018 <p> 5019 For file naming, BNC follows the new format convention according to IGS products 5020 <a href="http://acc.igs.org/repro3/Long_Product_Filenames_v1.0.pdf" target="_blank">http://acc.igs.org/repro3/Long_Product_Filenames_v1.0.pdf</a>: 5021 </p> 4418 5022 <pre> 4419 /home/user/BNCOUTPUT${V3PROD}.clk5023 AAAVPPPTTT_YYYYDDDHHMM_LEN_SMP_CNT.FMT 4420 5024 </pre> 4421 Note that '${V3PROD}' produces the time stamp in the filename, which is related to the RINEX version 3 filename concept. 4422 </p> 4423 5025 With 5026 <p> 5027 <table> 5028 <tr><td> AAA </td><td> Analysis Center abbrevaition, here BKG</td></tr> 5029 <tr><td> V </td><td> Version / Solution identifier (0-9), here 0</td></tr> 5030 <tr><td> PPP </td><td> Project/Campaign identification, here Multi-GNSS product (MGX)</td></tr> 5031 <tr><td> TTT </td><td> Solution Type, here real-time streamed product (RTS)</td></tr> 5032 <tr><td> YYYYDOYHHMM</td><td> String representing beginning time of nominal data interval</td></tr> 5033 <tr><td> LEN </td><td> Intended product period of the file </td></tr> 5034 <tr><td> SMP </td><td> Data sampling rate</td></tr> 5035 <tr><td> CNT </td><td> Content type CLK</td></tr> 5036 <tr><td> FMT </td><td> File format, here clk</td></tr> 5037 </table> 5038 </p> 5039 <p> 5040 Note that '${V3PROD}' produces the part 'YYYYDDDHHMM_LEN_SMP_CNT' of the filename according the 'Upload Corrections' setup. 5041 </p> 5042 A result for examle is: 5043 <pre> 5044 BKG0MGXRTS_20223330000_01D_05S_CLK.clk 5045 </pre> 5046 <p> 5047 Default is an empty option field, meaning that you do not want BNC to save the uploaded stream content in daily Clock RINEX files. 5048 </p> 4424 5049 <p> 4425 5050 Note further that clocks in the Clock RINEX files are not corrected for the conventional periodic relativistic effect. 4426 5051 </p> 4427 4428 <p><h4 id="pidsidiod">2.15.8 PID, SID, IOD - optional</h4></p> 4429 <p> 4430 When applying Broadcast Ephemeris corrections in a PPP algorithm or in a combination of several correction streams, it is important for the client software to receive information on the continuity of discontinuity of the stream contents. Here you can specify three ID's to describe the contents of your Broadcast Ephemeris correction stream when it is uploaded. 4431 <ul> 4432 <li>A 'SSR Provider ID' is issued by RTCM SC-104 on request to identify a SSR service (see e.g. <u>http://software.rtcm-ntrip.org/wiki/SSRProvider</u>). This ID is globally unique. Values vary in the range of 0-65535. Values in the range of 0-255 are reserved for experimental services.</li> 4433 <li>A provider may generate several Broadcast Ephemeris correction streams with different contents. The 'SSR Solution ID' indicates different SSR services of one SSR provider. Values vary in the range of 0-15.</li> 4434 <li>A change of the 'IOD SSR' is used to indicate a change in the SSR generating configuration which may be relevant for the rover. Values vary in the range of 0-15.</li> 4435 </ul> 4436 </p> 4437 4438 <p><h4 id="upinter">2.15.9 Interval - mandatory if 'Upload Table' entries specified</h4></p> 4439 <p> 4440 Select the length of Clock RINEX files and SP3 Orbit files. The default value is 1 day. 4441 </p> 4442 4443 <p><h4 id="upclksmpl">2.15.10 Sampling</h4></p> 4444 <p>BNC requires an orbit corrections sampling interval for the stream to be uploaded and sampling intervals for SP3 and Clock RINEX files. The outgoing stream's clock correction sampling interval follows that of incoming corrections and is therefore nothing to be specified here.</p> 4445 4446 <p><h4 id="upclkorb">2.15.10.1 Orbits (Orb) - mandatory if 'Upload Table' entries specified</h4></p> 4447 <p>Select the stream's orbit correction sampling interval in seconds. A value of 60 sec may be appropriate.</p> 4448 <p> A value of zero '0' tells BNC to upload all orbit correction samples coming in from the real-time GNSS engine along with the clock correction samples to produce combined orbit and clock corrections to Broadcast Ephemeris (1060 for GPS, 1066 for GLONASS). 5052 <p><h4 id="upsinex">2.15.8 BSX File - optional</h4></p> 5053 <p> 5054 The satellite biases generated by BNC for upload can be logged in SINEX Bias format 5055 <a href="https://files.igs.org/pub/data/format/sinex_bias_100.pdf" target="_blank">https://files.igs.org/pub/data/format/sinex_bias_100.pdf</a>:. 5056 </p> 5057 <p> 5058 Specify a path for saving the generated clock corrections as Clock RINEX files. The following is a path example for a Linux system: 5059 <pre> 5060 /home/user/BKG0MGXRTS${V3PROD}.bia 5061 </pre> 5062 If the specified directory does not exist, BNC will not create SINEX Bias files. 5063 </p> 5064 <p> 5065 For file naming, BNC follows the new format convention according to IGS products 5066 <a href="http://acc.igs.org/repro3/Long_Product_Filenames_v1.0.pdf" target="_blank">http://acc.igs.org/repro3/Long_Product_Filenames_v1.0.pdf</a>: 5067 </p> 5068 <pre> 5069 AAAVPPPTTT_YYYYDDDHHMM_LEN_SMP_CNT.FMT 5070 </pre> 5071 With 5072 <p> 5073 <table> 5074 <tr><td> AAA </td><td> Analysis Center abbrevaition, here BKG</td></tr> 5075 <tr><td> V </td><td> Version / Solution identifier (0-9), here 0</td></tr> 5076 <tr><td> PPP </td><td> Project/Campaign identification, here Multi-GNSS product (MGX)</td></tr> 5077 <tr><td> TTT </td><td> Solution Type, here real-time streamed product (RTS)</td></tr> 5078 <tr><td> YYYYDOYHHMM</td><td> String representing beginning time of nominal data interval</td></tr> 5079 <tr><td> LEN </td><td> Intended product period of the file </td></tr> 5080 <tr><td> SMP </td><td> Data sampling rate</td></tr> 5081 <tr><td> CNT </td><td> Content type, here absolute bias information (ABS)</td></tr> 5082 <tr><td> FMT </td><td> File format, here bia</td></tr> 5083 </table> 5084 </p> 5085 <p> 5086 Note that '${V3PROD}' produces the part 'YYYYDDDHHMM_LEN_SMP_CNT' of the filename according the 'Upload Corrections' setup. 5087 </p> 5088 A result for examle is: 5089 <pre> 5090 BKG0MGXRTS_20223330000_01D_05S_ABS.bia 5091 </pre> 5092 <p> 5093 Default is an empty option field, meaning that you do not want BNC to save the uploaded stream content in daily Clock RINEX files. 5094 </p> 5095 5096 <p><h4 id="pidsidiod">2.15.9 PID, SID, IOD - optional</h4></p> 5097 <p> 5098 When applying Broadcast Ephemeris corrections in a PPP algorithm or in a combination of several correction streams, 5099 it is important for the client software to receive information on the continuity of discontinuity of the stream contents. 5100 Here you can specify three ID's to describe the contents of your Broadcast Ephemeris correction stream when it is uploaded. 5101 <ul> 5102 <li>A 'SSR Provider ID' is issued by RTCM SC-104 on request to identify a SSR service 5103 (see e.g.<a href="https://software.rtcm-ntrip.org/wiki/SSRProvider" target="_blank">https://software.rtcm-ntrip.org/wiki/SSRProvider</a>) 5104 This ID is globally unique. Values vary in the range of 0-65535. Values in the range of 0-255 are reserved for experimental services.</li> 5105 <li>A provider may generate several Broadcast Ephemeris correction streams with different contents. The 'SSR Solution ID' indicates different 5106 SSR services of one SSR provider. Values vary in the range of 0-15.</li> 5107 <li>A change of the 'IOD SSR' is used to indicate a change in the SSR generating configuration which may be relevant for the rover. 5108 Values vary in the range of 0-15.</li> 5109 </ul> 5110 </p> 5111 5112 <p><h4 id="upinter">2.15.10 Interval - mandatory if 'Upload Table' entries specified</h4></p> 5113 <p> 5114 Select the length of SP3 Orbit files, Clock RINEX files and SINAX Bias files. The default value is 1 day. 5115 </p> 5116 5117 <p><h4 id="upclksmpl">2.15.11 Sampling</h4></p> 5118 <p> 5119 BNC requires an orbit corrections sampling interval for the stream to be uploaded and sampling intervals for SP3, Clock RINEX, and SINEX Bias files. 5120 The outgoing stream's clock correction sampling interval follows that of incoming corrections and is therefore nothing to be specified here.</p> 5121 5122 <p><h4 id="upclkorb">2.15.11.1 Orbits (Orb) - mandatory if 'Upload Table' entries specified</h4></p> 5123 <p> 5124 Select the stream's orbit correction sampling interval in seconds. A value of 60 sec may be appropriate. 5125 </p> 5126 <p> 5127 A value of zero '0' tells BNC to upload all orbit correction samples coming in from the real-time GNSS engine along 5128 with the clock correction samples to produce combined orbit and clock corrections to Broadcast Ephemeris; for example message type 1060 for GPS. 4449 5129 </p> 4450 5130 <p> 4451 5131 Configuration examples: 4452 5132 </p> 4453 Let us suppose a real-time network engine supporting BNC every <b>5 sec</b> with GPS Broadcast Corrections for orbits, clocks and code biases in 'RTNET' stream format. 5133 Let us suppose a real-time network engine supporting BNC every <b>5 sec</b> with GPS Broadcast Corrections for orbits, clocks and code biases 5134 in 'RTNET' stream format. 4454 5135 <ul> 4455 5136 <li>With 'Sampling Orb' set to '0' BNC will produce</li> … … 4469 5150 <ul> 4470 5151 <li>Every 10 sec a 1057 message for GPS orbit corrections to Broadcast Ephemeris,</li> 4471 <li>Every 5 sec a 1058 message for GPS clock corrections to Broadcast Ephemeris,</li>4472 <li>Every 5sec a 1059 message for GPS code biases.</li>5152 <li>Every 5 sec a 1058 message for GPS clock corrections to Broadcast Ephemeris,</li> 5153 <li>Every 10 sec a 1059 message for GPS code biases.</li> 4473 5154 </ul> 4474 5155 </ul> 4475 <br> 4476 Note that only when specifying a value of zero '0' (default) for 'Sampling Orb', BNC produces <b>combined</b> orbit and clock correction messages. 4477 <p><h4 id="upclksp3">2.15.10.2 SP3 - mandatory if 'SP3 File' is specified</h4></p> 4478 <p>Select the SP3 orbit file sampling interval in minutes. A value of 15 min may be appropriate. A value of zero '0' tells BNC to store all available samples into SP3 orbit files.</p> 4479 4480 <p><h4 id="upclkrnx">2.15.10.3 RINEX (RNX) - mandatory if 'RNX File' is specified</h4></p> 4481 <p>Select the Clock RINEX file sampling interval in seconds. A value of 10 sec may be appropriate. A value of zero '0' tells BNC to store all available samples into Clock RINEX files.</p> 5156 </p> 5157 <p> 5158 Note that only when specifying a value of zero '0' (default) for 'Sampling Orb', BNC produces <b>combined</b> 5159 orbit and clock correction messages. 5160 </p> 5161 5162 <p><h4 id="upclksp3">2.15.11.2 SP3 - mandatory if 'SP3 File' is specified</h4></p> 5163 <p> 5164 Select the SP3 orbit file sampling interval in minutes. 5165 A value of 15 min may be appropriate. 5166 A value of zero '0' tells BNC to store all available samples into SP3 orbit files. 5167 </p> 5168 5169 <p><h4 id="upclkrnx">2.15.11.3 RINEX (RNX) - mandatory if 'RNX File' is specified</h4></p> 5170 <p> 5171 Select the Clock RINEX file sampling interval in seconds. 5172 A value of 10 sec may be appropriate. 5173 A value of zero '0' tells BNC to store all available samples into Clock RINEX files. 5174 </p> 5175 5176 <p><h4 id="upbiassnx">2.15.11.4 SINEX (BSX) - mandatory if 'BSX File' is specified</h4></p> 5177 <p> 5178 Select the SINEX Bias file sampling interval in seconds. 5179 A value of 10 sec may be appropriate. 5180 A value of zero '0' tells BNC to store all available samples into SINEX Bias files. 5181 </p> 4482 5182 4483 5183 <p><h4 id="upcustom">2.15.11 Custom Trafo - optional if 'Upload Table' entries specified</h4></p> 4484 <p>Hit 'Custom Trafo' to specify your own 14 parameter Helmert Transformation instead of selecting a predefined transformation through 'System' button.</p> 5184 <p> 5185 Hit 'Custom Trafo' to specify your own 14 parameter Helmert Transformation instead of selecting a predefined transformation 5186 through 'System' button. 5187 .</p> 4485 5188 4486 5189 <p><h4 id="upantex">2.15.12 ANTEX File - mandatory if 'SP3 File' is specified</h4></p> 4487 5190 <p> 4488 IGS provides a file containing absolute phase center variations for GNSS satellite and receiver antennas in ANTEX format. Entering the full path to such an ANTEX file is required here for referring the SP3 file content to the satellite's Center of Mass (CoM). If you do not specify an ANTEX file, the SP3 file will contain orbit information which is referred to Antenna Phase Center (APC) instead of CoM. 4489 </p> 4490 <p> 4491 The following screenshot shows the encoding and uploading of a stream of precise orbits and clocks coming from a real-time network engine in 'RTNET' ASCII format. The stream is uploaded to Ntrip Broadcaster 'products.igs-ip.net'. It is referred to APC and IGS14. Uploaded data are locally saved in SP3 and Clock RINEX format. The SSR Provider ID is set to 3. The SSR Solution ID and the Issue of Data SSR are set to 1. Required Broadcast Ephemeris are received via stream 'RTCM3EPH'. 4492 </p> 4493 <p><img src="IMG/screenshot26.png"/></p> 4494 <p>Figure 31: BNC producing Broadcast Corrections from incoming precise orbits and clocks and uploading them to an Ntrip Broadcaster</p> 4495 <p> 4496 The following screenshot shows the encoding and uploading of several Broadcast Ephemeris correction streams combined from streams CLK11, CLK21, CLK80, and CLK91. Combined streams are uploaded to different Ntrip Broadcasters and referred to different reference systems. One of the uploaded streams is locally saved in SP3 and Clock RINEX format. Different SSR Provider IDs, SSR Solution IDs and Issue of Data IDs are specified. Required Broadcast Ephemeris are received via stream 'RTCM3EPH'. 4497 </p> 4498 <p><img src="IMG/screenshot21.png"/></p> 4499 <p>Figure 32: BNC uploading a combined Broadcast Correction stream</p> 5191 IGS provides a file containing absolute phase center offsets and variations for GNSS satellite and receiver antennas in ANTEX format. 5192 Entering the full path to such an ANTEX file is required here for referring the SP3 file content to the satellite's Center of Mass (CoM). 5193 If you do not specify an ANTEX file, the SP3 file will contain orbit information which is referred to Antenna Phase Center (APC) instead of CoM. 5194 </p> 5195 <p> 5196 The following screenshot shows the encoding and uploading of several Broadcast Ephemeris correction streams combined from different AC streams. 5197 Combined streams using different SSR formats are uploaded to different Ntrip Broadcasters and referred to different reference systems. 5198 Different SSR Provider IDs, SSR Solution IDs and Issue of Data IDs are specified. Required Broadcast Ephemeris are received via stream 'BCEP00BKG0'. 5199 </p> 5200 <p><img src="IMG/Figure31.png"width=1000/></p> 5201 <p>Figure 31: BNC uploading a combined Broadcast Correction stream</p> 4500 5202 <p></p> 4501 5203 4502 5204 <p><h4 id="upeph">2.16 Upload Ephemeris</h4></p> 4503 5205 <p> 4504 BNC can generate streams carrying only Broadcast Ephemeris in RTCM Version 3 format and upload them to an Ntrip Broadcaster. The satellite system(s) that shall be part of the uploaded stream can be specified using the 'System' parameter. This can be done: 5206 BNC can generate streams carrying only Broadcast Ephemeris in RTCM Version 3 format and upload them to an Ntrip Broadcaster. The satellite system(s) 5207 that shall be part of the uploaded stream can be specified using the 'System' parameter. This can be done: 4505 5208 <ul> 4506 5209 <li>for an individual satellite system, specifying e.g. 'G' for GPS or 'E' for Galileo, etc. or </li> … … 4510 5213 </p> 4511 5214 <p> 4512 Note that Broadcast Ephemeris received in real-time have a system specific period of validity in BNC, which is defined in accordance with the update rates and validity intervals of the navigation messages. 4513 <ul> 4514 <li>GPS ephemeris will be interpreted as outdated and ignored when older than 4 hours.</li> 4515 <li>GLONASS ephemeris will be interpreted as outdated and ignored when older than 1 hours.</li> 4516 <li>Galileo ephemeris will be interpreted as outdated and ignored when older than 4 hours.</li> 4517 <li>BDS ephemeris will be interpreted as outdated and ignored when older than 1 hours.</li> 4518 <li>SBAS ephemeris will be interpreted as outdated and ignored when older than 10 minutes.</li> 4519 <li>QZSS ephemeris will be interpreted as outdated and ignored when older than 2 hours.</li> 4520 <li>IRNSS ephemeris will be interpreted as outdated and ignored when older than 24 hours.</li> 5215 Note that Broadcast Ephemeris received in real-time have a system specific period of validity in BNC, 5216 which is defined in accordance with the update rates and validity intervals of the navigation messages. 5217 For this, the time difference dt of Time of Clock (TOC) with respect the current time is determined: 5218 </p> 5219 <pre> 5220 dt = currentTime - TOC [sec] 5221 </pre> 5222 <p> 5223 Hence, 5224 <ul> 5225 <li>GPS ephemeris will be interpreted as outdated and ignored when dt > 14400.0 or dt < -7200.0.</li> 5226 <li>GLONASS ephemeris will be interpreted as outdated and ignored when dt > 3900.0 or dt < -2100.0.</li> 5227 <li>Galileo ephemeris will be interpreted as outdated and ignored when dt > 14400.0 or dt < 0.0.</li> 5228 <li>BDS ephemeris will be interpreted as outdated and ignored when dt > 3900.0 or dt < 0.0.</li> 5229 <li>SBAS ephemeris will be interpreted as outdated and ignored when dt > 600.0 or dt < -600.0.</li> 5230 <li>QZSS ephemeris will be interpreted as outdated and ignored when dt > 7200.0 or dt < -3600.0.</li> 5231 <li>IRNSS ephemeris will be interpreted as outdated and ignored when fabs(dt > 86400.0).</li> 4521 5232 </ul> 4522 5233 A note 'OUTDATED EPHEMERIS' will be given in the logfile and the data will be disregarded when necessary. 4523 5234 </p> 4524 4525 <p> 4526 Furthermore, received Broadcast Ephemeris parameters pass through a plausibility check in BNC which allows to ignoreincorrect ephemeris data when necessary, leaving a note 'WRONG EPHEMERIS' in the logfile.5235 <p> 5236 Furthermore, received Broadcast Ephemeris parameters pass through a plausibility check in BNC which allows to ignore 5237 incorrect ephemeris data when necessary, leaving a note 'WRONG EPHEMERIS' in the logfile. 4527 5238 Unhealthy Broadcast Ephemeris will not be excluded. A note 'UNHEALTHY EPHEMERIS' will be added in the logfile. 4528 5239 </p> 4529 4530 5240 <p><h4 id="brdcserver">2.16.1 Host & Port - optional</h4></p> 4531 5241 <p> 4532 Specify the 'Host' IP number or URL of an Ntrip Broadcaster to upload the stream. An empty option field means that you do not want to upload Broadcast Ephemeris. 4533 </p> 4534 <p> 4535 Enter the Ntrip Broadcaster's IP 'Port' number for stream upload. Note that Ntrip Broadcasters are often configured to provide access through more than one port, usually ports 80 and 2101. If you experience communication problems on port 80, you should try to use the alternative port(s). 4536 </p> 4537 4538 <p><h4 id="brdcmount">2.16.2 Mountpoint, User, Password - mandatory if 'Host' is set</h4></p> 4539 <p> 4540 BNC uploads a stream to the Ntrip Broadcaster by referring it to a dedicated mountpoint that has been set by its operator. Specify the mountpoint based on the details you received for your stream from the operator. It is often a 9-character ID (capital letters) plus an integer number.</p> 4541 <p>For stream upload the Ntrip Version can be chosen. An Ntrip version 1 upload is protected through an upload 'Password' only. For an Ntrip Version 2 upload an upload 'User' is required in addition. Enter the user name and the password you received from the Ntrip Broadcaster operator along with the mountpoint.</p> 4542 </p> 4543 5242 Specify the 'Host' IP number or URL of an Ntrip Broadcaster to upload the stream. An empty option field means that you 5243 do not want to upload Broadcast Ephemeris. 5244 </p> 5245 <p> 5246 Enter the Ntrip Broadcaster's IP 'Port' number for stream upload. Note that Ntrip Broadcasters are often configured to provide 5247 access through more than one port, usually ports 80 and 2101. If you experience communication problems on port 80, you should 5248 try to use the alternative port(s). 5249 </p> 5250 5251 <p><h4 id="brdcmount">2.16.2 Mountpoint, Ntrip Version, User, Password - mandatory if 'Host' is set</h4></p> 5252 <p> 5253 BNC uploads a stream to the Ntrip Broadcaster by referring it to a dedicated mountpoint that has been set by its operator. 5254 Specify the mountpoint based on the details you received for your stream from the operator. It is often a 9-character ID (capital letters) 5255 plus an integer number. 5256 </p> 5257 <p> 5258 For stream upload the Ntrip Version can be chosen. An Ntrip version 1 upload is protected through an upload 'Password' only. 5259 For an Ntrip Version 2 upload an upload 'User' is required in addition. Enter the user name and the password you received 5260 from the Ntrip Broadcaster operator along with the mountpoint. 5261 </p> 4544 5262 <p><h4 id="brdcsys">2.16.3 Satellite System - mandatory if 'Host' is set</h4></p> 4545 Specify the satellite system(s) that shall be part of the uploaded stream (e.g. G for GPS or GRE for GPS+GLONASS+Galileo, or ALL).5263 Specify the satellite system(s) that shall be part of the uploaded stream (e.g. 'G' for GPS or 'GRE' for GPS+GLONASS+Galileo, or 'ALL'). 4546 5264 </p> 4547 5265 <p><h4 id="brdcsmpl">2.16.4 Sampling - mandatory if 'Host' is set</h4></p> 4548 Select the Broadcast Ephemeris repetition interval in seconds. Default is '5', meaning that a complete set of Broadcast Ephemeris is uploaded every 5 seconds.4549 </p> 4550 4551 <p><img src="IMG/ screenshot28.png"/></p>4552 <p>Figure 3 3: BNC producing a Broadcast Ephemeris stream from navigation messages of globally distributed RTCM streams and uploading them in RTCM Version 3format to an Ntrip Broadcaster</p>5266 Select the Broadcast Ephemeris repetition interval in seconds. Default is '5', meaning that a complete set of Broadcast Ephemeris is uploaded 5267 every 5 seconds. 5268 </p> 5269 <p><img src="IMG/Figure32.png"width=1000/></p> 5270 <p>Figure 32: BNC producing Broadcast Ephemeris streams from globally distributed RTCM streams; upload in RTCM format to an Ntrip Broadcaster</p> 4553 5271 4554 5272 <p><h4 id="streams">2.17 Streams Canvas</h4></p> 4555 5273 <p> 4556 Each stream on an Ntrip Broadcaster (and consequently on BNC) is defined using a unique source ID called mountpoint. An Ntrip Client like BNC accesses the desired stream by referring to its mountpoint. Information about streams and their mountpoints is available through the source-table maintained by the Ntrip Broadcaster. 4557 </p> 4558 4559 <p> 4560 Streams selected for retrieval are listed under the 'Streams' canvas on BNC's main window. The list provides the following information either extracted from source-table(s) produced by the Ntrip Broadcasters or introduced by BNC's user: 4561 </p> 4562 5274 Each stream on an Ntrip Broadcaster (and consequently on BNC) is defined using a unique source ID called mountpoint. An Ntrip Client like BNC 5275 accesses the desired stream by referring to its mountpoint. Information about streams and their mountpoints is available through the source-table 5276 maintained by the Ntrip Broadcaster. 5277 </p> 5278 <p> 5279 Streams selected for retrieval are listed under the 'Streams' canvas on BNC's main window. 5280 The list provides the following information either extracted from source-table(s) produced by the Ntrip Broadcasters or introduced by BNC's user: 5281 </p> 4563 5282 <p> 4564 5283 <table> 4565 <tr><td>'resource loader' </td><td>Ntrip Broadcaster URL and port, or<br>TCP/IP host and port, or<br>UDP port, or<br>Serial input port specification.</td></tr> 4566 <tr><td>'mountpoint' </td><td>Mountpoint introduced by Ntrip Broadcaster, or<br>Mountpoint introduced by BNC's user.</td></tr> 4567 <tr><td>'decoder' </td><td>Name of decoder used to handle the incoming stream content according to its format; editable.</td></tr> 4568 <tr><td>'lat' </td><td>Approximate latitude of reference station, in degrees, north; editable if 'nmea' = 'yes'.</td></tr> 4569 <tr><td>'long' </td><td>Approximate longitude of reference station, in degrees, east; editable if 'nmea' = 'yes'.</td></tr> 4570 <tr><td>'nmea' </td><td>Indicates whether or not streaming needs to be initiated by BNC through sending NMEA-GGA message carrying position coordinates in 'lat' and 'long'.</td></tr> 4571 <tr><td>'ntrip' </td><td>Selected Ntrip transport protocol version (1, 2, 2s, R, or U), or<br>'N' for TCP/IP streams without Ntrip, or<br>'UN' for UDP streams without Ntrip, or<br>'S' for serial input streams without Ntrip.</td></tr> 4572 <tr><td>'bytes' </td><td>Number of bytes received. 5284 <tr><td> 'resource loader' </td><td>Ntrip Broadcaster URL and port, or TCP/IP host and port, or UDP port, or Serial input port specification.</td></tr> 5285 <tr><td> 'mountpoint' </td><td>Mountpoint introduced by Ntrip Broadcaster, or Mountpoint introduced by BNC's user.</td></tr> 5286 <tr><td> 'decoder' </td><td>Name of decoder used to handle the incoming stream content according to its format; editable.</td></tr> 5287 <tr><td> 'lat' </td><td>Approximate latitude of reference station, in degrees, north; editable if 'nmea' = 'yes'.</td></tr> 5288 <tr><td> 'long' </td><td>Approximate longitude of reference station, in degrees, east; editable if 'nmea' = 'yes'.</td></tr> 5289 <tr><td> 'nmea' </td><td>Indicates whether or not streaming needs to be initiated by BNC through sending 5290 NMEA-GGA message carrying position coordinates in 'lat' and 'long'.</td></tr> 5291 <tr><td> 'ntrip' </td><td>Selected Ntrip transport protocol version (1, 2, 2s, R, or U), or 'N' for TCP/IP streams without Ntrip, 5292 or 'UN' for UDP streams without Ntrip, or 'S' for serial input streams without Ntrip.</td></tr> 5293 <tr><td> 'bytes' </td><td>Number of bytes received. 4573 5294 </table> 4574 5295 </p> 4575 4576 5296 <p><h4 id="streamedit">2.17.1 Edit Streams</h4></p> 4577 5297 <ul> 4578 <li>BNC automatically allocates one of its internal decoders to a stream based on the stream's 'format' and 'format-details' as given in the source-table. However, there might be cases where you need to override the automatic selection due to an incorrect source-table for example. BNC allows users to manually select the required decoder by editing the decoder string. Double click on the 'decoder' field, enter your preferred decoder and then hit Enter. Accepted decoder strings are 'RTCM_2.x', 'RTCM_3.x' and 'RTNET'.</li> 4579 <li>In case you need to log the raw data as it is, BNC allows users to by-pass its decoders and directly save the input in daily logfiles. To do this, specify the decoder string as 'ZERO'. The generated filenames are created from the characters of the streams mountpoints plus two-digit numbers each for year, month, and day. Example: Setting the 'decoder' string for mountpoint WTZZ0 to 'ZERO' and running BNC on March 29, 2007 would save raw data in a file named WTZZ0_070329.</li> 4580 <li>BNC can also retrieve streams from virtual reference stations (VRS). To initiate these streams, an approximate rover position needs to be sent in NMEA format to the Ntrip Broadcaster. In return, a user-specific data stream is generated, typically by Network RTK software. VRS streams are indicated by a 'yes' in the source-table as well as in the 'nmea' column on the 'Streams' canvas in BNC's main window. They are customized exactly to the latitude and longitude transmitted to the Ntrip Broadcaster via NMEA GGA sentences.<br> 4581 If NMEA GGA sentences are not coming from a serially connected GNSS rover, BNC simulates them from the default latitude and longitude of the source-table as shown in the 'lat' and 'long' columns on the 'Streams' canvas. However, in many cases you would probably want to change these defaults according to your requirement. Double-click on 'lat' and 'long' fields, enter the values you wish to send and then hit Enter. The format is in positive north latitude degrees (e.g. for northern hemisphere: 52.436, for southern hemisphere: -24.567) and eastern longitude degrees (example: 358.872 or -1.128). Only streams with a 'yes' in their 'nmea' column can be edited. The position should preferably be a point within the VRS service area of the network. RINEX files generated from these streams will contain an additional COMMENT line in the header beginning with 'NMEA' showing the 'lat' and 'long' used.<br> 4582 Note that when running BNC in a Local Area Network (LAN), NMEA strings may be blocked by a proxy server, firewall or virus scanner when not using the Ntrip Version 2 transport protocol.</li> 5298 <li>BNC automatically allocates one of its internal decoders to a stream based on the stream's 'format' and 'format-details' as given in the source-table. 5299 However, there might be cases where you need to override the automatic selection due to an incorrect source-table for example. 5300 BNC allows users to manually select the required decoder by editing the decoder string. Double click on the 'decoder' field, 5301 enter your preferred decoder and then hit Enter. Accepted decoder strings are 'RTCM_2.x', 'RTCM_3.x' and 'RTNET'.</li> 5302 <li>In case you need to log the raw data as it is, BNC allows users to by-pass its decoders and directly save the input in daily logfiles. 5303 To do this, specify the decoder string as 'ZERO'. The generated filenames are created from the characters of the streams mountpoints plus 5304 two-digit numbers each for year, month, and day. Example: Setting the 'decoder' string for mountpoint WTZZ00DEU0 to 'ZERO' and 5305 running BNC on December 01, 2022 would save raw data in a file named WTZZ00DEU0_221201.</li> 5306 <li>BNC can also retrieve streams from virtual reference stations (VRS). To initiate these streams, an approximate rover position needs to be sent 5307 in NMEA format to the Ntrip Broadcaster. In return, a user-specific data stream is generated, typically by Network RTK software. 5308 VRS streams are indicated by a 'yes' in the source-table as well as in the 'nmea' column on the 'Streams' canvas in BNC's main window. 5309 They are customized exactly to the latitude and longitude transmitted to the Ntrip Broadcaster via NMEA GGA sentences. If NMEA GGA sentences 5310 are not coming from a serially connected GNSS rover, BNC simulates them from the default latitude and longitude of the source-table as shown 5311 in the 'lat' and 'long' columns on the 'Streams' canvas. However, in many cases you would probably want to change these defaults according to 5312 your requirement. Double-click on 'lat' and 'long' fields, enter the values you wish to send and then hit Enter. The format is 5313 in positive north latitude degrees (e.g. for northern hemisphere: 52.436, for southern hemisphere: -24.567) and 5314 eastern longitude degrees (example: 358.872 or -1.128). Only streams with a 'yes' in their 'nmea' column can be edited. The position should 5315 preferably be a point within the VRS service area of the network. RINEX files generated from these streams will contain an additional COMMENT line 5316 in the header beginning with 'NMEA' showing the 'lat' and 'long' used. Note that when running BNC in a Local Area Network (LAN), 5317 NMEA strings may be blocked by a proxy server, firewall or virus scanner when not using the Ntrip Version 2 transport protocol.</li> 4583 5318 </ul> 4584 5319 4585 5320 <p><h4 id="streamdelete">2.17.2 Delete Stream</h4></p> 4586 5321 <p> 4587 To remove a stream from the 'Streams' canvas in the main window, highlight it by clicking on it and hit the 'Delete Stream' button. You can also remove multiple streams simultaneously by highlighting them using +Shift or +Ctrl.</p> 5322 To remove a stream from the 'Streams' canvas in the main window, highlight it by clicking on it and hit the 'Delete Stream' button. 5323 You can also remove multiple streams simultaneously by highlighting them using +Shift or +Ctrl. 5324 </p> 4588 5325 4589 5326 <p><h4 id="streamconf">2.17.3 Reconfigure Stream Selection On-the-fly</h4></p> … … 4591 5328 The streams selection can be changed on-the-fly without interrupting uninvolved threads in the running BNC process. 4592 5329 </p> 4593 4594 <p> 4595 <b>Window mode:</b> Hit 'Reread & Save Configuration' while BNC is in window mode and already processing data to let changes of your stream selection immediately become effective. 4596 <p> 4597 <b>No window mode:</b> When operating BNC online in 'no window' mode (command line option -nw), you force BNC to reread its 'mountPoints' configuration option from disk at pre-defined intervals. Select '1 min', '1 hour', or '1 day' as 'Reread configuration' option to reread the 'mountPoints' option every full minute, hour, or day. This lets a 'mountPoints' option edited in between in the configuration file become effective without terminating uninvolved threads. See section 'Configuration Examples' for configuration file examples and section 'Reread Configuration' for a list of other on-the-fly changeable options. 5330 <p> 5331 <b>Window mode:</b> Hit 'Reread & Save Configuration' while BNC is in window mode and already processing data 5332 to let changes of your stream selection immediately become effective. 5333 <p> 5334 <b>No window mode:</b> When operating BNC online in 'no window' mode (command line option -nw), 5335 you force BNC to reread its 'mountPoints' configuration option from disk at pre-defined intervals. 5336 Select '1 min', '1 hour', or '1 day' as 'Reread configuration' option to reread the 'mountPoints' option 5337 every full minute, hour, or day. This lets a 'mountPoints' option edited in between in the configuration file 5338 become effective without terminating uninvolved threads. See section 'Configuration Examples' for 5339 configuration file examples and section 'Reread Configuration' for a list of other on-the-fly changeable options. 4598 5340 </p> 4599 5341 4600 5342 <p><h4 id="logs">2.18 Logging Canvas</h4></p> 4601 5343 <p> 4602 The 'Logging Canvas' above the bottom menu bar on the main window labeled 'Log', 'Throughput', 'Latency', and 'PPP Plot' provides control of BNC's activities. Tabs are available for continuously showing logfile content, for a plot controlling the bandwidth consumption, a plot showing stream latencies, and for time series plots of PPP results. 5344 The 'Logging Canvas' above the bottom menu bar on the main window labeled 'Log', 'Throughput', 'Latency', and 'PPP Plot' 5345 provides control of BNC's activities. Tabs are available for continuously showing logfile content, 5346 for a plot controlling the bandwidth consumption, a plot showing stream latencies, and for time series plots of PPP results. 4603 5347 </p> 4604 5348 … … 4610 5354 <p><h4 id="throughput">2.18.2 Throughput</h4></p> 4611 5355 <p> 4612 The bandwidth consumption per stream is shown in the 'Throughput' tab in bits per second (bps) or kilobits per second (kbps). The following figure shows an example for the bandwidth consumption of incoming streams. 4613 </p> 4614 4615 <p><img src="IMG/screenshot08.png"/></p> 4616 <p>Figure 34: Bandwidth consumption of RTCM streams received by BNC</p> 4617 5356 The bandwidth consumption per stream is shown in the 'Throughput' tab in bits per second (bps) or kilobits per second (kbps). 5357 The following figure shows an example for the bandwidth consumption of incoming streams. 5358 </p> 5359 <p><img src="IMG/Figure33.png"width=1000/></p> 5360 <p>Figure 33: Bandwidth consumption of RTCM streams received by BNC</p> 4618 5361 <p><h4 id="latency">2.18.3 Latency</h4></p> 4619 5362 <p> 4620 The latency of observations in each incoming stream is shown in the 'Latency' tab in milliseconds or seconds. Streams not carrying observations (e.g. those providing only Broadcast Ephemeris messages) or having an outage are not considered here and shown in red color. Note that the calculation of correct latencies requires the clock of the host computer to be properly synchronized. The next figure shows an example for the latency of incoming streams. 4621 </p> 4622 4623 <p><img src="IMG/screenshot07.png"/></p> 4624 <p>Figure 35: Latency of RTCM streams received by BNC</p> 5363 The latency of observations in each incoming stream is shown in the 'Latency' tab in milliseconds or seconds. 5364 Streams not carrying observations (e.g. those providing only Broadcast Ephemeris messages) or having an outage 5365 are not considered here and shown in red color. Note that the calculation of correct latencies requires the 5366 clock of the host computer to be properly synchronized. The next figure shows an example for the latency 5367 of incoming streams. 5368 </p> 5369 <p><img src="IMG/Figure34.png"width=1000/></p> 5370 <p>Figure 34: Latency of RTCM streams received by BNC</p> 4625 5371 4626 5372 <p><h4 id="ppptab">2.18.4 PPP Plot</h4></p> 4627 5373 <p> 4628 Precise Point Positioning time series of North (red), East (green) and Up (blue) coordinate components are shown in the 'PPP Plot' tab when a 'Mountpoint' option is defined under PPP (4). Values are referred to a priori reference coordinates. The time as given in format [hh:mm] refers to GPS Time. The sliding PPP time series window covers a period of 5 minutes. Note that it may take up to 30 seconds or more until the first PPP solutions becomes available. The following figure shows the screenshot of a PPP time series plot of North, East and Up coordinate displacements. 4629 </p> 4630 4631 <p><img src="IMG/screenshot13.png"/></p> 4632 <p>Figure 36: Example for time series plot of displacements produced by BNC</p> 5374 Precise Point Positioning time series of North (red), East (green) and Up (blue) coordinate components are shown in the 'PPP Plot' tab when 5375 a 'Mountpoint' option is defined under PPP (4). Values are referred to a priori reference coordinates. The time as given in format [hh:mm] 5376 refers to GPS Time. The sliding PPP time series window covers a period of 5 minutes. Note that it may take up to 30 seconds or more until 5377 the first PPP solutions becomes available. The following figure shows the screenshot of a PPP time series plot of North, East and Up 5378 coordinate displacements. 5379 </p> 5380 <p><img src="IMG/Figure35.png"width=1000/></p> 5381 <p>Figure 35: Example for time series plot of displacements produced by BNC</p> 4633 5382 4634 5383 <p><h4 id="bottom">2.19 Bottom Menu Bar</h4></p> 4635 5384 <p> 4636 The bottom menu bar allows to add or delete streams to or from BNC's configuration and to start or stop it. It also provides access to BNC's online help function. The 'Add Stream' button opens a window that allows users to select one of several input communication links, see figure below. 4637 </p> 4638 4639 <p><img src="IMG/screenshot06.png"/></p> 4640 <p>Figure 37: Steam input communication links accepted by BNC</p> 5385 The bottom menu bar allows to add or delete streams to or from BNC's configuration and to start or stop it. 5386 It also provides access to BNC's online help function. The 'Add Stream' button opens a window that allows users 5387 to select one of several input communication links, see figure below. 5388 </p> 5389 <p><img src="IMG/Figure36.png"width=400/></p> 5390 <p>Figure 36: Steam input communication links accepted by BNC</p> 4641 5391 4642 5392 <p><h4 id="streamadd">2.19.1 Add Stream</h4></p> … … 4646 5396 4647 5397 <p><h4 id="streamcaster">2.19.1.1 Add Stream - Coming from Caster</h4></p> 4648 4649 <p> 4650 Button 'Add Stream' > 'Coming from Caster' opens a window that allows users to select data streams from an Ntrip Broadcaster accordingto their mountpoints and show a distribution map of offered streams.5398 <p> 5399 Button 'Add Stream' > 'Coming from Caster' opens a window that allows users to select data streams from an Ntrip Broadcaster according 5400 to their mountpoints and show a distribution map of offered streams. 4651 5401 </p> 4652 5402 4653 5403 <p><h4 id="streamhost">2.19.1.1.1 Caster Host and Port - mandatory</h4></p> 4654 5404 <p> 4655 Enter the Ntrip Broadcaster host IP and port number. Note that EUREF and IGS operate Ntrip Broadcasters at <u>http://euref-ip.net/home</u>, <u>http://igs-ip.net/home</u>, <u>http://products.igs-ip.net/home</u> and <u>http://mgex.igs-ip.net/home</u>. 5405 Enter the Ntrip Broadcaster host IP and port number. Note that EUREF and IGS operate Ntrip Broadcasters 5406 <a href="https://euref-ip.net/home" target="_blank">https://euref-ip.net/home</a>, 5407 <a href="https://igs-ip.net/home" target="_blank">https://igs-ip.net/home</a> and 5408 <a href="https://products.igs-ip.net/home" target="_blank">https://products.igs-ip.net/home</a>. 4656 5409 </p> 4657 5410 4658 5411 <p><h4 id="streamtable">2.19.1.1.2 Casters Table - optional</h4></p> 4659 5412 <p> 4660 It may be that you are not sure about your Ntrip Broadcaster's host and port number or you are interested in other broadcaster installations operated elsewhere. Hit 'Show' for a table of known broadcasters maintained at <u>rtcm-ntrip.org/home</u>. A window opens which allows selecting a broadcaster for stream retrieval, see figure below. 4661 </p> 4662 4663 <p><img src="IMG/screenshot04.png"/></p> 4664 4665 <p>Figure 38: BNC's 'Select Broadcaster' table</p> 5413 It may be that you are not sure about your Ntrip Broadcaster's host and port number or you are interested in other 5414 broadcaster installations operated elsewhere. Hit 'Show' for a table of known broadcasters maintained at 5415 <a href="https://rtcm-ntrip.org/home " target="_blank">https://rtcm-ntrip.org/home </a>. 5416 A window opens which allows selecting a broadcaster for stream retrieval, see figure below. 5417 </p> 5418 <p><img src="IMG/Figure37.png"width=1000/></p> 5419 <p>Figure 37: BNC's 'Select Broadcaster' table</p> 4666 5420 4667 5421 <p><h4 id="streamuser">2.19.1.1.3 User and Password - mandatory for protected streams</h4></p> 4668 5422 <p> 4669 Streams on Ntrip Broadcasters may be protected. Enter a valid 'User' ID and 'Password' for access to protected streams. Accounts are usually provided per Ntrip Broadcaster through a registration procedure. Register through <u>http://register.rtcm-ntrip.org</u> for access to protected streams from EUREF and IGS. 5423 Streams on Ntrip Broadcasters may be protected. Enter a valid 'User' ID and 'Password' for access to protected streams. 5424 Accounts are usually provided per Ntrip Broadcaster through a registration procedure. 5425 Register through <a href="https://register.rtcm-ntrip.org" target="_blank">https://register.rtcm-ntrip.org</a> 5426 for access to protected streams from EUREF and IGS. 4670 5427 </p> 4671 5428 4672 5429 <p><h4 id="gettable">2.19.1.1.4 Get Table</h4></p> 4673 5430 <p> 4674 Use the 'Get Table' button to download the source-table from the Ntrip Broadcaster. Pay attention to data fields 'format' and 'format-details'. Keep in mind that BNC can only decode and convert streams that come in RTCM Version 2, RTCM Version 3, or RTNET format. For access to observations, Broadcast Ephemeris and Broadcast Corrections in RTCM format, streams must contain a selection of appropriate message types as listed in the Annex, cf. data field 'format-details' for available message types and their repetition rates in brackets. Note that in order to produce RINEX Navigation files, RTCM Version 3 streams containing message types 1019 (GPS) and 1020 (GLONASS) and 1043 (SBAS) and 1044 (QZSS) and 1045, 1046 (Galileo) and 63 (BDS/BeiDou, tentative message number) are required. Select your streams line by line, use +Shift and +Ctrl when necessary. The figure below provides an example source-table. 4675 </p> 4676 4677 <p> 4678 The content of data field 'nmea' tells you whether a stream retrieval needs to be initiated by BNC through sending an NMEA-GGA message carrying approximate position coordinates (Virtual Reference Station, VRS). 4679 </p> 4680 5431 Use the 'Get Table' button to download the source-table from the Ntrip Broadcaster. Pay attention to data fields 'format' and 'format-details'. 5432 Keep in mind that BNC can only decode and convert streams that come in RTCM Version 2, RTCM Version 3, or RTNET format. 5433 For access to observations, Broadcast Ephemerides and Broadcast Corrections in RTCM format, streams must contain a selection of 5434 appropriate message types as listed in the Annex; cf. data field 'format-details' for available message types and their repetition rates in brackets. 5435 Note that in order to produce RINEX Navigation files, RTCM Version 3 streams containing message types 5436 <ul> 5437 <li> 1019 (GPS) or </li> 5438 <li> 1020 (GLONASS) or </li> 5439 <li> 1041 (IRNSS) or </li> 5440 <li> 1042 (BDS/BeiDou) or </li> 5441 <li> 1043 (SBAS) or </li> 5442 <li> 1044 (QZSS) or </li> 5443 <li> 1045 (Galileo F/NAV) or </li> 5444 <li> 1046 (Galileo I/NAV). </li> 5445 </ul> 5446 are required. Select your streams line by line, use +Shift and +Ctrl when necessary. The figure below provides an example source-table. 5447 </p> 5448 <p> 5449 The content of data field 'nmea' tells you whether a stream retrieval needs to be initiated by BNC through sending an NMEA-GGA message 5450 carrying approximate position coordinates (Virtual Reference Station, VRS). 5451 </p> 4681 5452 <p> 4682 5453 Hit 'OK' to return to the main window. If you wish, you can click on 'Add Stream' and repeat the process of retrieving streams from different casters. 4683 5454 </p> 4684 4685 <p><img src="IMG/screenshot05.png"/></p> 4686 <p>Figure 39: Broadcaster source-table shown by BNC</p> 5455 <p><img src="IMG/Figure38.png"width=1000/></p> 5456 <p>Figure 38: Broadcaster source-table shown by BNC</p> 4687 5457 4688 5458 <p><h4 id="ntripv">2.19.1.1.5 Ntrip Version - mandatory</h4></p> 4689 5459 <p> 4690 Some limitations and deficiencies of the Ntrip Version 1 stream transport protocol are solved in Ntrip Version 2. Improvements mainly concern a full HTTP compatibility in view of requirements coming from proxy servers. Version 2 is backwards compatible to Version 1. Options implemented in BNC are: 4691 </p> 4692 5460 Some limitations and deficiencies of the Ntrip Version 1 stream transport protocol are solved in Ntrip Version 2. 5461 Improvements mainly concern a full HTTP compatibility in view of requirements coming from proxy servers. 5462 Version 2 is backwards compatible to Version 1. Options implemented in BNC are: 5463 </p> 4693 5464 <p> 4694 5465 <table> 4695 <tr></tr>4696 5466 <tr><td><b>Option </b></td><td><b>Meaning</b></td></tr> 4697 <tr><td> 1 </td><td>Ntrip Version 1, TCP/IP</td></tr>4698 <tr><td> 2 </td><td>Ntrip Version 2 in TCP/IP mode</td></tr>4699 <tr><td> 2s </td><td>Ntrip Version 2 in TCP/IP mode via SSL</td></tr>4700 <tr><td> R </td><td>Ntrip Version 2 in RTSP/RTP mode</td></tr>4701 <tr><td> U </td><td>Ntrip Version 2 in UDP mode</td></tr>5467 <tr><td> 1 </td><td>Ntrip Version 1, TCP/IP</td></tr> 5468 <tr><td> 2 </td><td>Ntrip Version 2 in TCP/IP mode</td></tr> 5469 <tr><td> 2s </td><td>Ntrip Version 2 in TCP/IP mode via SSL</td></tr> 5470 <tr><td> R </td><td>Ntrip Version 2 in RTSP/RTP mode</td></tr> 5471 <tr><td> U </td><td>Ntrip Version 2 in UDP mode</td></tr> 4702 5472 </table> 4703 5473 </p> 4704 4705 <p> 4706 If Ntrip Version 2 is supported by the broadcaster: 4707 < /p>4708 <ul> 4709 <li>Try using option '2' if your streams are otherwise blocked by a proxy server operated in front of BNC.</li> 4710 < li>When using Ntrip Version 2 via SSL (option '2s') you need to specify the appropriate 'Caster port' for that. It is usually port number 443. Clarify 'SSL' options offered in panel 'Network'.</li>4711 < li>Option 'R' or 'U' may be selected if latency is more important than completeness for your application. Note that the latency reduction is likely to be in the order of 0.5 sec or less. Note further that options 'R' (RTSP/RTP mode) and 'U' (UDP mode) are not accepted by proxy servers and a mobile Internet Service Provider may not support it.</li>4712 </ul> 4713 <p> 4714 Select option '1' if you are not sure whether the broadcaster supports Ntrip Version 2.</li> 4715 </p> 4716 5474 <p> 5475 Try using option '2' if your streams are otherwise blocked by a proxy server operated in front of BNC. 5476 </p> 5477 <p> 5478 When using Ntrip Version 2 via SSL (option '2s') you need to specify the appropriate 'Caster port' for that. 5479 It is usually port number 443. Clarify 'SSL' options offered in panel 'Network'. 5480 </p> 5481 <p> 5482 Option 'R' or 'U' may be selected if latency is more important than completeness for your application. 5483 Note that the latency reduction is likely to be in the order of 0.5 sec or less. 5484 Note further that options 'R' (RTSP/RTP mode) and 'U' (UDP mode) are not accepted by proxy servers and 5485 a mobile Internet Service Provider may not support it. 5486 </p> 4717 5487 <p><h4 id="castermap">2.19.1.1.6 Map - optional</h4></p> 4718 5488 <p> 4719 Button 'Map' opens a window to show a distribution map of the caster's streams. You may like to zoom in or out using the mouse. Left button: draw a rectangle to zoom, right button: zoom out, middle button: zoom back.4720 </p> 4721 4722 <p><img src="IMG/ screenshot24.png"/></p>4723 <p>Figure 40: Stream distribution map shown by BNC as derived from Ntrip Broadcaster source-table</p>5489 Button 'Map' opens a window to show a distribution map of the caster's streams. You may like to zoom in or out using the mouse. 5490 Left button: draw a rectangle to zoom, right button: zoom out, middle button: zoom back. 5491 </p> 5492 <p><img src="IMG/Figure39.png"width=1000/></p> 5493 <p>Figure 39: Stream distribution map shown by BNC as derived from Ntrip Broadcaster source-table</p> 4724 5494 4725 5495 <p><h4 id="streamip">2.19.1.2 Add Stream - Coming from TCP/IP Port</h4></p> 4726 5496 <p> 4727 Button 'Add Stream' > 'Coming from TCP/IP Port' allows to retrieve streams via TCP directly from an IP address without using the Ntrip transport protocol. For that you: 5497 Button 'Add Stream' > 'Coming from TCP/IP Port' allows to retrieve streams via TCP directly from an IP address 5498 without using the Ntrip transport protocol. For that you: 4728 5499 <ul> 4729 5500 <li>Enter the IP address of the stream providing host.</li> 4730 5501 <li>Enter the IP port number of the stream providing host.</li> 4731 <li>Specify a mountpoint. Recommended is a 4-character station ID. Example: FFMJ</li>5502 <li>Specify a mountpoint. Recommended is a 9-character station ID. Example: FFMJ00DEU</li> 4732 5503 <li>Specify the stream format. Available options are 'RTCM_2', 'RTCM_3', 'RTNET', and 'ZERO'.</li> 4733 <li>Enter the approximate latitude of the stream providing rover in degrees. Example: 45.32.</li>4734 <li>Enter the approximate longitude of the stream providing rover in degrees. Example: -15.20.</li>4735 </ul> 4736 </p> 4737 <p> 4738 Streams directly received from a TCP/IP port show up with an 'N' for 'No Ntrip' in the 'Streams' canvas on BNC's main window. Latitude and longitude are to be entered just for informal reasons.4739 <p> 4740 5504 <li>Enter the approximate latitude of the stream providing rover in degrees. Example: 50.09.</li> 5505 <li>Enter the approximate longitude of the stream providing rover in degrees. Example: 8.66.</li> 5506 </ul> 5507 </p> 5508 <p> 5509 Streams directly received from a TCP/IP port show up with an 'N' for 'No Ntrip' in the 'Streams' canvas on BNC's main window. 5510 Latitude and longitude are to be entered just for informal reasons. 5511 <p> 4741 5512 </p> 4742 5513 Note that this option works only if no proxy server is involved in the communication link. 4743 5514 </p> 4744 4745 5515 <p><h4 id="streamudp">2.19.1.3 Add Stream - Coming from UDP Port</h4></p> 4746 5516 <p> … … 4748 5518 <ul> 4749 5519 <li>Enter the local port number where the UDP stream arrives.</li> 4750 <li>Specify a mountpoint. Recommended is a 4-character station ID. Example: FFMJ</li>5520 <li>Specify a mountpoint. Recommended is a 9-character station ID. Example: FFMJ00DEU</li> 4751 5521 <li>Specify the stream format. Available options are 'RTCM_2', 'RTCM_3', 'RTNET', and 'ZERO'.</li> 4752 <li>Enter the approximate latitude of the stream providing rover in degrees. Example: 45.32.</li>4753 <li>Enter the approximate longitude of the stream providing rover in degrees. Example: -15.20.</li>5522 <li>Enter the approximate latitude of the stream providing rover in degrees. Example: 50.09.</li> 5523 <li>Enter the approximate longitude of the stream providing rover in degrees. Example: 8.66.</li> 4754 5524 </ul> 4755 5525 </p> … … 4762 5532 Button 'Add Stream' > 'Coming from Serial Port' allows to retrieve streams from a GNSS receiver via serial port without using the Ntrip transport protocol. For that you: 4763 5533 <ul> 4764 <li>Specify a mountpoint. Recommended is a 4-character station ID. Example: FFMJ</li>5534 <li>Specify a mountpoint. Recommended is a 9-character station ID. Example: FFMJ00DEU</li> 4765 5535 <li>Specify the stream format. Available options are 'RTCM_2', 'RTCM_3', 'RTNET', and 'ZERO'.</li> 4766 <li>Enter the approximate latitude of the stream providing r eceiver in degrees. Example: 45.32.</li>4767 <li>Enter the approximate longitude of the stream providing r eceiver in degrees. Example: -15.20.</li>5536 <li>Enter the approximate latitude of the stream providing rover in degrees. Example: 50.09.</li> 5537 <li>Enter the approximate longitude of the stream providing rover in degrees. Example: 8.66.</li> 4768 5538 <li>Enter the serial 'Port name' selected on your host for communication with the receiver. Valid port names are 4769 <pre>4770 Windows: COM1, COM2 4771 Linux: /dev/ttyS0, /dev/ttyS1 4772 FreeBSD: /dev/ttyd0, /dev/ttyd1 4773 Digital Unix: /dev/tty01, /dev/tty02 4774 HP-UX: /dev/tty1p0, /dev/tty2p0 4775 SGI/IRIX: /dev/ttyf1, /dev/ttyf2 4776 SunOS/Solaris: /dev/ttya, /dev/ttyb 4777 </ pre>5539 <table> 5540 <tr><td> Windows: </td><td>COM1, COM2</td></tr> 5541 <tr><td> Linux: </td><td>/dev/ttyS0, /dev/ttyS1</td></tr> 5542 <tr><td> FreeBSD: </td><td>/dev/ttyd0, /dev/ttyd1</td></tr> 5543 <tr><td> Digital Unix: </td><td>/dev/tty01, /dev/tty02</td></tr> 5544 <tr><td> HP-UX: </td><td>/dev/tty1p0, /dev/tty2p0</td></tr> 5545 <tr><td> SGI/IRIX; </td><td>/dev/ttyf1, /dev/ttyf2</td></tr> 5546 <tr><td> SunOS/Solaris: </td><td>/dev/ttya, /dev/ttyb</td></tr> 5547 </table> 4778 5548 </li> 4779 5549 <li>Select a 'Baud rate' for the serial input. Note that using a high baud rate is recommended.</li> … … 4784 5554 </ul> 4785 5555 </p> 4786 4787 5556 <p> 4788 5557 When selecting one of the serial communication options listed above, make sure that you pick those configured to the serially connected GNSS receiver. 4789 5558 </p> 4790 4791 <p> 4792 Streams received from a serially connected GNSS receiver show up with an 'S' (for <u>S</u>erial Port, no Ntrip) in the 'Streams' canvas section on BNC's main window. Latitude and longitude are to be entered just for informal reasons. 4793 <p> 4794 5559 <p> 5560 Streams received from a serially connected GNSS receiver show up with an 'S' (for <u>S</u>erial Port, no Ntrip) in the 'Streams' canvas 5561 section on BNC's main window. Latitude and longitude are to be entered just for informal reasons. 5562 <p> 4795 5563 <p> 4796 5564 The following figure shows a BNC example setup for pulling a stream via serial port on a Windows operating system. 4797 5565 </p> 4798 <p><img src="IMG/ screenshot15.png"/></p>4799 <p>Figure 4 1: BNC configuration for pulling a stream via serial port</p>5566 <p><img src="IMG/Figure40.png"width=400/></p> 5567 <p>Figure 40: BNC configuration for pulling a stream via serial port</p> 4800 5568 4801 5569 <p><h4 id="streamsdelete">2.19.2 Delete Stream</h4></p> … … 4806 5574 <p><h4 id="streamsmap">2.19.3 Map</h4></p> 4807 5575 <p> 4808 Button 'Map' opens a window to show a distribution map of the streams selected for retrieval as listed under the 'Streams' canvas. You may like to zoom in or out using the mouse. Left button: draw a rectangle to zoom, right button: zoom out, middle button: zoom back. 5576 Button 'Map' opens a window to show a distribution map of the streams selected for retrieval as listed under the 'Streams' canvas. 5577 You may like to zoom in or out using the mouse. Left button: draw a rectangle to zoom, right button: zoom out, middle button: zoom back. 4809 5578 </p> 4810 5579 4811 5580 <p><h4 id="start">2.19.4 Start</h4></p> 4812 5581 <p> 4813 Hit 'Start' to start retrieving, decoding or converting GNSS data streams in real-time. Note that 'Start' generally forces BNC to begin with fresh RINEX files which might overwrite existing files when necessary unless option 'Append files' is ticked. 5582 Hit 'Start' to start retrieving, decoding or converting GNSS data streams in real-time. 5583 Note that 'Start' generally forces BNC to begin with fresh RINEX files which might overwrite existing files when necessary 5584 unless option 'Append files' is ticked. 4814 5585 </p> 4815 5586 … … 4821 5592 <p><h4 id="contexthelp">2.19.6 Help? = Shift+F1</h4></p> 4822 5593 <p> 4823 BNC comes with a <i>What's This</i> help system providing information about its functionality and usage. Short descriptions are available for any widget and program option. Focus to the relevant object and press Shift+F1 to request help information. A help text appears immediately; it disappears as soon as the user does something else. The dialogs on some operating systems may provide a '?' button that users can click; click the relevant widget to pop up the help text. 4824 </p> 4825 5594 BNC comes with a <i>What's This</i> help system providing information about its functionality and usage. 5595 Short descriptions are available for any widget and program option. Focus to the relevant object and press Shift+F1 to request help information. 5596 A help text appears immediately; it disappears as soon as the user does something else. 5597 The dialogs on some operating systems may provide a '?' button that users can click; click the relevant widget to pop up the help text. 5598 </p> 4826 5599 <p><h4 id="cmd">2.20 Command Line Options</h4></p> 4827 5600 <p> 4828 Command line options are available to run BNC in 'no window' mode or let it read previously recorded input offline from one or several files for debugging or post processing purposes. It is also possible to introduce a specific configuration filename instead of using the default filename 'BNC.bnc'. The self-explaining content of the configuration file can easily be edited. 4829 </p> 4830 4831 <p> 4832 In addition to reading processing options from the involved configuration file, BNC can optionally read any configuration option from command line. Running BNC with command line option 'help' 4833 </p> 4834 5601 Command line options are available to run BNC in 'no window' mode or let it read previously recorded input offline from one or 5602 several files for debugging or post processing purposes. It is also possible to introduce a specific configuration filename 5603 instead of using the default filename 'BNC.bnc'. The self-explaining content of the configuration file can easily be edited. 5604 </p> 5605 <p> 5606 In addition to reading processing options from the involved configuration file, BNC can optionally read any configuration option 5607 from command line. Running BNC with command line option 'help' 5608 </p> 4835 5609 <p> 4836 5610 Example:<br><br> 4837 5611 bnc --help (MS Windows: bnc.exe --help | more) 4838 5612 </p> 4839 4840 5613 <p> 4841 5614 provides a list of all available command line options. 4842 5615 </p> 4843 4844 5616 <p><h4 id="cmdVersion">2.20.1 Version - optional</h4></p> 4845 5617 <p> 4846 5618 Command line option '--version' lets BNC print its version number. 4847 5619 </p> 4848 4849 5620 <p> 4850 5621 Example:<br><br> 4851 5622 bnc --version (MS Windows: bnc.exe --version | more) 4852 5623 </p> 4853 4854 5624 <p><h4 id="cmdDisplay">2.20.2 Display - optional</h4></p> 4855 5625 <p> 4856 5626 On systems which support graphics, command line option '--display' forces BNC to present the BNC window on the specified display. 4857 5627 </p> 4858 4859 5628 <p> 4860 5629 Example:<br><br> 4861 5630 bnc.exe --display localhost:10.0 4862 5631 </p> 4863 4864 5632 <p><h4 id="nw">2.20.3 No Window Mode - optional</h4></p> 4865 5633 <p> 4866 Apart from its regular windows mode, BNC can be started on all systems as a batch job with command line option '-nw'. BNC will then run in 'no window' mode, using processing options from its configuration file on disk. Terminate BNC using Windows Task Manager when running it in 'no window' mode on Windows systems. 4867 </p> 4868 5634 Apart from its regular windows mode, BNC can be started on all systems as a batch job with command line option '-nw'. 5635 BNC will then run in 'no window' mode, using processing options from its configuration file on disk. 5636 Terminate BNC using Windows Task Manager when running it in 'no window' mode on Windows systems. 5637 </p> 4869 5638 <p> 4870 5639 Example:<br><br> 4871 5640 bnc.exe --nw 4872 5641 </p> 4873 4874 <p> 5642 <p> 5643 The following Linux command line produces RINEX QC plots (see Estey and Meertens 1999) offline in 'no window' mode 5644 and saves them in directory '/home/user'. Introducing a dummy configuration file /dev/null makes sure that no configuration options 5645 previously saved on disc are used: 4875 5646 It is obvious that BNC requires graphics support when started in interactive 4876 5647 mode. However, note that graphics support is also required when producing plots in … … 4880 5651 is used. The following is an example shell script to execute BNC in batch mode 4881 5652 for producing QC plots from RINEX files. It could be used via 'crontab': 4882 </p> 4883 <pre> 4884 #!/bin/bash 4885 4886 # Save string localhost 4887 echo "localhost" > /home/user/hosts 4888 4889 # Start virtual X-Server, save process ID 4890 /usr/bin/Xvfb :29 -auth /home/user/hosts -screen 0 1280x1024x8 & 4891 psID=`echo $!` 4892 4893 # Run BNC application with defined display variable 4894 /home/user/BNC/bnc --conf /dev/null --key reqcAction Analyze --key reqcObsFile ons12090.12o --key reqcNavFile brdc2090.12p --key reqcOutLogFile multi.txt --key reqcPlotDir /home/user --display localhost:29 --nw 4895 4896 # BNC done, kill X-server process 4897 kill $psID 4898 </pre> 5653 5654 <pre><p style="font-family:Monospace"> 5655 #!/bin/bash 5656 5657 ../bnc -nw -conf /dev/null -display :1 --platform offscreen\ 5658 -key reqcAction Analyze \ 5659 -key reqcObsFile Input/MAO000USA_R_20221720000_01D_30S_MO.rnx \ 5660 -key reqcNavFile Input/MAO000USA_R_20221720000_01D_MN.rnx \ 5661 -key reqcSkyPlotSignals "G:1&2&5 R:1&2 E:1&5&7 C:2&6 J:1&2" \ 5662 -key reqcOutLogFile Output/RinexQc.log \ 5663 -key reqcPlotDir Output 2>/dev/null 5664 5665 </p></pre> 4899 5666 4900 5667 <p><h4 id="post">2.20.4 File Mode - optional</h4></p> 4901 5668 <p> 4902 Although BNC is primarily a real-time online tool, for debugging purposes it can be run offline to read data from a file previously saved through option 'Raw output file' (Record & Replay functionality). Enter the following command line option for that4903 </p> 4904 5669 Although BNC is primarily a real-time online tool, for debugging purposes it can be run offline to read data from a file 5670 previously saved through option 'Raw output file' (Record & Replay functionality). Enter the following command line option for that 5671 </p> 4905 5672 <p> 4906 5673 --file <<u>inputFileName</u>> 4907 5674 </p> 4908 4909 5675 and specify the full path to an input file containing previously saved data. Example:<br><br> 4910 ./bnc --file /home/user/raw.output_110301 4911 </p> 4912 5676 ./bnc --file /home/user/raw.output_221202 5677 </p> 4913 5678 <p> 4914 5679 Note that when running BNC offline, it will use options for file saving, interval, sampling, PPP etc. from its configuration file. 4915 5680 </p> 4916 4917 5681 <p>Note further that option '--file' forces BNC to apply the '-nw' option for running in 'no window' mode. 4918 5682 </p> 4919 4920 5683 <p><h4 id="conffile">2.20.5 Configuration File - optional</h4></p> 4921 5684 The default configuration filename is 'BNC.bnc'. You may change this name at startup time using command line option '--conf <<u>confFileName</u>>'. This allows running several BNC jobs in parallel on the same host using different sets of configuration options. <u>confFileName</u> stands either for the full path to a configuration file or just for a filename. If you introduce only a filename, the corresponding file will be saved in the current working directory from where BNC is started. 4922 5685 </p> 4923 4924 5686 <p> 4925 5687 Example:<br><br> 4926 5688 ./bnc --conf MyConfig.bnc 4927 5689 </p> 4928 4929 5690 <p> 4930 5691 This leads to a BNC job using configuration file 'MyConfig.bnc'. The configuration file will be saved in the current working directory. 4931 5692 </p> 4932 4933 5693 <p><h4 id="confopt">2.20.6 Configuration Options - optional</h4></p> 4934 5694 <p> 4935 5695 BNC applies options from the configuration file but allows updating every one of them on the command line while the content of the configuration file remains unchanged. Note the following syntax for Command Line Interface (CLI) options: 4936 5696 </p> 4937 4938 5697 <p> 4939 5698 --key <keyName> <keyValue> 4940 5699 </p> 4941 4942 <p> 4943 Parameter <keyName> stands for the key name of an option contained in the configuration file and <keyValue> stands for the value you want to assign to it. The following is a syntax example for a complete command line: 4944 </p> 4945 5700 <p> 5701 Parameter <keyName> stands for the key name of an option contained in the configuration file and <keyValue> 5702 stands for the value you want to assign to it. The following is a syntax example for a complete command line: 5703 </p> 4946 5704 <p> 4947 5705 bnc --nw --conf <confFileName> --key <keyName1> <keyValue1> --key <keyName2> <keyValue2> ... 4948 5706 </p> 4949 4950 <p> 4951 Configuration options which are part of the configuration files PPP section must be prefixed by 'PPP/'. As an example, option 'minObs' from the PPP section of the BNC configuration file would be specified as 'PPP/minObs' on a command line. 4952 </p> 4953 4954 <p> 4955 Values for configuration options can be introduced via command line exactly as they show up in the configuration file. However, any value containing one or more blank characters must be enclosed by quotation marks when specified on command line. 4956 </p> 4957 5707 <p> 5708 Configuration options which are part of the configuration files PPP section must be prefixed by 'PPP/'. 5709 As an example, option 'minObs' from the PPP section of the BNC configuration file would be specified as 5710 </p> 5711 <p> 5712 'PPP/minObs' 5713 </p> 5714 on a command line. 5715 <p> 5716 Values for configuration options can be introduced via command line exactly as they show up in the configuration file. 5717 However, any value containing one or more blank characters must be enclosed by quotation marks when specified on command line. 5718 </p> 4958 5719 <p><h3 id="annex">3. Annex</h3></p> 4959 5720 4960 5721 <p><h4 id="rtcm">3.1 RTCM Standards</h4></p> 4961 4962 <p> 4963 The Radio Technical Commission for Maritime Services (RTCM) is an international non-profit scientific, professional and educational organization. Special Committees provide a forum in which governmental and non-governmental members work together to develop technical standards and consensus recommendations in regard to issues of particular concern. RTCM is engaged in the development of international standards for maritime radionavigation and radiocommunication systems. The output documents and reports prepared by RTCM Committees are published as RTCM Recommended Standards. Topics concerning Differential Global Navigation Satellite Systems (DGNSS) are handled by the Special Committee SC 104. 4964 <p> 4965 Personal copies of RTCM Recommended Standards can be ordered through <u>http://www.rtcm.org/orderinfo.php</u>. 4966 </p> 4967 5722 <p> 5723 The Radio Technical Commission for Maritime Services (RTCM) is an international non-profit scientific, professional and educational organization. 5724 Special Committees provide a forum in which governmental and non-governmental members work together to develop 5725 technical standards and consensus recommendations in regard to issues of particular concern. 5726 RTCM is engaged in the development of international standards for maritime radionavigation and radiocommunication systems. 5727 The output documents and reports prepared by RTCM Committees are published as RTCM Recommended Standards. 5728 Topics concerning Differential Global Navigation Satellite Systems (DGNSS) are handled by the Special Committee SC 104. 5729 <p> 5730 Personal copies of RTCM Recommended Standards can be ordered through 5731 <a href="https://rtcm.myshopify.com/collections/differential-global-navigation-satellite-dgnss-standards" target="_blank">https://rtcm.myshopify.com/collections/differential-global-navigation-satellite-dgnss-standards</a> 5732 5733 </p> 4968 5734 <p><h4 id="ntrip1">3.1.1 Ntrip Version 1</h4></p> 4969 4970 <p> 4971 'Networked Transport of RTCM via Internet Protocol' Version 1.0 (Ntrip) stands for an application-level protocol streaming Global Navigation Satellite System (GNSS) data over the Internet. Ntrip is a generic, stateless protocol based on the Hypertext Transfer Protocol HTTP/1.1. The HTTP objects are enhanced to GNSS data streams. 4972 </p> 4973 4974 <p> 4975 Ntrip Version 1 is an RTCM standard designed for disseminating differential correction data (e.g. in the RTCM-104 format) or other kinds of GNSS streaming data to stationary or mobile users over the Internet, allowing simultaneous PC, Laptop, PDA, or receiver connections to a broadcasting host. Ntrip supports wireless Internet access through Mobile IP Networks like GSM, GPRS, EDGE, or UMTS. 4976 </p> 4977 4978 <p> 4979 Ntrip is implemented in three system software components: Ntrip Clients, Ntrip Servers and Ntrip Broadcasters. The Ntrip Broadcaster is the actual HTTP server program whereas Ntrip Client and Ntrip Server are acting as HTTP clients. 4980 </p> 4981 5735 <p> 5736 'Networked Transport of RTCM via Internet Protocol' Version 1.0 (Ntrip) stands for an application-level protocol streaming 5737 Global Navigation Satellite System (GNSS) data over the Internet. Ntrip is a generic, stateless protocol based on the 5738 Hypertext Transfer Protocol HTTP/1.1. The HTTP objects are enhanced to GNSS data streams. 5739 </p> 5740 <p> 5741 Ntrip Version 1 is an RTCM standard designed for disseminating differential correction data (e.g. in the RTCM-104 format) or 5742 other kinds of GNSS streaming data to stationary or mobile users over the Internet, allowing simultaneous PC, Laptop, PDA, 5743 or receiver connections to a broadcasting host. Ntrip supports wireless Internet access through Mobile IP Networks like GSM, GPRS, EDGE, or UMTS. 5744 </p> 5745 5746 <p> 5747 Ntrip is implemented in three system software components: Ntrip Clients, Ntrip Servers and Ntrip Broadcasters. 5748 The Ntrip Broadcaster is the actual HTTP server program whereas Ntrip Client and Ntrip Server are acting as HTTP clients. 5749 </p> 4982 5750 <p> 4983 5751 Ntrip is an open none-proprietary protocol. Major characteristics of Ntrip's dissemination technique are: … … 4990 5758 </ul> 4991 5759 </p> 4992 4993 <p> 4994 The Ntrip Broadcaster maintains a source-table containing information on available Ntrip streams, networks of Ntrip streams and Ntrip Broadcasters. The source-table is sent to an Ntrip Client on request. Source-table records are dedicated to one of the following: Data Streams (record type STR), Casters (record type CAS), or Networks of streams (record type NET). 4995 </p> 4996 4997 <p> 4998 Source-table records of type STR contain the following data fields: 'mountpoint', 'identifier', 'format', 'format-details', 'carrier', 'nav-system', 'network', 'country', 'latitude', 'longitude', 'nmea', 'solution', 'generator', 'compr-encryp', 'authentication', 'fee', 'bitrate', 'misc'. 4999 </p> 5000 <p> 5001 Source-table records of type NET contain the following data fields: 'identifier', 'operator', 'authentication', 'fee', 'web-net', 'web-str', 'web-reg', 'misc'. 5002 </p> 5003 <p> 5004 Source-table records of type CAS contain the following data fields: 'host', 'port', 'identifier', 'operator', 'nmea', 'country', 'latitude', 'longitude', 'misc'. 5005 </p> 5006 5760 <p> 5761 The Ntrip Broadcaster maintains a source-table containing information on available Ntrip streams, networks of Ntrip streams and Ntrip Broadcasters. 5762 See at <a href="https://software.rtcm-ntrip.org/wiki/Sourcetable" target="_blank">https://software.rtcm-ntrip.org/wiki/Sourcetable</a> for details. 5763 </p> 5764 <p> 5765 Source-table records are dedicated to one of the following: 5766 <ul> 5767 <li>Data Streams (record type STR, for details see at: <a href="https://software.rtcm-ntrip.org/wiki/STR" target="_blank">https://software.rtcm-ntrip.org/wiki/STR</a> </li> 5768 <li>Casters (record type CAS, for details see at: <a href="https://software.rtcm-ntrip.org/wiki/CAS" target="_blank">https://software.rtcm-ntrip.org/wiki/CAS</a> </li> 5769 <li>Networks of streams (record type NET, for details see at: <a href="https://software.rtcm-ntrip.org/wiki/NET" target="_blank">https://software.rtcm-ntrip.org/wiki/NET</a> </li> 5770 </ul> 5771 </p> 5772 The source-table is sent to an Ntrip Client on request. 5773 </p> 5007 5774 <p><h4 id="ntrip2">3.1.2 Ntrip Version 2</h4></p> 5008 5009 5775 <p> 5010 5776 The major changes of Ntrip Version 2 compared to Version 1.0 are: 5011 5777 </p> 5012 5013 5778 <ul> 5014 5779 <li>Cleared and fixed design problems and HTTP protocol violations;</li> … … 5019 5784 <li>RTSP communication.</li> 5020 5785 </ul> 5021 5022 <p>Ntrip Version 2 allows to communicate either in TCP/IP mode or in RTSP/RTP mode or in UDP mode whereas Version 1 is limited to TCP/IP only. It furthermore allows using the Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL) cryptographic protocols for secure Ntrip communication over the Internet. 5023 </p> 5024 5786 <p> 5787 Ntrip Version 2 allows to communicate either in TCP/IP mode or in RTSP/RTP mode or in UDP mode whereas Version 1 is limited to TCP/IP only. 5788 </p> 5789 <p> 5790 It furthermore allows using the Transport Layer Security (TLS) for secure Ntrip communication over the Internet. 5791 </p> 5025 5792 <p><h4 id="rtcm2">3.1.3 RTCM Version 2</h4></p> 5026 5793 <p> 5027 Transmitting GNSS carrier phase data can be done through RTCM Version 2 messages. Please note that only RTCM Version 2.2 and 2.3 streams may include GLONASS data. Messages that may be of interest here are: 5028 </p> 5029 5030 <ul> 5031 <li>Type 1 message is the range correction message and is the primary message in code-phase differential positioning (DGPS). It is computed in the base receiver by computing the error in the range measurement for each tracked SV.</li> 5032 <li>Type 2 message is automatically generated when a new set of satellite ephemeris is downloaded to the base receiver. It is the computed difference between the old ephemeris and the new ephemeris. Type 2 messages are used when the base station is transmitting Type 1 messages.</li> 5033 <li>Type 3 and 22 messages are the base station position and the antenna offset. Type 3 and 22 are used in RTK processing to perform antenna reduction.</li> 5034 <li>Type 6 message is a null frame filler message that is provided for data links that require continuous transmission of data, even if there are no corrections to send. As many Type 6 messages are sent as required to fill in the gap between two correction messages (type 1). Message 6 is not sent in burst mode.</li> 5035 <li>Type 9 message serves the same purpose as Type 1, but does not require a complete satellite set. As a result, Type 9 messages require a more stable clock than a station transmitting Type 1 's, because the satellite corrections have different time references.</li> 5036 <li>Type 16 message is simply a text message entered by the user that is transmitted from the base station to the rover. It is used with code-phase differential.</li> 5794 Transmitting GNSS carrier phase data can be done through RTCM Version 2 messages. 5795 Please note that only RTCM Version 2.2 and 2.3 streams may include GLONASS data. Messages that may be of interest here are: 5796 </p> 5797 <ul> 5798 <li>Type 1 message is the range correction message and is the primary message in code-phase differential positioning (DGPS). 5799 It is computed in the base receiver by computing the error in the range measurement for each tracked SV.</li> 5800 <li>Type 2 message is automatically generated when a new set of satellite ephemeris is downloaded to the base receiver. 5801 It is the computed difference between the old ephemeris and the new ephemeris. 5802 Type 2 messages are used when the base station is transmitting Type 1 messages.</li> 5803 <li>Type 3 and 22 messages are the base station position and the antenna offset. 5804 Type 3 and 22 are used in RTK processing to perform antenna reduction.</li> 5805 <li>Type 6 message is a null frame filler message that is provided for data links that require continuous transmission of data, 5806 even if there are no corrections to send. As many Type 6 messages are sent as required to fill in the gap between two correction messages (type 1). 5807 Message 6 is not sent in burst mode.</li> 5808 <li>Type 9 message serves the same purpose as Type 1, but does not require a complete satellite set. 5809 As a result, Type 9 messages require a more stable clock than a station transmitting Type 1 's, 5810 because the satellite corrections have different time references.</li> 5811 <li>Type 16 message is simply a text message entered by the user that is transmitted from the base station to the rover. 5812 It is used with code-phase differential.</li> 5037 5813 <li>Type 18 and 20 messages are RTK uncorrected carrier phase data and carrier phase corrections.</li> 5038 5814 <li>Type 19 and 21 messages are the uncorrected pseudo-range measurements and pseudo-range corrections used in RTK.</li> … … 5043 5819 <p><h4 id="rtcm3">3.1.4 RTCM Version 3</h4></p> 5044 5820 <p> 5045 RTCM Version 3 has been developed as a more efficient alternative to RTCM Version 2. Service providers and vendors have asked for a standard that would be more efficient, easy to use, and more easily adaptable to new situations. The main complaint was that the Version 2 parity scheme was wasteful of bandwidth. Another complaint was that the parity is not independent from word to word. Still another was that even with so many bits devoted to parity, the actual integrity of the message was not as high as it should be. Plus, 30-bit words are awkward to handle. The Version 3 standard is intended to correct these weaknesses. 5821 RTCM Version 3 has been developed as a more efficient alternative to RTCM Version 2. 5822 Service providers and vendors have asked for a standard that would be more efficient, easy to use, and more easily adaptable to new situations. 5823 The main complaint was that the Version 2 parity scheme was wasteful of bandwidth. Another complaint was that the parity is not independent 5824 from word to word. Still another was that even with so many bits devoted to parity, the actual integrity of the message was not as high 5825 as it should be. Plus, 30-bit words are awkward to handle. The Version 3 standard is intended to correct these weaknesses. 5046 5826 </p> 5047 5827 … … 5062 5842 <li>Type 1012, GLONASS L1 and L2 code and phase and ambiguities and carrier-to-noise ratio.</li> 5063 5843 <li>Type 1013, Modified Julian Date, leap second, configured message types and interval.</li> 5064 <li>Type 1014 and 1017, Network RTK (MAK) messages.</li>5065 5844 <li>Type 1019, GPS ephemeris.</li> 5066 5845 <li>Type 1020, GLONASS ephemeris.</li> 5846 <li>Type 1041 IRNSS ephemeris.</li> 5847 <li>Type 1042, BDS/BeiDou ephemeris.</li> 5067 5848 <li>Type 1043, SBAS ephemeris.</li> 5068 5849 <li>Type 1044, QZSS ephemeris.</li> 5069 5850 <li>Type 1045, Galileo F/NAV ephemeris.</li> 5070 5851 <li>Type 1046, Galileo I/NAV ephemeris.</li> 5071 <li>Type 63, BeiDou ephemeris, tentative.</li> 5072 <li>Type 4088 and 4095, Proprietary messages.</li> 5073 </ul> 5074 </p> 5075 5076 <p> 5077 The following are so-called 'State Space Representation' (SSR) messages: 5852 <li>Type 4076, Proprietary messages of the International IGS Service.</li> 5853 </ul> 5854 </p> 5855 5856 <p> 5857 The following are so-called 'State Space Representation' (SSR) messages defined or proposed within RTCM SC-104: 5078 5858 <ul> 5079 5859 <li>Type 1057, GPS orbit corrections to Broadcast Ephemeris</li> … … 5130 5910 5131 5911 <p> 5132 The following are so-called 'Multiple Signal Messages' (MSM) :5912 The following are so-called 'Multiple Signal Messages' (MSM) defined within RTCM SC-104: 5133 5913 <ul> 5134 5914 <li>Type 1071, Compact GPS pseudo-ranges</li> … … 5139 5919 <li>Type 1076, Full GPS pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 5140 5920 <li>Type 1077, Full GPS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 5921 5141 5922 <li>Type 1081, Compact GLONASS pseudo-ranges</li> 5142 5923 <li>Type 1082, Compact GLONASS carrier phases</li> … … 5146 5927 <li>Type 1086, Full GLONASS pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 5147 5928 <li>Type 1087, Full GLONASS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 5929 5148 5930 <li>Type 1091, Compact Galileo pseudo-ranges</li> 5149 5931 <li>Type 1092, Compact Galileo carrier phases</li> … … 5153 5935 <li>Type 1096, Full Galileo pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 5154 5936 <li>Type 1097, Full Galileo pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 5937 5938 <li>Type 1101, Compact SBAS pseudo-ranges</li> 5939 <li>Type 1102, Compact SBAS carrier phases</li> 5940 <li>Type 1103, Compact SBAS pseudo-ranges and carrier phases</li> 5941 <li>Type 1104, Full SBAS pseudo-ranges and carrier phases plus signal strength</li> 5942 <li>Type 1105, Full SBAS pseudo-ranges, carrier phases, Doppler and signal strength</li> 5943 <li>Type 1106, Full SBAS pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 5944 <li>Type 1107, Full SBAS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 5945 5155 5946 <li>Type 1121, Compact BeiDou pseudo-ranges</li> 5156 5947 <li>Type 1122, Compact BeiDou carrier phases</li> … … 5160 5951 <li>Type 1126, Full BeiDou pseudo-ranges and carrier phases plus signal strength (high resolution)</li> 5161 5952 <li>Type 1127, Full BeiDou pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li> 5953 5162 5954 <li>Type 1111, Compact QZSS pseudo-ranges</li> 5163 5955 <li>Type 1112, Compact QZSS carrier phases</li> … … 5170 5962 </p> 5171 5963 5172 <p>5173 The following are proposed 'Multiple Signal Messages' (MSM) under discussion for standardization:5174 <ul>5175 <li>Type 1101, Compact SBAS pseudo-ranges</li>5176 <li>Type 1102, Compact SBAS carrier phases</li>5177 <li>Type 1103, Compact SBAS pseudo-ranges and carrier phases</li>5178 <li>Type 1104, Full SBAS pseudo-ranges and carrier phases plus signal strength</li>5179 <li>Type 1105, Full SBAS pseudo-ranges, carrier phases, Doppler and signal strength</li>5180 <li>Type 1106, Full SBAS pseudo-ranges and carrier phases plus signal strength (high resolution)</li>5181 <li>Type 1107, Full SBAS pseudo-ranges, carrier phases, Doppler and signal strength (high resolution)<br><br></li>5182 </ul>5183 </p>5184 5185 5964 <p><h4 id="confList">3.2 Command Line Help</h3></p> 5186 5187 <p> 5188 Command line option '--help' provides a complete list of all configuration parameters which can be specified via BNC's Command Line Interface (CLI). Note that command line options overrule configuration options specified in the configuration file. The following is the output produced when running BNC with command line option '--help': 5965 <p> 5966 Command line option '--help' provides a complete list of all configuration parameters which can be specified via BNC's Command Line Interface (CLI). 5967 Note that command line options overrule configuration options specified in the configuration file. 5968 The following is the output produced when running BNC with command line option '--help': 5189 5969 </p> 5190 5970 … … 5369 6149 <b>Upload Corrections Panel keys:</b> 5370 6150 uploadMountpointsOut {Upload corrections table [character string, semicolon separated list, each element in quotation marks, example: 5371 "igs-ip.net,2101,IGS01,2,user,pass,IGS 14,IGS-SSR,0,/home/user/BNCOUTPUT${V3PROD}.sp3,BNCOUTPUT${V3PROD}.clk,258,1,0;6151 "igs-ip.net,2101,IGS01,2,user,pass,IGS20,IGS-SSR,0,/home/user/BNCOUTPUT${V3PROD}.sp3,BNCOUTPUT${V3PROD}.clk,258,1,0; 5372 6152 euref-ip.net,2101,EUREF01,2,user,pass,ETRF2000,IGS-SSR,0,,,258,2,0"]} 5373 6153 uploadIntr {Length of SP3 and Clock RINEX file interval [character string: 1 min|2 min|5 min|10 min|15 min|30 min|1 hour|1 day]} … … 5428 6208 //user:pass@igs-ip.net:2101/FFMJ1 RTCM_3.1 DEU 50.09 8.66 no 2" 5429 6209 (7) bnc --key cmbStreams "SSRA00BKG1 BKG 1.0;SSRA00CNE1 CNES 1.0" 5430 (8) bnc --key uploadMountpointsOut "products.igs-ip.net,98756,TEST,2,user,passwd,IGS 14,IGS-SSR,2,/Users/weber/BNCOUTPUT${V3PROD}.clk,,33,3,2;6210 (8) bnc --key uploadMountpointsOut "products.igs-ip.net,98756,TEST,2,user,passwd,IGS20,IGS-SSR,2,/Users/weber/BNCOUTPUT${V3PROD}.clk,,33,3,2; 5431 6211 euref-ip.net,333,TEST2,2,user,passwd,ETRF12000,IGS-SSR,2,,,33,5,5" 5432 6212 (9) bnc --key PPP/staTable "FFMJ00DEU0,100.0,100.0,100.0,100.0,100.0,100.0,0.1,3e-6,0.1,7777; … … 5437 6217 <b>Links:</b><br> 5438 6218 <table> 5439 <tr><td>Ntrip </td><td><a href="http://igs.bkg.bund.de/ntrip/index" target="_blank">http://igs.bkg.bund.de/ntrip/index</a></td></tr> 5440 <tr><td>IGS Real-time Service </td><td><a href="http://rts.igs.org" target="_blank">http://rts.igs.org</a></td></tr> 5441 <tr><td>Distribution of IGS-IP streams </td><td><a href="http://www.igs.oma.be/real_time/" target="_blank">http://www.igs.oma.be/real_time/</a></td></tr> 5442 <tr><td>Completeness and latency of IGS-IP data </td><td><a href="http://www.igs.oma.be/highrate/" target="_blank">http://www.igs.oma.be/highrate/</a></td></tr> 5443 <tr><td>Ntrip Broadcaster overview </td><td><a href="http://rtcm-ntrip.org/home" target="_blank">http://rtcm-ntrip.org/home</a></td></tr> 5444 <tr><td>Ntrip Open Source software code </td><td><a href="http://software.rtcm-ntrip.org" target="_blank">http://software.rtcm-ntrip.org</a></td></tr> 5445 <tr><td>EUREF-IP Project </td><td><a href="http://www.epncb.oma.be/euref_IP" target="_blank">http://www.epncb.oma.be/euref_IP</a></td></tr> 5446 <tr><td>Real-time IGS Pilot Project </td><td><a href="http://www.rtigs.net/pilot" target="_blank">http://www.rtigs.net/pilot</a></td></tr> 5447 <tr><td>Radio Technical Commission for Maritime Services </td><td><a href="http://www.rtcm.org" target="_blank">http://www.rtcm.org</a></td></tr> 6219 <tr><td>Ntrip </td><td><a href="https://igs.bkg.bund.de/ntrip/index" target="_blank">https://igs.bkg.bund.de/ntrip/index</a></td></tr> 6220 <tr><td>IGS Real-Rime Service (RTS) </td><td><a href="https://igs.org/rts/" target="_blank">https://igs.org/rts/</a></td></tr> 6221 <tr><td>Ntrip Broadcaster overview </td><td><a href="https://rtcm-ntrip.org/home" target="_blank">https://rtcm-ntrip.org/home</a></td></tr> 6222 <tr><td>Ntrip Open Source software code </td><td><a href="https://software.rtcm-ntrip.org" target="_blank">https://software.rtcm-ntrip.org</a></td></tr> 6223 <tr><td>Radio Technical Commission for Maritime Services </td><td><a href="https://www.rtcm.org/" target="_blank">https://www.rtcm.org/</a></td></tr> 5448 6224 </table> 5449 6225 <br> … … 5461 6237 <tr><td>RTCM SC-104 (2011)</td><td>Amendment 1 to RTCM Standard 10410.1 Networked Transport of RTCM via Internet Protocol (Ntrip) - Version 2.0. RTCM Papter 139-2011-SC104-STD, 2011.</td></tr> 5462 6238 5463 <tr><td>Rupprecht, W. (2000)</td><td>DGPS-IP. <a href="http://www.wsrcc.com/wolfgang/gps/dgps-ip.html" target="_blank">http://www.wsrcc.com/wolfgang/gps/dgps-ip.html</a>, 2000.</td></tr> 6239 <tr><td>Rupprecht, W. (2000)</td><td>DGPS-IP. <u>http://www.wsrcc.com/wolfgang/gps/dgps-ip.html</u>, 2000.</td></tr> 6240 6241 <tr><td>Stürze, A., L. Mervart, W. Söhne, G. Weber, G. Wübbena (2012)</td><td>Real-Time PPP using open CORS Networks and RTCM Standards. 3rd International Conference on Machine Control & Guidance, March 27-29, 2012 </td></tr> 5464 6242 5465 6243 <tr><td>Weber, G., D. Dettmering and H. Gebhard (2005a)</td><td>Networked Transport of RTCM via Internet Protocol (NTRIP). In: Sanso F. (Ed.): A Window on the Future, Proceedings of the IAG General Assembly, Sapporo, Japan, 2003, Springer Verlag, Symposia Series, Vol. 128, p. 60-64, 2005.</td></tr> … … 5476 6254 5477 6255 <tr><td>Weber, G., L. Mervart, A. Stürze, A. Rülke and D. Stöcker (2016)</td><td>BKG Ntrip Client, Version 2.12. Mitteilungen des Bundesamtes für Kartographie und Geodäsie, Vol. 49, Frankfurt am Main, 2016.</td><tr> 5478 5479 6256 </table> 5480 6257 … … 5505 6282 <tr><td>FTP</td><td>File Transfer Protocol</td></tr> 5506 6283 <tr><td>GDA2020</td><td>Geodetic Datum Australia 2020</td></tr> 5507 <tr><td>GM</td><td>Google Maps</td></tr>5508 6284 <tr><td>GNSS</td><td>Global Navigation Satellite System</td></tr> 5509 6285 <tr><td>GNU</td><td>GNU's Not Unix</td></tr> … … 5519 6295 <tr><td>IAG</td><td>International Association of Geodesy</td></tr> 5520 6296 <tr><td>ICECAST</td><td>Streaming Media Server</td></tr> 5521 <tr><td>IGS 14</td><td>IGS Reference Frame 2014</td></tr>6297 <tr><td>IGS20</td><td>IGS Reference Frame 2020</td></tr> 5522 6298 <tr><td>IGS</td><td>International GNSS Service</td></tr> 5523 6299 <tr><td>IOD</td><td>Issue of Data</td></tr> 5524 6300 <tr><td>IP</td><td>Internet Protocol</td></tr> 5525 <tr><td>ITRF20 14</td><td>International Terrestrial Reference Frame 2014</td></tr>6301 <tr><td>ITRF2020</td><td>International Terrestrial Reference Frame 2020</td></tr> 5526 6302 <tr><td>L3</td><td>Ionosphere-Free Linear Combination Of Phase Observations</td></tr> 5527 6303 <tr><td>LAN</td><td>Local Area Network</td></tr>
Note:
See TracChangeset
for help on using the changeset viewer.