1 | // Part of BNC, a utility for retrieving decoding and
|
---|
2 | // converting GNSS data streams from NTRIP broadcasters.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2007
|
---|
5 | // German Federal Agency for Cartography and Geodesy (BKG)
|
---|
6 | // http://www.bkg.bund.de
|
---|
7 | // Czech Technical University Prague, Department of Geodesy
|
---|
8 | // http://www.fsv.cvut.cz
|
---|
9 | //
|
---|
10 | // Email: euref-ip@bkg.bund.de
|
---|
11 | //
|
---|
12 | // This program is free software; you can redistribute it and/or
|
---|
13 | // modify it under the terms of the GNU General Public License
|
---|
14 | // as published by the Free Software Foundation, version 2.
|
---|
15 | //
|
---|
16 | // This program is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU General Public License
|
---|
22 | // along with this program; if not, write to the Free Software
|
---|
23 | // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
24 |
|
---|
25 | /* -------------------------------------------------------------------------
|
---|
26 | * BKG NTRIP Client
|
---|
27 | * -------------------------------------------------------------------------
|
---|
28 | *
|
---|
29 | * Class: t_astro, t_tides, t_tropo
|
---|
30 | *
|
---|
31 | * Purpose: Observation model
|
---|
32 | *
|
---|
33 | * Author: L. Mervart
|
---|
34 | *
|
---|
35 | * Created: 29-Jul-2014
|
---|
36 | *
|
---|
37 | * Changes:
|
---|
38 | *
|
---|
39 | * -----------------------------------------------------------------------*/
|
---|
40 |
|
---|
41 | #include <cmath>
|
---|
42 |
|
---|
43 | #include "pppModel.h"
|
---|
44 |
|
---|
45 | using namespace BNC_PPP;
|
---|
46 | using namespace std;
|
---|
47 |
|
---|
48 |
|
---|
49 |
|
---|
50 | Matrix t_astro::rotX(double Angle) {
|
---|
51 | const double C = cos(Angle);
|
---|
52 | const double S = sin(Angle);
|
---|
53 | Matrix UU(3, 3);
|
---|
54 | UU[0][0] = 1.0;
|
---|
55 | UU[0][1] = 0.0;
|
---|
56 | UU[0][2] = 0.0;
|
---|
57 | UU[1][0] = 0.0;
|
---|
58 | UU[1][1] = +C;
|
---|
59 | UU[1][2] = +S;
|
---|
60 | UU[2][0] = 0.0;
|
---|
61 | UU[2][1] = -S;
|
---|
62 | UU[2][2] = +C;
|
---|
63 | return UU;
|
---|
64 | }
|
---|
65 |
|
---|
66 | Matrix t_astro::rotY(double Angle) {
|
---|
67 | const double C = cos(Angle);
|
---|
68 | const double S = sin(Angle);
|
---|
69 | Matrix UU(3, 3);
|
---|
70 | UU[0][0] = +C;
|
---|
71 | UU[0][1] = 0.0;
|
---|
72 | UU[0][2] = -S;
|
---|
73 | UU[1][0] = 0.0;
|
---|
74 | UU[1][1] = 1.0;
|
---|
75 | UU[1][2] = 0.0;
|
---|
76 | UU[2][0] = +S;
|
---|
77 | UU[2][1] = 0.0;
|
---|
78 | UU[2][2] = +C;
|
---|
79 | return UU;
|
---|
80 | }
|
---|
81 |
|
---|
82 | Matrix t_astro::rotZ(double Angle) {
|
---|
83 | const double C = cos(Angle);
|
---|
84 | const double S = sin(Angle);
|
---|
85 | Matrix UU(3, 3);
|
---|
86 | UU[0][0] = +C;
|
---|
87 | UU[0][1] = +S;
|
---|
88 | UU[0][2] = 0.0;
|
---|
89 | UU[1][0] = -S;
|
---|
90 | UU[1][1] = +C;
|
---|
91 | UU[1][2] = 0.0;
|
---|
92 | UU[2][0] = 0.0;
|
---|
93 | UU[2][1] = 0.0;
|
---|
94 | UU[2][2] = 1.0;
|
---|
95 | return UU;
|
---|
96 | }
|
---|
97 |
|
---|
98 | // Greenwich Mean Sidereal Time
|
---|
99 | ///////////////////////////////////////////////////////////////////////////
|
---|
100 | double t_astro::GMST(double Mjd_UT1) {
|
---|
101 |
|
---|
102 | const double Secs = 86400.0;
|
---|
103 |
|
---|
104 | double Mjd_0 = floor(Mjd_UT1);
|
---|
105 | double UT1 = Secs * (Mjd_UT1 - Mjd_0);
|
---|
106 | double T_0 = (Mjd_0 - MJD_J2000) / 36525.0;
|
---|
107 | double T = (Mjd_UT1 - MJD_J2000) / 36525.0;
|
---|
108 |
|
---|
109 | double gmst = 24110.54841 + 8640184.812866 * T_0 + 1.002737909350795 * UT1
|
---|
110 | + (0.093104 - 6.2e-6 * T) * T * T;
|
---|
111 |
|
---|
112 | return 2.0 * M_PI * Frac(gmst / Secs);
|
---|
113 | }
|
---|
114 |
|
---|
115 | // Nutation Matrix
|
---|
116 | ///////////////////////////////////////////////////////////////////////////
|
---|
117 | Matrix t_astro::NutMatrix(double Mjd_TT) {
|
---|
118 |
|
---|
119 | const double T = (Mjd_TT - MJD_J2000) / 36525.0;
|
---|
120 |
|
---|
121 | double ls = 2.0 * M_PI * Frac(0.993133 + 99.997306 * T);
|
---|
122 | double D = 2.0 * M_PI * Frac(0.827362 + 1236.853087 * T);
|
---|
123 | double F = 2.0 * M_PI * Frac(0.259089 + 1342.227826 * T);
|
---|
124 | double N = 2.0 * M_PI * Frac(0.347346 - 5.372447 * T);
|
---|
125 |
|
---|
126 | double dpsi = (-17.200 * sin(N) - 1.319 * sin(2 * (F - D + N))
|
---|
127 | - 0.227 * sin(2 * (F + N))
|
---|
128 | + 0.206 * sin(2 * N) + 0.143 * sin(ls)) / RHO_SEC;
|
---|
129 | double deps = (+9.203 * cos(N) + 0.574 * cos(2 * (F - D + N))
|
---|
130 | + 0.098 * cos(2 * (F + N))
|
---|
131 | - 0.090 * cos(2 * N)) / RHO_SEC;
|
---|
132 |
|
---|
133 | double eps = 0.4090928 - 2.2696E-4 * T;
|
---|
134 |
|
---|
135 | return rotX(-eps - deps) * rotZ(-dpsi) * rotX(+eps);
|
---|
136 | }
|
---|
137 |
|
---|
138 | // Precession Matrix
|
---|
139 | ///////////////////////////////////////////////////////////////////////////
|
---|
140 | Matrix t_astro::PrecMatrix(double Mjd_1, double Mjd_2) {
|
---|
141 |
|
---|
142 | const double T = (Mjd_1 - MJD_J2000) / 36525.0;
|
---|
143 | const double dT = (Mjd_2 - Mjd_1) / 36525.0;
|
---|
144 |
|
---|
145 | double zeta = ((2306.2181 + (1.39656 - 0.000139 * T) * T) +
|
---|
146 | ((0.30188 - 0.000344 * T) + 0.017998 * dT) * dT) * dT / RHO_SEC;
|
---|
147 | double z = zeta
|
---|
148 | + ((0.79280 + 0.000411 * T) + 0.000205 * dT) * dT * dT / RHO_SEC;
|
---|
149 | double theta = ((2004.3109 - (0.85330 + 0.000217 * T) * T) -
|
---|
150 | ((0.42665 + 0.000217 * T) + 0.041833 * dT) * dT) * dT / RHO_SEC;
|
---|
151 |
|
---|
152 | return rotZ(-z) * rotY(theta) * rotZ(-zeta);
|
---|
153 | }
|
---|
154 |
|
---|
155 | // Sun's position
|
---|
156 | ///////////////////////////////////////////////////////////////////////////
|
---|
157 | ColumnVector t_astro::Sun(double Mjd_TT) {
|
---|
158 |
|
---|
159 | const double eps = 23.43929111 / RHO_DEG;
|
---|
160 | const double T = (Mjd_TT - MJD_J2000) / 36525.0;
|
---|
161 |
|
---|
162 | double M = 2.0 * M_PI * Frac(0.9931267 + 99.9973583 * T);
|
---|
163 | double L = 2.0 * M_PI * Frac(0.7859444 + M / 2.0 / M_PI +
|
---|
164 | (6892.0 * sin(M) + 72.0 * sin(2.0 * M)) / 1296.0e3);
|
---|
165 | double r = 149.619e9 - 2.499e9 * cos(M) - 0.021e9 * cos(2 * M);
|
---|
166 |
|
---|
167 | ColumnVector r_Sun(3);
|
---|
168 | r_Sun << r * cos(L) << r * sin(L) << 0.0;
|
---|
169 | r_Sun = rotX(-eps) * r_Sun;
|
---|
170 |
|
---|
171 | return rotZ(GMST(Mjd_TT))
|
---|
172 | * NutMatrix(Mjd_TT)
|
---|
173 | * PrecMatrix(MJD_J2000, Mjd_TT)
|
---|
174 | * r_Sun;
|
---|
175 | }
|
---|
176 |
|
---|
177 | // Moon's position
|
---|
178 | ///////////////////////////////////////////////////////////////////////////
|
---|
179 | ColumnVector t_astro::Moon(double Mjd_TT) {
|
---|
180 |
|
---|
181 | const double eps = 23.43929111 / RHO_DEG;
|
---|
182 | const double T = (Mjd_TT - MJD_J2000) / 36525.0;
|
---|
183 |
|
---|
184 | double L_0 = Frac(0.606433 + 1336.851344 * T);
|
---|
185 | double l = 2.0 * M_PI * Frac(0.374897 + 1325.552410 * T);
|
---|
186 | double lp = 2.0 * M_PI * Frac(0.993133 + 99.997361 * T);
|
---|
187 | double D = 2.0 * M_PI * Frac(0.827361 + 1236.853086 * T);
|
---|
188 | double F = 2.0 * M_PI * Frac(0.259086 + 1342.227825 * T);
|
---|
189 |
|
---|
190 | double dL = +22640 * sin(l) - 4586 * sin(l - 2 * D) + 2370 * sin(2 * D)
|
---|
191 | + 769 * sin(2 * l)
|
---|
192 | - 668 * sin(lp) - 412 * sin(2 * F) - 212 * sin(2 * l - 2 * D)
|
---|
193 | - 206 * sin(l + lp - 2 * D)
|
---|
194 | + 192 * sin(l + 2 * D) - 165 * sin(lp - 2 * D) - 125 * sin(D)
|
---|
195 | - 110 * sin(l + lp)
|
---|
196 | + 148 * sin(l - lp) - 55 * sin(2 * F - 2 * D);
|
---|
197 |
|
---|
198 | double L = 2.0 * M_PI * Frac(L_0 + dL / 1296.0e3);
|
---|
199 |
|
---|
200 | double S = F + (dL + 412 * sin(2 * F) + 541 * sin(lp)) / RHO_SEC;
|
---|
201 | double h = F - 2 * D;
|
---|
202 | double N = -526 * sin(h) + 44 * sin(l + h) - 31 * sin(-l + h)
|
---|
203 | - 23 * sin(lp + h)
|
---|
204 | + 11 * sin(-lp + h) - 25 * sin(-2 * l + F) + 21 * sin(-l + F);
|
---|
205 |
|
---|
206 | double B = (18520.0 * sin(S) + N) / RHO_SEC;
|
---|
207 |
|
---|
208 | double cosB = cos(B);
|
---|
209 |
|
---|
210 | double R = 385000e3 - 20905e3 * cos(l) - 3699e3 * cos(2 * D - l)
|
---|
211 | - 2956e3 * cos(2 * D)
|
---|
212 | - 570e3 * cos(2 * l) + 246e3 * cos(2 * l - 2 * D)
|
---|
213 | - 205e3 * cos(lp - 2 * D)
|
---|
214 | - 171e3 * cos(l + 2 * D) - 152e3 * cos(l + lp - 2 * D);
|
---|
215 |
|
---|
216 | ColumnVector r_Moon(3);
|
---|
217 | r_Moon << R * cos(L) * cosB << R * sin(L) * cosB << R * sin(B);
|
---|
218 | r_Moon = rotX(-eps) * r_Moon;
|
---|
219 |
|
---|
220 | return rotZ(GMST(Mjd_TT))
|
---|
221 | * NutMatrix(Mjd_TT)
|
---|
222 | * PrecMatrix(MJD_J2000, Mjd_TT)
|
---|
223 | * r_Moon;
|
---|
224 | }
|
---|
225 |
|
---|
226 | // Tidal Correction
|
---|
227 | ////////////////////////////////////////////////////////////////////////////
|
---|
228 | ColumnVector t_tides::earth(const bncTime& time, const ColumnVector& xyz) {
|
---|
229 |
|
---|
230 | if (time.undef()) {
|
---|
231 | ColumnVector dX(3);
|
---|
232 | dX = 0.0;
|
---|
233 | return dX;
|
---|
234 | }
|
---|
235 |
|
---|
236 | double Mjd = time.mjd() + time.daysec() / 86400.0;
|
---|
237 |
|
---|
238 | if (Mjd != _lastMjd) {
|
---|
239 | _lastMjd = Mjd;
|
---|
240 | _xSun = t_astro::Sun(Mjd);
|
---|
241 | _rSun = sqrt(DotProduct(_xSun, _xSun));
|
---|
242 | _xSun /= _rSun;
|
---|
243 | _xMoon = t_astro::Moon(Mjd);
|
---|
244 | _rMoon = sqrt(DotProduct(_xMoon, _xMoon));
|
---|
245 | _xMoon /= _rMoon;
|
---|
246 | }
|
---|
247 |
|
---|
248 | double rRec = sqrt(DotProduct(xyz, xyz));
|
---|
249 | ColumnVector xyzUnit = xyz / rRec;
|
---|
250 |
|
---|
251 | // Love's Numbers
|
---|
252 | // --------------
|
---|
253 | const double H2 = 0.6078;
|
---|
254 | const double L2 = 0.0847;
|
---|
255 |
|
---|
256 | // Tidal Displacement
|
---|
257 | // ------------------
|
---|
258 | double scSun = DotProduct(xyzUnit, _xSun);
|
---|
259 | double scMoon = DotProduct(xyzUnit, _xMoon);
|
---|
260 |
|
---|
261 | double p2Sun = 3.0 * (H2 / 2.0 - L2) * scSun * scSun - H2 / 2.0;
|
---|
262 | double p2Moon = 3.0 * (H2 / 2.0 - L2) * scMoon * scMoon - H2 / 2.0;
|
---|
263 |
|
---|
264 | double x2Sun = 3.0 * L2 * scSun;
|
---|
265 | double x2Moon = 3.0 * L2 * scMoon;
|
---|
266 |
|
---|
267 | const double gmWGS = 398.6005e12;
|
---|
268 | const double gms = 1.3271250e20;
|
---|
269 | const double gmm = 4.9027890e12;
|
---|
270 |
|
---|
271 | double facSun = gms / gmWGS *
|
---|
272 | (rRec * rRec * rRec * rRec) / (_rSun * _rSun * _rSun);
|
---|
273 |
|
---|
274 | double facMoon = gmm / gmWGS *
|
---|
275 | (rRec * rRec * rRec * rRec) / (_rMoon * _rMoon * _rMoon);
|
---|
276 |
|
---|
277 | ColumnVector dX = facSun * (x2Sun * _xSun + p2Sun * xyzUnit)
|
---|
278 | + facMoon * (x2Moon * _xMoon + p2Moon * xyzUnit);
|
---|
279 |
|
---|
280 | return dX;
|
---|
281 | }
|
---|
282 |
|
---|
283 | // Constructor
|
---|
284 | ///////////////////////////////////////////////////////////////////////////
|
---|
285 | t_tides::t_tides() {
|
---|
286 | _lastMjd = 0.0;
|
---|
287 | _rSun = 0.0;
|
---|
288 | _rMoon = 0.0;
|
---|
289 | newBlqData = 0;
|
---|
290 | }
|
---|
291 |
|
---|
292 | t_tides::~t_tides() {
|
---|
293 |
|
---|
294 | if (newBlqData) {
|
---|
295 | delete newBlqData;
|
---|
296 | }
|
---|
297 |
|
---|
298 | QMapIterator<QString, t_blqData*> it(blqMap);
|
---|
299 | while (it.hasNext()) {
|
---|
300 | it.next();
|
---|
301 | delete it.value();
|
---|
302 | }
|
---|
303 | blqMap.clear();
|
---|
304 | }
|
---|
305 |
|
---|
306 | t_irc t_tides::readBlqFile(const char* fileName) {
|
---|
307 | QFile inFile(fileName);
|
---|
308 | inFile.open(QIODevice::ReadOnly | QIODevice::Text);
|
---|
309 | QTextStream in(&inFile);
|
---|
310 | int row = 0;
|
---|
311 | QString site = QString();
|
---|
312 |
|
---|
313 | while (!in.atEnd()) {
|
---|
314 |
|
---|
315 | QString line = in.readLine();
|
---|
316 |
|
---|
317 | // skip empty lines and comments
|
---|
318 | if (line.indexOf("$$") != -1) {
|
---|
319 | continue;
|
---|
320 | }
|
---|
321 | line = line.trimmed();
|
---|
322 | QTextStream inLine(line.toLatin1(), QIODevice::ReadOnly);
|
---|
323 | switch (row) {
|
---|
324 | case 0:
|
---|
325 | site = line;
|
---|
326 | site = site.toUpper();
|
---|
327 | newBlqData = new t_blqData;
|
---|
328 | newBlqData->amplitudes.ReSize(3, 11);
|
---|
329 | newBlqData->phases.ReSize(3, 11);
|
---|
330 | break;
|
---|
331 | case 1:
|
---|
332 | case 2:
|
---|
333 | case 3:
|
---|
334 | for (int ii = 0; ii < 11; ii++) {
|
---|
335 | inLine >> newBlqData->amplitudes[row - 1][ii];
|
---|
336 | }
|
---|
337 | break;
|
---|
338 | case 4:
|
---|
339 | case 5:
|
---|
340 | for (int ii = 0; ii < 11; ii++) {
|
---|
341 | inLine >> newBlqData->phases[row - 4][ii];
|
---|
342 | }
|
---|
343 | break;
|
---|
344 | case 6:
|
---|
345 | for (int ii = 0; ii < 11; ii++) {
|
---|
346 | inLine >> newBlqData->phases[row - 4][ii];
|
---|
347 | }
|
---|
348 | if (newBlqData && !site.isEmpty()) {
|
---|
349 | blqMap[site] = newBlqData;
|
---|
350 | site = QString();
|
---|
351 | newBlqData = 0;
|
---|
352 | }
|
---|
353 | row = -1;
|
---|
354 | break;
|
---|
355 | }
|
---|
356 | row++;
|
---|
357 | }
|
---|
358 | inFile.close();
|
---|
359 | return success;
|
---|
360 | }
|
---|
361 |
|
---|
362 | ColumnVector t_tides::ocean(const bncTime& time, const ColumnVector& xyz,
|
---|
363 | const std::string& station) {
|
---|
364 | ColumnVector dX(3); dX = 0.0;
|
---|
365 | if (time.undef()) {
|
---|
366 | return dX;
|
---|
367 | }
|
---|
368 | QString stationQ = station.c_str();
|
---|
369 | if (blqMap.find(stationQ) == blqMap.end()) {
|
---|
370 | return dX;
|
---|
371 | }
|
---|
372 | t_blqData* blqSet = blqMap[stationQ]; //printBlqSet(station, blqSet);
|
---|
373 |
|
---|
374 | // angular argument: see arg2.f from IERS Conventions software collection
|
---|
375 | double speed[11] = {1.40519e-4, 1.45444e-4, 1.3788e-4, 1.45842e-4, 7.2921e-5,
|
---|
376 | 6.7598e-5, 7.2523e-5, 6.4959e-5, 5.3234e-6, 2.6392e-6, 3.982e-7};
|
---|
377 |
|
---|
378 | double angfac[4][11];
|
---|
379 | angfac[0][0] = 2.0;
|
---|
380 | angfac[1][0] =-2.0;
|
---|
381 | angfac[2][0] = 0.0;
|
---|
382 | angfac[3][0] = 0.0;
|
---|
383 |
|
---|
384 | angfac[0][1] = 0.0;
|
---|
385 | angfac[1][1] = 0.0;
|
---|
386 | angfac[2][1] = 0.0;
|
---|
387 | angfac[3][1] = 0.0;
|
---|
388 |
|
---|
389 | angfac[0][2] = 2.0;
|
---|
390 | angfac[1][2] =-3.0;
|
---|
391 | angfac[2][2] = 1.0;
|
---|
392 | angfac[3][2] = 0.0;
|
---|
393 |
|
---|
394 | angfac[0][3] = 2.0;
|
---|
395 | angfac[1][3] = 0.0;
|
---|
396 | angfac[2][3] = 0.0;
|
---|
397 | angfac[3][3] = 0.0;
|
---|
398 |
|
---|
399 | angfac[0][4] = 1.0;
|
---|
400 | angfac[1][4] = 0.0;
|
---|
401 | angfac[2][4] = 0.0;
|
---|
402 | angfac[3][4] = .25;
|
---|
403 |
|
---|
404 | angfac[0][5] = 1.0;
|
---|
405 | angfac[1][5] =-2.0;
|
---|
406 | angfac[2][5] = 0.0;
|
---|
407 | angfac[3][5] =-.25;
|
---|
408 |
|
---|
409 | angfac[0][6] =-1.0;
|
---|
410 | angfac[1][6] = 0.0;
|
---|
411 | angfac[2][6] = 0.0;
|
---|
412 | angfac[3][6] =-.25;
|
---|
413 |
|
---|
414 | angfac[0][7] = 1.0;
|
---|
415 | angfac[1][7] =-3.0;
|
---|
416 | angfac[2][7] = 1.0;
|
---|
417 | angfac[3][7] =-.25;
|
---|
418 |
|
---|
419 | angfac[0][8] = 0.0;
|
---|
420 | angfac[1][8] = 2.0;
|
---|
421 | angfac[2][8] = 0.0;
|
---|
422 | angfac[3][8] = 0.0;
|
---|
423 |
|
---|
424 | angfac[0][9] = 0.0;
|
---|
425 | angfac[1][9] = 1.0;
|
---|
426 | angfac[2][9] =-1.0;
|
---|
427 | angfac[3][9] = 0.0;
|
---|
428 |
|
---|
429 | angfac[0][10] = 2.0;
|
---|
430 | angfac[1][10] = 0.0;
|
---|
431 | angfac[2][10] = 0.0;
|
---|
432 | angfac[3][10] = 0.0;
|
---|
433 |
|
---|
434 | double twopi = 6.283185307179586476925287e0;
|
---|
435 | double dtr = 0.0174532925199;
|
---|
436 |
|
---|
437 | // fractional part of the day in seconds
|
---|
438 | unsigned int year, month, day;
|
---|
439 | time.civil_date(year, month, day);
|
---|
440 | int iyear = year - 2000;
|
---|
441 | QDateTime datTim = QDateTime::fromString(QString::fromStdString(time.datestr()), Qt::ISODate);
|
---|
442 | int doy = datTim.date().dayOfYear();
|
---|
443 | double fday = time.daysec();
|
---|
444 | int icapd = doy + 365 * (iyear - 75) + ((iyear - 73) / 4);
|
---|
445 | double capt = (icapd * 1.000000035 + 27392.500528) / 36525.0;
|
---|
446 |
|
---|
447 | // mean longitude of the sun at the beginning of the day
|
---|
448 | double h0 = (279.69668e0 + (36000.768930485e0 + 3.03e-4 * capt) * capt) * dtr;
|
---|
449 |
|
---|
450 | // mean longitude of moon at the beginning of the day
|
---|
451 | double s0 = (((1.9e-6 * capt - .001133e0) * capt + 481267.88314137e0) * capt + 270.434358e0) * dtr;
|
---|
452 |
|
---|
453 | // mean longitude of lunar perigee at the beginning of the day
|
---|
454 | double p0 = (((-1.2e-5 * capt - .010325e0) * capt + 4069.0340329577e0) * capt + 334.329653e0) * dtr;
|
---|
455 |
|
---|
456 | // tidal angle arguments
|
---|
457 | double angle[11];
|
---|
458 | for (int k = 0; k < 11; ++k) {
|
---|
459 | angle[k] = speed[k] * fday
|
---|
460 | + angfac[0][k] * h0
|
---|
461 | + angfac[1][k] * s0
|
---|
462 | + angfac[2][k] * p0
|
---|
463 | + angfac[3][k] * twopi;
|
---|
464 | angle[k] = fmod(angle[k], twopi);
|
---|
465 | if (angle[k] < 0.0) {
|
---|
466 | angle[k] += twopi;
|
---|
467 | }
|
---|
468 | }
|
---|
469 |
|
---|
470 | // displacement by 11 constituents
|
---|
471 | ColumnVector rwsSta(3); rwsSta = 0.0; // radial, west, south
|
---|
472 | for (int rr = 0; rr < 3; rr++) {
|
---|
473 | for (int cc = 0; cc < 11; cc++) {
|
---|
474 | rwsSta[rr] += blqSet->amplitudes[rr][cc] * cos((angle[cc] - (blqSet->phases[rr][cc]/RHO_DEG)));
|
---|
475 | }
|
---|
476 | }
|
---|
477 |
|
---|
478 | // neu2xyz
|
---|
479 | ColumnVector dneu(3); // neu
|
---|
480 | dneu[0] = -rwsSta[2];
|
---|
481 | dneu[1] = -rwsSta[1];
|
---|
482 | dneu[2] = rwsSta[0];
|
---|
483 | double recEll[3]; xyz2ell(xyz.data(), recEll) ;
|
---|
484 | neu2xyz(recEll, dneu.data(), dX.data());
|
---|
485 |
|
---|
486 | return dX;
|
---|
487 | }
|
---|
488 |
|
---|
489 | // Print
|
---|
490 | ////////////////////////////////////////////////////////////////////////////
|
---|
491 | void t_tides::printAllBlqSets() const {
|
---|
492 |
|
---|
493 | QMapIterator<QString, t_blqData*> it(blqMap);
|
---|
494 | while (it.hasNext()) {
|
---|
495 | it.next();
|
---|
496 | t_blqData* blq = it.value();
|
---|
497 | QString site = it.key();
|
---|
498 | cout << site.toStdString().c_str() << "\n===============\n";
|
---|
499 | for (int rr = 0; rr < 3; rr++) {
|
---|
500 | for (int cc = 0; cc < 11; cc++) {
|
---|
501 | cout << blq->amplitudes[rr][cc] << " ";
|
---|
502 | }
|
---|
503 | cout << endl;
|
---|
504 | }
|
---|
505 | for (int rr = 0; rr < 3; rr++) {
|
---|
506 | for (int cc = 0; cc < 11; cc++) {
|
---|
507 | cout << blq->phases[rr][cc] << " ";
|
---|
508 | }
|
---|
509 | cout << endl;
|
---|
510 | }
|
---|
511 | }
|
---|
512 | }
|
---|
513 |
|
---|
514 | // Print
|
---|
515 | ////////////////////////////////////////////////////////////////////////////
|
---|
516 | void t_tides::printBlqSet(const std::string& station, t_blqData* blq) {
|
---|
517 | cout << station << endl;
|
---|
518 | for (int rr = 0; rr < 3; rr++) {
|
---|
519 | for (int cc = 0; cc < 11; cc++) {
|
---|
520 | cout << blq->amplitudes[rr][cc] << " ";
|
---|
521 | }
|
---|
522 | cout << endl;
|
---|
523 | }
|
---|
524 | for (int rr = 0; rr < 3; rr++) {
|
---|
525 | for (int cc = 0; cc < 11; cc++) {
|
---|
526 | cout << blq->phases[rr][cc] << " ";
|
---|
527 | }
|
---|
528 | cout << endl;
|
---|
529 | }
|
---|
530 | }
|
---|
531 |
|
---|
532 | // Constructor
|
---|
533 | ///////////////////////////////////////////////////////////////////////////
|
---|
534 | t_windUp::t_windUp() {
|
---|
535 | for (unsigned ii = 0; ii <= t_prn::MAXPRN; ii++) {
|
---|
536 | sumWind[ii] = 0.0;
|
---|
537 | lastEtime[ii] = 0.0;
|
---|
538 | }
|
---|
539 | }
|
---|
540 |
|
---|
541 | // Phase Wind-Up Correction
|
---|
542 | ///////////////////////////////////////////////////////////////////////////
|
---|
543 | double t_windUp::value(const bncTime& etime, const ColumnVector& rRec,
|
---|
544 | t_prn prn, const ColumnVector& rSat, bool ssr,
|
---|
545 | double yaw, const ColumnVector& vSat) {
|
---|
546 |
|
---|
547 | if (etime.mjddec() != lastEtime[prn.toInt()]) {
|
---|
548 |
|
---|
549 | // Unit Vector GPS Satellite --> Receiver
|
---|
550 | // --------------------------------------
|
---|
551 | ColumnVector rho = rRec - rSat;
|
---|
552 | rho /= rho.NormFrobenius();
|
---|
553 |
|
---|
554 | // GPS Satellite unit Vectors sz, sy, sx
|
---|
555 | // -------------------------------------
|
---|
556 | ColumnVector sHlp;
|
---|
557 | if (!ssr) {
|
---|
558 | sHlp = t_astro::Sun(etime.mjddec());
|
---|
559 | }
|
---|
560 | else {
|
---|
561 | ColumnVector Omega(3);
|
---|
562 | Omega[0] = 0.0;
|
---|
563 | Omega[1] = 0.0;
|
---|
564 | Omega[2] = t_CST::omega;
|
---|
565 | sHlp = vSat + crossproduct(Omega, rSat);
|
---|
566 | }
|
---|
567 | sHlp /= sHlp.NormFrobenius();
|
---|
568 |
|
---|
569 | ColumnVector sz = -rSat / rSat.NormFrobenius();
|
---|
570 | ColumnVector sy = crossproduct(sz, sHlp);
|
---|
571 | ColumnVector sx = crossproduct(sy, sz);
|
---|
572 |
|
---|
573 | if (ssr) {
|
---|
574 | // Yaw angle consideration
|
---|
575 | Matrix SXYZ(3, 3);
|
---|
576 | SXYZ.Column(1) = sx;
|
---|
577 | SXYZ.Column(2) = sy;
|
---|
578 | SXYZ.Column(3) = sz;
|
---|
579 | SXYZ = DotProduct(t_astro::rotZ(yaw), SXYZ);
|
---|
580 | sx = SXYZ.Column(1);
|
---|
581 | sy = SXYZ.Column(2);
|
---|
582 | sz = SXYZ.Column(3);
|
---|
583 | }
|
---|
584 | // Effective Dipole of the GPS Satellite Antenna
|
---|
585 | // ---------------------------------------------
|
---|
586 | ColumnVector dipSat = sx - rho * DotProduct(rho, sx)
|
---|
587 | - crossproduct(rho, sy);
|
---|
588 |
|
---|
589 | // Receiver unit Vectors rx, ry
|
---|
590 | // ----------------------------
|
---|
591 | ColumnVector rx(3);
|
---|
592 | ColumnVector ry(3);
|
---|
593 | double recEll[3];
|
---|
594 | xyz2ell(rRec.data(), recEll);
|
---|
595 | double neu[3];
|
---|
596 |
|
---|
597 | neu[0] = 1.0;
|
---|
598 | neu[1] = 0.0;
|
---|
599 | neu[2] = 0.0;
|
---|
600 | neu2xyz(recEll, neu, rx.data());
|
---|
601 |
|
---|
602 | neu[0] = 0.0;
|
---|
603 | neu[1] = -1.0;
|
---|
604 | neu[2] = 0.0;
|
---|
605 | neu2xyz(recEll, neu, ry.data());
|
---|
606 |
|
---|
607 | // Effective Dipole of the Receiver Antenna
|
---|
608 | // ----------------------------------------
|
---|
609 | ColumnVector dipRec = rx - rho * DotProduct(rho, rx)
|
---|
610 | + crossproduct(rho, ry);
|
---|
611 |
|
---|
612 | // Resulting Effect
|
---|
613 | // ----------------
|
---|
614 | double alpha = DotProduct(dipSat, dipRec)
|
---|
615 | / (dipSat.NormFrobenius() * dipRec.NormFrobenius());
|
---|
616 |
|
---|
617 | if (alpha > 1.0)
|
---|
618 | alpha = 1.0;
|
---|
619 | if (alpha < -1.0)
|
---|
620 | alpha = -1.0;
|
---|
621 |
|
---|
622 | double dphi = acos(alpha) / 2.0 / M_PI; // in cycles
|
---|
623 |
|
---|
624 | if (DotProduct(rho, crossproduct(dipSat, dipRec)) < 0.0) {
|
---|
625 | dphi = -dphi;
|
---|
626 | }
|
---|
627 |
|
---|
628 | if (lastEtime[prn.toInt()] == 0.0) {
|
---|
629 | sumWind[prn.toInt()] = dphi;
|
---|
630 | }
|
---|
631 | else {
|
---|
632 | sumWind[prn.toInt()] = nint(sumWind[prn.toInt()] - dphi) + dphi;
|
---|
633 | }
|
---|
634 |
|
---|
635 | lastEtime[prn.toInt()] = etime.mjddec();
|
---|
636 | }
|
---|
637 |
|
---|
638 | return sumWind[prn.toInt()];
|
---|
639 | }
|
---|
640 |
|
---|
641 | // Tropospheric Model (Saastamoinen)
|
---|
642 | ////////////////////////////////////////////////////////////////////////////
|
---|
643 | double t_tropo::delay_saast(const ColumnVector& xyz, double Ele) {
|
---|
644 |
|
---|
645 | Tracer tracer("bncModel::delay_saast");
|
---|
646 |
|
---|
647 | if (xyz[0] == 0.0 && xyz[1] == 0.0 && xyz[2] == 0.0) {
|
---|
648 | return 0.0;
|
---|
649 | }
|
---|
650 |
|
---|
651 | double ell[3];
|
---|
652 | xyz2ell(xyz.data(), ell);
|
---|
653 | double height = ell[2];
|
---|
654 | // Prevent pp from causing segmentation fault (Loukis)
|
---|
655 | if (height > 40000.0 ) {
|
---|
656 | return 0.000000001;
|
---|
657 | }
|
---|
658 |
|
---|
659 | double pp = 1013.25 * pow(1.0 - 2.26e-5 * height, 5.225);
|
---|
660 | double TT = 18.0 - height * 0.0065 + 273.15;
|
---|
661 | double hh = 50.0 * exp(-6.396e-4 * height);
|
---|
662 | double ee = hh / 100.0
|
---|
663 | * exp(-37.2465 + 0.213166 * TT - 0.000256908 * TT * TT);
|
---|
664 |
|
---|
665 | double h_km = height / 1000.0;
|
---|
666 |
|
---|
667 | if (h_km < 0.0)
|
---|
668 | h_km = 0.0;
|
---|
669 | if (h_km > 5.0)
|
---|
670 | h_km = 5.0;
|
---|
671 | int ii = int(h_km + 1);
|
---|
672 | if (ii > 5)
|
---|
673 | ii = 5;
|
---|
674 | double href = ii - 1;
|
---|
675 |
|
---|
676 | double bCor[6];
|
---|
677 | bCor[0] = 1.156;
|
---|
678 | bCor[1] = 1.006;
|
---|
679 | bCor[2] = 0.874;
|
---|
680 | bCor[3] = 0.757;
|
---|
681 | bCor[4] = 0.654;
|
---|
682 | bCor[5] = 0.563;
|
---|
683 |
|
---|
684 | double BB = bCor[ii - 1] + (bCor[ii] - bCor[ii - 1]) * (h_km - href);
|
---|
685 |
|
---|
686 | double zen = M_PI / 2.0 - Ele;
|
---|
687 |
|
---|
688 | return (0.002277 / cos(zen))
|
---|
689 | * (pp + ((1255.0 / TT) + 0.05) * ee - BB * (tan(zen) * tan(zen)));
|
---|
690 | }
|
---|
691 |
|
---|
692 | // Constructor
|
---|
693 | ///////////////////////////////////////////////////////////////////////////
|
---|
694 | t_iono::t_iono() {
|
---|
695 | _psiPP = _phiPP = _lambdaPP = _lonS = 0.0;
|
---|
696 | }
|
---|
697 |
|
---|
698 | t_iono::~t_iono() {
|
---|
699 | }
|
---|
700 |
|
---|
701 | double t_iono::stec(const t_vTec* vTec, double signalPropagationTime,
|
---|
702 | const ColumnVector& rSat, const bncTime& epochTime,
|
---|
703 | const ColumnVector& xyzSta) {
|
---|
704 |
|
---|
705 | // Latitude, longitude, height are defined with respect to a spherical earth model
|
---|
706 | // -------------------------------------------------------------------------------
|
---|
707 | ColumnVector geocSta(3);
|
---|
708 | if (xyz2geoc(xyzSta.data(), geocSta.data()) != success) {
|
---|
709 | return 0.0;
|
---|
710 | }
|
---|
711 |
|
---|
712 | // satellite position rotated to the epoch of signal reception
|
---|
713 | // -----------------------------------------------------------
|
---|
714 | ColumnVector xyzSat(3);
|
---|
715 | double omegaZ = t_CST::omega * signalPropagationTime;
|
---|
716 | xyzSat[0] = rSat[0] * cos(omegaZ) + rSat[1] * sin(omegaZ);
|
---|
717 | xyzSat[1] = rSat[1] * cos(omegaZ) - rSat[0] * sin(omegaZ);
|
---|
718 | xyzSat[2] = rSat[2];
|
---|
719 |
|
---|
720 | // elevation and azimuth with respect to a spherical earth model
|
---|
721 | // -------------------------------------------------------------
|
---|
722 | ColumnVector rhoV = xyzSat - xyzSta;
|
---|
723 | double rho = rhoV.NormFrobenius();
|
---|
724 | ColumnVector neu(3);
|
---|
725 | xyz2neu(geocSta.data(), rhoV.data(), neu.data());
|
---|
726 | double sphEle = acos(sqrt(neu[0] * neu[0] + neu[1] * neu[1]) / rho);
|
---|
727 | if (neu[2] < 0) {
|
---|
728 | sphEle *= -1.0;
|
---|
729 | }
|
---|
730 | double sphAzi = atan2(neu[1], neu[0]);
|
---|
731 |
|
---|
732 | double epoch = fmod(epochTime.gpssec(), 86400.0);
|
---|
733 |
|
---|
734 | double stec = 0.0;
|
---|
735 | for (unsigned ii = 0; ii < vTec->_layers.size(); ii++) {
|
---|
736 | piercePoint(vTec->_layers[ii]._height, epoch, geocSta.data(), sphEle,
|
---|
737 | sphAzi);
|
---|
738 | double vtec = vtecSingleLayerContribution(vTec->_layers[ii]);
|
---|
739 | stec += vtec * sin(sphEle + _psiPP);
|
---|
740 | }
|
---|
741 | return stec;
|
---|
742 | }
|
---|
743 |
|
---|
744 | double t_iono::vtecSingleLayerContribution(const t_vTecLayer& vTecLayer) {
|
---|
745 |
|
---|
746 | double vtec = 0.0;
|
---|
747 | int N = vTecLayer._C.Nrows() - 1;
|
---|
748 | int M = vTecLayer._C.Ncols() - 1;
|
---|
749 | double fac;
|
---|
750 |
|
---|
751 | for (int n = 0; n <= N; n++) {
|
---|
752 | for (int m = 0; m <= min(n, M); m++) {
|
---|
753 | double pnm = associatedLegendreFunction(n, m, sin(_phiPP));
|
---|
754 | double a = factorial(n - m);
|
---|
755 | double b = factorial(n + m);
|
---|
756 | if (m == 0) {
|
---|
757 | fac = sqrt(2.0 * n + 1);
|
---|
758 | }
|
---|
759 | else {
|
---|
760 | fac = sqrt(2.0 * (2.0 * n + 1) * a / b);
|
---|
761 | }
|
---|
762 | pnm *= fac;
|
---|
763 | double Cnm_mlambda = vTecLayer._C[n][m] * cos(m * _lonS);
|
---|
764 | double Snm_mlambda = vTecLayer._S[n][m] * sin(m * _lonS);
|
---|
765 | vtec += (Snm_mlambda + Cnm_mlambda) * pnm;
|
---|
766 | }
|
---|
767 | }
|
---|
768 |
|
---|
769 | if (vtec < 0.0) {
|
---|
770 | vtec = 0.0;
|
---|
771 | }
|
---|
772 |
|
---|
773 | return vtec;
|
---|
774 | }
|
---|
775 |
|
---|
776 | void t_iono::piercePoint(double layerHeight, double epoch,
|
---|
777 | const double* geocSta,
|
---|
778 | double sphEle, double sphAzi) {
|
---|
779 |
|
---|
780 | double q = (t_CST::rgeoc + geocSta[2]) / (t_CST::rgeoc + layerHeight);
|
---|
781 |
|
---|
782 | _psiPP = M_PI / 2 - sphEle - asin(q * cos(sphEle));
|
---|
783 |
|
---|
784 | _phiPP = asin(
|
---|
785 | sin(geocSta[0]) * cos(_psiPP)
|
---|
786 | + cos(geocSta[0]) * sin(_psiPP) * cos(sphAzi));
|
---|
787 |
|
---|
788 | if (((geocSta[0] * 180.0 / M_PI > 0)
|
---|
789 | && (tan(_psiPP) * cos(sphAzi) > tan(M_PI / 2 - geocSta[0])))
|
---|
790 | ||
|
---|
791 | ((geocSta[0] * 180.0 / M_PI < 0)
|
---|
792 | && (-(tan(_psiPP) * cos(sphAzi)) > tan(M_PI / 2 + geocSta[0])))) {
|
---|
793 | _lambdaPP = geocSta[1] + M_PI
|
---|
794 | - asin((sin(_psiPP) * sin(sphAzi) / cos(_phiPP)));
|
---|
795 | }
|
---|
796 | else {
|
---|
797 | _lambdaPP = geocSta[1] + asin((sin(_psiPP) * sin(sphAzi) / cos(_phiPP)));
|
---|
798 | }
|
---|
799 |
|
---|
800 | _lonS = fmod((_lambdaPP + (epoch - 50400) * M_PI / 43200), 2 * M_PI);
|
---|
801 |
|
---|
802 | return;
|
---|
803 | }
|
---|
804 |
|
---|