[5828] | 1 | // Part of BNC, a utility for retrieving decoding and
|
---|
| 2 | // converting GNSS data streams from NTRIP broadcasters.
|
---|
| 3 | //
|
---|
| 4 | // Copyright (C) 2007
|
---|
| 5 | // German Federal Agency for Cartography and Geodesy (BKG)
|
---|
| 6 | // http://www.bkg.bund.de
|
---|
| 7 | // Czech Technical University Prague, Department of Geodesy
|
---|
| 8 | // http://www.fsv.cvut.cz
|
---|
| 9 | //
|
---|
| 10 | // Email: euref-ip@bkg.bund.de
|
---|
| 11 | //
|
---|
| 12 | // This program is free software; you can redistribute it and/or
|
---|
| 13 | // modify it under the terms of the GNU General Public License
|
---|
| 14 | // as published by the Free Software Foundation, version 2.
|
---|
| 15 | //
|
---|
| 16 | // This program is distributed in the hope that it will be useful,
|
---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | // GNU General Public License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU General Public License
|
---|
| 22 | // along with this program; if not, write to the Free Software
|
---|
| 23 | // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
| 24 |
|
---|
| 25 | /* -------------------------------------------------------------------------
|
---|
| 26 | * BKG NTRIP Client
|
---|
| 27 | * -------------------------------------------------------------------------
|
---|
| 28 | *
|
---|
| 29 | * Class: t_astro, t_tides, t_tropo
|
---|
| 30 | *
|
---|
| 31 | * Purpose: Observation model
|
---|
| 32 | *
|
---|
| 33 | * Author: L. Mervart
|
---|
| 34 | *
|
---|
| 35 | * Created: 29-Jul-2014
|
---|
| 36 | *
|
---|
[7996] | 37 | * Changes:
|
---|
[5828] | 38 | *
|
---|
| 39 | * -----------------------------------------------------------------------*/
|
---|
| 40 |
|
---|
[2578] | 41 | #include <cmath>
|
---|
| 42 |
|
---|
[5801] | 43 | #include "pppModel.h"
|
---|
[2578] | 44 |
|
---|
[5814] | 45 | using namespace BNC_PPP;
|
---|
[2578] | 46 | using namespace std;
|
---|
| 47 |
|
---|
[6268] | 48 |
|
---|
[8905] | 49 |
|
---|
[5801] | 50 | Matrix t_astro::rotX(double Angle) {
|
---|
| 51 | const double C = cos(Angle);
|
---|
| 52 | const double S = sin(Angle);
|
---|
[8905] | 53 | Matrix UU(3, 3);
|
---|
| 54 | UU[0][0] = 1.0;
|
---|
| 55 | UU[0][1] = 0.0;
|
---|
| 56 | UU[0][2] = 0.0;
|
---|
| 57 | UU[1][0] = 0.0;
|
---|
| 58 | UU[1][1] = +C;
|
---|
| 59 | UU[1][2] = +S;
|
---|
| 60 | UU[2][0] = 0.0;
|
---|
| 61 | UU[2][1] = -S;
|
---|
| 62 | UU[2][2] = +C;
|
---|
[5801] | 63 | return UU;
|
---|
| 64 | }
|
---|
[2578] | 65 |
|
---|
[5801] | 66 | Matrix t_astro::rotY(double Angle) {
|
---|
| 67 | const double C = cos(Angle);
|
---|
| 68 | const double S = sin(Angle);
|
---|
[8905] | 69 | Matrix UU(3, 3);
|
---|
| 70 | UU[0][0] = +C;
|
---|
| 71 | UU[0][1] = 0.0;
|
---|
| 72 | UU[0][2] = -S;
|
---|
| 73 | UU[1][0] = 0.0;
|
---|
| 74 | UU[1][1] = 1.0;
|
---|
| 75 | UU[1][2] = 0.0;
|
---|
| 76 | UU[2][0] = +S;
|
---|
| 77 | UU[2][1] = 0.0;
|
---|
| 78 | UU[2][2] = +C;
|
---|
[5801] | 79 | return UU;
|
---|
| 80 | }
|
---|
[2578] | 81 |
|
---|
[5801] | 82 | Matrix t_astro::rotZ(double Angle) {
|
---|
| 83 | const double C = cos(Angle);
|
---|
| 84 | const double S = sin(Angle);
|
---|
[8905] | 85 | Matrix UU(3, 3);
|
---|
| 86 | UU[0][0] = +C;
|
---|
| 87 | UU[0][1] = +S;
|
---|
| 88 | UU[0][2] = 0.0;
|
---|
| 89 | UU[1][0] = -S;
|
---|
| 90 | UU[1][1] = +C;
|
---|
| 91 | UU[1][2] = 0.0;
|
---|
| 92 | UU[2][0] = 0.0;
|
---|
| 93 | UU[2][1] = 0.0;
|
---|
| 94 | UU[2][2] = 1.0;
|
---|
[5801] | 95 | return UU;
|
---|
[2578] | 96 | }
|
---|
| 97 |
|
---|
| 98 | // Greenwich Mean Sidereal Time
|
---|
| 99 | ///////////////////////////////////////////////////////////////////////////
|
---|
[5801] | 100 | double t_astro::GMST(double Mjd_UT1) {
|
---|
[2578] | 101 |
|
---|
| 102 | const double Secs = 86400.0;
|
---|
| 103 |
|
---|
| 104 | double Mjd_0 = floor(Mjd_UT1);
|
---|
[8905] | 105 | double UT1 = Secs * (Mjd_UT1 - Mjd_0);
|
---|
| 106 | double T_0 = (Mjd_0 - MJD_J2000) / 36525.0;
|
---|
| 107 | double T = (Mjd_UT1 - MJD_J2000) / 36525.0;
|
---|
[2578] | 108 |
|
---|
[8905] | 109 | double gmst = 24110.54841 + 8640184.812866 * T_0 + 1.002737909350795 * UT1
|
---|
| 110 | + (0.093104 - 6.2e-6 * T) * T * T;
|
---|
[2578] | 111 |
|
---|
[8905] | 112 | return 2.0 * M_PI * Frac(gmst / Secs);
|
---|
[2578] | 113 | }
|
---|
| 114 |
|
---|
| 115 | // Nutation Matrix
|
---|
| 116 | ///////////////////////////////////////////////////////////////////////////
|
---|
[5801] | 117 | Matrix t_astro::NutMatrix(double Mjd_TT) {
|
---|
[2578] | 118 |
|
---|
[8905] | 119 | const double T = (Mjd_TT - MJD_J2000) / 36525.0;
|
---|
[2578] | 120 |
|
---|
[8905] | 121 | double ls = 2.0 * M_PI * Frac(0.993133 + 99.997306 * T);
|
---|
| 122 | double D = 2.0 * M_PI * Frac(0.827362 + 1236.853087 * T);
|
---|
| 123 | double F = 2.0 * M_PI * Frac(0.259089 + 1342.227826 * T);
|
---|
| 124 | double N = 2.0 * M_PI * Frac(0.347346 - 5.372447 * T);
|
---|
[2578] | 125 |
|
---|
[8905] | 126 | double dpsi = (-17.200 * sin(N) - 1.319 * sin(2 * (F - D + N))
|
---|
| 127 | - 0.227 * sin(2 * (F + N))
|
---|
| 128 | + 0.206 * sin(2 * N) + 0.143 * sin(ls)) / RHO_SEC;
|
---|
| 129 | double deps = (+9.203 * cos(N) + 0.574 * cos(2 * (F - D + N))
|
---|
| 130 | + 0.098 * cos(2 * (F + N))
|
---|
| 131 | - 0.090 * cos(2 * N)) / RHO_SEC;
|
---|
[2578] | 132 |
|
---|
[8905] | 133 | double eps = 0.4090928 - 2.2696E-4 * T;
|
---|
[2578] | 134 |
|
---|
[8905] | 135 | return rotX(-eps - deps) * rotZ(-dpsi) * rotX(+eps);
|
---|
[2578] | 136 | }
|
---|
| 137 |
|
---|
| 138 | // Precession Matrix
|
---|
| 139 | ///////////////////////////////////////////////////////////////////////////
|
---|
[5801] | 140 | Matrix t_astro::PrecMatrix(double Mjd_1, double Mjd_2) {
|
---|
[2578] | 141 |
|
---|
[8905] | 142 | const double T = (Mjd_1 - MJD_J2000) / 36525.0;
|
---|
| 143 | const double dT = (Mjd_2 - Mjd_1) / 36525.0;
|
---|
[7996] | 144 |
|
---|
[8905] | 145 | double zeta = ((2306.2181 + (1.39656 - 0.000139 * T) * T) +
|
---|
| 146 | ((0.30188 - 0.000344 * T) + 0.017998 * dT) * dT) * dT / RHO_SEC;
|
---|
| 147 | double z = zeta
|
---|
| 148 | + ((0.79280 + 0.000411 * T) + 0.000205 * dT) * dT * dT / RHO_SEC;
|
---|
| 149 | double theta = ((2004.3109 - (0.85330 + 0.000217 * T) * T) -
|
---|
| 150 | ((0.42665 + 0.000217 * T) + 0.041833 * dT) * dT) * dT / RHO_SEC;
|
---|
[2578] | 151 |
|
---|
| 152 | return rotZ(-z) * rotY(theta) * rotZ(-zeta);
|
---|
[7996] | 153 | }
|
---|
[2578] | 154 |
|
---|
| 155 | // Sun's position
|
---|
| 156 | ///////////////////////////////////////////////////////////////////////////
|
---|
[5801] | 157 | ColumnVector t_astro::Sun(double Mjd_TT) {
|
---|
[2578] | 158 |
|
---|
[8905] | 159 | const double eps = 23.43929111 / RHO_DEG;
|
---|
| 160 | const double T = (Mjd_TT - MJD_J2000) / 36525.0;
|
---|
[2578] | 161 |
|
---|
[8905] | 162 | double M = 2.0 * M_PI * Frac(0.9931267 + 99.9973583 * T);
|
---|
| 163 | double L = 2.0 * M_PI * Frac(0.7859444 + M / 2.0 / M_PI +
|
---|
| 164 | (6892.0 * sin(M) + 72.0 * sin(2.0 * M)) / 1296.0e3);
|
---|
| 165 | double r = 149.619e9 - 2.499e9 * cos(M) - 0.021e9 * cos(2 * M);
|
---|
[7996] | 166 |
|
---|
| 167 | ColumnVector r_Sun(3);
|
---|
[8905] | 168 | r_Sun << r * cos(L) << r * sin(L) << 0.0;
|
---|
| 169 | r_Sun = rotX(-eps) * r_Sun;
|
---|
[2578] | 170 |
|
---|
[8905] | 171 | return rotZ(GMST(Mjd_TT))
|
---|
| 172 | * NutMatrix(Mjd_TT)
|
---|
| 173 | * PrecMatrix(MJD_J2000, Mjd_TT)
|
---|
| 174 | * r_Sun;
|
---|
[2578] | 175 | }
|
---|
| 176 |
|
---|
| 177 | // Moon's position
|
---|
| 178 | ///////////////////////////////////////////////////////////////////////////
|
---|
[5801] | 179 | ColumnVector t_astro::Moon(double Mjd_TT) {
|
---|
[2578] | 180 |
|
---|
[8905] | 181 | const double eps = 23.43929111 / RHO_DEG;
|
---|
| 182 | const double T = (Mjd_TT - MJD_J2000) / 36525.0;
|
---|
[2578] | 183 |
|
---|
[8905] | 184 | double L_0 = Frac(0.606433 + 1336.851344 * T);
|
---|
| 185 | double l = 2.0 * M_PI * Frac(0.374897 + 1325.552410 * T);
|
---|
| 186 | double lp = 2.0 * M_PI * Frac(0.993133 + 99.997361 * T);
|
---|
| 187 | double D = 2.0 * M_PI * Frac(0.827361 + 1236.853086 * T);
|
---|
| 188 | double F = 2.0 * M_PI * Frac(0.259086 + 1342.227825 * T);
|
---|
[7996] | 189 |
|
---|
[8905] | 190 | double dL = +22640 * sin(l) - 4586 * sin(l - 2 * D) + 2370 * sin(2 * D)
|
---|
| 191 | + 769 * sin(2 * l)
|
---|
| 192 | - 668 * sin(lp) - 412 * sin(2 * F) - 212 * sin(2 * l - 2 * D)
|
---|
| 193 | - 206 * sin(l + lp - 2 * D)
|
---|
| 194 | + 192 * sin(l + 2 * D) - 165 * sin(lp - 2 * D) - 125 * sin(D)
|
---|
| 195 | - 110 * sin(l + lp)
|
---|
| 196 | + 148 * sin(l - lp) - 55 * sin(2 * F - 2 * D);
|
---|
[2578] | 197 |
|
---|
[8905] | 198 | double L = 2.0 * M_PI * Frac(L_0 + dL / 1296.0e3);
|
---|
[2578] | 199 |
|
---|
[8905] | 200 | double S = F + (dL + 412 * sin(2 * F) + 541 * sin(lp)) / RHO_SEC;
|
---|
| 201 | double h = F - 2 * D;
|
---|
| 202 | double N = -526 * sin(h) + 44 * sin(l + h) - 31 * sin(-l + h)
|
---|
| 203 | - 23 * sin(lp + h)
|
---|
| 204 | + 11 * sin(-lp + h) - 25 * sin(-2 * l + F) + 21 * sin(-l + F);
|
---|
[2578] | 205 |
|
---|
[8905] | 206 | double B = (18520.0 * sin(S) + N) / RHO_SEC;
|
---|
[7996] | 207 |
|
---|
[2578] | 208 | double cosB = cos(B);
|
---|
| 209 |
|
---|
[8905] | 210 | double R = 385000e3 - 20905e3 * cos(l) - 3699e3 * cos(2 * D - l)
|
---|
| 211 | - 2956e3 * cos(2 * D)
|
---|
| 212 | - 570e3 * cos(2 * l) + 246e3 * cos(2 * l - 2 * D)
|
---|
| 213 | - 205e3 * cos(lp - 2 * D)
|
---|
| 214 | - 171e3 * cos(l + 2 * D) - 152e3 * cos(l + lp - 2 * D);
|
---|
[2578] | 215 |
|
---|
[7996] | 216 | ColumnVector r_Moon(3);
|
---|
[8905] | 217 | r_Moon << R * cos(L) * cosB << R * sin(L) * cosB << R * sin(B);
|
---|
[2578] | 218 | r_Moon = rotX(-eps) * r_Moon;
|
---|
[7996] | 219 |
|
---|
[8905] | 220 | return rotZ(GMST(Mjd_TT))
|
---|
| 221 | * NutMatrix(Mjd_TT)
|
---|
| 222 | * PrecMatrix(MJD_J2000, Mjd_TT)
|
---|
| 223 | * r_Moon;
|
---|
[2578] | 224 | }
|
---|
[2579] | 225 |
|
---|
[7996] | 226 | // Tidal Correction
|
---|
[2579] | 227 | ////////////////////////////////////////////////////////////////////////////
|
---|
[8905] | 228 | ColumnVector t_tides::earth(const bncTime& time, const ColumnVector& xyz) {
|
---|
[2579] | 229 |
|
---|
[6078] | 230 | if (time.undef()) {
|
---|
[8905] | 231 | ColumnVector dX(3);
|
---|
| 232 | dX = 0.0;
|
---|
[6078] | 233 | return dX;
|
---|
| 234 | }
|
---|
| 235 |
|
---|
[2579] | 236 | double Mjd = time.mjd() + time.daysec() / 86400.0;
|
---|
| 237 |
|
---|
[5801] | 238 | if (Mjd != _lastMjd) {
|
---|
| 239 | _lastMjd = Mjd;
|
---|
| 240 | _xSun = t_astro::Sun(Mjd);
|
---|
[8905] | 241 | _rSun = sqrt(DotProduct(_xSun, _xSun));
|
---|
[5801] | 242 | _xSun /= _rSun;
|
---|
| 243 | _xMoon = t_astro::Moon(Mjd);
|
---|
[8905] | 244 | _rMoon = sqrt(DotProduct(_xMoon, _xMoon));
|
---|
[5801] | 245 | _xMoon /= _rMoon;
|
---|
[2579] | 246 | }
|
---|
| 247 |
|
---|
[8905] | 248 | double rRec = sqrt(DotProduct(xyz, xyz));
|
---|
[2579] | 249 | ColumnVector xyzUnit = xyz / rRec;
|
---|
| 250 |
|
---|
| 251 | // Love's Numbers
|
---|
| 252 | // --------------
|
---|
[4151] | 253 | const double H2 = 0.6078;
|
---|
| 254 | const double L2 = 0.0847;
|
---|
[2579] | 255 |
|
---|
| 256 | // Tidal Displacement
|
---|
| 257 | // ------------------
|
---|
[8905] | 258 | double scSun = DotProduct(xyzUnit, _xSun);
|
---|
[5801] | 259 | double scMoon = DotProduct(xyzUnit, _xMoon);
|
---|
[2579] | 260 |
|
---|
[8905] | 261 | double p2Sun = 3.0 * (H2 / 2.0 - L2) * scSun * scSun - H2 / 2.0;
|
---|
| 262 | double p2Moon = 3.0 * (H2 / 2.0 - L2) * scMoon * scMoon - H2 / 2.0;
|
---|
[2579] | 263 |
|
---|
[8905] | 264 | double x2Sun = 3.0 * L2 * scSun;
|
---|
[2579] | 265 | double x2Moon = 3.0 * L2 * scMoon;
|
---|
[7996] | 266 |
|
---|
[2579] | 267 | const double gmWGS = 398.6005e12;
|
---|
[8905] | 268 | const double gms = 1.3271250e20;
|
---|
| 269 | const double gmm = 4.9027890e12;
|
---|
[2579] | 270 |
|
---|
[8905] | 271 | double facSun = gms / gmWGS *
|
---|
| 272 | (rRec * rRec * rRec * rRec) / (_rSun * _rSun * _rSun);
|
---|
[2581] | 273 |
|
---|
[7996] | 274 | double facMoon = gmm / gmWGS *
|
---|
[8905] | 275 | (rRec * rRec * rRec * rRec) / (_rMoon * _rMoon * _rMoon);
|
---|
[2579] | 276 |
|
---|
[8905] | 277 | ColumnVector dX = facSun * (x2Sun * _xSun + p2Sun * xyzUnit)
|
---|
| 278 | + facMoon * (x2Moon * _xMoon + p2Moon * xyzUnit);
|
---|
[2579] | 279 |
|
---|
[5801] | 280 | return dX;
|
---|
[2579] | 281 | }
|
---|
[5802] | 282 |
|
---|
| 283 | // Constructor
|
---|
| 284 | ///////////////////////////////////////////////////////////////////////////
|
---|
[8905] | 285 | t_tides::t_tides() {
|
---|
| 286 | _lastMjd = 0.0;
|
---|
| 287 | _rSun = 0.0;
|
---|
| 288 | _rMoon = 0.0;
|
---|
[7996] | 289 | newBlqData = 0;
|
---|
| 290 | }
|
---|
| 291 |
|
---|
[8905] | 292 | t_tides::~t_tides() {
|
---|
[7996] | 293 |
|
---|
| 294 | if (newBlqData) {
|
---|
| 295 | delete newBlqData;
|
---|
| 296 | }
|
---|
| 297 |
|
---|
| 298 | QMapIterator<QString, t_blqData*> it(blqMap);
|
---|
| 299 | while (it.hasNext()) {
|
---|
| 300 | it.next();
|
---|
| 301 | delete it.value();
|
---|
| 302 | }
|
---|
| 303 | }
|
---|
| 304 |
|
---|
[8905] | 305 | t_irc t_tides::readBlqFile(const char* fileName) {
|
---|
[7996] | 306 | QFile inFile(fileName);
|
---|
| 307 | inFile.open(QIODevice::ReadOnly | QIODevice::Text);
|
---|
| 308 | QTextStream in(&inFile);
|
---|
| 309 | int row = 0;
|
---|
| 310 | QString site = QString();
|
---|
| 311 |
|
---|
[8905] | 312 | while (!in.atEnd()) {
|
---|
[7996] | 313 |
|
---|
| 314 | QString line = in.readLine();
|
---|
| 315 |
|
---|
| 316 | // skip empty lines and comments
|
---|
[8905] | 317 | if (line.indexOf("$$") != -1) {
|
---|
[7996] | 318 | continue;
|
---|
| 319 | }
|
---|
| 320 | line = line.trimmed();
|
---|
[8204] | 321 | QTextStream inLine(line.toLatin1(), QIODevice::ReadOnly);
|
---|
[7996] | 322 | switch (row) {
|
---|
| 323 | case 0:
|
---|
| 324 | site = line;
|
---|
| 325 | site = site.toUpper();
|
---|
[8905] | 326 | newBlqData = new t_blqData;
|
---|
| 327 | newBlqData->amplitudes.ReSize(3, 11);
|
---|
| 328 | newBlqData->phases.ReSize(3, 11);
|
---|
| 329 | break;
|
---|
| 330 | case 1:
|
---|
| 331 | case 2:
|
---|
| 332 | case 3:
|
---|
| 333 | for (int ii = 0; ii < 11; ii++) {
|
---|
| 334 | inLine >> newBlqData->amplitudes[row - 1][ii];
|
---|
[7996] | 335 | }
|
---|
| 336 | break;
|
---|
[8905] | 337 | case 4:
|
---|
| 338 | case 5:
|
---|
[7996] | 339 | for (int ii = 0; ii < 11; ii++) {
|
---|
[8905] | 340 | inLine >> newBlqData->phases[row - 4][ii];
|
---|
[7996] | 341 | }
|
---|
| 342 | break;
|
---|
[8905] | 343 | case 6:
|
---|
[7996] | 344 | for (int ii = 0; ii < 11; ii++) {
|
---|
[8905] | 345 | inLine >> newBlqData->phases[row - 4][ii];
|
---|
[7996] | 346 | }
|
---|
| 347 | if (newBlqData && !site.isEmpty()) {
|
---|
| 348 | blqMap[site] = newBlqData;
|
---|
| 349 | site = QString();
|
---|
| 350 | newBlqData = 0;
|
---|
| 351 | }
|
---|
[8905] | 352 | row = -1;
|
---|
[7996] | 353 | break;
|
---|
| 354 | }
|
---|
| 355 | row++;
|
---|
| 356 | }
|
---|
| 357 | inFile.close();
|
---|
| 358 | return success;
|
---|
| 359 | }
|
---|
| 360 |
|
---|
[8905] | 361 | ColumnVector t_tides::ocean(const bncTime& time, const ColumnVector& xyz,
|
---|
| 362 | const std::string& station) {
|
---|
| 363 | ColumnVector dX(3); dX = 0.0;
|
---|
| 364 | if (time.undef()) {
|
---|
| 365 | return dX;
|
---|
| 366 | }
|
---|
| 367 | QString stationQ = station.c_str();
|
---|
| 368 | if (blqMap.find(stationQ) == blqMap.end()) {
|
---|
| 369 | return dX;
|
---|
| 370 | }
|
---|
| 371 | t_blqData* blqSet = blqMap[stationQ]; //printBlqSet(station, blqSet);
|
---|
| 372 |
|
---|
| 373 | // angular argument: see arg2.f from IERS Conventions software collection
|
---|
| 374 | double speed[11] = {1.40519e-4, 1.45444e-4, 1.3788e-4, 1.45842e-4, 7.2921e-5,
|
---|
| 375 | 6.7598e-5, 7.2523e-5, 6.4959e-5, 5.3234e-6, 2.6392e-6, 3.982e-7};
|
---|
| 376 |
|
---|
| 377 | double angfac[4][11];
|
---|
| 378 | angfac[0][0] = 2.0;
|
---|
| 379 | angfac[1][0] =-2.0;
|
---|
| 380 | angfac[2][0] = 0.0;
|
---|
| 381 | angfac[3][0] = 0.0;
|
---|
| 382 |
|
---|
| 383 | angfac[0][1] = 0.0;
|
---|
| 384 | angfac[1][1] = 0.0;
|
---|
| 385 | angfac[2][1] = 0.0;
|
---|
| 386 | angfac[3][1] = 0.0;
|
---|
| 387 |
|
---|
| 388 | angfac[0][2] = 2.0;
|
---|
| 389 | angfac[1][2] =-3.0;
|
---|
| 390 | angfac[2][2] = 1.0;
|
---|
| 391 | angfac[3][2] = 0.0;
|
---|
| 392 |
|
---|
| 393 | angfac[0][3] = 2.0;
|
---|
| 394 | angfac[1][3] = 0.0;
|
---|
| 395 | angfac[2][3] = 0.0;
|
---|
| 396 | angfac[3][3] = 0.0;
|
---|
| 397 |
|
---|
| 398 | angfac[0][4] = 1.0;
|
---|
| 399 | angfac[1][4] = 0.0;
|
---|
| 400 | angfac[2][4] = 0.0;
|
---|
| 401 | angfac[3][4] = .25;
|
---|
| 402 |
|
---|
| 403 | angfac[0][5] = 1.0;
|
---|
| 404 | angfac[1][5] =-2.0;
|
---|
| 405 | angfac[2][5] = 0.0;
|
---|
| 406 | angfac[3][5] =-.25;
|
---|
| 407 |
|
---|
| 408 | angfac[0][6] =-1.0;
|
---|
| 409 | angfac[1][6] = 0.0;
|
---|
| 410 | angfac[2][6] = 0.0;
|
---|
| 411 | angfac[3][6] =-.25;
|
---|
| 412 |
|
---|
| 413 | angfac[0][7] = 1.0;
|
---|
| 414 | angfac[1][7] =-3.0;
|
---|
| 415 | angfac[2][7] = 1.0;
|
---|
| 416 | angfac[3][7] =-.25;
|
---|
| 417 |
|
---|
| 418 | angfac[0][8] = 0.0;
|
---|
| 419 | angfac[1][8] = 2.0;
|
---|
| 420 | angfac[2][8] = 0.0;
|
---|
| 421 | angfac[3][8] = 0.0;
|
---|
| 422 |
|
---|
| 423 | angfac[0][9] = 0.0;
|
---|
| 424 | angfac[1][9] = 1.0;
|
---|
| 425 | angfac[2][9] =-1.0;
|
---|
| 426 | angfac[3][9] = 0.0;
|
---|
| 427 |
|
---|
| 428 | angfac[0][10] = 2.0;
|
---|
| 429 | angfac[1][10] = 0.0;
|
---|
| 430 | angfac[2][10] = 0.0;
|
---|
| 431 | angfac[3][10] = 0.0;
|
---|
| 432 |
|
---|
| 433 | double twopi = 6.283185307179586476925287e0;
|
---|
| 434 | double dtr = 0.0174532925199;
|
---|
| 435 |
|
---|
| 436 | // fractional part of the day in seconds
|
---|
| 437 | unsigned int year, month, day;
|
---|
| 438 | time.civil_date(year, month, day);
|
---|
| 439 | int iyear = year - 2000;
|
---|
| 440 | QDateTime datTim = QDateTime::fromString(QString::fromStdString(time.datestr()), Qt::ISODate);
|
---|
| 441 | int doy = datTim.date().dayOfYear();
|
---|
| 442 | double fday = time.daysec();
|
---|
| 443 | int icapd = doy + 365 * (iyear - 75) + ((iyear - 73) / 4);
|
---|
| 444 | double capt = (icapd * 1.000000035 + 27392.500528) / 36525.0;
|
---|
| 445 |
|
---|
| 446 | // mean longitude of the sun at the beginning of the day
|
---|
| 447 | double h0 = (279.69668e0 + (36000.768930485e0 + 3.03e-4 * capt) * capt) * dtr;
|
---|
| 448 |
|
---|
| 449 | // mean longitude of moon at the beginning of the day
|
---|
| 450 | double s0 = (((1.9e-6 * capt - .001133e0) * capt + 481267.88314137e0) * capt + 270.434358e0) * dtr;
|
---|
| 451 |
|
---|
| 452 | // mean longitude of lunar perigee at the beginning of the day
|
---|
| 453 | double p0 = (((-1.2e-5 * capt - .010325e0) * capt + 4069.0340329577e0) * capt + 334.329653e0) * dtr;
|
---|
| 454 |
|
---|
| 455 | // tidal angle arguments
|
---|
| 456 | double angle[11];
|
---|
| 457 | for (int k = 0; k < 11; ++k) {
|
---|
| 458 | angle[k] = speed[k] * fday
|
---|
| 459 | + angfac[0][k] * h0
|
---|
| 460 | + angfac[1][k] * s0
|
---|
| 461 | + angfac[2][k] * p0
|
---|
| 462 | + angfac[3][k] * twopi;
|
---|
| 463 | angle[k] = fmod(angle[k], twopi);
|
---|
| 464 | if (angle[k] < 0.0) {
|
---|
| 465 | angle[k] += twopi;
|
---|
| 466 | }
|
---|
| 467 | }
|
---|
| 468 |
|
---|
| 469 | // displacement by 11 constituents
|
---|
| 470 | ColumnVector rwsSta(3); rwsSta = 0.0; // radial, west, south
|
---|
| 471 | for (int rr = 0; rr < 3; rr++) {
|
---|
| 472 | for (int cc = 0; cc < 11; cc++) {
|
---|
| 473 | rwsSta[rr] += blqSet->amplitudes[rr][cc] * cos((angle[cc] - (blqSet->phases[rr][cc]/RHO_DEG)));
|
---|
| 474 | }
|
---|
| 475 | }
|
---|
| 476 |
|
---|
| 477 | // neu2xyz
|
---|
| 478 | ColumnVector dneu(3); // neu
|
---|
| 479 | dneu[0] = -rwsSta[2];
|
---|
| 480 | dneu[1] = -rwsSta[1];
|
---|
| 481 | dneu[2] = rwsSta[0];
|
---|
| 482 | double recEll[3]; xyz2ell(xyz.data(), recEll) ;
|
---|
| 483 | neu2xyz(recEll, dneu.data(), dX.data());
|
---|
| 484 |
|
---|
| 485 | return dX;
|
---|
| 486 | }
|
---|
| 487 |
|
---|
[7996] | 488 | // Print
|
---|
| 489 | ////////////////////////////////////////////////////////////////////////////
|
---|
[8905] | 490 | void t_tides::printAllBlqSets() const {
|
---|
[7996] | 491 |
|
---|
| 492 | QMapIterator<QString, t_blqData*> it(blqMap);
|
---|
| 493 | while (it.hasNext()) {
|
---|
| 494 | it.next();
|
---|
| 495 | t_blqData* blq = it.value();
|
---|
| 496 | QString site = it.key();
|
---|
[8905] | 497 | cout << site.toStdString().c_str() << "\n===============\n";
|
---|
[7996] | 498 | for (int rr = 0; rr < 3; rr++) {
|
---|
| 499 | for (int cc = 0; cc < 11; cc++) {
|
---|
| 500 | cout << blq->amplitudes[rr][cc] << " ";
|
---|
| 501 | }
|
---|
| 502 | cout << endl;
|
---|
| 503 | }
|
---|
| 504 | for (int rr = 0; rr < 3; rr++) {
|
---|
| 505 | for (int cc = 0; cc < 11; cc++) {
|
---|
| 506 | cout << blq->phases[rr][cc] << " ";
|
---|
| 507 | }
|
---|
| 508 | cout << endl;
|
---|
| 509 | }
|
---|
| 510 | }
|
---|
| 511 | }
|
---|
| 512 |
|
---|
[8905] | 513 | // Print
|
---|
| 514 | ////////////////////////////////////////////////////////////////////////////
|
---|
| 515 | void t_tides::printBlqSet(const std::string& station, t_blqData* blq) {
|
---|
| 516 | cout << station << endl;
|
---|
| 517 | for (int rr = 0; rr < 3; rr++) {
|
---|
| 518 | for (int cc = 0; cc < 11; cc++) {
|
---|
| 519 | cout << blq->amplitudes[rr][cc] << " ";
|
---|
| 520 | }
|
---|
| 521 | cout << endl;
|
---|
| 522 | }
|
---|
| 523 | for (int rr = 0; rr < 3; rr++) {
|
---|
| 524 | for (int cc = 0; cc < 11; cc++) {
|
---|
| 525 | cout << blq->phases[rr][cc] << " ";
|
---|
| 526 | }
|
---|
| 527 | cout << endl;
|
---|
| 528 | }
|
---|
| 529 | }
|
---|
| 530 |
|
---|
[7996] | 531 | // Constructor
|
---|
| 532 | ///////////////////////////////////////////////////////////////////////////
|
---|
[5802] | 533 | t_windUp::t_windUp() {
|
---|
| 534 | for (unsigned ii = 0; ii <= t_prn::MAXPRN; ii++) {
|
---|
[8905] | 535 | sumWind[ii] = 0.0;
|
---|
[5802] | 536 | lastEtime[ii] = 0.0;
|
---|
| 537 | }
|
---|
| 538 | }
|
---|
| 539 |
|
---|
| 540 | // Phase Wind-Up Correction
|
---|
| 541 | ///////////////////////////////////////////////////////////////////////////
|
---|
[7996] | 542 | double t_windUp::value(const bncTime& etime, const ColumnVector& rRec,
|
---|
[8905] | 543 | t_prn prn, const ColumnVector& rSat, bool ssr,
|
---|
| 544 | double yaw, const ColumnVector& vSat) {
|
---|
[5802] | 545 |
|
---|
| 546 | if (etime.mjddec() != lastEtime[prn.toInt()]) {
|
---|
| 547 |
|
---|
| 548 | // Unit Vector GPS Satellite --> Receiver
|
---|
| 549 | // --------------------------------------
|
---|
| 550 | ColumnVector rho = rRec - rSat;
|
---|
[8905] | 551 | rho /= rho.NormFrobenius();
|
---|
[7996] | 552 |
|
---|
[5802] | 553 | // GPS Satellite unit Vectors sz, sy, sx
|
---|
| 554 | // -------------------------------------
|
---|
[8619] | 555 | ColumnVector sHlp;
|
---|
| 556 | if (!ssr) {
|
---|
| 557 | sHlp = t_astro::Sun(etime.mjddec());
|
---|
| 558 | }
|
---|
| 559 | else {
|
---|
| 560 | ColumnVector Omega(3);
|
---|
| 561 | Omega[0] = 0.0;
|
---|
| 562 | Omega[1] = 0.0;
|
---|
| 563 | Omega[2] = t_CST::omega;
|
---|
| 564 | sHlp = vSat + crossproduct(Omega, rSat);
|
---|
| 565 | }
|
---|
[8905] | 566 | sHlp /= sHlp.NormFrobenius();
|
---|
[8619] | 567 |
|
---|
[8905] | 568 | ColumnVector sz = -rSat / rSat.NormFrobenius();
|
---|
[8619] | 569 | ColumnVector sy = crossproduct(sz, sHlp);
|
---|
| 570 | ColumnVector sx = crossproduct(sy, sz);
|
---|
[5802] | 571 |
|
---|
[8905] | 572 | if (ssr) {
|
---|
| 573 | // Yaw angle consideration
|
---|
| 574 | Matrix SXYZ(3, 3);
|
---|
| 575 | SXYZ.Column(1) = sx;
|
---|
| 576 | SXYZ.Column(2) = sy;
|
---|
| 577 | SXYZ.Column(3) = sz;
|
---|
| 578 | SXYZ = DotProduct(t_astro::rotZ(yaw), SXYZ);
|
---|
| 579 | sx = SXYZ.Column(1);
|
---|
| 580 | sy = SXYZ.Column(2);
|
---|
| 581 | sz = SXYZ.Column(3);
|
---|
| 582 | }
|
---|
[5802] | 583 | // Effective Dipole of the GPS Satellite Antenna
|
---|
| 584 | // ---------------------------------------------
|
---|
[8905] | 585 | ColumnVector dipSat = sx - rho * DotProduct(rho, sx)
|
---|
| 586 | - crossproduct(rho, sy);
|
---|
[7996] | 587 |
|
---|
[5802] | 588 | // Receiver unit Vectors rx, ry
|
---|
| 589 | // ----------------------------
|
---|
| 590 | ColumnVector rx(3);
|
---|
| 591 | ColumnVector ry(3);
|
---|
[8905] | 592 | double recEll[3];
|
---|
| 593 | xyz2ell(rRec.data(), recEll);
|
---|
[5802] | 594 | double neu[3];
|
---|
[7996] | 595 |
|
---|
[5802] | 596 | neu[0] = 1.0;
|
---|
| 597 | neu[1] = 0.0;
|
---|
| 598 | neu[2] = 0.0;
|
---|
| 599 | neu2xyz(recEll, neu, rx.data());
|
---|
[7996] | 600 |
|
---|
[8905] | 601 | neu[0] = 0.0;
|
---|
[5802] | 602 | neu[1] = -1.0;
|
---|
[8905] | 603 | neu[2] = 0.0;
|
---|
[5802] | 604 | neu2xyz(recEll, neu, ry.data());
|
---|
[7996] | 605 |
|
---|
[5802] | 606 | // Effective Dipole of the Receiver Antenna
|
---|
| 607 | // ----------------------------------------
|
---|
[8905] | 608 | ColumnVector dipRec = rx - rho * DotProduct(rho, rx)
|
---|
| 609 | + crossproduct(rho, ry);
|
---|
[7996] | 610 |
|
---|
[5802] | 611 | // Resulting Effect
|
---|
| 612 | // ----------------
|
---|
[8905] | 613 | double alpha = DotProduct(dipSat, dipRec)
|
---|
| 614 | / (dipSat.NormFrobenius() * dipRec.NormFrobenius());
|
---|
| 615 |
|
---|
| 616 | if (alpha > 1.0)
|
---|
| 617 | alpha = 1.0;
|
---|
| 618 | if (alpha < -1.0)
|
---|
| 619 | alpha = -1.0;
|
---|
| 620 |
|
---|
[5802] | 621 | double dphi = acos(alpha) / 2.0 / M_PI; // in cycles
|
---|
[7996] | 622 |
|
---|
[8905] | 623 | if (DotProduct(rho, crossproduct(dipSat, dipRec)) < 0.0) {
|
---|
[5802] | 624 | dphi = -dphi;
|
---|
| 625 | }
|
---|
| 626 |
|
---|
| 627 | if (lastEtime[prn.toInt()] == 0.0) {
|
---|
| 628 | sumWind[prn.toInt()] = dphi;
|
---|
| 629 | }
|
---|
| 630 | else {
|
---|
| 631 | sumWind[prn.toInt()] = nint(sumWind[prn.toInt()] - dphi) + dphi;
|
---|
| 632 | }
|
---|
| 633 |
|
---|
| 634 | lastEtime[prn.toInt()] = etime.mjddec();
|
---|
| 635 | }
|
---|
| 636 |
|
---|
[7996] | 637 | return sumWind[prn.toInt()];
|
---|
[5802] | 638 | }
|
---|
[5808] | 639 |
|
---|
| 640 | // Tropospheric Model (Saastamoinen)
|
---|
| 641 | ////////////////////////////////////////////////////////////////////////////
|
---|
| 642 | double t_tropo::delay_saast(const ColumnVector& xyz, double Ele) {
|
---|
| 643 |
|
---|
| 644 | Tracer tracer("bncModel::delay_saast");
|
---|
| 645 |
|
---|
| 646 | if (xyz[0] == 0.0 && xyz[1] == 0.0 && xyz[2] == 0.0) {
|
---|
| 647 | return 0.0;
|
---|
| 648 | }
|
---|
| 649 |
|
---|
[7996] | 650 | double ell[3];
|
---|
[5808] | 651 | xyz2ell(xyz.data(), ell);
|
---|
| 652 | double height = ell[2];
|
---|
| 653 |
|
---|
[8905] | 654 | double pp = 1013.25 * pow(1.0 - 2.26e-5 * height, 5.225);
|
---|
| 655 | double TT = 18.0 - height * 0.0065 + 273.15;
|
---|
| 656 | double hh = 50.0 * exp(-6.396e-4 * height);
|
---|
| 657 | double ee = hh / 100.0
|
---|
| 658 | * exp(-37.2465 + 0.213166 * TT - 0.000256908 * TT * TT);
|
---|
[5808] | 659 |
|
---|
| 660 | double h_km = height / 1000.0;
|
---|
[7996] | 661 |
|
---|
[8905] | 662 | if (h_km < 0.0)
|
---|
| 663 | h_km = 0.0;
|
---|
| 664 | if (h_km > 5.0)
|
---|
| 665 | h_km = 5.0;
|
---|
| 666 | int ii = int(h_km + 1);
|
---|
| 667 | if (ii > 5)
|
---|
| 668 | ii = 5;
|
---|
[5808] | 669 | double href = ii - 1;
|
---|
[7996] | 670 |
|
---|
| 671 | double bCor[6];
|
---|
[5808] | 672 | bCor[0] = 1.156;
|
---|
| 673 | bCor[1] = 1.006;
|
---|
| 674 | bCor[2] = 0.874;
|
---|
| 675 | bCor[3] = 0.757;
|
---|
| 676 | bCor[4] = 0.654;
|
---|
| 677 | bCor[5] = 0.563;
|
---|
[7996] | 678 |
|
---|
[8905] | 679 | double BB = bCor[ii - 1] + (bCor[ii] - bCor[ii - 1]) * (h_km - href);
|
---|
[7996] | 680 |
|
---|
[8905] | 681 | double zen = M_PI / 2.0 - Ele;
|
---|
[5808] | 682 |
|
---|
[8905] | 683 | return (0.002277 / cos(zen))
|
---|
| 684 | * (pp + ((1255.0 / TT) + 0.05) * ee - BB * (tan(zen) * tan(zen)));
|
---|
[5808] | 685 | }
|
---|
| 686 |
|
---|
[7240] | 687 | // Constructor
|
---|
| 688 | ///////////////////////////////////////////////////////////////////////////
|
---|
| 689 | t_iono::t_iono() {
|
---|
[7246] | 690 | _psiPP = _phiPP = _lambdaPP = _lonS = 0.0;
|
---|
[7240] | 691 | }
|
---|
| 692 |
|
---|
[8905] | 693 | t_iono::~t_iono() {
|
---|
| 694 | }
|
---|
[7246] | 695 |
|
---|
| 696 | double t_iono::stec(const t_vTec* vTec, double signalPropagationTime,
|
---|
[8905] | 697 | const ColumnVector& rSat, const bncTime& epochTime,
|
---|
| 698 | const ColumnVector& xyzSta) {
|
---|
[7246] | 699 |
|
---|
| 700 | // Latitude, longitude, height are defined with respect to a spherical earth model
|
---|
| 701 | // -------------------------------------------------------------------------------
|
---|
[7251] | 702 | ColumnVector geocSta(3);
|
---|
| 703 | if (xyz2geoc(xyzSta.data(), geocSta.data()) != success) {
|
---|
| 704 | return 0.0;
|
---|
| 705 | }
|
---|
[7246] | 706 |
|
---|
| 707 | // satellite position rotated to the epoch of signal reception
|
---|
| 708 | // -----------------------------------------------------------
|
---|
[7251] | 709 | ColumnVector xyzSat(3);
|
---|
[7246] | 710 | double omegaZ = t_CST::omega * signalPropagationTime;
|
---|
| 711 | xyzSat[0] = rSat[0] * cos(omegaZ) + rSat[1] * sin(omegaZ);
|
---|
| 712 | xyzSat[1] = rSat[1] * cos(omegaZ) - rSat[0] * sin(omegaZ);
|
---|
| 713 | xyzSat[2] = rSat[2];
|
---|
| 714 |
|
---|
| 715 | // elevation and azimuth with respect to a spherical earth model
|
---|
| 716 | // -------------------------------------------------------------
|
---|
| 717 | ColumnVector rhoV = xyzSat - xyzSta;
|
---|
[8905] | 718 | double rho = rhoV.NormFrobenius();
|
---|
[7246] | 719 | ColumnVector neu(3);
|
---|
| 720 | xyz2neu(geocSta.data(), rhoV.data(), neu.data());
|
---|
[8905] | 721 | double sphEle = acos(sqrt(neu[0] * neu[0] + neu[1] * neu[1]) / rho);
|
---|
[7246] | 722 | if (neu[2] < 0) {
|
---|
| 723 | sphEle *= -1.0;
|
---|
| 724 | }
|
---|
| 725 | double sphAzi = atan2(neu[1], neu[0]);
|
---|
| 726 |
|
---|
| 727 | double epoch = fmod(epochTime.gpssec(), 86400.0);
|
---|
| 728 |
|
---|
| 729 | double stec = 0.0;
|
---|
| 730 | for (unsigned ii = 0; ii < vTec->_layers.size(); ii++) {
|
---|
[8905] | 731 | piercePoint(vTec->_layers[ii]._height, epoch, geocSta.data(), sphEle,
|
---|
| 732 | sphAzi);
|
---|
[7246] | 733 | double vtec = vtecSingleLayerContribution(vTec->_layers[ii]);
|
---|
[7259] | 734 | stec += vtec * sin(sphEle + _psiPP);
|
---|
[7246] | 735 | }
|
---|
| 736 | return stec;
|
---|
[7240] | 737 | }
|
---|
| 738 |
|
---|
[7246] | 739 | double t_iono::vtecSingleLayerContribution(const t_vTecLayer& vTecLayer) {
|
---|
| 740 |
|
---|
| 741 | double vtec = 0.0;
|
---|
[8905] | 742 | int N = vTecLayer._C.Nrows() - 1;
|
---|
| 743 | int M = vTecLayer._C.Ncols() - 1;
|
---|
[7246] | 744 | double fac;
|
---|
| 745 |
|
---|
| 746 | for (int n = 0; n <= N; n++) {
|
---|
| 747 | for (int m = 0; m <= min(n, M); m++) {
|
---|
| 748 | double pnm = associatedLegendreFunction(n, m, sin(_phiPP));
|
---|
[8774] | 749 | double a = factorial(n - m);
|
---|
| 750 | double b = factorial(n + m);
|
---|
[7246] | 751 | if (m == 0) {
|
---|
| 752 | fac = sqrt(2.0 * n + 1);
|
---|
| 753 | }
|
---|
| 754 | else {
|
---|
| 755 | fac = sqrt(2.0 * (2.0 * n + 1) * a / b);
|
---|
| 756 | }
|
---|
| 757 | pnm *= fac;
|
---|
| 758 | double Cnm_mlambda = vTecLayer._C[n][m] * cos(m * _lonS);
|
---|
| 759 | double Snm_mlambda = vTecLayer._S[n][m] * sin(m * _lonS);
|
---|
| 760 | vtec += (Snm_mlambda + Cnm_mlambda) * pnm;
|
---|
| 761 | }
|
---|
| 762 | }
|
---|
| 763 |
|
---|
| 764 | if (vtec < 0.0) {
|
---|
[8774] | 765 | vtec = 0.0;
|
---|
[7246] | 766 | }
|
---|
[7259] | 767 |
|
---|
[7246] | 768 | return vtec;
|
---|
[7240] | 769 | }
|
---|
| 770 |
|
---|
[8905] | 771 | void t_iono::piercePoint(double layerHeight, double epoch,
|
---|
| 772 | const double* geocSta,
|
---|
[7246] | 773 | double sphEle, double sphAzi) {
|
---|
[7240] | 774 |
|
---|
[7246] | 775 | double q = (t_CST::rgeoc + geocSta[2]) / (t_CST::rgeoc + layerHeight);
|
---|
| 776 |
|
---|
[8905] | 777 | _psiPP = M_PI / 2 - sphEle - asin(q * cos(sphEle));
|
---|
[7246] | 778 |
|
---|
[8905] | 779 | _phiPP = asin(
|
---|
| 780 | sin(geocSta[0]) * cos(_psiPP)
|
---|
| 781 | + cos(geocSta[0]) * sin(_psiPP) * cos(sphAzi));
|
---|
[7246] | 782 |
|
---|
[8905] | 783 | if (((geocSta[0] * 180.0 / M_PI > 0)
|
---|
| 784 | && (tan(_psiPP) * cos(sphAzi) > tan(M_PI / 2 - geocSta[0])))
|
---|
| 785 | ||
|
---|
| 786 | ((geocSta[0] * 180.0 / M_PI < 0)
|
---|
| 787 | && (-(tan(_psiPP) * cos(sphAzi)) > tan(M_PI / 2 + geocSta[0])))) {
|
---|
| 788 | _lambdaPP = geocSta[1] + M_PI
|
---|
| 789 | - asin((sin(_psiPP) * sin(sphAzi) / cos(_phiPP)));
|
---|
[7246] | 790 | }
|
---|
[8905] | 791 | else {
|
---|
| 792 | _lambdaPP = geocSta[1] + asin((sin(_psiPP) * sin(sphAzi) / cos(_phiPP)));
|
---|
| 793 | }
|
---|
[7246] | 794 |
|
---|
[8905] | 795 | _lonS = fmod((_lambdaPP + (epoch - 50400) * M_PI / 43200), 2 * M_PI);
|
---|
[7246] | 796 |
|
---|
| 797 | return;
|
---|
[7240] | 798 | }
|
---|
[7246] | 799 |
|
---|