/// \ingroup newmat ///@{ /// \file bandmat.cpp /// Band-matrix member functions. // Copyright (C) 1991,2,3,4,9: R B Davies #define WANT_MATH // include.h will get math fns //#define WANT_STREAM #include "include.h" #include "newmat.h" #include "newmatrc.h" #ifdef use_namespace namespace NEWMAT { #endif #ifdef DO_REPORT #define REPORT { static ExeCounter ExeCount(__LINE__,10); ++ExeCount; } #else #define REPORT {} #endif static inline int my_min(int x, int y) { return x < y ? x : y; } static inline int my_max(int x, int y) { return x > y ? x : y; } BandMatrix::BandMatrix(const BaseMatrix& M) { REPORT // CheckConversion(M); // MatrixConversionCheck mcc; GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::BM); GetMatrix(gmx); CornerClear(); } void BandMatrix::SetParameters(const GeneralMatrix* gmx) { REPORT MatrixBandWidth bw = gmx->bandwidth(); lower_val = bw.lower_val; upper_val = bw.upper_val; } void BandMatrix::resize(int n, int lb, int ub) { REPORT Tracer tr("BandMatrix::resize"); if (lb<0 || ub<0) Throw(ProgramException("Undefined bandwidth")); lower_val = (lb<=n) ? lb : n-1; upper_val = (ub<=n) ? ub : n-1; GeneralMatrix::resize(n,n,n*(lower_val+1+upper_val)); CornerClear(); } // SimpleAddOK shows when we can add etc two matrices by a simple vector add // and when we can add one matrix into another // // *gm must be the same type as *this // - return 0 if simple add is OK // - return 1 if we can add into *gm only // - return 2 if we can add into *this only // - return 3 if we can't add either way // // For SP this will still be valid if we swap 1 and 2 /// \brief can we add two band matrices with simple vector add /// /// For band matrices the bandwidths must agree short BandMatrix::SimpleAddOK(const GeneralMatrix* gm) { const BandMatrix* bm = (const BandMatrix*)gm; if (bm->lower_val == lower_val && bm->upper_val == upper_val) { REPORT return 0; } else if (bm->lower_val >= lower_val && bm->upper_val >= upper_val) { REPORT return 1; } else if (bm->lower_val <= lower_val && bm->upper_val <= upper_val) { REPORT return 2; } else { REPORT return 3; } } /// \brief can we add two symmetric band matrices with simple vector add /// /// Sufficient to check lower bandwidths agree short SymmetricBandMatrix::SimpleAddOK(const GeneralMatrix* gm) { const SymmetricBandMatrix* bm = (const SymmetricBandMatrix*)gm; if (bm->lower_val == lower_val) { REPORT return 0; } else if (bm->lower_val > lower_val) { REPORT return 1; } else { REPORT return 2; } } /// \brief resize UpperBandMatrix void UpperBandMatrix::resize(int n, int lb, int ub) { REPORT if (lb != 0) { Tracer tr("UpperBandMatrix::resize"); Throw(ProgramException("UpperBandMatrix with non-zero lower band" )); } BandMatrix::resize(n, lb, ub); } /// \brief resize LowerBandMatrix void LowerBandMatrix::resize(int n, int lb, int ub) { REPORT if (ub != 0) { Tracer tr("LowerBandMatrix::resize"); Throw(ProgramException("LowerBandMatrix with non-zero upper band" )); } BandMatrix::resize(n, lb, ub); } /// \brief resize BandMatrix void BandMatrix::resize(const GeneralMatrix& A) { REPORT int n = A.Nrows(); if (n != A.Ncols()) { Tracer tr("BandMatrix::resize(GM)"); Throw(NotSquareException(*this)); } MatrixBandWidth mbw = A.bandwidth(); resize(n, mbw.Lower(), mbw.Upper()); } /* bool BandMatrix::SameStorageType(const GeneralMatrix& A) const { if (type() != A.type()) { REPORT return false; } REPORT return bandwidth() == A.bandwidth(); } void BandMatrix::resizeForAdd(const GeneralMatrix& A, const GeneralMatrix& B) { REPORT Tracer tr("BandMatrix::resizeForAdd"); MatrixBandWidth A_BW = A.bandwidth(); MatrixBandWidth B_BW = B.bandwidth(); if ((A_BW.Lower() < 0) | (A_BW.Upper() < 0) | (B_BW.Lower() < 0) | (A_BW.Upper() < 0)) Throw(ProgramException("Can't resize to BandMatrix" )); // already know A and B are square resize(A.Nrows(), my_max(A_BW.Lower(), B_BW.Lower()), my_max(A_BW.Upper(), B_BW.Upper())); } void BandMatrix::resizeForSP(const GeneralMatrix& A, const GeneralMatrix& B) { REPORT Tracer tr("BandMatrix::resizeForSP"); MatrixBandWidth A_BW = A.bandwidth(); MatrixBandWidth B_BW = B.bandwidth(); if ((A_BW.Lower() < 0) | (A_BW.Upper() < 0) | (B_BW.Lower() < 0) | (A_BW.Upper() < 0)) Throw(ProgramException("Can't resize to BandMatrix" )); // already know A and B are square resize(A.Nrows(), my_min(A_BW.Lower(), B_BW.Lower()), my_min(A_BW.Upper(), B_BW.Upper())); } */ /// \brief assignment operator for BandMatrix void BandMatrix::operator=(const BaseMatrix& X) { REPORT // CheckConversion(X); // MatrixConversionCheck mcc; Eq(X,MatrixType::BM); CornerClear(); } /// \brief set unused parts of BandMatrix to zero void BandMatrix::CornerClear() const { REPORT int i = lower_val; Real* s = store; int bw = lower_val + 1 + upper_val; while (i) { int j = i--; Real* sj = s; s += bw; while (j--) *sj++ = 0.0; } i = upper_val; s = store + storage; while (i) { int j = i--; Real* sj = s; s -= bw; while (j--) *(--sj) = 0.0; } } MatrixBandWidth MatrixBandWidth::operator+(const MatrixBandWidth& bw) const { REPORT int l = bw.lower_val; int u = bw.upper_val; l = (lower_val < 0 || l < 0) ? -1 : (lower_val > l) ? lower_val : l; u = (upper_val < 0 || u < 0) ? -1 : (upper_val > u) ? upper_val : u; return MatrixBandWidth(l,u); } MatrixBandWidth MatrixBandWidth::operator*(const MatrixBandWidth& bw) const { REPORT int l = bw.lower_val; int u = bw.upper_val; l = (lower_val < 0 || l < 0) ? -1 : lower_val+l; u = (upper_val < 0 || u < 0) ? -1 : upper_val+u; return MatrixBandWidth(l,u); } MatrixBandWidth MatrixBandWidth::minimum(const MatrixBandWidth& bw) const { REPORT int l = bw.lower_val; int u = bw.upper_val; if ((lower_val >= 0) && ( (l < 0) || (l > lower_val) )) l = lower_val; if ((upper_val >= 0) && ( (u < 0) || (u > upper_val) )) u = upper_val; return MatrixBandWidth(l,u); } UpperBandMatrix::UpperBandMatrix(const BaseMatrix& M) { REPORT // CheckConversion(M); // MatrixConversionCheck mcc; GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::UB); GetMatrix(gmx); CornerClear(); } void UpperBandMatrix::operator=(const BaseMatrix& X) { REPORT // CheckConversion(X); // MatrixConversionCheck mcc; Eq(X,MatrixType::UB); CornerClear(); } LowerBandMatrix::LowerBandMatrix(const BaseMatrix& M) { REPORT // CheckConversion(M); // MatrixConversionCheck mcc; GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::LB); GetMatrix(gmx); CornerClear(); } void LowerBandMatrix::operator=(const BaseMatrix& X) { REPORT // CheckConversion(X); // MatrixConversionCheck mcc; Eq(X,MatrixType::LB); CornerClear(); } BandLUMatrix::BandLUMatrix(const BaseMatrix& m) { REPORT Tracer tr("BandLUMatrix"); storage2 = 0; store2 = 0; indx = 0; // in event of exception during build GeneralMatrix* gm = ((BaseMatrix&)m).Evaluate(); if (gm->nrows() != gm->ncols()) { gm->tDelete(); Throw(NotSquareException(*this)); } if (gm->type() == MatrixType::BC) { REPORT ((BandLUMatrix*)gm)->get_aux(*this); GetMatrix(gm); } else { REPORT BandMatrix* gm1 = (BandMatrix*)(gm->Evaluate(MatrixType::BM)); m1 = gm1->lower_val; m2 = gm1->upper_val; GetMatrix(gm1); d = true; sing = false; indx = new int [nrows_val]; MatrixErrorNoSpace(indx); MONITOR_INT_NEW("Index (BndLUMat)",nrows_val,indx) storage2 = nrows_val * m1; store2 = new Real [storage2]; MatrixErrorNoSpace(store2); MONITOR_REAL_NEW("Make (BandLUMat)",storage2,store2) ludcmp(); } } GeneralMatrix* BandLUMatrix::Evaluate(MatrixType mt) { if (Compare(this->Type(),mt)) { REPORT return this; } REPORT Tracer et("BandLUMatrix::Evaluate"); bool dummy = true; if (dummy) Throw(ProgramException("Illegal use of BandLUMatrix", *this)); return this; } // could we use SetParameters instead of this void BandLUMatrix::get_aux(BandLUMatrix& X) { X.d = d; X.sing = sing; X.storage2 = storage2; X.m1 = m1; X.m2 = m2; if (tag_val == 0 || tag_val == 1) // reuse the array { REPORT X.indx = indx; indx = 0; X.store2 = store2; store2 = 0; d = true; sing = true; storage2 = 0; m1 = 0; m2 = 0; return; } else if (nrows_val == 0) { REPORT indx = 0; store2 = 0; storage2 = 0; d = true; sing = true; m1 = m2 = 0; return; } else // copy the array { REPORT Tracer tr("BandLUMatrix::get_aux"); int *ix = new int [nrows_val]; MatrixErrorNoSpace(ix); MONITOR_INT_NEW("Index (BLUM::get_aux)", nrows_val, ix) int n = nrows_val; int* i = ix; int* j = indx; while(n--) *i++ = *j++; X.indx = ix; Real *rx = new Real [storage2]; MatrixErrorNoSpace(indx); MONITOR_REAL_NEW("Index (BLUM::get_aux)", storage2, rx) newmat_block_copy(storage2, store2, rx); X.store2 = rx; } } BandLUMatrix::BandLUMatrix(const BandLUMatrix& gm) : GeneralMatrix() { REPORT Tracer tr("BandLUMatrix(const BandLUMatrix&)"); ((BandLUMatrix&)gm).get_aux(*this); GetMatrix(&gm); } void BandLUMatrix::operator=(const BandLUMatrix& gm) { if (&gm == this) { REPORT tag_val = -1; return; } REPORT delete [] indx; indx = 0; delete [] store2; store2 = 0; storage2 = 0; ((BandLUMatrix&)gm).get_aux(*this); Eq(gm); } BandLUMatrix::~BandLUMatrix() { REPORT MONITOR_INT_DELETE("Index (BndLUMat)",nrows_val,indx) MONITOR_REAL_DELETE("Delete (BndLUMt)",storage2,store2) delete [] indx; delete [] store2; } MatrixType BandLUMatrix::type() const { REPORT return MatrixType::BC; } LogAndSign BandLUMatrix::log_determinant() const { REPORT if (sing) return 0.0; Real* a = store; int w = m1+1+m2; LogAndSign sum; int i = nrows_val; // while (i--) { sum *= *a; a += w; } if (i) for (;;) { sum *= *a; if (!(--i)) break; a += w; } if (!d) sum.ChangeSign(); return sum; } GeneralMatrix* BandMatrix::MakeSolver() { REPORT GeneralMatrix* gm = new BandLUMatrix(*this); MatrixErrorNoSpace(gm); gm->ReleaseAndDelete(); return gm; } void BandLUMatrix::ludcmp() { REPORT Real* a = store2; int i = storage2; // clear store2 - so unused locations are always zero - // required by operator== while (i--) *a++ = 0.0; a = store; i = m1; int j = m2; int k; int n = nrows_val; int w = m1 + 1 + m2; while (i) { Real* ai = a + i; k = ++j; while (k--) *a++ = *ai++; k = i--; while (k--) *a++ = 0.0; } a = store; int l = m1; for (k=0; k<n; k++) { Real x = *a; i = k; Real* aj = a; if (l < n) l++; for (j=k+1; j<l; j++) { aj += w; if (fabs(x) < fabs(*aj)) { x = *aj; i = j; } } indx[k] = i; if (x==0) { sing = true; return; } if (i!=k) { d = !d; Real* ak = a; Real* ai = store + i * w; j = w; while (j--) { x = *ak; *ak++ = *ai; *ai++ = x; } } aj = a + w; Real* m = store2 + m1 * k; for (j=k+1; j<l; j++) { *m++ = x = *aj / *a; i = w; Real* ak = a; while (--i) { Real* aj1 = aj++; *aj1 = *aj - x * *(++ak); } *aj++ = 0.0; } a += w; } } void BandLUMatrix::lubksb(Real* B, int mini) { REPORT Tracer tr("BandLUMatrix::lubksb"); if (sing) Throw(SingularException(*this)); int n = nrows_val; int l = m1; int w = m1 + 1 + m2; for (int k=0; k<n; k++) { int i = indx[k]; if (i!=k) { Real x=B[k]; B[k]=B[i]; B[i]=x; } if (l<n) l++; Real* m = store2 + k*m1; Real* b = B+k; Real* bi = b; for (i=k+1; i<l; i++) *(++bi) -= *m++ * *b; } l = -m1; for (int i = n-1; i>=mini; i--) { Real* b = B + i; Real* bk = b; Real x = *bk; Real* a = store + w*i; Real y = *a; int k = l+m1; while (k--) x -= *(++a) * *(++bk); *b = x / y; if (l < m2) l++; } } void BandLUMatrix::Solver(MatrixColX& mcout, const MatrixColX& mcin) { REPORT int i = mcin.skip; Real* el = mcin.data-i; Real* el1=el; while (i--) *el++ = 0.0; el += mcin.storage; i = nrows_val - mcin.skip - mcin.storage; while (i--) *el++ = 0.0; lubksb(el1, mcout.skip); } // Do we need check for entirely zero output? void UpperBandMatrix::Solver(MatrixColX& mcout, const MatrixColX& mcin) { REPORT int i = mcin.skip-mcout.skip; Real* elx = mcin.data-i; while (i-- > 0) *elx++ = 0.0; int nr = mcin.skip+mcin.storage; elx = mcin.data+mcin.storage; Real* el = elx; int j = mcout.skip+mcout.storage-nr; i = nr-mcout.skip; while (j-- > 0) *elx++ = 0.0; Real* Ael = store + (upper_val+1)*(i-1)+1; j = 0; if (i > 0) for(;;) { elx = el; Real sum = 0.0; int jx = j; while (jx--) sum += *(--Ael) * *(--elx); elx--; *elx = (*elx - sum) / *(--Ael); if (--i <= 0) break; if (j<upper_val) Ael -= upper_val - (++j); else el--; } } void LowerBandMatrix::Solver(MatrixColX& mcout, const MatrixColX& mcin) { REPORT int i = mcin.skip-mcout.skip; Real* elx = mcin.data-i; while (i-- > 0) *elx++ = 0.0; int nc = mcin.skip; i = nc+mcin.storage; elx = mcin.data+mcin.storage; int nr = mcout.skip+mcout.storage; int j = nr-i; i = nr-nc; while (j-- > 0) *elx++ = 0.0; Real* el = mcin.data; Real* Ael = store + (lower_val+1)*nc + lower_val; j = 0; if (i > 0) for(;;) { elx = el; Real sum = 0.0; int jx = j; while (jx--) sum += *Ael++ * *elx++; *elx = (*elx - sum) / *Ael++; if (--i <= 0) break; if (j<lower_val) Ael += lower_val - (++j); else el++; } } LogAndSign BandMatrix::log_determinant() const { REPORT BandLUMatrix C(*this); return C.log_determinant(); } LogAndSign LowerBandMatrix::log_determinant() const { REPORT int i = nrows_val; LogAndSign sum; Real* s = store + lower_val; int j = lower_val + 1; // while (i--) { sum *= *s; s += j; } if (i) for (;;) { sum *= *s; if (!(--i)) break; s += j; } ((GeneralMatrix&)*this).tDelete(); return sum; } LogAndSign UpperBandMatrix::log_determinant() const { REPORT int i = nrows_val; LogAndSign sum; Real* s = store; int j = upper_val + 1; // while (i--) { sum *= *s; s += j; } if (i) for (;;) { sum *= *s; if (!(--i)) break; s += j; } ((GeneralMatrix&)*this).tDelete(); return sum; } GeneralMatrix* SymmetricBandMatrix::MakeSolver() { REPORT GeneralMatrix* gm = new BandLUMatrix(*this); MatrixErrorNoSpace(gm); gm->ReleaseAndDelete(); return gm; } SymmetricBandMatrix::SymmetricBandMatrix(const BaseMatrix& M) { REPORT // CheckConversion(M); // MatrixConversionCheck mcc; GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::SB); GetMatrix(gmx); } GeneralMatrix* SymmetricBandMatrix::Transpose(TransposedMatrix*, MatrixType mt) { REPORT return Evaluate(mt); } LogAndSign SymmetricBandMatrix::log_determinant() const { REPORT BandLUMatrix C(*this); return C.log_determinant(); } void SymmetricBandMatrix::SetParameters(const GeneralMatrix* gmx) { REPORT lower_val = gmx->bandwidth().lower_val; } void SymmetricBandMatrix::resize(int n, int lb) { REPORT Tracer tr("SymmetricBandMatrix::resize"); if (lb<0) Throw(ProgramException("Undefined bandwidth")); lower_val = (lb<=n) ? lb : n-1; GeneralMatrix::resize(n,n,n*(lower_val+1)); } void SymmetricBandMatrix::resize(const GeneralMatrix& A) { REPORT int n = A.Nrows(); if (n != A.Ncols()) { Tracer tr("SymmetricBandMatrix::resize(GM)"); Throw(NotSquareException(*this)); } MatrixBandWidth mbw = A.bandwidth(); int b = mbw.Lower(); if (b != mbw.Upper()) { Tracer tr("SymmetricBandMatrix::resize(GM)"); Throw(ProgramException("Upper and lower band-widths not equal")); } resize(n, b); } /* bool SymmetricBandMatrix::SameStorageType(const GeneralMatrix& A) const { if (type() != A.type()) { REPORT return false; } REPORT return bandwidth() == A.bandwidth(); } void SymmetricBandMatrix::resizeForAdd(const GeneralMatrix& A, const GeneralMatrix& B) { REPORT Tracer tr("SymmetricBandMatrix::resizeForAdd"); MatrixBandWidth A_BW = A.bandwidth(); MatrixBandWidth B_BW = B.bandwidth(); if ((A_BW.Lower() < 0) | (B_BW.Lower() < 0)) Throw(ProgramException("Can't resize to SymmetricBandMatrix" )); // already know A and B are square resize(A.Nrows(), my_max(A_BW.Lower(), B_BW.Lower())); } void SymmetricBandMatrix::resizeForSP(const GeneralMatrix& A, const GeneralMatrix& B) { REPORT Tracer tr("SymmetricBandMatrix::resizeForSP"); MatrixBandWidth A_BW = A.bandwidth(); MatrixBandWidth B_BW = B.bandwidth(); if ((A_BW.Lower() < 0) | (B_BW.Lower() < 0)) Throw(ProgramException("Can't resize to SymmetricBandMatrix" )); // already know A and B are square resize(A.Nrows(), my_min(A_BW.Lower(), B_BW.Lower())); } */ void SymmetricBandMatrix::operator=(const BaseMatrix& X) { REPORT // CheckConversion(X); // MatrixConversionCheck mcc; Eq(X,MatrixType::SB); } void SymmetricBandMatrix::CornerClear() const { // set unused parts of BandMatrix to zero REPORT int i = lower_val; Real* s = store; int bw = lower_val + 1; if (i) for(;;) { int j = i; Real* sj = s; while (j--) *sj++ = 0.0; if (!(--i)) break; s += bw; } } MatrixBandWidth SymmetricBandMatrix::bandwidth() const { REPORT return MatrixBandWidth(lower_val,lower_val); } GeneralMatrix* BandMatrix::Image() const { REPORT GeneralMatrix* gm = new BandMatrix(*this); MatrixErrorNoSpace(gm); return gm; } GeneralMatrix* UpperBandMatrix::Image() const { REPORT GeneralMatrix* gm = new UpperBandMatrix(*this); MatrixErrorNoSpace(gm); return gm; } GeneralMatrix* LowerBandMatrix::Image() const { REPORT GeneralMatrix* gm = new LowerBandMatrix(*this); MatrixErrorNoSpace(gm); return gm; } GeneralMatrix* SymmetricBandMatrix::Image() const { REPORT GeneralMatrix* gm = new SymmetricBandMatrix(*this); MatrixErrorNoSpace(gm); return gm; } GeneralMatrix* BandLUMatrix::Image() const { REPORT GeneralMatrix* gm = new BandLUMatrix(*this); MatrixErrorNoSpace(gm); return gm; } inline Real square(Real x) { return x*x; } Real SymmetricBandMatrix::sum_square() const { REPORT CornerClear(); Real sum1=0.0; Real sum2=0.0; Real* s=store; int i=nrows_val; int l=lower_val; while (i--) { int j = l; while (j--) sum2 += square(*s++); sum1 += square(*s++); } ((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2; } Real SymmetricBandMatrix::sum_absolute_value() const { REPORT CornerClear(); Real sum1=0.0; Real sum2=0.0; Real* s=store; int i=nrows_val; int l=lower_val; while (i--) { int j = l; while (j--) sum2 += fabs(*s++); sum1 += fabs(*s++); } ((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2; } Real SymmetricBandMatrix::sum() const { REPORT CornerClear(); Real sum1=0.0; Real sum2=0.0; Real* s=store; int i=nrows_val; int l=lower_val; while (i--) { int j = l; while (j--) sum2 += *s++; sum1 += *s++; } ((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2; } #ifdef use_namespace } #endif ///@}