/// \ingroup newmat ///@{ /// \file svd.cpp /// Singular value decomposition. // Copyright (C) 1991,2,3,4,5: R B Davies // Updated 17 July, 1995 #define WANT_MATH #include "include.h" #include "newmatap.h" #include "newmatrm.h" #include "precisio.h" #ifdef use_namespace namespace NEWMAT { #endif #ifdef DO_REPORT #define REPORT { static ExeCounter ExeCount(__LINE__,15); ++ExeCount; } #else #define REPORT {} #endif void SVD(const Matrix& A, DiagonalMatrix& Q, Matrix& U, Matrix& V, bool withU, bool withV) // from Wilkinson and Reinsch: "Handbook of Automatic Computation" { REPORT Tracer trace("SVD"); Real eps = FloatingPointPrecision::Epsilon(); Real tol = FloatingPointPrecision::Minimum()/eps; int m = A.Nrows(); int n = A.Ncols(); if (m= no. Cols", A)); if (withV && &U == &V) Throw(ProgramException("Need different matrices for U and V", U, V)); U = A; Real g = 0.0; Real f,h; Real x = 0.0; int i; RowVector E(n); RectMatrixRow EI(E,0); Q.ReSize(n); RectMatrixCol UCI(U,0); RectMatrixRow URI(U,0,1,n-1); if (n) for (i=0;;) { EI.First() = g; Real ei = g; EI.Right(); Real s = UCI.SumSquare(); if (s=0; i--) { VCI.Left(); if (g!=0.0) { VCI.Divide(URI, URI.First()*g); int j = n-i; RectMatrixCol VCJ = VCI; while (--j) { VCJ.Right(); VCJ.AddScaled( VCI, (URI*VCJ) ); } } VCI.Zero(); VCI.Up(); VCI.First() = 1.0; g=E.element(i); if (i==0) break; URI.UpDiag(); } } if (withU) { REPORT for (i=n-1; i>=0; i--) { g = Q.element(i); URI.Reset(U,i,i+1,n-i-1); URI.Zero(); if (g!=0.0) { h=UCI.First()*g; int j=n-i; RectMatrixCol UCJ = UCI; while (--j) { UCJ.Right(); UCI.Down(); UCJ.Down(); Real s = UCI*UCJ; UCI.Up(); UCJ.Up(); UCJ.AddScaled(UCI,s/h); } UCI.Divide(g); } else UCI.Zero(); UCI.First() += 1.0; if (i==0) break; UCI.UpDiag(); } } eps *= x; for (int k=n-1; k>=0; k--) { Real z = -FloatingPointPrecision::Maximum(); // to keep Gnu happy Real y; int limit = 50; int l = 0; while (limit--) { Real c, s; int i; int l1=k; bool tfc=false; for (l=k; l>=0; l--) { // if (fabs(E.element(l))<=eps) goto test_f_convergence; if (fabs(E.element(l))<=eps) { REPORT tfc=true; break; } if (fabs(Q.element(l-1))<=eps) { REPORT l1=l; break; } REPORT } if (!tfc) { REPORT l=l1; l1=l-1; s = -1.0; c = 0.0; for (i=l; i<=k; i++) { f = - s * E.element(i); E.element(i) *= c; // if (fabs(f)<=eps) goto test_f_convergence; if (fabs(f)<=eps) { REPORT break; } g = Q.element(i); h = pythag(g,f,c,s); Q.element(i) = h; if (withU) { REPORT RectMatrixCol UCI(U,i); RectMatrixCol UCJ(U,l1); ComplexScale(UCJ, UCI, c, s); } } } // test_f_convergence: z = Q.element(k); if (l==k) goto convergence; z = Q.element(k); if (l==k) { REPORT break; } x = Q.element(l); y = Q.element(k-1); g = E.element(k-1); h = E.element(k); f = ((y-z)*(y+z) + (g-h)*(g+h)) / (2*h*y); if (f>1) { REPORT g = f * sqrt(1 + square(1/f)); } else if (f<-1) { REPORT g = -f * sqrt(1 + square(1/f)); } else { REPORT g = sqrt(f*f + 1); } { REPORT f = ((x-z)*(x+z) + h*(y / ((f<0.0) ? f-g : f+g)-h)) / x; } c = 1.0; s = 1.0; for (i=l+1; i<=k; i++) { g = E.element(i); y = Q.element(i); h = s*g; g *= c; z = pythag(f,h,c,s); E.element(i-1) = z; f = x*c + g*s; g = -x*s + g*c; h = y*s; y *= c; if (withV) { REPORT RectMatrixCol VCI(V,i); RectMatrixCol VCJ(V,i-1); ComplexScale(VCI, VCJ, c, s); } z = pythag(f,h,c,s); Q.element(i-1) = z; f = c*g + s*y; x = -s*g + c*y; if (withU) { REPORT RectMatrixCol UCI(U,i); RectMatrixCol UCJ(U,i-1); ComplexScale(UCI, UCJ, c, s); } } E.element(l) = 0.0; E.element(k) = f; Q.element(k) = x; } if (l!=k) { Throw(ConvergenceException(A)); } // convergence: if (z < 0.0) { REPORT Q.element(k) = -z; if (withV) { RectMatrixCol VCI(V,k); VCI.Negate(); } } } if (withU & withV) SortSV(Q, U, V); else if (withU) SortSV(Q, U); else if (withV) SortSV(Q, V); else sort_descending(Q); } void SVD(const Matrix& A, DiagonalMatrix& D) { REPORT Matrix U; SVD(A, D, U, U, false, false); } #ifdef use_namespace } #endif ///@}