/* ------------------------------------------------------------------------- * BKG NTRIP Server * ------------------------------------------------------------------------- * * Class: bnseph * * Purpose: Retrieve broadcast ephemeris from BNC * * Author: L. Mervart * * Created: 29-Mar-2008 * * Changes: * * -----------------------------------------------------------------------*/ #include #include "bnseph.h" #include "bnsutils.h" #include "bnssettings.h" #include "bnctime.h" extern "C" { #include "RTCM/rtcm3torinex.h" } #define PI 3.1415926535898 using namespace std; // Constructor //////////////////////////////////////////////////////////////////////////// t_bnseph::t_bnseph(QObject* parent) : QThread(parent) { this->setTerminationEnabled(true); _socket = 0; bnsSettings settings; QIODevice::OpenMode oMode; if (Qt::CheckState(settings.value("fileAppend").toInt()) == Qt::Checked) { oMode = QIODevice::WriteOnly | QIODevice::Unbuffered | QIODevice::Append; } else { oMode = QIODevice::WriteOnly | QIODevice::Unbuffered; } // Echo ephemeris into a file // --------------------------- QString echoFileName = settings.value("ephEcho").toString(); if (echoFileName.isEmpty()) { _echoFile = 0; _echoStream = 0; } else { _echoFile = new QFile(echoFileName); if (_echoFile->open(oMode)) { _echoStream = new QTextStream(_echoFile); } else { _echoStream = 0; } } } // Destructor //////////////////////////////////////////////////////////////////////////// t_bnseph::~t_bnseph() { delete _socket; delete _echoStream; delete _echoFile; } // Connect the Socket //////////////////////////////////////////////////////////////////////////// void t_bnseph::reconnect() { delete _socket; bnsSettings settings; QString host = settings.value("ephHost").toString(); if (host.isEmpty()) { host = "localhost"; } int port = settings.value("ephPort").toInt(); _socket = new QTcpSocket(); _socket->connectToHost(host, port); const int timeOut = 30*1000; // 30 seconds if (!_socket->waitForConnected(timeOut)) { // emit(newMessage("bnseph::run Connect Timeout")); emit(newMessage("Ephemeris server: Connection timeout")); // weber msleep(1000); } } // Start //////////////////////////////////////////////////////////////////////////// void t_bnseph::run() { //emit(newMessage("bnseph::run Start")); emit(newMessage("Ephemeris server: Connection opened")); // weber while (true) { if ( _socket == 0 || (_socket->state() != QAbstractSocket::ConnectingState && _socket->state() != QAbstractSocket::ConnectedState) ) { reconnect(); } if (_socket && _socket->state() == QAbstractSocket::ConnectedState) { readEph(); } else { msleep(10); } } } // Read One Ephemeris //////////////////////////////////////////////////////////////////////////// void t_bnseph::readEph() { int nBytes = 0; t_eph* eph = 0; QByteArray line = waitForLine(_socket); if (line.isEmpty()) { return; } if (_echoStream) { *_echoStream << line; _echoStream->flush(); } nBytes += line.length(); QTextStream in(line); QString prn; in >> prn; int numlines = 0; if (prn.indexOf('R') != -1) { eph = new t_ephGlo(); numlines = 4; } else { eph = new t_ephGPS(); numlines = 8; } QStringList lines; lines << line; for (int ii = 2; ii <= numlines; ii++) { QByteArray line = waitForLine(_socket); if (line.isEmpty()) { delete eph; return; } if (_echoStream) { *_echoStream << line; _echoStream->flush(); } nBytes += line.length(); lines << line; } eph->read(lines); emit(newEph(eph, nBytes)); } // Compare Time //////////////////////////////////////////////////////////////////////////// bool t_eph::isNewerThan(const t_eph* eph) const { if (_GPSweek > eph->_GPSweek || (_GPSweek == eph->_GPSweek && _GPSweeks > eph->_GPSweeks)) { return true; } else { return false; } } // Read GPS Ephemeris //////////////////////////////////////////////////////////////////////////// void t_ephGPS::read(const QStringList& lines) { for (int ii = 1; ii <= lines.size(); ii++) { QTextStream in(lines.at(ii-1).toAscii()); if (ii == 1) { double year, month, day, hour, minute, second; in >> _prn >> year >> month >> day >> hour >> minute >> second >> _clock_bias >> _clock_drift >> _clock_driftrate; if (year < 100) year += 2000; QDateTime* dateTime = new QDateTime(QDate(int(year), int(month), int(day)), QTime(int(hour), int(minute), int(second)), Qt::UTC); GPSweekFromDateAndTime(*dateTime, _GPSweek, _GPSweeks); delete dateTime; _TOC = _GPSweeks; } else if (ii == 2) { in >> _IODE >> _Crs >> _Delta_n >> _M0; } else if (ii == 3) { in >> _Cuc >> _e >> _Cus >> _sqrt_A; } else if (ii == 4) { in >> _TOE >> _Cic >> _OMEGA0 >> _Cis; } else if (ii == 5) { in >> _i0 >> _Crc >> _omega >> _OMEGADOT; } else if (ii == 6) { double GPSweek; in >> _IDOT >> _L2Codes >> GPSweek >> _L2PFlag; } else if (ii == 7) { in >> _ura >> _health >> _TGD >> _IODC; } else if (ii == 8) { in >> _TOW; } } } // Returns nearest integer value //////////////////////////////////////////////////////////////////////////// static double NearestInt(double fl, double * remain) { bool isneg = fl < 0.0; double intval; if(isneg) fl *= -1.0; intval = (double)((unsigned long)(fl+0.5)); if(isneg) {fl *= -1.0; intval *= -1.0;} if(remain) *remain = fl-intval; return intval; } /* NearestInt() */ // Returns CRC24 //////////////////////////////////////////////////////////////////////////// static unsigned long CRC24(long size, const unsigned char *buf) { unsigned long crc = 0; int i; while(size--) { crc ^= (*buf++) << (16); for(i = 0; i < 8; i++) { crc <<= 1; if(crc & 0x1000000) crc ^= 0x01864cfb; } } return crc; } /* CRC24 */ // build up RTCM3 for GPS //////////////////////////////////////////////////////////////////////////// #define GPSTOINT(type, value) static_cast(NearestInt(value,0)) #define GPSADDBITS(a, b) {bitbuffer = (bitbuffer<<(a)) \ |(GPSTOINT(long long,b)&((1ULL<= 8) { \ buffer[size++] = bitbuffer>>(numbits-8);numbits -= 8;}} #define GPSADDBITSFLOAT(a,b,c) {long long i = GPSTOINT(long long,(b)/(c)); \ GPSADDBITS(a,i)}; int t_ephGPS::RTCM3(unsigned char *buffer) { unsigned char *startbuffer = buffer; buffer= buffer+3; int size = 0; int numbits = 0; unsigned long long bitbuffer = 0; if (_ura <= 2.40){ _ura = 0; } else if (_ura <= 3.40){ _ura = 1; } else if (_ura <= 6.85){ _ura = 2; } else if (_ura <= 9.65){ _ura = 3; } else if (_ura <= 13.65){ _ura = 4; } else if (_ura <= 24.00){ _ura = 5; } else if (_ura <= 48.00){ _ura = 6; } else if (_ura <= 96.00){ _ura = 7; } else if (_ura <= 192.00){ _ura = 8; } else if (_ura <= 384.00){ _ura = 9; } else if (_ura <= 768.00){ _ura = 10; } else if (_ura <= 1536.00){ _ura = 11; } else if (_ura <= 1536.00){ _ura = 12; } else if (_ura <= 2072.00){ _ura = 13; } else if (_ura <= 6144.00){ _ura = 14; } else{ _ura = 15; } GPSADDBITS(12, 1019) GPSADDBITS(6,_prn.right((_prn.length()-1)).toInt()) GPSADDBITS(10, _GPSweek) GPSADDBITS(4, _ura) GPSADDBITS(2,_L2Codes) GPSADDBITSFLOAT(14, _IDOT, PI/static_cast(1<<30) /static_cast(1<<13)) GPSADDBITS(8, _IODE) GPSADDBITS(16, static_cast(_TOC)>>4) GPSADDBITSFLOAT(8, _clock_driftrate, 1.0/static_cast(1<<30) /static_cast(1<<25)) GPSADDBITSFLOAT(16, _clock_drift, 1.0/static_cast(1<<30) /static_cast(1<<13)) GPSADDBITSFLOAT(22, _clock_bias, 1.0/static_cast(1<<30) /static_cast(1<<1)) GPSADDBITS(10, _IODC) GPSADDBITSFLOAT(16, _Crs, 1.0/static_cast(1<<5)) GPSADDBITSFLOAT(16, _Delta_n, PI/static_cast(1<<30) /static_cast(1<<13)) GPSADDBITSFLOAT(32, _M0, PI/static_cast(1<<30)/static_cast(1<<1)) GPSADDBITSFLOAT(16, _Cuc, 1.0/static_cast(1<<29)) GPSADDBITSFLOAT(32, _e, 1.0/static_cast(1<<30)/static_cast(1<<3)) GPSADDBITSFLOAT(16, _Cus, 1.0/static_cast(1<<29)) GPSADDBITSFLOAT(32, _sqrt_A, 1.0/static_cast(1<<19)) GPSADDBITS(16, static_cast(_TOE)>>4) GPSADDBITSFLOAT(16, _Cic, 1.0/static_cast(1<<29)) GPSADDBITSFLOAT(32, _OMEGA0, PI/static_cast(1<<30) /static_cast(1<<1)) GPSADDBITSFLOAT(16, _Cis, 1.0/static_cast(1<<29)) GPSADDBITSFLOAT(32, _i0, PI/static_cast(1<<30)/static_cast(1<<1)) GPSADDBITSFLOAT(16, _Crc, 1.0/static_cast(1<<5)) GPSADDBITSFLOAT(32, _omega, PI/static_cast(1<<30) /static_cast(1<<1)) GPSADDBITSFLOAT(24, _OMEGADOT, PI/static_cast(1<<30) /static_cast(1<<13)) GPSADDBITSFLOAT(8, _TGD, 1.0/static_cast(1<<30)/static_cast(1<<1)) GPSADDBITS(6, _health) GPSADDBITS(1, _L2PFlag) GPSADDBITS(1, 0) /* GPS fit interval */ startbuffer[0]=0xD3; startbuffer[1]=(size >> 8); startbuffer[2]=size; unsigned long i = CRC24(size+3, startbuffer); buffer[size++] = i >> 16; buffer[size++] = i >> 8; buffer[size++] = i; size += 3; return size; } // Compute GPS Satellite Position //////////////////////////////////////////////////////////////////////////// void t_ephGPS::position(int GPSweek, double GPSweeks, ColumnVector& xc, ColumnVector& vv) const { static const double secPerWeek = 7 * 86400.0; static const double omegaEarth = 7292115.1467e-11; static const double gmWGS = 398.6005e12; if (xc.Nrows() < 4) { xc.ReSize(4); } xc = 0.0; if (vv.Nrows() < 3) { vv.ReSize(3); } vv = 0.0; double a0 = _sqrt_A * _sqrt_A; if (a0 == 0) { return; } double n0 = sqrt(gmWGS/(a0*a0*a0)); double tk = GPSweeks - _TOE; if (GPSweek != _GPSweek) { tk += (GPSweek - _GPSweek) * secPerWeek; } double n = n0 + _Delta_n; double M = _M0 + n*tk; double E = M; double E_last; do { E_last = E; E = M + _e*sin(E); } while ( fabs(E-E_last)*a0 > 0.001 ); double v = 2.0*atan( sqrt( (1.0 + _e)/(1.0 - _e) )*tan( E/2 ) ); double u0 = v + _omega; double sin2u0 = sin(2*u0); double cos2u0 = cos(2*u0); double r = a0*(1 - _e*cos(E)) + _Crc*cos2u0 + _Crs*sin2u0; double i = _i0 + _IDOT*tk + _Cic*cos2u0 + _Cis*sin2u0; double u = u0 + _Cuc*cos2u0 + _Cus*sin2u0; double xp = r*cos(u); double yp = r*sin(u); double OM = _OMEGA0 + (_OMEGADOT - omegaEarth)*tk - omegaEarth*_TOE; double sinom = sin(OM); double cosom = cos(OM); double sini = sin(i); double cosi = cos(i); xc(1) = xp*cosom - yp*cosi*sinom; xc(2) = xp*sinom + yp*cosi*cosom; xc(3) = yp*sini; double tc = GPSweeks - _TOC; if (GPSweek != _GPSweek) { tc += (GPSweek - _GPSweek) * secPerWeek; } xc(4) = _clock_bias + _clock_drift*tc + _clock_driftrate*tc*tc; // Velocity // -------- double tanv2 = tan(v/2); double dEdM = 1 / (1 - _e*cos(E)); double dotv = sqrt((1.0 + _e)/(1.0 - _e)) / cos(E/2)/cos(E/2) / (1 + tanv2*tanv2) * dEdM * n; double dotu = dotv + (-_Cuc*sin2u0 + _Cus*cos2u0)*2*dotv; double dotom = _OMEGADOT - omegaEarth; double doti = _IDOT + (-_Cic*sin2u0 + _Cis*cos2u0)*2*dotv; double dotr = a0 * _e*sin(E) * dEdM * n + (-_Crc*sin2u0 + _Crs*cos2u0)*2*dotv; double dotx = dotr*cos(u) - r*sin(u)*dotu; double doty = dotr*sin(u) + r*cos(u)*dotu; vv(1) = cosom *dotx - cosi*sinom *doty // dX / dr - xp*sinom*dotom - yp*cosi*cosom*dotom // dX / dOMEGA + yp*sini*sinom*doti; // dX / di vv(2) = sinom *dotx + cosi*cosom *doty + xp*cosom*dotom - yp*cosi*sinom*dotom - yp*sini*cosom*doti; vv(3) = sini *doty + yp*cosi *doti; // Relativistic Correction // ----------------------- // xc(4) -= 4.442807633e-10 * _e * sqrt(a0) *sin(E); const static double c_vel = 299792458.0; xc(4) -= 2.0 * DotProduct(xc.Rows(1,3),vv) / c_vel / c_vel; } // Read Glonass Ephemeris //////////////////////////////////////////////////////////////////////////// void t_ephGlo::read(const QStringList& lines) { static const double secPerWeek = 7 * 86400.0; for (int ii = 1; ii <= lines.size(); ii++) { QTextStream in(lines.at(ii-1).toAscii()); if (ii == 1) { double year, month, day, hour, minute, second; in >> _prn >> year >> month >> day >> hour >> minute >> second >> _tau >> _gamma >> _tki; _tau = -_tau; if (year < 100) year += 2000; bncTime tHlp; tHlp.set(int(year), int(month), int(day), int(hour), int(minute), second); _GPSweek = tHlp.gpsw(); _GPSweeks = tHlp.gpssec(); // Correct UTC -> GPS; // ------------------- _gps_utc = gnumleap(int(year), int(month), int(day)); _GPSweeks += _gps_utc; if (_GPSweeks >= secPerWeek) { _GPSweek += 1; _GPSweeks -= secPerWeek; } } else if (ii == 2) { in >>_x_pos >> _x_velocity >> _x_acceleration >> _health; } else if (ii == 3) { in >>_y_pos >> _y_velocity >> _y_acceleration >> _frequency_number; } else if (ii == 4) { in >>_z_pos >> _z_velocity >> _z_acceleration >> _E; } } // Initialize status vector // ------------------------ _tt = _GPSweeks; _xv(1) = _x_pos * 1.e3; _xv(2) = _y_pos * 1.e3; _xv(3) = _z_pos * 1.e3; _xv(4) = _x_velocity * 1.e3; _xv(5) = _y_velocity * 1.e3; _xv(6) = _z_velocity * 1.e3; } // build up RTCM3 for GLONASS //////////////////////////////////////////////////////////////////////////// #define GLONASSTOINT(type, value) static_cast(NearestInt(value,0)) #define GLONASSADDBITS(a, b) {bitbuffer = (bitbuffer<<(a)) \ |(GLONASSTOINT(long long,b)&((1ULL<<(a))-1)); \ numbits += (a); \ while(numbits >= 8) { \ buffer[size++] = bitbuffer>>(numbits-8);numbits -= 8;}} #define GLONASSADDBITSFLOATM(a,b,c) {int s; long long i; \ if(b < 0.0) \ { \ s = 1; \ i = GLONASSTOINT(long long,(-b)/(c)); \ if(!i) s = 0; \ } \ else \ { \ s = 0; \ i = GLONASSTOINT(long long,(b)/(c)); \ } \ GLONASSADDBITS(1,s) \ GLONASSADDBITS(a-1,i)} int t_ephGlo::RTCM3(unsigned char *buffer) { int size = 0; int numbits = 0; long long bitbuffer = 0; unsigned char *startbuffer = buffer; buffer= buffer+3; GLONASSADDBITS(12, 1020) GLONASSADDBITS(6, _prn.right((_prn.length()-1)).toInt()) GLONASSADDBITS(5, 7+_frequency_number) GLONASSADDBITS(1, 0) GLONASSADDBITS(1, 0) GLONASSADDBITS(2, 0) _tki=_tki+3*60*60; GLONASSADDBITS(5, static_cast(_tki)/(60*60)) GLONASSADDBITS(6, (static_cast(_tki)/60)%60) GLONASSADDBITS(1, (static_cast(_tki)/30)%30) GLONASSADDBITS(1, _health) GLONASSADDBITS(1, 0) unsigned long long timeofday = (static_cast(_tt+3*60*60-_gps_utc)%86400); GLONASSADDBITS(7, timeofday/60/15) GLONASSADDBITSFLOATM(24, _x_velocity*1000, 1000.0/static_cast(1<<20)) GLONASSADDBITSFLOATM(27, _x_pos*1000, 1000.0/static_cast(1<<11)) GLONASSADDBITSFLOATM(5, _x_acceleration*1000, 1000.0/static_cast(1<<30)) GLONASSADDBITSFLOATM(24, _y_velocity*1000, 1000.0/static_cast(1<<20)) GLONASSADDBITSFLOATM(27, _y_pos*1000, 1000.0/static_cast(1<<11)) GLONASSADDBITSFLOATM(5, _y_acceleration*1000, 1000.0/static_cast(1<<30)) GLONASSADDBITSFLOATM(24, _z_velocity*1000, 1000.0/static_cast(1<<20)) GLONASSADDBITSFLOATM(27,_z_pos*1000, 1000.0/static_cast(1<<11)) GLONASSADDBITSFLOATM(5, _z_acceleration*1000, 1000.0/static_cast(1<<30)) GLONASSADDBITS(1, 0) GLONASSADDBITSFLOATM(11, _gamma, 1.0/static_cast(1<<30) /static_cast(1<<10)) GLONASSADDBITS(2, 0) /* GLONASS-M P */ GLONASSADDBITS(1, 0) /* GLONASS-M ln(3) */ GLONASSADDBITSFLOATM(22, _tau, 1.0/static_cast(1<<30)) GLONASSADDBITS(5, 0) /* GLONASS-M delta tau */ GLONASSADDBITS(5, _E) GLONASSADDBITS(1, 0) /* GLONASS-M P4 */ GLONASSADDBITS(4, 0) /* GLONASS-M FT */ GLONASSADDBITS(11, 0) /* GLONASS-M NT */ GLONASSADDBITS(2, 0) /* GLONASS-M active? */ GLONASSADDBITS(1, 0) /* GLONASS additional data */ GLONASSADDBITS(11, 0) /* GLONASS NA */ GLONASSADDBITS(32, 0) /* GLONASS tau C */ GLONASSADDBITS(5, 0) /* GLONASS-M N4 */ GLONASSADDBITS(22, 0) /* GLONASS-M tau GPS */ GLONASSADDBITS(1, 0) /* GLONASS-M ln(5) */ GLONASSADDBITS(7, 0) /* Reserved */ startbuffer[0]=0xD3; startbuffer[1]=(size >> 8); startbuffer[2]=size; unsigned long i = CRC24(size+3, startbuffer); buffer[size++] = i >> 16; buffer[size++] = i >> 8; buffer[size++] = i; size += 3; return size; } // Derivative of the state vector using a simple force model (static) //////////////////////////////////////////////////////////////////////////// ColumnVector t_ephGlo::glo_deriv(double /* tt */, const ColumnVector& xv) { // State vector components // ----------------------- ColumnVector rr = xv.rows(1,3); ColumnVector vv = xv.rows(4,6); // Acceleration // ------------ static const double GM = 398.60044e12; static const double AE = 6378136.0; static const double OMEGA = 7292115.e-11; static const double C20 = -1082.63e-6; double rho = rr.norm_Frobenius(); double t1 = -GM/(rho*rho*rho); double t2 = 3.0/2.0 * C20 * (GM*AE*AE) / (rho*rho*rho*rho*rho); double t3 = OMEGA * OMEGA; double t4 = 2.0 * OMEGA; double z2 = rr(3) * rr(3); // Vector of derivatives // --------------------- ColumnVector va(6); va(1) = vv(1); va(2) = vv(2); va(3) = vv(3); va(4) = (t1 + t2*(1.0-5.0*z2/(rho*rho)) + t3) * rr(1) + t4*vv(2); va(5) = (t1 + t2*(1.0-5.0*z2/(rho*rho)) + t3) * rr(2) - t4*vv(1); va(6) = (t1 + t2*(3.0-5.0*z2/(rho*rho)) ) * rr(3); return va; } // Compute Glonass Satellite Position //////////////////////////////////////////////////////////////////////////// void t_ephGlo::position(int GPSweek, double GPSweeks, ColumnVector& xc, ColumnVector& vv) const { static const double secPerWeek = 7 * 86400.0; static const double nominalStep = 10.0; double dtPos = GPSweeks - _tt; if (GPSweek != _GPSweek) { dtPos += (GPSweek - _GPSweek) * secPerWeek; } int nSteps = int(fabs(dtPos) / nominalStep) + 1; double step = dtPos / nSteps; for (int ii = 1; ii <= nSteps; ii++) { _xv = rungeKutta4(_tt, _xv, step, glo_deriv); _tt += step; } // Position and Velocity // --------------------- xc(1) = _xv(1); xc(2) = _xv(2); xc(3) = _xv(3); vv(1) = _xv(4); vv(2) = _xv(5); vv(3) = _xv(6); // Clock Correction // ---------------- double dtClk = GPSweeks - _GPSweeks; if (GPSweek != _GPSweek) { dtClk += (GPSweek - _GPSweek) * secPerWeek; } xc(4) = -_tau + _gamma * dtClk; } // Glonass IOD //////////////////////////////////////////////////////////////////////////// int t_ephGlo::IOD() const { bool old = false; if (old) { // 5 LSBs of iod are equal to 5 LSBs of tb unsigned int tb = int(fmod(_GPSweeks,86400.0)); //sec of day const int shift = sizeof(tb) * 8 - 5; unsigned int iod = tb << shift; return (iod >> shift); } else { bncTime tGPS(_GPSweek, _GPSweeks); int hlpWeek = _GPSweek; int hlpSec = int(_GPSweeks); int hlpMsec = int(_GPSweeks * 1000); updatetime(&hlpWeek, &hlpSec, hlpMsec, 0); bncTime tHlp(hlpWeek, hlpSec); double diffSec = tGPS - tHlp; bncTime tMoscow = tGPS + diffSec; return int(tMoscow.daysec() / 900); } }