Changeset 5607 in ntrip for trunk/BNC


Ignore:
Timestamp:
Jan 22, 2014, 11:55:39 AM (10 years ago)
Author:
mervart
Message:
 
File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/BNC/txt/frankfurt.tex

    r5606 r5607  
    77\usepackage{longtable}
    88\usepackage{tabu}
     9\usepackage{subeqnar}
    910
    1011\newcommand{\ul}{\underline}
     
    1516\newcommand{\bea}{\begin{eqnarray}}
    1617\newcommand{\eea}{\end{eqnarray}}
    17 \newcommand{\bsea}{\begin{subeqnarray}}
    18 \newcommand{\esea}{\end{subeqnarray}}
     18\newcommand{\bsea}{\begin{subeqnarray*}}
     19\newcommand{\esea}{\end{subeqnarray*}}
    1920\newcommand{\mb}[1]{\mbox{#1}}
    2021\newcommand{\mc}[3]{\multicolumn{#1}{#2}{#3}}
     
    189190\end{frame}
    190191
     192%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     193
     194\begin{frame}
     195\frametitle{Kalman Filter}
     196
     197\begin{small}
     198
     199State vectors $\bmm{x}$ at two subsequent epochs are
     200related to each other by the following linear equation:
     201\bdm
     202\bmm{x}(n) = \bmm{\Phi}\; \bmm{x}(n-1) + \bmm{\Gamma}\;\bmm{w}(n)~,
     203\edm
     204where $\Phi$ and $\Gamma$ are known matrices and {\em white noise} $\bmm{w}(n)$ is a random
     205vector with the following statistical properties:
     206\bsea
     207E(\bmm{w})                  & = & \bmm{0}                           \\
     208E(\bmm{w}(n)\;\bmm{w}^T(m)) & = & \bmm{0} ~~ \mbox{for $m \neq n$}  \\
     209E(\bmm{w}(n)\;\bmm{w^T}(n)) & = & \bm{Q}_s(n) ~.
     210\esea
     211
     212Observations $\bmm{l}(n)$ and the state vector $\bmm{x}(n)$ are related to
     213each other by the linearized {\em observation equations} of form
     214\bdm \label{eq:KF:obseqn}
     215 \bmm{l}(n) = \bm{A}\;\bmm{x}(n) + \bmm{v}(n) ~ ,
     216\edm
     217where $\bm{A}$ is a known matrix (the so-called {\em first-design matrix}) and
     218$\bmm{v}(n)$ is a vector of random errors with the following properties:
     219\bsea\label{eq:KF:resid}
     220E(\bmm{v})                  & = & \bmm{0} \\
     221E(\bmm{v}(n)\;\bmm{v}^T(m)) & = & \bmm{0} ~~ \mbox{for $m \neq n$}  \\
     222E(\bmm{v}(n)\;\bmm{v^T}(n)) & = & \bm{Q}_l(n) ~.
     223\esea
     224
     225\end{small}
     226
     227\end{frame}
     228
     229%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     230
     231\begin{frame}
     232\frametitle{Classical KF Form}
     233
     234Minimum Mean Square Error (MMSE) estimate $\widehat{\bmm{x}}(n)$ of vector
     235$\bmm{x}(n)$ meets the condition
     236$E\left((\bmm{x} - \widehat{\bmm{x}})(\bmm{x} - \widehat{\bmm{x}})^T\right) =
     237\mbox{min}$ and is given by
     238\begin{subeqnarray}\label{eq:KF:prediction}
     239 \widehat{\bmm{x}}^-(n) & = & \bmm{\Phi} \widehat{\bmm{x}}(n-1)         \\
     240 \bm{Q}^-(n)            & = & \bmm{\Phi} \bm{Q}(n-1) \bmm{\Phi}^T +
     241                          \bmm{\Gamma} \bm{Q}_s(n) \bmm{\Gamma}^T   
     242\end{subeqnarray}
     243\begin{subeqnarray}\label{eq:KF:update}
     244 \widehat{\bmm{x}}(n)   & = & \widehat{\bmm{x}}^-(n) +
     245                              \bm{K}\left(\bmm{l} -
     246                              \bm{A}\widehat{\bmm{x}}(n-1)\right) \\
     247 \bm{Q}(n)              & = & \bm{Q}^-(n) - \bm{K}\bm{A}\bm{Q}^-(n) ~,
     248\end{subeqnarray}
     249where
     250\bdm \label{eq:KF:KandH}
     251 \bm{K} = \bm{Q}^-(n)\bm{A}^T\bm{H}^{-1}, \quad
     252 \bm{H} = \bm{Q}_l(n) + \bm{A}\bm{Q}^-(n)\bm{A}^T ~.
     253\edm
     254Equations (\ref{eq:KF:prediction}) are called {\em prediction},
     255equations (\ref{eq:KF:update}) are called {\em update} step of Kalman filter.
     256
     257\end{frame}
     258
     259%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     260
     261\begin{frame}
     262\frametitle{Square-Root Filter} \label{sec:SRF}
     263\begin{small}
     264Algorithms based on equations (\ref{eq:KF:prediction}) and
     265(\ref{eq:KF:update}) may suffer from numerical instabilities that are primarily
     266caused by the subtraction in (\ref{eq:KF:update}b). This deficiency may be
     267overcome by the so-called {\em square-root} formulation of the Kalman filter
     268that is based on the so-called {\em QR-Decomposition}. Assuming the
     269Cholesky decompositions
     270\be \label{eq:SRF:defsym}
     271  \bm{Q}(n)   = \bm{S}^{T} \bm{S}  , \quad
     272  \bm{Q}_l(n) = \bm{S}^T_l \bm{S}_l,  \quad
     273  \bm{Q}^-(n) = \bm{S}^{-T}\bm{S}^-
     274\ee
     275we can create the following block matrix and its QR-Decomposition:
     276\be \label{eq:SRF:main}
     277 \left(\begin{array}{ll}
     278   \bm{S}_l         & \bm{0} \\
     279  \bm{S}^-\bm{A}^T  & \bm{S}^-
     280 \end{array}\right)
     281=
     282 N \left(\begin{array}{cc}
     283    \bm{X}     & \bm{Y} \\
     284    \bm{0}     & \bm{Z}
     285   \end{array}\right) ~ .
     286\ee
     287It can be easily verified that
     288\bsea\label{eq:SRF:HK}
     289 \bm{H}    & = & \bm{X}^T\bm{X}   \\
     290 \bm{K}^T  & = & \bm{X}^{-1}\bm{Y}\\
     291 \bm{S}    & = & \bm{Z}           \\
     292 \bm{Q}(n) & = & \bm{Z}^T\bm{Z} ~ .
     293\esea
     294State vector $\widehat{\bmm{x}}(n)$ is computed in a usual way using the
     295equation (\ref{eq:KF:update}a).
     296\end{small}
     297\end{frame}
     298
    191299\end{document}
Note: See TracChangeset for help on using the changeset viewer.