source: ntrip/trunk/BNC/src/rinex/reqcanalyze.cpp@ 6213

Last change on this file since 6213 was 6213, checked in by mervart, 8 years ago
File size: 23.9 KB
Line 
1// Part of BNC, a utility for retrieving decoding and
2// converting GNSS data streams from NTRIP broadcasters.
3//
4// Copyright (C) 2007
5// German Federal Agency for Cartography and Geodesy (BKG)
6// http://www.bkg.bund.de
7// Czech Technical University Prague, Department of Geodesy
8// http://www.fsv.cvut.cz
9//
10// Email: euref-ip@bkg.bund.de
11//
12// This program is free software; you can redistribute it and/or
13// modify it under the terms of the GNU General Public License
14// as published by the Free Software Foundation, version 2.
15//
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25/* -------------------------------------------------------------------------
26 * BKG NTRIP Client
27 * -------------------------------------------------------------------------
28 *
29 * Class: t_reqcAnalyze
30 *
31 * Purpose: Analyze RINEX Files
32 *
33 * Author: L. Mervart
34 *
35 * Created: 11-Apr-2012
36 *
37 * Changes:
38 *
39 * -----------------------------------------------------------------------*/
40
41#include <iostream>
42#include <iomanip>
43#include <qwt_plot_renderer.h>
44
45#include "reqcanalyze.h"
46#include "bnccore.h"
47#include "bncsettings.h"
48#include "reqcedit.h"
49#include "bncutils.h"
50#include "graphwin.h"
51#include "polarplot.h"
52#include "availplot.h"
53#include "eleplot.h"
54#include "dopplot.h"
55
56using namespace std;
57
58const double SLIPTRESH = 10.0; // cycle-slip threshold (meters)
59
60// Constructor
61////////////////////////////////////////////////////////////////////////////
62t_reqcAnalyze::t_reqcAnalyze(QObject* parent) : QThread(parent) {
63
64 bncSettings settings;
65
66 _logFileName = settings.value("reqcOutLogFile").toString(); expandEnvVar(_logFileName);
67 _logFile = 0;
68 _log = 0;
69 _obsFileNames = settings.value("reqcObsFile").toString().split(",", QString::SkipEmptyParts);
70 _navFileNames = settings.value("reqcNavFile").toString().split(",", QString::SkipEmptyParts);
71
72 _currEpo = 0;
73
74 connect(this, SIGNAL(dspSkyPlot(const QString&,
75 const QByteArray&,
76 QVector<t_polarPoint*>*,
77 const QByteArray&,
78 QVector<t_polarPoint*>*,
79 const QByteArray&, double)),
80 this, SLOT(slotDspSkyPlot(const QString&,
81 const QByteArray&,
82 QVector<t_polarPoint*>*,
83 const QByteArray&,
84 QVector<t_polarPoint*>*,
85 const QByteArray&, double)));
86
87 connect(this, SIGNAL(dspAvailPlot(const QString&, const QByteArray&)),
88 this, SLOT(slotDspAvailPlot(const QString&, const QByteArray&)));
89}
90
91// Destructor
92////////////////////////////////////////////////////////////////////////////
93t_reqcAnalyze::~t_reqcAnalyze() {
94 for (int ii = 0; ii < _rnxObsFiles.size(); ii++) {
95 delete _rnxObsFiles[ii];
96 }
97 for (int ii = 0; ii < _ephs.size(); ii++) {
98 delete _ephs[ii];
99 }
100 delete _log; _log = 0;
101 delete _logFile; _logFile = 0;
102 if (BNC_CORE->mode() != t_bncCore::interactive) {
103 qApp->exit(0);
104 }
105}
106
107//
108////////////////////////////////////////////////////////////////////////////
109void t_reqcAnalyze::slotDspSkyPlot(const QString& fileName,
110 const QByteArray& title1,
111 QVector<t_polarPoint*>* data1,
112 const QByteArray& title2,
113 QVector<t_polarPoint*>* data2,
114 const QByteArray& scaleTitle,
115 double maxValue) {
116
117 if (BNC_CORE->GUIenabled()) {
118
119 if (maxValue == 0.0) {
120 if (data1) {
121 for (int ii = 0; ii < data1->size(); ii++) {
122 double val = data1->at(ii)->_value;
123 if (maxValue < val) {
124 maxValue = val;
125 }
126 }
127 }
128 if (data2) {
129 for (int ii = 0; ii < data2->size(); ii++) {
130 double val = data2->at(ii)->_value;
131 if (maxValue < val) {
132 maxValue = val;
133 }
134 }
135 }
136 }
137
138 QwtInterval scaleInterval(0.0, maxValue);
139
140 QVector<QWidget*> plots;
141 if (data1) {
142 t_polarPlot* plot1 = new t_polarPlot(QwtText(title1), scaleInterval,
143 BNC_CORE->mainWindow());
144 plot1->addCurve(data1);
145 plots << plot1;
146 }
147 if (data2) {
148 t_polarPlot* plot2 = new t_polarPlot(QwtText(title2), scaleInterval,
149 BNC_CORE->mainWindow());
150 plot2->addCurve(data2);
151 plots << plot2;
152 }
153
154 t_graphWin* graphWin = new t_graphWin(0, fileName, plots,
155 &scaleTitle, &scaleInterval);
156
157 graphWin->show();
158
159 bncSettings settings;
160 QString dirName = settings.value("reqcPlotDir").toString();
161 if (!dirName.isEmpty()) {
162 QByteArray ext = scaleTitle.isEmpty() ? "_S.png" : "_M.png";
163 graphWin->savePNG(dirName, ext);
164 }
165 }
166}
167
168//
169////////////////////////////////////////////////////////////////////////////
170void t_reqcAnalyze::run() {
171
172 // Open Log File
173 // -------------
174 _logFile = new QFile(_logFileName);
175 if (_logFile->open(QIODevice::WriteOnly | QIODevice::Text)) {
176 _log = new QTextStream();
177 _log->setDevice(_logFile);
178 }
179
180 // Initialize RINEX Observation Files
181 // ----------------------------------
182 t_reqcEdit::initRnxObsFiles(_obsFileNames, _rnxObsFiles, _log);
183
184 // Read Ephemerides
185 // ----------------
186 t_reqcEdit::readEphemerides(_navFileNames, _ephs);
187
188 // Loop over all RINEX Files
189 // -------------------------
190 for (int ii = 0; ii < _rnxObsFiles.size(); ii++) {
191 analyzeFile(_rnxObsFiles[ii]);
192 }
193
194 // Exit
195 // ----
196 emit finished();
197 deleteLater();
198}
199
200//
201////////////////////////////////////////////////////////////////////////////
202void t_reqcAnalyze::analyzeFile(t_rnxObsFile* obsFile) {
203
204 _mutex.lock();
205
206 if (_log) {
207 *_log << "\nAnalyze File\n"
208 << "------------\n"
209 << "File: " << obsFile->fileName().toAscii().data() << endl;
210 }
211
212 _allObsMap.clear();
213 _availDataMap.clear();
214 _obsStat.reset();
215
216 // A priori Coordinates
217 // --------------------
218 ColumnVector xyzSta = obsFile->xyz();
219
220 // Loop over all Epochs
221 // --------------------
222 try {
223 unsigned iEpo = 0;
224 while ( (_currEpo = obsFile->nextEpoch()) != 0) {
225
226 if (iEpo == 0) {
227 _obsStat._startTime = _currEpo->tt;
228 _obsStat._antennaName = obsFile->antennaName();
229 _obsStat._markerName = obsFile->markerName();
230 _obsStat._receiverType = obsFile->receiverType();
231 _obsStat._interval = obsFile->interval();
232 }
233 _obsStat._endTime = _currEpo->tt;
234
235 // Loop over all satellites
236 // ------------------------
237 for (unsigned iObs = 0; iObs < _currEpo->rnxSat.size(); iObs++) {
238 const t_rnxObsFile::t_rnxSat& rnxSat = _currEpo->rnxSat[iObs];
239 t_satObs obs;
240 t_rnxObsFile::setObsFromRnx(obsFile, _currEpo, rnxSat, obs);
241
242 QString prn(obs._prn.toString().c_str());
243
244 t_ephGlo* ephGlo = 0;
245 int slotNum = 0;
246 if (obs._prn.system() == 'R') {
247 for (int ie = 0; ie < _ephs.size(); ie++) {
248 if (QString(_ephs[ie]->prn().toString().c_str()) == prn) {
249 ephGlo = dynamic_cast<t_ephGlo*>(_ephs[ie]);
250 break;
251 }
252 }
253 if (ephGlo) {
254 slotNum = ephGlo->slotNum();
255 }
256 }
257
258 t_irc irc = _allObsMap[prn].addObs(obs, slotNum);
259
260 if (irc == success) {
261 t_oneObs* newObs = _allObsMap[prn]._oneObsVec.last();
262 if (ephGlo) {
263 newObs->_slotSet = true;
264 }
265 if (newObs->_hasL1 && newObs->_hasL2) {
266 _obsStat._prnStat[prn]._numObs += 1;
267 }
268 if (newObs->_slipL1 && newObs->_slipL2) {
269 _obsStat._prnStat[prn]._numSlipsFlagged += 1;
270 }
271 }
272 }
273
274 prepareObsStat(iEpo, obsFile->interval(), xyzSta);
275 iEpo++;
276
277 } // while (_currEpo)
278 }
279 catch (QString str) {
280 if (_log) {
281 *_log << "Exception " << str << endl;
282 }
283 else {
284 qDebug() << str;
285 }
286 _mutex.unlock();
287 return;
288 }
289
290 // Analyze the Multipath
291 // ---------------------
292 QVector<t_polarPoint*>* dataMP1 = new QVector<t_polarPoint*>;
293 QVector<t_polarPoint*>* dataMP2 = new QVector<t_polarPoint*>;
294 QVector<t_polarPoint*>* dataSNR1 = new QVector<t_polarPoint*>;
295 QVector<t_polarPoint*>* dataSNR2 = new QVector<t_polarPoint*>;
296
297 QMutableMapIterator<QString, t_allObs> it(_allObsMap);
298 while (it.hasNext()) {
299 it.next();
300 QString prn = it.key();
301 preparePlotData(prn, xyzSta, obsFile->interval(),
302 dataMP1, dataMP2, dataSNR1, dataSNR2);
303 }
304
305 printReport(dataMP1, dataMP2, dataSNR1, dataSNR2);
306
307 // Show the plots
308 // --------------
309 if (BNC_CORE->GUIenabled()) {
310 QFileInfo fileInfo(obsFile->fileName());
311 QByteArray title = fileInfo.fileName().toAscii();
312 emit dspSkyPlot(obsFile->fileName(), "MP1", dataMP1, "MP2", dataMP2,
313 "Meters", 2.0);
314 emit dspSkyPlot(obsFile->fileName(), "SNR1", dataSNR1, "SNR2", dataSNR2,
315 "", 9.0);
316 emit dspAvailPlot(obsFile->fileName(), title);
317 }
318 else {
319 for (int ii = 0; ii < dataMP1->size(); ii++) {
320 delete dataMP1->at(ii);
321 }
322 delete dataMP1;
323 for (int ii = 0; ii < dataMP2->size(); ii++) {
324 delete dataMP2->at(ii);
325 }
326 delete dataMP2;
327 for (int ii = 0; ii < dataSNR1->size(); ii++) {
328 delete dataSNR1->at(ii);
329 }
330 delete dataSNR1;
331 for (int ii = 0; ii < dataSNR2->size(); ii++) {
332 delete dataSNR2->at(ii);
333 }
334 delete dataSNR2;
335 _mutex.unlock();
336 }
337}
338
339//
340////////////////////////////////////////////////////////////////////////////
341t_irc t_reqcAnalyze::t_allObs::addObs(const t_satObs& obs, int slotNum) {
342
343 t_oneObs* newObs = new t_oneObs(obs._time.gpsw(), obs._time.gpssec());
344 bool okFlag = false;
345
346 // Availability and Slip Flags
347 // ---------------------------
348 double L1 = 0.0;
349 double L2 = 0.0;
350 double P1 = 0.0;
351 double P2 = 0.0;
352
353 for (unsigned iFrq = 0; iFrq < obs._obs.size(); iFrq++) {
354 const t_frqObs* frqObs = obs._obs[iFrq];
355 if (frqObs->_rnxType2ch[0] == '1') {
356 if (frqObs->_phaseValid) {
357 L1 = frqObs->_phase;
358 newObs->_hasL1 = true;
359 newObs->_slipL1 = frqObs->_slip;
360 }
361 if (frqObs->_codeValid) {
362 P1 = frqObs->_code;
363 }
364 if (frqObs->_snrValid) {
365 newObs->_SNR1 = frqObs->_snr;
366 }
367 }
368 else if ( (obs._prn.system() != 'E' && frqObs->_rnxType2ch[0] == '2') ||
369 (obs._prn.system() == 'E' && frqObs->_rnxType2ch[0] == '5') ) {
370 if (frqObs->_phaseValid) {
371 L2 = frqObs->_phase;
372 newObs->_hasL2 = true;
373 newObs->_slipL2 = frqObs->_slip;
374 }
375 if (frqObs->_codeValid) {
376 P2 = frqObs->_code;
377 }
378 if (frqObs->_snrValid) {
379 newObs->_SNR2 = frqObs->_snr;
380 }
381 }
382 }
383
384 // Compute the Multipath
385 // ----------------------
386 if (L1 != 0.0 && L2 != 0.0) {
387 double f1 = 0.0;
388 double f2 = 0.0;
389 if (obs._prn.system() == 'G') {
390 f1 = t_CST::freq(t_frequency::G1, 0);
391 f2 = t_CST::freq(t_frequency::G2, 0);
392 }
393 else if (obs._prn.system() == 'R') {
394 f1 = t_CST::freq(t_frequency::R1, slotNum);
395 f2 = t_CST::freq(t_frequency::R2, slotNum);
396 }
397 else if (obs._prn.system() == 'E') {
398 f1 = t_CST::freq(t_frequency::E1, 0);
399 f2 = t_CST::freq(t_frequency::E5, 0);
400 }
401
402 L1 = L1 * t_CST::c / f1;
403 L2 = L2 * t_CST::c / f2;
404
405 if (P1 != 0.0) {
406 newObs->_MP1 = P1 - L1 - 2.0*f2*f2/(f1*f1-f2*f2) * (L1 - L2);
407 okFlag = true;
408 }
409 if (P2 != 0.0) {
410 newObs->_MP2 = P2 - L2 - 2.0*f1*f1/(f1*f1-f2*f2) * (L1 - L2);
411 okFlag = true;
412 }
413 }
414
415 // Remember the Observation
416 // ------------------------
417 if (okFlag) {
418 _oneObsVec << newObs;
419 return success;
420 }
421 else {
422 delete newObs;
423 return failure;
424 }
425}
426
427//
428////////////////////////////////////////////////////////////////////////////
429void t_reqcAnalyze::prepareObsStat(unsigned iEpo, double obsInterval,
430 const ColumnVector& xyzSta) {
431 const int sampl = int(30.0 / obsInterval);
432 if (iEpo % sampl == 0) {
433 double mjdX24 = _currEpo->tt.mjddec() * 24.0;
434 if (iEpo != 0) {
435 _obsStat._mjdX24 << mjdX24;
436 _obsStat._numSat << _obsStat._numSat.last();
437 _obsStat._PDOP << _obsStat._PDOP.last();
438 }
439 _obsStat._mjdX24 << mjdX24;
440 _obsStat._numSat << _currEpo->rnxSat.size();
441 _obsStat._PDOP << cmpDOP(xyzSta);
442 }
443}
444
445//
446////////////////////////////////////////////////////////////////////////////
447void t_reqcAnalyze::preparePlotData(const QString& prn,
448 const ColumnVector& xyzSta,
449 double obsInterval,
450 QVector<t_polarPoint*>* dataMP1,
451 QVector<t_polarPoint*>* dataMP2,
452 QVector<t_polarPoint*>* dataSNR1,
453 QVector<t_polarPoint*>* dataSNR2) {
454
455 const int chunkStep = int( 30.0 / obsInterval); // chunk step (30 sec)
456 const int numEpo = int(600.0 / obsInterval); // # epochs in one chunk (10 min)
457
458 t_allObs& allObs = _allObsMap[prn];
459
460 bncSettings settings;
461 QString reqSkyPlotSystems = settings.value("reqcSkyPlotSystems").toString();
462 bool plotGPS = false;
463 bool plotGlo = false;
464 bool plotGal = false;
465 if (reqSkyPlotSystems == "GPS") {
466 plotGPS = true;
467 }
468 else if (reqSkyPlotSystems == "GLONASS") {
469 plotGlo = true;
470 }
471 else if (reqSkyPlotSystems == "Galileo") {
472 plotGal = true;
473 }
474 else {
475 plotGPS = true;
476 plotGlo = true;
477 plotGal = true;
478 }
479
480 // Loop over all Chunks of Data
481 // ----------------------------
482 bool slipFound = false;
483 for (int chunkStart = 0; chunkStart + numEpo < allObs._oneObsVec.size();
484 chunkStart += chunkStep) {
485
486 if (chunkStart * chunkStep == numEpo) {
487 slipFound = false;
488 }
489
490 // Chunk-Specific Variables
491 // ------------------------
492 bncTime currTime;
493 bncTime prevTime;
494 bncTime chunkStartTime;
495 double mjdX24 = 0.0;
496 bool availL1 = false;
497 bool availL2 = false;
498 bool gapL1 = false;
499 bool gapL2 = false;
500 bool slipL1 = false;
501 bool slipL2 = false;
502 double meanMP1 = 0.0;
503 double meanMP2 = 0.0;
504 double minSNR1 = 0.0;
505 double minSNR2 = 0.0;
506 double aziDeg = 0.0;
507 double zenDeg = 0.0;
508 bool zenFlag = false;
509
510 // Loop over all Epochs within one Chunk of Data
511 // ---------------------------------------------
512 bool slotSet = false;
513 for (int ii = 0; ii < numEpo; ii++) {
514 int iEpo = chunkStart + ii;
515 const t_oneObs* oneObs = allObs._oneObsVec[iEpo];
516 if (oneObs->_slotSet) {
517 slotSet = true;
518 }
519
520 currTime.set(oneObs->_GPSWeek, oneObs->_GPSWeeks);
521
522 // Compute the Azimuth and Zenith Distance
523 // ---------------------------------------
524 if (ii == 0) {
525 chunkStartTime = currTime;
526 mjdX24 = chunkStartTime.mjddec() * 24.0;
527
528 if (xyzSta.size()) {
529 t_eph* eph = 0;
530 for (int ie = 0; ie < _ephs.size(); ie++) {
531 if (QString(_ephs[ie]->prn().toString().c_str()) == prn) {
532 eph = _ephs[ie];
533 break;
534 }
535 }
536
537 if (eph) {
538 ColumnVector xc(4);
539 ColumnVector vv(3);
540 if (eph->getCrd(bncTime(oneObs->_GPSWeek, oneObs->_GPSWeeks), xc, vv, false) == success) {
541 double rho, eleSat, azSat;
542 topos(xyzSta(1), xyzSta(2), xyzSta(3), xc(1), xc(2), xc(3), rho, eleSat, azSat);
543 aziDeg = azSat * 180.0/M_PI;
544 zenDeg = 90.0 - eleSat * 180.0/M_PI;
545 zenFlag = true;
546 }
547 }
548 }
549 }
550
551 // Check Interval
552 // --------------
553 if (prevTime.valid()) {
554 double dt = currTime - prevTime;
555 if (dt != obsInterval) {
556 gapL1 = true;
557 gapL2 = true;
558 }
559 }
560 prevTime = currTime;
561
562 // Check L1 and L2 availability
563 // ----------------------------
564 if (oneObs->_hasL1) {
565 availL1 = true;
566 }
567 else {
568 gapL1 = true;
569 }
570 if (oneObs->_hasL2) {
571 availL2 = true;
572 }
573 else {
574 gapL2 = true;
575 }
576
577 // Check Minimal Signal-to-Noise Ratio
578 // -----------------------------------
579 if ( oneObs->_SNR1 > 0 && (minSNR1 == 0 || minSNR1 > oneObs->_SNR1) ) {
580 minSNR1 = oneObs->_SNR1;
581 }
582 if ( oneObs->_SNR2 > 0 && (minSNR2 == 0 || minSNR2 > oneObs->_SNR2) ) {
583 minSNR2 = oneObs->_SNR2;
584 }
585
586 // Check Slip Flags
587 // ----------------
588 if (oneObs->_slipL1) {
589 slipL1 = true;
590 }
591 if (oneObs->_slipL2) {
592 slipL2 = true;
593 }
594
595 meanMP1 += oneObs->_MP1;
596 meanMP2 += oneObs->_MP2;
597 }
598
599 // Compute the Multipath
600 // ---------------------
601 if ( (prn[0] == 'G' && plotGPS ) ||
602 (prn[0] == 'R' && plotGlo && slotSet) ||
603 (prn[0] == 'E' && plotGal ) ) {
604 bool slipMP = false;
605 meanMP1 /= numEpo;
606 meanMP2 /= numEpo;
607 double MP1 = 0.0;
608 double MP2 = 0.0;
609 for (int ii = 0; ii < numEpo; ii++) {
610 int iEpo = chunkStart + ii;
611 const t_oneObs* oneObs = allObs._oneObsVec[iEpo];
612 double diff1 = oneObs->_MP1 - meanMP1;
613 double diff2 = oneObs->_MP2 - meanMP2;
614
615 // Check Slip Threshold
616 // --------------------
617 if (fabs(diff1) > SLIPTRESH || fabs(diff2) > SLIPTRESH) {
618 slipMP = true;
619 break;
620 }
621
622 MP1 += diff1 * diff1;
623 MP2 += diff2 * diff2;
624 }
625 if (slipMP) {
626 slipL1 = true;
627 slipL2 = true;
628 if (!slipFound) {
629 slipFound = true;
630 _obsStat._prnStat[prn]._numSlipsFound += 1;
631 }
632 }
633 else {
634 MP1 = sqrt(MP1 / (numEpo-1));
635 MP2 = sqrt(MP2 / (numEpo-1));
636 (*dataMP1) << (new t_polarPoint(aziDeg, zenDeg, MP1));
637 (*dataMP2) << (new t_polarPoint(aziDeg, zenDeg, MP2));
638 }
639 }
640
641 // Availability Plot Data
642 // ----------------------
643 if (availL1) {
644 if (slipL1) {
645 _availDataMap[prn]._L1slip << mjdX24;
646 }
647 else if (gapL1) {
648 _availDataMap[prn]._L1gap << mjdX24;
649 }
650 else {
651 _availDataMap[prn]._L1ok << mjdX24;
652 }
653 }
654 if (availL2) {
655 if (slipL2) {
656 _availDataMap[prn]._L2slip << mjdX24;
657 }
658 else if (gapL2) {
659 _availDataMap[prn]._L2gap << mjdX24;
660 }
661 else {
662 _availDataMap[prn]._L2ok << mjdX24;
663 }
664 }
665 if (zenFlag) {
666 _availDataMap[prn]._eleTim << mjdX24;
667 _availDataMap[prn]._eleDeg << 90.0 - zenDeg;
668 }
669
670 // Signal-to-Noise Ratio Plot Data
671 // -------------------------------
672 if ( (prn[0] == 'G' && plotGPS) ||
673 (prn[0] == 'R' && plotGlo) ||
674 (prn[0] == 'E' && plotGal) ) {
675 (*dataSNR1) << (new t_polarPoint(aziDeg, zenDeg, minSNR1));
676 (*dataSNR2) << (new t_polarPoint(aziDeg, zenDeg, minSNR2));
677 }
678 }
679}
680
681//
682////////////////////////////////////////////////////////////////////////////
683void t_reqcAnalyze::slotDspAvailPlot(const QString& fileName,
684 const QByteArray& title) {
685
686 if (BNC_CORE->GUIenabled()) {
687 t_availPlot* plotA = new t_availPlot(0, &_availDataMap);
688 plotA->setTitle(title);
689
690 t_elePlot* plotZ = new t_elePlot(0, &_availDataMap);
691
692 t_dopPlot* plotD = new t_dopPlot(0, &_obsStat);
693
694 QVector<QWidget*> plots;
695 plots << plotA << plotZ << plotD;
696 t_graphWin* graphWin = new t_graphWin(0, fileName, plots, 0, 0);
697
698 int ww = QFontMetrics(graphWin->font()).width('w');
699 graphWin->setMinimumSize(120*ww, 40*ww);
700
701 graphWin->show();
702
703 bncSettings settings;
704 QString dirName = settings.value("reqcPlotDir").toString();
705 if (!dirName.isEmpty()) {
706 QByteArray ext = "_A.png";
707 graphWin->savePNG(dirName, ext);
708 }
709 }
710 _mutex.unlock();
711}
712
713// Compute Dilution of Precision
714////////////////////////////////////////////////////////////////////////////
715double t_reqcAnalyze::cmpDOP(const ColumnVector& xyzSta) const {
716
717 if (xyzSta.size() != 3) {
718 return 0.0;
719 }
720
721 unsigned nSat = _currEpo->rnxSat.size();
722
723 if (nSat < 4) {
724 return 0.0;
725 }
726
727 Matrix AA(nSat, 4);
728
729 unsigned nSatUsed = 0;
730 for (unsigned iSat = 0; iSat < nSat; iSat++) {
731
732 const t_rnxObsFile::t_rnxSat& rnxSat = _currEpo->rnxSat[iSat];
733 const t_prn& prn = rnxSat.prn;
734
735 t_eph* eph = 0;
736 for (int ie = 0; ie < _ephs.size(); ie++) {
737 if (_ephs[ie]->prn() == prn) {
738 eph = _ephs[ie];
739 break;
740 }
741 }
742 if (eph) {
743 ColumnVector xSat(4);
744 ColumnVector vv(3);
745 if (eph->getCrd(_currEpo->tt, xSat, vv, false) == success) {
746 ++nSatUsed;
747 ColumnVector dx = xSat.Rows(1,3) - xyzSta;
748 double rho = dx.norm_Frobenius();
749 AA(nSatUsed,1) = dx(1) / rho;
750 AA(nSatUsed,2) = dx(2) / rho;
751 AA(nSatUsed,3) = dx(3) / rho;
752 AA(nSatUsed,4) = 1.0;
753 }
754 }
755 }
756
757 if (nSatUsed < 4) {
758 return 0.0;
759 }
760
761 AA = AA.Rows(1, nSatUsed);
762
763 SymmetricMatrix QQ;
764 QQ << AA.t() * AA;
765 QQ = QQ.i();
766
767 return sqrt(QQ.trace());
768}
769
770// Finish the report
771////////////////////////////////////////////////////////////////////////////
772void t_reqcAnalyze::printReport(QVector<t_polarPoint*>* dataMP1,
773 QVector<t_polarPoint*>* dataMP2,
774 QVector<t_polarPoint*>* dataSNR1,
775 QVector<t_polarPoint*>* dataSNR2) {
776
777 if (!_log) {
778 return;
779 }
780
781 *_log << "Marker name: " << _obsStat._markerName << endl
782 << "Receiver: " << _obsStat._receiverType << endl
783 << "Antenna: " << _obsStat._antennaName << endl
784 << "Start time: " << _obsStat._startTime.datestr().c_str() << ' '
785 << _obsStat._startTime.timestr().c_str() << endl
786 << "End time: " << _obsStat._endTime.datestr().c_str() << ' '
787 << _obsStat._endTime.timestr().c_str() << endl
788 << "Interval: " << _obsStat._interval << endl
789 << "# Sat.: " << _obsStat._prnStat.size() << endl;
790
791 int numObs = 0;
792 int numSlipsFlagged = 0;
793 int numSlipsFound = 0;
794 QMapIterator<QString, t_prnStat> it(_obsStat._prnStat);
795 while (it.hasNext()) {
796 it.next();
797 const t_prnStat& prnStat = it.value();
798 numObs += prnStat._numObs;
799 numSlipsFlagged += prnStat._numSlipsFlagged;
800 numSlipsFound += prnStat._numSlipsFound;
801 }
802 *_log << "# Obs.: " << numObs << endl
803 << "# Slips (file): " << numSlipsFlagged << endl
804 << "# Slips (found): " << numSlipsFound << endl;
805
806 for (int kk = 1; kk <= 4; kk++) {
807 QVector<t_polarPoint*>* data = 0;
808 QString text;
809 if (kk == 1) {
810 data = dataMP1;
811 text = "Mean MP1: ";
812 }
813 else if (kk == 2) {
814 data = dataMP2;
815 text = "Mean MP2: ";
816 }
817 else if (kk == 3) {
818 data = dataSNR1;
819 text = "Mean SNR1: ";
820 }
821 else if (kk == 4) {
822 data = dataSNR2;
823 text = "Mean SNR2: ";
824 }
825 double mean = 0.0;
826 for (int ii = 0; ii < data->size(); ii++) {
827 const t_polarPoint* point = data->at(ii);
828 mean += point->_value;
829 }
830 mean /= data->size();
831 *_log << text << mean << endl;
832 }
833
834 _log->flush();
835}
Note: See TracBrowser for help on using the repository browser.