/* ------------------------------------------------------------------------- * BKG NTRIP Server * ------------------------------------------------------------------------- * * Class: bncRtnetUploadCaster * * Purpose: Connection to NTRIP Caster * * Author: L. Mervart * * Created: 29-Mar-2011 * * Changes: * * -----------------------------------------------------------------------*/ #include #include "bncrtnetuploadcaster.h" #include "bncsettings.h" #include "bncephuser.h" #include "bncclockrinex.h" #include "bncbiassinex.h" #include "bncsp3.h" #include "gnss.h" #include "bncutils.h" using namespace std; // Constructor //////////////////////////////////////////////////////////////////////////// bncRtnetUploadCaster::bncRtnetUploadCaster(const QString& mountpoint, const QString& outHost, int outPort, const QString& ntripVersion, const QString& userName, const QString& password, const QString& crdTrafo, const QString& ssrFormat, bool CoM, const QString& sp3FileName, const QString& rnxFileName, const QString& bsxFileName, int PID, int SID, int IOD, int iRow) : bncUploadCaster(mountpoint, outHost, outPort, ntripVersion, userName, password, iRow, 0) { if (!mountpoint.isEmpty()) { _casterID += mountpoint; } if (!outHost.isEmpty()) { _casterID += " " + outHost; if (outPort) { _casterID += ":" + QString("%1").arg(outPort, 10); } } if (!crdTrafo.isEmpty()) { _casterID += " " + crdTrafo; } if (!sp3FileName.isEmpty()) { _casterID += " " + sp3FileName; } if (!rnxFileName.isEmpty()) { _casterID += " " + rnxFileName; } if (!bsxFileName.isEmpty()) { _casterID += " " + bsxFileName; } _crdTrafo = crdTrafo; _ssrFormat = ssrFormat; _ssrCorr = 0; if (_ssrFormat == "IGS-SSR") { _ssrCorr = new SsrCorrIgs(); } else if (_ssrFormat == "RTCM-SSR") { _ssrCorr = new SsrCorrRtcm(); } _CoM = CoM; _PID = PID; _SID = SID; _IOD = IOD; _phaseBiasInformationDecoded = false; // Member that receives the ephemeris // ---------------------------------- _ephUser = new bncEphUser(true); bncSettings settings; QString intr = settings.value("uploadIntr").toString(); QStringList hlp = settings.value("cmbStreams").toStringList(); _samplRtcmEphCorr = settings.value("uploadSamplRtcmEphCorr").toDouble(); if (hlp.size() > 1) { // combination stream upload _samplRtcmClkCorr = settings.value("cmbSampl").toInt(); } else { // single stream upload or sp3 file generation _samplRtcmClkCorr = 5; // default } int samplClkRnx = settings.value("uploadSamplClkRnx").toInt(); int samplSp3 = settings.value("uploadSamplSp3").toString().split("sec").first().toInt(); int samplBiaSnx = settings.value("uploadSamplBiaSnx").toInt(); if (_samplRtcmEphCorr == 0.0) { _usedEph = 0; } else { _usedEph = new QMap; } // RINEX writer // ------------ if (!rnxFileName.isEmpty()) { _rnx = new bncClockRinex(rnxFileName, intr, samplClkRnx); } else { _rnx = 0; } // SP3 writer // ---------- if (!sp3FileName.isEmpty()) { _sp3 = new bncSP3(sp3FileName, intr, samplSp3); } else { _sp3 = 0; } // SINEX writer // ------------ if (!bsxFileName.isEmpty()) { _bsx = new bncBiasSinex(bsxFileName, intr, samplBiaSnx); } else { _bsx = 0; } // Set Transformation Parameters // ----------------------------- // Transformation Parameters from ITRF2014 to ETRF2000 // EUREF Technical Note 1 Relationship and Transformation between the ITRF and ETRF // Zuheir Altamimi, June 28, 2018 if (_crdTrafo == "ETRF2000") { _dx = 0.0547; _dy = 0.0522; _dz = -0.0741; _dxr = 0.0001; _dyr = 0.0001; _dzr = -0.0019; _ox = 0.001701; _oy = 0.010290; _oz = -0.016632; _oxr = 0.000081; _oyr = 0.000490; _ozr = -0.000729; _sc = 2.12; _scr = 0.11; _t0 = 2010.0; } // Transformation Parameters from ITRF2014 to GDA2020 (Ryan Ruddick, GA) else if (_crdTrafo == "GDA2020") { _dx = 0.0; _dy = 0.0; _dz = 0.0; _dxr = 0.0; _dyr = 0.0; _dzr = 0.0; _ox = 0.0; _oy = 0.0; _oz = 0.0; _oxr = 0.00150379; _oyr = 0.00118346; _ozr = 0.00120716; _sc = 0.0; _scr = 0.0; _t0 = 2020.0; } // Transformation Parameters from IGb14 to SIRGAS2000 (Thanks to Sonia Costa, BRA) // June 29 2020: TX:-0.0027 m TY:-0.0025 m TZ:-0.0042 m SCL:1.20 (ppb) no rotations and no rates.*/ else if (_crdTrafo == "SIRGAS2000") { _dx = -0.0027; _dy = -0.0025; _dz = -0.0042; _dxr = 0.0; _dyr = 0.0; _dzr = 0.0; _ox = 0.0; _oy = 0.0; _oz = 0.0; _oxr = 0.0; _oyr = 0.0; _ozr = 0.0; _sc = 1.2; _scr = 0.0; _t0 = 2000.0; } // Transformation Parameters from ITRF2014 to DREF91 else if (_crdTrafo == "DREF91") { _dx = 0.0547; _dy = 0.0522; _dz = -0.0741; _dxr = 0.0001; _dyr = 0.0001; _dzr = -0.0019; // ERTF200 + rotation parameters (ETRF2000 => DREF91) _ox = 0.001701 + 0.000658; _oy = 0.010290 - 0.000208; _oz = -0.016632 + 0.000755; _oxr = 0.000081; _oyr = 0.000490; _ozr = -0.000729; _sc = 2.12; _scr = 0.11; _t0 = 2010.0; } else if (_crdTrafo == "Custom") { _dx = settings.value("trafo_dx").toDouble(); _dy = settings.value("trafo_dy").toDouble(); _dz = settings.value("trafo_dz").toDouble(); _dxr = settings.value("trafo_dxr").toDouble(); _dyr = settings.value("trafo_dyr").toDouble(); _dzr = settings.value("trafo_dzr").toDouble(); _ox = settings.value("trafo_ox").toDouble(); _oy = settings.value("trafo_oy").toDouble(); _oz = settings.value("trafo_oz").toDouble(); _oxr = settings.value("trafo_oxr").toDouble(); _oyr = settings.value("trafo_oyr").toDouble(); _ozr = settings.value("trafo_ozr").toDouble(); _sc = settings.value("trafo_sc").toDouble(); _scr = settings.value("trafo_scr").toDouble(); _t0 = settings.value("trafo_t0").toDouble(); } // TODO: the following lines can be deleted if all parameters are updated regarding ITRF2020 if (_crdTrafo == "ETRF2000" || _crdTrafo == "GDA2020" || _crdTrafo == "DREF91" || _crdTrafo == "SIRGAS2000") { // Transformation Parameters from ITRF2020 to ITRF2014 // from ITRF web site: https://itrf.ign.fr/en/solutions/transformations _dx14 = -0.0014; _dy14 = -0.0009; _dz14 = 0.0014; _dxr14 = 0.0; _dyr14 = -0.0001; _dzr14 = -0.0002; _ox14 = 0.0; _oy14 = 0.0; _oz14 = 0.0; _oxr14 = 0.0; _oyr14 = 0.0; _ozr14 = 0.0; _sc14 = -0.42; _scr14 = 0.0; _t014 = 2015.0; } } // Destructor //////////////////////////////////////////////////////////////////////////// bncRtnetUploadCaster::~bncRtnetUploadCaster() { if (isRunning()) { wait(); } delete _rnx; delete _sp3; delete _ephUser; delete _usedEph; delete _ssrCorr; } // //////////////////////////////////////////////////////////////////////////// void bncRtnetUploadCaster::decodeRtnetStream(char* buffer, int bufLen) { QMutexLocker locker(&_mutex); // Append to internal buffer // ------------------------- _rtnetStreamBuffer.append(QByteArray(buffer, bufLen)); // Select buffer part that contains last epoch // ------------------------------------------- // Find the begin of last epoch int iEpoBeg = _rtnetStreamBuffer.lastIndexOf('*'); if (iEpoBeg == -1) { _rtnetStreamBuffer.clear(); emit(newMessage(QString("bncRtnetUploadCaster: no Epoch line found: %1").arg(_casterID).toLatin1(), false)); return; } // Find the begin of the first epoch int iEpoBegEarlier = _rtnetStreamBuffer.indexOf('*'); if (iEpoBegEarlier != -1 && iEpoBegEarlier < iEpoBeg) { _rtnetStreamBuffer = _rtnetStreamBuffer.mid(iEpoBegEarlier); } else { _rtnetStreamBuffer = _rtnetStreamBuffer.mid(iEpoBeg); } // Find End of the last epoch int iEpoEnd = _rtnetStreamBuffer.lastIndexOf("EOE"); if (iEpoEnd == -1) { _rtnetStreamBuffer.clear(); emit(newMessage(QString("bncRtnetUploadCaster: no EOE found: %1").arg(_casterID).toLatin1(), false)); return; } QStringList lines; // If there is there more than 1 epoch line in the buffer while (_rtnetStreamBuffer.count('*') > 1) { emit(newMessage(QString("bncRtnetUploadCaster: more than 1 epoch in buffer: %1").arg(_rtnetStreamBuffer.count('*')).toLatin1(), false)); QString rtnetStreamBuffer = _rtnetStreamBuffer; int nextEpoch = rtnetStreamBuffer.indexOf('*'); int nextEpochEnd = rtnetStreamBuffer.indexOf("EOE"); _rtnetStreamBuffer = _rtnetStreamBuffer.mid(1); if (nextEpoch != -1 && nextEpoch < iEpoEnd) { rtnetStreamBuffer = rtnetStreamBuffer.mid(nextEpoch, nextEpochEnd); lines = rtnetStreamBuffer.split('\n', QString::SkipEmptyParts); if (lines.size() > 2) { decodeRtnetEpoch(lines); } nextEpochEnd = _rtnetStreamBuffer.indexOf("EOE"); _rtnetStreamBuffer = _rtnetStreamBuffer.mid(nextEpochEnd+3); } else if (nextEpoch != -1 && nextEpoch >= iEpoEnd) { break; } } lines = _rtnetStreamBuffer.left(iEpoEnd).split('\n', QString::SkipEmptyParts); _rtnetStreamBuffer = _rtnetStreamBuffer.mid(iEpoEnd + 3); if (lines.size() < 2) { emit(newMessage(QString("bncRtnetUploadCaster: less than 2 lines to decode : %1").arg(_casterID).toLatin1(), false)); return; } decodeRtnetEpoch(lines); } // //////////////////////////////////////////////////////////////////////////// void bncRtnetUploadCaster::decodeRtnetEpoch(QStringList epochLines) { // Read first line (with epoch time) // --------------------------------- QTextStream in(epochLines[0].toLatin1()); QString hlp; int year, month, day, hour, min; double sec; in >> hlp >> year >> month >> day >> hour >> min >> sec; bncTime epoTime; epoTime.set(year, month, day, hour, min, sec); emit(newMessage( "bncRtnetUploadCaster: decode " + QByteArray(epoTime.datestr().c_str()) + " " + QByteArray(epoTime.timestr().c_str()) + " " + _casterID.toLatin1(), false)); struct SsrCorr::ClockOrbit co; memset(&co, 0, sizeof(co)); co.EpochTime[CLOCKORBIT_SATGPS] = static_cast(epoTime.gpssec()); if (_ssrFormat == "RTCM-SSR") { double gt = epoTime.gpssec() + 3 * 3600 - gnumleap(year, month, day); co.EpochTime[CLOCKORBIT_SATGLONASS] = static_cast(fmod(gt, 86400.0)); } else if (_ssrFormat == "IGS-SSR") { co.EpochTime[CLOCKORBIT_SATGLONASS] = static_cast(epoTime.gpssec()); } co.EpochTime[CLOCKORBIT_SATGALILEO] = static_cast(epoTime.gpssec()); co.EpochTime[CLOCKORBIT_SATQZSS] = static_cast(epoTime.gpssec()); co.EpochTime[CLOCKORBIT_SATSBAS] = static_cast(epoTime.gpssec()); if (_ssrFormat == "RTCM-SSR") { co.EpochTime[CLOCKORBIT_SATBDS] = static_cast(epoTime.bdssec()); } else if (_ssrFormat == "IGS-SSR") { co.EpochTime[CLOCKORBIT_SATBDS] = static_cast(epoTime.gpssec()); } co.Supplied[_ssrCorr->COBOFS_CLOCK] = 1; co.Supplied[_ssrCorr->COBOFS_ORBIT] = 1; co.SatRefDatum = _ssrCorr->DATUM_ITRF; // ToDo: to decode from RTNET format co.SSRIOD = _IOD; co.SSRProviderID = _PID; // 256 .. BKG, 257 ... EUREF co.SSRSolutionID = _SID; struct SsrCorr::CodeBias bias; memset(&bias, 0, sizeof(bias)); bias.EpochTime[CLOCKORBIT_SATGPS] = co.EpochTime[CLOCKORBIT_SATGPS]; bias.EpochTime[CLOCKORBIT_SATGLONASS] = co.EpochTime[CLOCKORBIT_SATGLONASS]; bias.EpochTime[CLOCKORBIT_SATGALILEO] = co.EpochTime[CLOCKORBIT_SATGALILEO]; bias.EpochTime[CLOCKORBIT_SATQZSS] = co.EpochTime[CLOCKORBIT_SATQZSS]; bias.EpochTime[CLOCKORBIT_SATSBAS] = co.EpochTime[CLOCKORBIT_SATSBAS]; bias.EpochTime[CLOCKORBIT_SATBDS] = co.EpochTime[CLOCKORBIT_SATBDS]; bias.SSRIOD = _IOD; bias.SSRProviderID = _PID; bias.SSRSolutionID = _SID; struct SsrCorr::PhaseBias phasebias; memset(&phasebias, 0, sizeof(phasebias)); unsigned int dispersiveBiasConsistenyIndicator = 0; unsigned int mwConsistencyIndicator = 0; phasebias.EpochTime[CLOCKORBIT_SATGPS] = co.EpochTime[CLOCKORBIT_SATGPS]; phasebias.EpochTime[CLOCKORBIT_SATGLONASS] = co.EpochTime[CLOCKORBIT_SATGLONASS]; phasebias.EpochTime[CLOCKORBIT_SATGALILEO] = co.EpochTime[CLOCKORBIT_SATGALILEO]; phasebias.EpochTime[CLOCKORBIT_SATQZSS] = co.EpochTime[CLOCKORBIT_SATQZSS]; phasebias.EpochTime[CLOCKORBIT_SATSBAS] = co.EpochTime[CLOCKORBIT_SATSBAS]; phasebias.EpochTime[CLOCKORBIT_SATBDS] = co.EpochTime[CLOCKORBIT_SATBDS]; phasebias.SSRIOD = _IOD; phasebias.SSRProviderID = _PID; phasebias.SSRSolutionID = _SID; struct SsrCorr::VTEC vtec; memset(&vtec, 0, sizeof(vtec)); vtec.EpochTime = static_cast(epoTime.gpssec()); vtec.SSRIOD = _IOD; vtec.SSRProviderID = _PID; vtec.SSRSolutionID = _SID; // Default Update Interval // ----------------------- int clkUpdInd = 2; // 5 sec int ephUpdInd = clkUpdInd; // default if (!_samplRtcmEphCorr) { _samplRtcmEphCorr = 5.0; } if (_samplRtcmClkCorr > 5.0 && _samplRtcmEphCorr <= 5.0) { // combined orb and clock ephUpdInd = determineUpdateInd(_samplRtcmClkCorr); } if (_samplRtcmClkCorr > 5.0) { clkUpdInd = determineUpdateInd(_samplRtcmClkCorr); } if (_samplRtcmEphCorr > 5.0) { ephUpdInd = determineUpdateInd(_samplRtcmEphCorr); } co.UpdateInterval = clkUpdInd; bias.UpdateInterval = ephUpdInd; phasebias.UpdateInterval = ephUpdInd; for (int ii = 1; ii < epochLines.size(); ii++) { QString key; // prn or key VTEC, IND (phase bias indicators) double rtnUra = 0.0; // [m] ColumnVector rtnAPC; rtnAPC.ReSize(3); rtnAPC = 0.0; // [m, m, m] ColumnVector rtnVel; rtnVel.ReSize(3); rtnVel = 0.0; // [m/s, m/s, m/s] ColumnVector rtnCoM; rtnCoM.ReSize(3); rtnCoM = 0.0; // [m, m, m] ColumnVector rtnClk; rtnClk.ReSize(3); rtnClk = 0.0; // [m, m/s, m/s²] ColumnVector rtnClkSig; rtnClkSig.ReSize(3); rtnClkSig = 0.0; // [m, m/s, m/s²] t_prn prn; QTextStream in(epochLines[ii].toLatin1()); in >> key; // non-satellite specific parameters if (key.contains("IND", Qt::CaseSensitive)) { in >> dispersiveBiasConsistenyIndicator >> mwConsistencyIndicator; continue; } // non-satellite specific parameters if (key.contains("VTEC", Qt::CaseSensitive)) { double ui; in >> ui >> vtec.NumLayers; vtec.UpdateInterval = (unsigned int) determineUpdateInd(ui); for (unsigned ll = 0; ll < vtec.NumLayers; ll++) { int dummy; in >> dummy >> vtec.Layers[ll].Degree >> vtec.Layers[ll].Order >> vtec.Layers[ll].Height; for (unsigned iDeg = 0; iDeg <= vtec.Layers[ll].Degree; iDeg++) { for (unsigned iOrd = 0; iOrd <= vtec.Layers[ll].Order; iOrd++) { in >> vtec.Layers[ll].Cosinus[iDeg][iOrd]; } } for (unsigned iDeg = 0; iDeg <= vtec.Layers[ll].Degree; iDeg++) { for (unsigned iOrd = 0; iOrd <= vtec.Layers[ll].Order; iOrd++) { in >> vtec.Layers[ll].Sinus[iDeg][iOrd]; } } } continue; } // satellite specific parameters char sys = key.mid(0, 1).at(0).toLatin1(); int number = key.mid(1, 2).toInt(); int flags = 0; if (sys == 'E') { // I/NAV flags = 1; } if (number == 0) { continue; } prn.set(sys, number, flags); QString prnInternalStr = QString::fromStdString(prn.toInternalString()); QString prnStr = QString::fromStdString(prn.toString()); const t_eph* ephLast = _ephUser->ephLast(prnInternalStr); const t_eph* ephPrev = _ephUser->ephPrev(prnInternalStr); const t_eph* eph = ephLast; if (eph) { // Use previous ephemeris if the last one is too recent // ---------------------------------------------------- const int MINAGE = 60; // seconds if (ephPrev && eph->receptDateTime().isValid() && eph->receptDateTime().secsTo(currentDateAndTimeGPS()) < MINAGE) { eph = ephPrev; } // Make sure the clock messages refer to same IOD as orbit messages // ---------------------------------------------------------------- if (_usedEph) { if (fmod(epoTime.gpssec(), _samplRtcmEphCorr) == 0.0) { (*_usedEph)[prnInternalStr] = eph; } else { eph = 0; if (_usedEph->contains(prnInternalStr)) { const t_eph* usedEph = _usedEph->value(prnInternalStr); if (usedEph == ephLast) { eph = ephLast; } else if (usedEph == ephPrev) { eph = ephPrev; } } } } } QDateTime now = currentDateAndTimeGPS(); bncTime currentTime(now.toString(Qt::ISODate).toStdString()); if (eph && !outDatedBcep(eph, currentTime) && // detected from storage because of no update eph->checkState() != t_eph::bad && eph->checkState() != t_eph::unhealthy && eph->checkState() != t_eph::outdated) { // detected during reception (bncephuser) QMap codeBiases; QList phaseBiasList; phaseBiasesSat pbSat; _phaseBiasInformationDecoded = false; while (true) { QString key; int numVal = 0; in >> key; if (in.status() != QTextStream::Ok) { break; } if (key == "APC") { in >> numVal; rtnAPC.ReSize(3); rtnAPC = 0.0; for (int ii = 0; ii < numVal; ii++) { in >> rtnAPC[ii]; } } else if (key == "Ura") { in >> numVal; if (numVal == 1) in >> rtnUra; } else if (key == "Clk") { in >> numVal; rtnClk.ReSize(3); rtnClk = 0.0; for (int ii = 0; ii < numVal; ii++) { in >> rtnClk[ii]; } } else if (key == "ClkSig") { in >> numVal; rtnClkSig.ReSize(3); rtnClkSig = 0.0; for (int ii = 0; ii < numVal; ii++) { in >> rtnClkSig[ii]; } } else if (key == "Vel") { in >> numVal; rtnVel.ReSize(3); rtnVel = 0.0; for (int ii = 0; ii < numVal; ii++) { in >> rtnVel[ii]; } } else if (key == "CoM") { in >> numVal; rtnCoM.ReSize(3); rtnCoM = 0.0; for (int ii = 0; ii < numVal; ii++) { in >> rtnCoM[ii]; } } else if (key == "CodeBias") { in >> numVal; for (int ii = 0; ii < numVal; ii++) { QString type; double value; in >> type >> value; codeBiases[type] = value; } } else if (key == "YawAngle") { _phaseBiasInformationDecoded = true; in >> numVal >> pbSat.yawAngle; if (pbSat.yawAngle < 0.0) { pbSat.yawAngle += (2*M_PI); } else if (pbSat.yawAngle > 2*M_PI) { pbSat.yawAngle -= (2*M_PI); } } else if (key == "YawRate") { _phaseBiasInformationDecoded = true; in >> numVal >> pbSat.yawRate; } else if (key == "PhaseBias") { _phaseBiasInformationDecoded = true; in >> numVal; for (int ii = 0; ii < numVal; ii++) { phaseBiasSignal pb; in >> pb.type >> pb.bias >> pb.integerIndicator >> pb.wlIndicator >> pb.discontinuityCounter; phaseBiasList.append(pb); } } else { in >> numVal; for (int ii = 0; ii < numVal; ii++) { double dummy; in >> dummy; } emit(newMessage(" RTNET format error: " + epochLines[ii].toLatin1(), false)); break; } } struct SsrCorr::ClockOrbit::SatData* sd = 0; if (prn.system() == 'G') { sd = co.Sat + co.NumberOfSat[CLOCKORBIT_SATGPS]; ++co.NumberOfSat[CLOCKORBIT_SATGPS]; } else if (prn.system() == 'R') { sd = co.Sat + CLOCKORBIT_NUMGPS + co.NumberOfSat[CLOCKORBIT_SATGLONASS]; ++co.NumberOfSat[CLOCKORBIT_SATGLONASS]; } else if (prn.system() == 'E') { sd = co.Sat + CLOCKORBIT_NUMGPS + CLOCKORBIT_NUMGLONASS + co.NumberOfSat[CLOCKORBIT_SATGALILEO]; ++co.NumberOfSat[CLOCKORBIT_SATGALILEO]; } else if (prn.system() == 'J') { sd = co.Sat + CLOCKORBIT_NUMGPS + CLOCKORBIT_NUMGLONASS + CLOCKORBIT_NUMGALILEO + co.NumberOfSat[CLOCKORBIT_SATQZSS]; ++co.NumberOfSat[CLOCKORBIT_SATQZSS]; } else if (prn.system() == 'S') { sd = co.Sat + CLOCKORBIT_NUMGPS + CLOCKORBIT_NUMGLONASS + CLOCKORBIT_NUMGALILEO + CLOCKORBIT_NUMQZSS + co.NumberOfSat[CLOCKORBIT_SATSBAS]; ++co.NumberOfSat[CLOCKORBIT_SATSBAS]; } else if (prn.system() == 'C') { sd = co.Sat + CLOCKORBIT_NUMGPS + CLOCKORBIT_NUMGLONASS + CLOCKORBIT_NUMGALILEO + CLOCKORBIT_NUMQZSS + CLOCKORBIT_NUMSBAS + co.NumberOfSat[CLOCKORBIT_SATBDS]; ++co.NumberOfSat[CLOCKORBIT_SATBDS]; } if (sd) { QString outLine; t_irc irc = processSatellite(eph, epoTime.gpsw(), epoTime.gpssec(), prnStr, rtnAPC, rtnUra, rtnClk, rtnVel, rtnCoM, rtnClkSig, sd, outLine); if (irc != success) { continue; } } // Code Biases // ----------- struct SsrCorr::CodeBias::BiasSat* biasSat = 0; if (!codeBiases.isEmpty()) { if (prn.system() == 'G') { biasSat = bias.Sat + bias.NumberOfSat[CLOCKORBIT_SATGPS]; ++bias.NumberOfSat[CLOCKORBIT_SATGPS]; } else if (prn.system() == 'R') { biasSat = bias.Sat + CLOCKORBIT_NUMGPS + bias.NumberOfSat[CLOCKORBIT_SATGLONASS]; ++bias.NumberOfSat[CLOCKORBIT_SATGLONASS]; } else if (prn.system() == 'E') { biasSat = bias.Sat + CLOCKORBIT_NUMGPS + CLOCKORBIT_NUMGLONASS + bias.NumberOfSat[CLOCKORBIT_SATGALILEO]; ++bias.NumberOfSat[CLOCKORBIT_SATGALILEO]; } else if (prn.system() == 'J') { biasSat = bias.Sat + CLOCKORBIT_NUMGPS + CLOCKORBIT_NUMGLONASS + CLOCKORBIT_NUMGALILEO + bias.NumberOfSat[CLOCKORBIT_SATQZSS]; ++bias.NumberOfSat[CLOCKORBIT_SATQZSS]; } else if (prn.system() == 'S') { biasSat = bias.Sat + CLOCKORBIT_NUMGPS + CLOCKORBIT_NUMGLONASS + CLOCKORBIT_NUMGALILEO + CLOCKORBIT_NUMQZSS + bias.NumberOfSat[CLOCKORBIT_SATSBAS]; ++bias.NumberOfSat[CLOCKORBIT_SATSBAS]; } else if (prn.system() == 'C') { biasSat = bias.Sat + CLOCKORBIT_NUMGPS + CLOCKORBIT_NUMGLONASS + CLOCKORBIT_NUMGALILEO + CLOCKORBIT_NUMQZSS + CLOCKORBIT_NUMSBAS + bias.NumberOfSat[CLOCKORBIT_SATBDS]; ++bias.NumberOfSat[CLOCKORBIT_SATBDS]; } } if (biasSat) { biasSat->ID = prn.number(); biasSat->NumberOfCodeBiases = 0; QMapIterator it(codeBiases); while (it.hasNext()) { it.next(); int ii = biasSat->NumberOfCodeBiases; if (ii >= CLOCKORBIT_NUMBIAS) break; SsrCorr::CodeType type = _ssrCorr->rnxTypeToCodeType(prn.system(), it.key().toStdString()); if (type != _ssrCorr->RESERVED) { biasSat->NumberOfCodeBiases += 1; biasSat->Biases[ii].Type = type; biasSat->Biases[ii].Bias = it.value(); if (_bsx) { QString obsCode = 'C' + it.key(); _bsx->write(epoTime.gpsw(), epoTime.gpssec(), prnStr, obsCode, it.value()); } } } } // Phase Biases // ------------ struct SsrCorr::PhaseBias::PhaseBiasSat* phasebiasSat = 0; if (prn.system() == 'G') { phasebiasSat = phasebias.Sat + phasebias.NumberOfSat[CLOCKORBIT_SATGPS]; ++phasebias.NumberOfSat[CLOCKORBIT_SATGPS]; } else if (prn.system() == 'R') { phasebiasSat = phasebias.Sat + CLOCKORBIT_NUMGPS + phasebias.NumberOfSat[CLOCKORBIT_SATGLONASS]; ++phasebias.NumberOfSat[CLOCKORBIT_SATGLONASS]; } else if (prn.system() == 'E') { phasebiasSat = phasebias.Sat + CLOCKORBIT_NUMGPS + CLOCKORBIT_NUMGLONASS + phasebias.NumberOfSat[CLOCKORBIT_SATGALILEO]; ++phasebias.NumberOfSat[CLOCKORBIT_SATGALILEO]; } else if (prn.system() == 'J') { phasebiasSat = phasebias.Sat + CLOCKORBIT_NUMGPS + CLOCKORBIT_NUMGLONASS + CLOCKORBIT_NUMGALILEO + phasebias.NumberOfSat[CLOCKORBIT_SATQZSS]; ++phasebias.NumberOfSat[CLOCKORBIT_SATQZSS]; } else if (prn.system() == 'S') { phasebiasSat = phasebias.Sat + CLOCKORBIT_NUMGPS + CLOCKORBIT_NUMGLONASS + CLOCKORBIT_NUMGALILEO + CLOCKORBIT_NUMQZSS + phasebias.NumberOfSat[CLOCKORBIT_SATSBAS]; ++phasebias.NumberOfSat[CLOCKORBIT_SATSBAS]; } else if (prn.system() == 'C') { phasebiasSat = phasebias.Sat + CLOCKORBIT_NUMGPS + CLOCKORBIT_NUMGLONASS + CLOCKORBIT_NUMGALILEO + CLOCKORBIT_NUMQZSS + CLOCKORBIT_NUMSBAS + phasebias.NumberOfSat[CLOCKORBIT_SATBDS]; ++phasebias.NumberOfSat[CLOCKORBIT_SATBDS]; } if (phasebiasSat && _phaseBiasInformationDecoded) { phasebias.DispersiveBiasConsistencyIndicator = dispersiveBiasConsistenyIndicator; phasebias.MWConsistencyIndicator = mwConsistencyIndicator; phasebiasSat->ID = prn.number(); phasebiasSat->NumberOfPhaseBiases = 0; phasebiasSat->YawAngle = pbSat.yawAngle; phasebiasSat->YawRate = pbSat.yawRate; QListIterator it(phaseBiasList); while (it.hasNext()) { const phaseBiasSignal &pbSig = it.next(); int ii = phasebiasSat->NumberOfPhaseBiases; if (ii >= CLOCKORBIT_NUMBIAS) break; SsrCorr::CodeType type = _ssrCorr->rnxTypeToCodeType(prn.system(), pbSig.type.toStdString()); if (type != _ssrCorr->RESERVED) { phasebiasSat->NumberOfPhaseBiases += 1; phasebiasSat->Biases[ii].Type = type; phasebiasSat->Biases[ii].Bias = pbSig.bias; phasebiasSat->Biases[ii].SignalIntegerIndicator = pbSig.integerIndicator; phasebiasSat->Biases[ii].SignalsWideLaneIntegerIndicator = pbSig.wlIndicator; phasebiasSat->Biases[ii].SignalDiscontinuityCounter = pbSig.discontinuityCounter; if (_bsx) { QString obsCode = 'L' + pbSig.type; _bsx->write(epoTime.gpsw(), epoTime.gpssec(), prnStr, obsCode, pbSig.bias); } } } } } } QByteArray hlpBufferCo; // Orbit and Clock Corrections together // ------------------------------------ if (_samplRtcmEphCorr == _samplRtcmClkCorr) { if (co.NumberOfSat[CLOCKORBIT_SATGPS] > 0 || co.NumberOfSat[CLOCKORBIT_SATGLONASS] > 0 || co.NumberOfSat[CLOCKORBIT_SATGALILEO] > 0 || co.NumberOfSat[CLOCKORBIT_SATQZSS] > 0 || co.NumberOfSat[CLOCKORBIT_SATSBAS] > 0 || co.NumberOfSat[CLOCKORBIT_SATBDS] > 0) { char obuffer[CLOCKORBIT_BUFFERSIZE] = {'\0'}; int len = _ssrCorr->MakeClockOrbit(&co, _ssrCorr->COTYPE_AUTO, 0, obuffer, sizeof(obuffer)); if (len > 0) { hlpBufferCo = QByteArray(obuffer, len); } } } // Orbit and Clock Corrections separately // -------------------------------------- else { if (co.NumberOfSat[CLOCKORBIT_SATGPS] > 0) { char obuffer[CLOCKORBIT_BUFFERSIZE] = {'\0'}; if (fmod(epoTime.gpssec(), _samplRtcmEphCorr) == 0.0) { co.UpdateInterval = ephUpdInd; int len1 = _ssrCorr->MakeClockOrbit(&co, _ssrCorr->COTYPE_GPSORBIT, 1, obuffer, sizeof(obuffer)); co.UpdateInterval = clkUpdInd; if (len1 > 0) { hlpBufferCo += QByteArray(obuffer, len1); } } int mmsg = (co.NumberOfSat[CLOCKORBIT_SATGLONASS] > 0 || co.NumberOfSat[CLOCKORBIT_SATGALILEO] > 0 || co.NumberOfSat[CLOCKORBIT_SATQZSS] > 0 || co.NumberOfSat[CLOCKORBIT_SATSBAS] > 0 || co.NumberOfSat[CLOCKORBIT_SATBDS] > 0 ) ? 1 : 0; int len2 = _ssrCorr->MakeClockOrbit(&co, _ssrCorr->COTYPE_GPSCLOCK, mmsg, obuffer, sizeof(obuffer)); if (len2 > 0) { hlpBufferCo += QByteArray(obuffer, len2); } } if (co.NumberOfSat[CLOCKORBIT_SATGLONASS] > 0) { char obuffer[CLOCKORBIT_BUFFERSIZE] = {'\0'}; if (fmod(epoTime.gpssec(), _samplRtcmEphCorr) == 0.0) { co.UpdateInterval = ephUpdInd; int len1 = _ssrCorr->MakeClockOrbit(&co, _ssrCorr->COTYPE_GLONASSORBIT, 1, obuffer, sizeof(obuffer)); co.UpdateInterval = clkUpdInd; if (len1 > 0) { hlpBufferCo += QByteArray(obuffer, len1); } } int mmsg = (co.NumberOfSat[CLOCKORBIT_SATGALILEO] > 0 || co.NumberOfSat[CLOCKORBIT_SATQZSS] > 0 || co.NumberOfSat[CLOCKORBIT_SATSBAS] > 0 || co.NumberOfSat[CLOCKORBIT_SATBDS] > 0 ) ? 1 : 0; int len2 = _ssrCorr->MakeClockOrbit(&co, _ssrCorr->COTYPE_GLONASSCLOCK, mmsg, obuffer, sizeof(obuffer)); if (len2 > 0) { hlpBufferCo += QByteArray(obuffer, len2); } } if (co.NumberOfSat[CLOCKORBIT_SATGALILEO] > 0) { char obuffer[CLOCKORBIT_BUFFERSIZE] = {'\0'}; if (fmod(epoTime.gpssec(), _samplRtcmEphCorr) == 0.0) { co.UpdateInterval = ephUpdInd; int len1 = _ssrCorr->MakeClockOrbit(&co, _ssrCorr->COTYPE_GALILEOORBIT, 1, obuffer, sizeof(obuffer)); co.UpdateInterval = clkUpdInd; if (len1 > 0) { hlpBufferCo += QByteArray(obuffer, len1); } } int mmsg = (co.NumberOfSat[CLOCKORBIT_SATQZSS] > 0 || co.NumberOfSat[CLOCKORBIT_SATSBAS] > 0 || co.NumberOfSat[CLOCKORBIT_SATBDS] > 0 ) ? 1 : 0; int len2 = _ssrCorr->MakeClockOrbit(&co, _ssrCorr->COTYPE_GALILEOCLOCK, mmsg, obuffer, sizeof(obuffer)); if (len2 > 0) { hlpBufferCo += QByteArray(obuffer, len2); } } if (co.NumberOfSat[CLOCKORBIT_SATQZSS] > 0) { char obuffer[CLOCKORBIT_BUFFERSIZE] = {'\0'}; if (fmod(epoTime.gpssec(), _samplRtcmEphCorr) == 0.0) { co.UpdateInterval = ephUpdInd; int len1 = _ssrCorr->MakeClockOrbit(&co, _ssrCorr->COTYPE_QZSSORBIT, 1, obuffer, sizeof(obuffer)); co.UpdateInterval = clkUpdInd; if (len1 > 0) { hlpBufferCo += QByteArray(obuffer, len1); } } int mmsg = (co.NumberOfSat[CLOCKORBIT_SATSBAS] > 0 || co.NumberOfSat[CLOCKORBIT_SATBDS] > 0 ) ? 1 : 0; int len2 = _ssrCorr->MakeClockOrbit(&co, _ssrCorr->COTYPE_QZSSCLOCK, mmsg, obuffer, sizeof(obuffer)); if (len2 > 0) { hlpBufferCo += QByteArray(obuffer, len2); } } if (co.NumberOfSat[CLOCKORBIT_SATSBAS] > 0) { char obuffer[CLOCKORBIT_BUFFERSIZE] = {'\0'}; if (fmod(epoTime.gpssec(), _samplRtcmEphCorr) == 0.0) { co.UpdateInterval = ephUpdInd; int len1 = _ssrCorr->MakeClockOrbit(&co, _ssrCorr->COTYPE_SBASORBIT, 1, obuffer, sizeof(obuffer)); co.UpdateInterval = clkUpdInd; if (len1 > 0) { hlpBufferCo += QByteArray(obuffer, len1); } } int mmsg = (co.NumberOfSat[CLOCKORBIT_SATBDS] > 0) ? 1 : 0; int len2 = _ssrCorr->MakeClockOrbit(&co, _ssrCorr->COTYPE_SBASCLOCK, mmsg, obuffer, sizeof(obuffer)); if (len2 > 0) { hlpBufferCo += QByteArray(obuffer, len2); } } if (co.NumberOfSat[CLOCKORBIT_SATBDS] > 0) { char obuffer[CLOCKORBIT_BUFFERSIZE] = {'\0'}; if (fmod(epoTime.gpssec(), _samplRtcmEphCorr) == 0.0) { co.UpdateInterval = ephUpdInd; int len1 = _ssrCorr->MakeClockOrbit(&co, _ssrCorr->COTYPE_BDSORBIT, 1, obuffer, sizeof(obuffer)); co.UpdateInterval = clkUpdInd; if (len1 > 0) { hlpBufferCo += QByteArray(obuffer, len1); } } int mmsg = 0; int len2 = _ssrCorr->MakeClockOrbit(&co, _ssrCorr->COTYPE_BDSCLOCK, mmsg, obuffer, sizeof(obuffer)); if (len2 > 0) { hlpBufferCo += QByteArray(obuffer, len2); } } } // Code Biases // ----------- QByteArray hlpBufferBias; if (bias.NumberOfSat[CLOCKORBIT_SATGPS] > 0 || bias.NumberOfSat[CLOCKORBIT_SATGLONASS] > 0 || bias.NumberOfSat[CLOCKORBIT_SATGALILEO] > 0 || bias.NumberOfSat[CLOCKORBIT_SATQZSS] > 0 || bias.NumberOfSat[CLOCKORBIT_SATSBAS] > 0 || bias.NumberOfSat[CLOCKORBIT_SATBDS] > 0) { char obuffer[CLOCKORBIT_BUFFERSIZE] = {'\0'}; if (fmod(epoTime.gpssec(), _samplRtcmEphCorr) == 0.0) { int len = _ssrCorr->MakeCodeBias(&bias, _ssrCorr->CBTYPE_AUTO, 0, obuffer, sizeof(obuffer)); if (len > 0) { hlpBufferBias = QByteArray(obuffer, len); } } } // Phase Biases // ------------ QByteArray hlpBufferPhaseBias; if ((phasebias.NumberOfSat[CLOCKORBIT_SATGPS] > 0 || phasebias.NumberOfSat[CLOCKORBIT_SATGLONASS] > 0 || phasebias.NumberOfSat[CLOCKORBIT_SATGALILEO] > 0 || phasebias.NumberOfSat[CLOCKORBIT_SATQZSS] > 0 || phasebias.NumberOfSat[CLOCKORBIT_SATSBAS] > 0 || phasebias.NumberOfSat[CLOCKORBIT_SATBDS] > 0) && (_phaseBiasInformationDecoded)) { char obuffer[CLOCKORBIT_BUFFERSIZE] = {'\0'}; if (fmod(epoTime.gpssec(), _samplRtcmEphCorr) == 0.0) { int len = _ssrCorr->MakePhaseBias(&phasebias, _ssrCorr->PBTYPE_AUTO, 0, obuffer, sizeof(obuffer)); if (len > 0) { hlpBufferPhaseBias = QByteArray(obuffer, len); } } } // VTEC // ---- QByteArray hlpBufferVtec; if (vtec.NumLayers > 0) { char obuffer[CLOCKORBIT_BUFFERSIZE] = {'\0'}; int len = _ssrCorr->MakeVTEC(&vtec, 0, obuffer, sizeof(obuffer)); if (len > 0) { hlpBufferVtec = QByteArray(obuffer, len); } } _outBuffer += hlpBufferCo + hlpBufferBias + hlpBufferPhaseBias + hlpBufferVtec + '\0'; } // //////////////////////////////////////////////////////////////////////////// t_irc bncRtnetUploadCaster::processSatellite(const t_eph* eph, int GPSweek, double GPSweeks, const QString& prn, const ColumnVector& rtnAPC, double rtnUra, const ColumnVector& rtnClk, const ColumnVector& rtnVel, const ColumnVector& rtnCoM, const ColumnVector& rtnClkSig, struct SsrCorr::ClockOrbit::SatData* sd, QString& outLine) { // Broadcast Position and Velocity // ------------------------------- ColumnVector xB(6); ColumnVector vB(3); t_irc irc = eph->getCrd(bncTime(GPSweek, GPSweeks), xB, vB, false); if (irc != success) { return irc; } // Precise Position // ---------------- ColumnVector xP = _CoM ? rtnCoM : rtnAPC; if (xP.size() == 0) { return failure; } double dc = 0.0; if (_crdTrafo != "IGS20") { crdTrafo14(GPSweek, xP, dc); // ITRF2020 => ITRF2014 crdTrafo(GPSweek, xP, dc); // ITRF2014 to other reference frames } // Difference in xyz // ----------------- ColumnVector dx = xB.Rows(1, 3) - xP; ColumnVector dv = vB - rtnVel; // Difference in RSW // ----------------- ColumnVector rsw(3); XYZ_to_RSW(xB.Rows(1, 3), vB, dx, rsw); ColumnVector dotRsw(3); XYZ_to_RSW(xB.Rows(1, 3), vB, dv, dotRsw); // Clock Correction // ---------------- double dClkA0 = rtnClk(1) - (xB(4) - dc) * t_CST::c; double dClkA1 = 0.0; if (rtnClk(2)) { dClkA1 = rtnClk(2) - xB(5) * t_CST::c; } double dClkA2 = 0.0; if (rtnClk(3)) { dClkA2 = rtnClk(3) - xB(6) * t_CST::c; } if (sd) { sd->ID = prn.mid(1).toInt(); sd->IOD = eph->IOD(); sd->Clock.DeltaA0 = dClkA0; sd->Clock.DeltaA1 = dClkA1; sd->Clock.DeltaA2 = dClkA2; sd->UserRangeAccuracy = rtnUra; sd->Orbit.DeltaRadial = rsw(1); sd->Orbit.DeltaAlongTrack = rsw(2); sd->Orbit.DeltaCrossTrack = rsw(3); sd->Orbit.DotDeltaRadial = dotRsw(1); sd->Orbit.DotDeltaAlongTrack = dotRsw(2); sd->Orbit.DotDeltaCrossTrack = dotRsw(3); if (corrIsOutOfRange(sd)) { return failure; } } outLine = QString().asprintf("%d %.1f %s %u %10.3f %8.3f %8.3f %8.3f %8.3f %8.3f\n", GPSweek, GPSweeks, eph->prn().toString().c_str(), eph->IOD(), dClkA0, dClkA1, dClkA2, rsw(1), rsw(2), rsw(3)); //fprintf(stderr, "%s\n", outLine.toStdString().c_str()); // RTNET full clock for RINEX and SP3 file // --------------------------------------- double relativity = -2.0 * DotProduct(xP, rtnVel) / t_CST::c; double clkRnx = (rtnClk[0] - relativity) / t_CST::c; // [s] double clkRnxRate = rtnClk[1] / t_CST::c; // [s/s = -] double clkRnxAcc = rtnClk[2] / t_CST::c; // [s/s² = -/s] if (_rnx) { double clkRnxSig, clkRnxRateSig, clkRnxAccSig; int s = rtnClkSig.size(); switch (s) { case 1: clkRnxSig = rtnClkSig[0] / t_CST::c; // [s] clkRnxRateSig = 0.0; // [s/s = -] clkRnxAccSig = 0.0; // [s/s² ) -/s] break; case 2: clkRnxSig = rtnClkSig[0] / t_CST::c; // [s] clkRnxRateSig = rtnClkSig[1] / t_CST::c; // [s/s = -] clkRnxAccSig = 0.0; // [s/s² ) -/s] break; case 3: clkRnxSig = rtnClkSig[0] / t_CST::c; // [s] clkRnxRateSig = rtnClkSig[1] / t_CST::c; // [s/s = -] clkRnxAccSig = rtnClkSig[2] / t_CST::c; // [s/s² ) -/s] break; } _rnx->write(GPSweek, GPSweeks, prn, clkRnx, clkRnxRate, clkRnxAcc, clkRnxSig, clkRnxRateSig, clkRnxAccSig); } if (_sp3) { _sp3->write(GPSweek, GPSweeks, prn, rtnCoM, clkRnx, rtnVel, clkRnxRate); } return success; } // Transform Coordinates //////////////////////////////////////////////////////////////////////////// void bncRtnetUploadCaster::crdTrafo(int GPSWeek, ColumnVector& xyz, double& dc) { // Current epoch minus 2000.0 in years // ------------------------------------ double dt = (GPSWeek - (1042.0 + 6.0 / 7.0)) / 365.2422 * 7.0 + 2000.0 - _t0; ColumnVector dx(3); dx(1) = _dx + dt * _dxr; dx(2) = _dy + dt * _dyr; dx(3) = _dz + dt * _dzr; static const double arcSec = 180.0 * 3600.0 / M_PI; double ox = (_ox + dt * _oxr) / arcSec; double oy = (_oy + dt * _oyr) / arcSec; double oz = (_oz + dt * _ozr) / arcSec; double sc = 1.0 + _sc * 1e-9 + dt * _scr * 1e-9; // Specify approximate center of area // ---------------------------------- ColumnVector meanSta(3); if (_crdTrafo == "ETRF2000") { meanSta(1) = 3661090.0; meanSta(2) = 845230.0; meanSta(3) = 5136850.0; } else if (_crdTrafo == "GDA2020") { meanSta(1) = -4052050.0; meanSta(2) = 4212840.0; meanSta(3) = -2545110.0; } else if (_crdTrafo == "SIRGAS2000") { meanSta(1) = 3740860.0; meanSta(2) = -4964290.0; meanSta(3) = -1425420.0; } else if (_crdTrafo == "DREF91") { meanSta(1) = 3959579.0; meanSta(2) = 721719.0; meanSta(3) = 4931539.0; } else if (_crdTrafo == "Custom") { meanSta(1) = 0.0; meanSta(2) = 0.0; meanSta(3) = 0.0; } // Clock correction proportional to topocentric distance to satellites // ------------------------------------------------------------------- double rho = (xyz - meanSta).NormFrobenius(); dc = rho * (sc - 1.0) / sc / t_CST::c; Matrix rMat(3, 3); rMat(1, 1) = 1.0; rMat(1, 2) = -oz; rMat(1, 3) = oy; rMat(2, 1) = oz; rMat(2, 2) = 1.0; rMat(2, 3) = -ox; rMat(3, 1) = -oy; rMat(3, 2) = ox; rMat(3, 3) = 1.0; xyz = sc * rMat * xyz + dx; } // Transform Coordinates //////////////////////////////////////////////////////////////////////////// void bncRtnetUploadCaster::crdTrafo14(int GPSWeek, ColumnVector& xyz, double& dc) { // Current epoch minus 2000.0 in years // ------------------------------------ double dt = (GPSWeek - (1042.0 + 6.0 / 7.0)) / 365.2422 * 7.0 + 2000.0 - _t0; ColumnVector dx(3); dx(1) = _dx14 + dt * _dxr14; dx(2) = _dy14 + dt * _dyr14; dx(3) = _dz14 + dt * _dzr14; static const double arcSec = 180.0 * 3600.0 / M_PI; double ox = (_ox14 + dt * _oxr14) / arcSec; double oy = (_oy14 + dt * _oyr14) / arcSec; double oz = (_oz14 + dt * _ozr14) / arcSec; double sc = 1.0 + _sc14 * 1e-9 + dt * _scr14 * 1e-9; // Specify approximate center of area // ---------------------------------- ColumnVector meanSta(3); meanSta(1) = 0.0; // TODO meanSta(2) = 0.0; // TODO meanSta(3) = 0.0; // TODO // Clock correction proportional to topocentric distance to satellites // ------------------------------------------------------------------- double rho = (xyz - meanSta).NormFrobenius(); dc = rho * (sc - 1.0) / sc / t_CST::c; Matrix rMat(3, 3); rMat(1, 1) = 1.0; rMat(1, 2) = -oz; rMat(1, 3) = oy; rMat(2, 1) = oz; rMat(2, 2) = 1.0; rMat(2, 3) = -ox; rMat(3, 1) = -oy; rMat(3, 2) = ox; rMat(3, 3) = 1.0; xyz = sc * rMat * xyz + dx; } // Update Interval //////////////////////////////////////////////////////////////////////////// int bncRtnetUploadCaster::determineUpdateInd(double samplingRate) { if (samplingRate == 10.0) { return 3; } else if (samplingRate == 15.0) { return 4; } else if (samplingRate == 30.0) { return 5; } else if (samplingRate == 60.0) { return 6; } else if (samplingRate == 120.0) { return 7; } else if (samplingRate == 240.0) { return 8; } else if (samplingRate == 300.0) { return 9; } else if (samplingRate == 600.0) { return 10; } else if (samplingRate == 900.0) { return 11; } else if (samplingRate == 1800.0) { return 12; } else if (samplingRate == 3600.0) { return 13; } else if (samplingRate == 7200.0) { return 14; } else if (samplingRate == 10800.0) { return 15; } return 2; // default } // Check corrections //////////////////////////////////////////////////////////////////////////// bool bncRtnetUploadCaster::corrIsOutOfRange(struct SsrCorr::ClockOrbit::SatData* sd) { if (fabs(sd->Clock.DeltaA0) > 209.7151) {return true;} if (fabs(sd->Clock.DeltaA1) > 1.048575) {return true;} if (fabs(sd->Clock.DeltaA2) > 1.34217726) {return true;} if (fabs(sd->Orbit.DeltaRadial) > 209.7151) {return true;} if (fabs(sd->Orbit.DeltaAlongTrack) > 209.7148) {return true;} if (fabs(sd->Orbit.DeltaCrossTrack) > 209.7148) {return true;} if (fabs(sd->Orbit.DotDeltaRadial) > 1.048575) {return true;} if (fabs(sd->Orbit.DotDeltaAlongTrack) > 1.048572) {return true;} if (fabs(sd->Orbit.DotDeltaCrossTrack) > 1.048572) {return true;} return false; }