// Part of BNC, a utility for retrieving decoding and // converting GNSS data streams from NTRIP broadcasters. // // Copyright (C) 2007 // German Federal Agency for Cartography and Geodesy (BKG) // http://www.bkg.bund.de // Czech Technical University Prague, Department of Geodesy // http://www.fsv.cvut.cz // // Email: euref-ip@bkg.bund.de // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation, version 2. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. /* ------------------------------------------------------------------------- * BKG NTRIP Client * ------------------------------------------------------------------------- * * Class: bncutils * * Purpose: Auxiliary Functions * * Author: L. Mervart * * Created: 30-Aug-2006 * * Changes: * * -----------------------------------------------------------------------*/ #include #include #include #include #include #include #include #include "bncutils.h" #include "bnccore.h" using namespace std; struct leapseconds { /* specify the day of leap second */ int day; /* this is the day, where 23:59:59 exists 2 times */ int month; /* not the next day! */ int year; int taicount; }; static const int months[13] = {0,31,28,31,30,31,30,31,31,30,31,30,31}; static const struct leapseconds leap[] = { /*{31, 12, 1971, 10},*/ /*{30, 06, 1972, 11},*/ /*{31, 12, 1972, 12},*/ /*{31, 12, 1973, 13},*/ /*{31, 12, 1974, 14},*/ /*{31, 12, 1975, 15},*/ /*{31, 12, 1976, 16},*/ /*{31, 12, 1977, 17},*/ /*{31, 12, 1978, 18},*/ /*{31, 12, 1979, 19},*/ {30, 06, 1981,20}, {30, 06, 1982,21}, {30, 06, 1983,22}, {30, 06, 1985,23}, {31, 12, 1987,24}, {31, 12, 1989,25}, {31, 12, 1990,26}, {30, 06, 1992,27}, {30, 06, 1993,28}, {30, 06, 1994,29}, {31, 12, 1995,30}, {30, 06, 1997,31}, {31, 12, 1998,32}, {31, 12, 2005,33}, {31, 12, 2008,34}, {30, 06, 2012,35}, {30, 06, 2015,36}, {0,0,0,0} /* end marker */ }; #define GPSLEAPSTART 19 /* 19 leap seconds existed at 6.1.1980 */ static int longyear(int year, int month) { if(!(year % 4) && (!(year % 400) || (year % 100))) { if(!month || month == 2) return 1; } return 0; } int gnumleap(int year, int month, int day) { int ls = 0; const struct leapseconds *l; for(l = leap; l->taicount && year >= l->year; ++l) { if(year > l->year || month > l->month || (month == l->month && day > l->day)) ls = l->taicount - GPSLEAPSTART; } return ls; } /* Convert Moscow time into UTC (fixnumleap == 1) or GPS (fixnumleap == 0) */ void updatetime(int *week, int *secOfWeek, int mSecOfWeek, bool fixnumleap) { int y,m,d,k,l, nul; unsigned int j = *week*(7*24*60*60) + *secOfWeek + 5*24*60*60+3*60*60; int glo_daynumber = 0, glo_timeofday; for(y = 1980; j >= (unsigned int)(k = (l = (365+longyear(y,0)))*24*60*60) + gnumleap(y+1,1,1); ++y) { j -= k; glo_daynumber += l; } for(m = 1; j >= (unsigned int)(k = (l = months[m]+longyear(y, m))*24*60*60) + gnumleap(y, m+1, 1); ++m) { j -= k; glo_daynumber += l; } for(d = 1; j >= 24UL*60UL*60UL + gnumleap(y, m, d+1); ++d) j -= 24*60*60; glo_daynumber -= 16*365+4-d; nul = gnumleap(y, m, d); glo_timeofday = j-nul; // original version // if(mSecOfWeek < 5*60*1000 && glo_timeofday > 23*60*60) // *secOfWeek += 24*60*60; // else if(glo_timeofday < 5*60 && mSecOfWeek > 23*60*60*1000) // *secOfWeek -= 24*60*60; // new version if(mSecOfWeek < 4*60*60*1000 && glo_timeofday > 20*60*60) *secOfWeek += 24*60*60; else if(glo_timeofday < 4*60*60 && mSecOfWeek > 20*60*60*1000) *secOfWeek -= 24*60*60; *secOfWeek += mSecOfWeek/1000-glo_timeofday; if(fixnumleap) *secOfWeek -= nul; if(*secOfWeek < 0) {*secOfWeek += 24*60*60*7; --*week; } if(*secOfWeek >= 24*60*60*7) {*secOfWeek -= 24*60*60*7; ++*week; } } // //////////////////////////////////////////////////////////////////////////// void expandEnvVar(QString& str) { QRegExp rx("(\\$\\{.+\\})"); if (rx.indexIn(str) != -1) { QStringListIterator it(rx.capturedTexts()); if (it.hasNext()) { QString rxStr = it.next(); QString envVar = rxStr.mid(2,rxStr.length()-3); str.replace(rxStr, qgetenv(envVar.toAscii())); } } } // Strip White Space //////////////////////////////////////////////////////////////////////////// void stripWhiteSpace(string& str) { if (!str.empty()) { string::size_type beg = str.find_first_not_of(" \t\f\n\r\v"); string::size_type end = str.find_last_not_of(" \t\f\n\r\v"); if (beg > str.max_size()) str.erase(); else str = str.substr(beg, end-beg+1); } } // //////////////////////////////////////////////////////////////////////////// QDateTime dateAndTimeFromGPSweek(int GPSWeek, double GPSWeeks) { static const QDate zeroEpoch(1980, 1, 6); QDate date(zeroEpoch); QTime time(0,0,0,0); int weekDays = int(GPSWeeks) / 86400; date = date.addDays( GPSWeek * 7 + weekDays ); time = time.addMSecs( int( (GPSWeeks - 86400 * weekDays) * 1e3 ) ); return QDateTime(date,time); } // //////////////////////////////////////////////////////////////////////////// void currentGPSWeeks(int& week, double& sec) { QDateTime currDateTimeGPS; if ( BNC_CORE->dateAndTimeGPSSet() ) { currDateTimeGPS = BNC_CORE->dateAndTimeGPS(); } else { currDateTimeGPS = QDateTime::currentDateTime().toUTC(); QDate hlp = currDateTimeGPS.date(); currDateTimeGPS = currDateTimeGPS.addSecs(gnumleap(hlp.year(), hlp.month(), hlp.day())); } QDate currDateGPS = currDateTimeGPS.date(); QTime currTimeGPS = currDateTimeGPS.time(); week = int( (double(currDateGPS.toJulianDay()) - 2444244.5) / 7 ); sec = (currDateGPS.dayOfWeek() % 7) * 24.0 * 3600.0 + currTimeGPS.hour() * 3600.0 + currTimeGPS.minute() * 60.0 + currTimeGPS.second() + currTimeGPS.msec() / 1000.0; } // //////////////////////////////////////////////////////////////////////////// QDateTime currentDateAndTimeGPS() { if ( BNC_CORE->dateAndTimeGPSSet() ) { return BNC_CORE->dateAndTimeGPS(); } else { int GPSWeek; double GPSWeeks; currentGPSWeeks(GPSWeek, GPSWeeks); return dateAndTimeFromGPSweek(GPSWeek, GPSWeeks); } } // //////////////////////////////////////////////////////////////////////////// QByteArray ggaString(const QByteArray& latitude, const QByteArray& longitude, const QByteArray& height, const QString& ggaType) { double lat = strtod(latitude,NULL); double lon = strtod(longitude,NULL); double hei = strtod(height,NULL); QString sentences = "GPGGA,"; if (ggaType.contains("GNGGA")) { sentences = "GNGGA,"; } const char* flagN="N"; const char* flagE="E"; if (lon >180.) {lon=(lon-360.)*(-1.); flagE="W";} if ((lon < 0.) && (lon >= -180.)) {lon=lon*(-1.); flagE="W";} if (lon < -180.) {lon=(lon+360.); flagE="E";} if (lat < 0.) {lat=lat*(-1.); flagN="S";} QTime ttime(QDateTime::currentDateTime().toUTC().time()); int lat_deg = (int)lat; double lat_min=(lat-lat_deg)*60.; int lon_deg = (int)lon; double lon_min=(lon-lon_deg)*60.; int hh = 0 , mm = 0; double ss = 0.0; hh=ttime.hour(); mm=ttime.minute(); ss=(double)ttime.second()+0.001*ttime.msec(); QString gga; gga += sentences; gga += QString("%1%2%3,").arg((int)hh, 2, 10, QLatin1Char('0')).arg((int)mm, 2, 10, QLatin1Char('0')).arg((int)ss, 2, 10, QLatin1Char('0')); gga += QString("%1%2,").arg((int)lat_deg,2, 10, QLatin1Char('0')).arg(lat_min, 7, 'f', 4, QLatin1Char('0')); gga += flagN; gga += QString(",%1%2,").arg((int)lon_deg,3, 10, QLatin1Char('0')).arg(lon_min, 7, 'f', 4, QLatin1Char('0')); gga += flagE + QString(",1,05,1.00"); gga += QString(",%1,").arg(hei, 2, 'f', 1); gga += QString("M,10.000,M,,"); int xori; char XOR = 0; char Buff[gga.size()]; strncpy(Buff, gga.toAscii().data(), gga.size()); int iLen = strlen(Buff); for (xori = 0; xori < iLen; xori++) { XOR ^= (char)Buff[xori]; } gga = "$" + gga + QString("*%1").arg(XOR, 2, 16, QLatin1Char('0')); return gga.toAscii(); } // //////////////////////////////////////////////////////////////////////////// void RSW_to_XYZ(const ColumnVector& rr, const ColumnVector& vv, const ColumnVector& rsw, ColumnVector& xyz) { ColumnVector along = vv / vv.norm_Frobenius(); ColumnVector cross = crossproduct(rr, vv); cross /= cross.norm_Frobenius(); ColumnVector radial = crossproduct(along, cross); Matrix RR(3,3); RR.Column(1) = radial; RR.Column(2) = along; RR.Column(3) = cross; xyz = RR * rsw; } // Transformation xyz --> radial, along track, out-of-plane //////////////////////////////////////////////////////////////////////////// void XYZ_to_RSW(const ColumnVector& rr, const ColumnVector& vv, const ColumnVector& xyz, ColumnVector& rsw) { ColumnVector along = vv / vv.norm_Frobenius(); ColumnVector cross = crossproduct(rr, vv); cross /= cross.norm_Frobenius(); ColumnVector radial = crossproduct(along, cross); rsw.ReSize(3); rsw(1) = DotProduct(xyz, radial); rsw(2) = DotProduct(xyz, along); rsw(3) = DotProduct(xyz, cross); } // Rectangular Coordinates -> Ellipsoidal Coordinates //////////////////////////////////////////////////////////////////////////// t_irc xyz2ell(const double* XYZ, double* Ell) { const double bell = t_CST::aell*(1.0-1.0/t_CST::fInv) ; const double e2 = (t_CST::aell*t_CST::aell-bell*bell)/(t_CST::aell*t_CST::aell) ; const double e2c = (t_CST::aell*t_CST::aell-bell*bell)/(bell*bell) ; double nn, ss, zps, hOld, phiOld, theta, sin3, cos3; ss = sqrt(XYZ[0]*XYZ[0]+XYZ[1]*XYZ[1]) ; zps = XYZ[2]/ss ; theta = atan( (XYZ[2]*t_CST::aell) / (ss*bell) ); sin3 = sin(theta) * sin(theta) * sin(theta); cos3 = cos(theta) * cos(theta) * cos(theta); // Closed formula Ell[0] = atan( (XYZ[2] + e2c * bell * sin3) / (ss - e2 * t_CST::aell * cos3) ); Ell[1] = atan2(XYZ[1],XYZ[0]) ; nn = t_CST::aell/sqrt(1.0-e2*sin(Ell[0])*sin(Ell[0])) ; Ell[2] = ss / cos(Ell[0]) - nn; const int MAXITER = 100; for (int ii = 1; ii <= MAXITER; ii++) { nn = t_CST::aell/sqrt(1.0-e2*sin(Ell[0])*sin(Ell[0])) ; hOld = Ell[2] ; phiOld = Ell[0] ; Ell[2] = ss/cos(Ell[0])-nn ; Ell[0] = atan(zps/(1.0-e2*nn/(nn+Ell[2]))) ; if ( fabs(phiOld-Ell[0]) <= 1.0e-11 && fabs(hOld-Ell[2]) <= 1.0e-5 ) { return success; } } return failure; } // Rectangular Coordinates -> North, East, Up Components //////////////////////////////////////////////////////////////////////////// void xyz2neu(const double* Ell, const double* xyz, double* neu) { double sinPhi = sin(Ell[0]); double cosPhi = cos(Ell[0]); double sinLam = sin(Ell[1]); double cosLam = cos(Ell[1]); neu[0] = - sinPhi*cosLam * xyz[0] - sinPhi*sinLam * xyz[1] + cosPhi * xyz[2]; neu[1] = - sinLam * xyz[0] + cosLam * xyz[1]; neu[2] = + cosPhi*cosLam * xyz[0] + cosPhi*sinLam * xyz[1] + sinPhi * xyz[2]; } // North, East, Up Components -> Rectangular Coordinates //////////////////////////////////////////////////////////////////////////// void neu2xyz(const double* Ell, const double* neu, double* xyz) { double sinPhi = sin(Ell[0]); double cosPhi = cos(Ell[0]); double sinLam = sin(Ell[1]); double cosLam = cos(Ell[1]); xyz[0] = - sinPhi*cosLam * neu[0] - sinLam * neu[1] + cosPhi*cosLam * neu[2]; xyz[1] = - sinPhi*sinLam * neu[0] + cosLam * neu[1] + cosPhi*sinLam * neu[2]; xyz[2] = + cosPhi * neu[0] + sinPhi * neu[2]; } // Rectangular Coordinates -> Geocentric Coordinates //////////////////////////////////////////////////////////////////////////// t_irc xyz2geoc(const double* XYZ, double* Geoc) { const double bell = t_CST::aell*(1.0-1.0/t_CST::fInv) ; const double e2 = (t_CST::aell*t_CST::aell-bell*bell)/(t_CST::aell*t_CST::aell) ; double Ell[3]; if (xyz2ell(XYZ, Ell) != success) { return failure; } double rho = sqrt(XYZ[0]*XYZ[0]+XYZ[1]*XYZ[1]+XYZ[2]*XYZ[2]); double Rn = t_CST::aell/sqrt(1-e2*pow(sin(Ell[0]),2)); Geoc[0] = atan((1-e2 * Rn/(Rn + Ell[2])) * tan(Ell[0])); Geoc[1] = Ell[1]; Geoc[2] = rho-t_CST::rgeoc; return success; } // //////////////////////////////////////////////////////////////////////////// double Frac (double x) { return x-floor(x); } // //////////////////////////////////////////////////////////////////////////// double Modulo (double x, double y) { return y*Frac(x/y); } // Round to nearest integer //////////////////////////////////////////////////////////////////////////// double nint(double val) { return ((val < 0.0) ? -floor(fabs(val)+0.5) : floor(val+0.5)); } // //////////////////////////////////////////////////////////////////////////// int factorial(int n) { if (n == 0) { return 1; } else { return (n * factorial(n - 1)); } } // //////////////////////////////////////////////////////////////////////////// double associatedLegendreFunction(int n, int m, double t) { double sum = 0.0; int r = (int) floor((n - m) / 2); for (int k = 0; k <= r; k++) { sum += (pow(-1.0, (double)k) * factorial(2*n - 2*k) / (factorial(k) * factorial(n-k) * factorial(n-m-2*k)) * pow(t, (double)n-m-2*k)); } double fac = pow(2.0,(double) -n) * pow((1 - t*t), (double)m/2); return sum *= fac; } // Jacobian XYZ --> NEU //////////////////////////////////////////////////////////////////////////// void jacobiXYZ_NEU(const double* Ell, Matrix& jacobi) { Tracer tracer("jacobiXYZ_NEU"); double sinPhi = sin(Ell[0]); double cosPhi = cos(Ell[0]); double sinLam = sin(Ell[1]); double cosLam = cos(Ell[1]); jacobi(1,1) = - sinPhi * cosLam; jacobi(1,2) = - sinPhi * sinLam; jacobi(1,3) = cosPhi; jacobi(2,1) = - sinLam; jacobi(2,2) = cosLam; jacobi(2,3) = 0.0; jacobi(3,1) = cosPhi * cosLam; jacobi(3,2) = cosPhi * sinLam; jacobi(3,3) = sinPhi; } // Jacobian Ell --> XYZ //////////////////////////////////////////////////////////////////////////// void jacobiEll_XYZ(const double* Ell, Matrix& jacobi) { Tracer tracer("jacobiEll_XYZ"); double sinPhi = sin(Ell[0]); double cosPhi = cos(Ell[0]); double sinLam = sin(Ell[1]); double cosLam = cos(Ell[1]); double hh = Ell[2]; double bell = t_CST::aell*(1.0-1.0/t_CST::fInv); double e2 = (t_CST::aell*t_CST::aell-bell*bell)/(t_CST::aell*t_CST::aell) ; double nn = t_CST::aell/sqrt(1.0-e2*sinPhi*sinPhi) ; jacobi(1,1) = -(nn+hh) * sinPhi * cosLam; jacobi(1,2) = -(nn+hh) * cosPhi * sinLam; jacobi(1,3) = cosPhi * cosLam; jacobi(2,1) = -(nn+hh) * sinPhi * sinLam; jacobi(2,2) = (nn+hh) * cosPhi * cosLam; jacobi(2,3) = cosPhi * sinLam; jacobi(3,1) = (nn*(1.0-e2)+hh) * cosPhi; jacobi(3,2) = 0.0; jacobi(3,3) = sinPhi; } // Covariance Matrix in NEU //////////////////////////////////////////////////////////////////////////// void covariXYZ_NEU(const SymmetricMatrix& QQxyz, const double* Ell, SymmetricMatrix& Qneu) { Tracer tracer("covariXYZ_NEU"); Matrix CC(3,3); jacobiXYZ_NEU(Ell, CC); Qneu << CC * QQxyz * CC.t(); } // Covariance Matrix in XYZ //////////////////////////////////////////////////////////////////////////// void covariNEU_XYZ(const SymmetricMatrix& QQneu, const double* Ell, SymmetricMatrix& Qxyz) { Tracer tracer("covariNEU_XYZ"); Matrix CC(3,3); jacobiXYZ_NEU(Ell, CC); Qxyz << CC.t() * QQneu * CC; } // Fourth order Runge-Kutta numerical integrator for ODEs //////////////////////////////////////////////////////////////////////////// ColumnVector rungeKutta4( double xi, // the initial x-value const ColumnVector& yi, // vector of the initial y-values double dx, // the step size for the integration double* acc, // aditional acceleration ColumnVector (*der)(double x, const ColumnVector& y, double* acc) // A pointer to a function that computes the // derivative of a function at a point (x,y) ) { ColumnVector k1 = der(xi , yi , acc) * dx; ColumnVector k2 = der(xi+dx/2.0, yi+k1/2.0, acc) * dx; ColumnVector k3 = der(xi+dx/2.0, yi+k2/2.0, acc) * dx; ColumnVector k4 = der(xi+dx , yi+k3 , acc) * dx; ColumnVector yf = yi + k1/6.0 + k2/3.0 + k3/3.0 + k4/6.0; return yf; } // //////////////////////////////////////////////////////////////////////////// double djul(long jj, long mm, double tt) { long ii, kk; double djul ; if( mm <= 2 ) { jj = jj - 1; mm = mm + 12; } ii = jj/100; kk = 2 - ii + ii/4; djul = (365.25*jj - fmod( 365.25*jj, 1.0 )) - 679006.0; djul = djul + floor( 30.6001*(mm + 1) ) + tt + kk; return djul; } // //////////////////////////////////////////////////////////////////////////// double gpjd(double second, int nweek) { double deltat; deltat = nweek*7.0 + second/86400.0 ; return( 44244.0 + deltat) ; } // //////////////////////////////////////////////////////////////////////////// void jdgp(double tjul, double & second, long & nweek) { double deltat; deltat = tjul - 44244.0 ; nweek = (long) floor(deltat/7.0); second = (deltat - (nweek)*7.0)*86400.0; } // //////////////////////////////////////////////////////////////////////////// void jmt(double djul, long& jj, long& mm, double& dd) { long ih, ih1, ih2 ; double t1, t2, t3, t4; t1 = 1.0 + djul - fmod( djul, 1.0 ) + 2400000.0; t4 = fmod( djul, 1.0 ); ih = long( (t1 - 1867216.25)/36524.25 ); t2 = t1 + 1 + ih - ih/4; t3 = t2 - 1720995.0; ih1 = long( (t3 - 122.1)/365.25 ); t1 = 365.25*ih1 - fmod( 365.25*ih1, 1.0 ); ih2 = long( (t3 - t1)/30.6001 ); dd = t3 - t1 - (int)( 30.6001*ih2 ) + t4; mm = ih2 - 1; if ( ih2 > 13 ) mm = ih2 - 13; jj = ih1; if ( mm <= 2 ) jj = jj + 1; } // //////////////////////////////////////////////////////////////////////////// void GPSweekFromDateAndTime(const QDateTime& dateTime, int& GPSWeek, double& GPSWeeks) { static const QDateTime zeroEpoch(QDate(1980, 1, 6),QTime(),Qt::UTC); GPSWeek = zeroEpoch.daysTo(dateTime) / 7; int weekDay = dateTime.date().dayOfWeek() + 1; // Qt: Monday = 1 if (weekDay > 7) weekDay = 1; GPSWeeks = (weekDay - 1) * 86400.0 - dateTime.time().msecsTo(QTime()) / 1e3; } // //////////////////////////////////////////////////////////////////////////// void GPSweekFromYMDhms(int year, int month, int day, int hour, int min, double sec, int& GPSWeek, double& GPSWeeks) { double mjd = djul(year, month, day); long GPSWeek_long; jdgp(mjd, GPSWeeks, GPSWeek_long); GPSWeek = GPSWeek_long; GPSWeeks += hour * 3600.0 + min * 60.0 + sec; } // //////////////////////////////////////////////////////////////////////////// void mjdFromDateAndTime(const QDateTime& dateTime, int& mjd, double& dayfrac) { static const QDate zeroDate(1858, 11, 17); mjd = zeroDate.daysTo(dateTime.date()); dayfrac = (dateTime.time().hour() + (dateTime.time().minute() + (dateTime.time().second() + dateTime.time().msec() / 1000.0) / 60.0) / 60.0) / 24.0; } // //////////////////////////////////////////////////////////////////////////// bool findInVector(const vector& vv, const QString& str) { std::vector::const_iterator it; for (it = vv.begin(); it != vv.end(); ++it) { if ( (*it) == str) { return true; } } return false; } // //////////////////////////////////////////////////////////////////////////// int readInt(const QString& str, int pos, int len, int& value) { bool ok; value = str.mid(pos, len).toInt(&ok); return ok ? 0 : 1; } // //////////////////////////////////////////////////////////////////////////// int readDbl(const QString& str, int pos, int len, double& value) { QString hlp = str.mid(pos, len); for (int ii = 0; ii < hlp.length(); ii++) { if (hlp[ii]=='D' || hlp[ii]=='d' || hlp[ii] == 'E') { hlp[ii]='e'; } } bool ok; value = hlp.toDouble(&ok); return ok ? 0 : 1; } // Topocentrical Distance and Elevation //////////////////////////////////////////////////////////////////////////// void topos(double xRec, double yRec, double zRec, double xSat, double ySat, double zSat, double& rho, double& eleSat, double& azSat) { double dx[3]; dx[0] = xSat-xRec; dx[1] = ySat-yRec; dx[2] = zSat-zRec; rho = sqrt( dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2] ); double xyzRec[3]; xyzRec[0] = xRec; xyzRec[1] = yRec; xyzRec[2] = zRec; double Ell[3]; double neu[3]; xyz2ell(xyzRec, Ell); xyz2neu(Ell, dx, neu); eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho ); if (neu[2] < 0) { eleSat *= -1.0; } azSat = atan2(neu[1], neu[0]); } // Degrees -> degrees, minutes, seconds //////////////////////////////////////////////////////////////////////////// void deg2DMS(double decDeg, int& deg, int& min, double& sec) { int sgn = (decDeg < 0.0 ? -1 : 1); deg = sgn * static_cast(decDeg); min = static_cast((decDeg - deg)*60); sec = (decDeg - deg - min/60.0) * 3600.0; } // //////////////////////////////////////////////////////////////////////////// QString fortranFormat(double value, int width, int prec) { int expo = value == 0.0 ? 0 : int(log10(fabs(value))); double mant = value == 0.0 ? 0 : value / pow(10, expo); if (fabs(mant) >= 1.0) { mant /= 10.0; expo += 1; } if (expo >= 0) { return QString("%1e+%2").arg(mant, width-4, 'f', prec).arg(expo, 2, 10, QChar('0')); } else { return QString("%1e-%2").arg(mant, width-4, 'f', prec).arg(-expo, 2, 10, QChar('0')); } } // ////////////////////////////////////////////////////////////////////////////// void kalman(const Matrix& AA, const ColumnVector& ll, const DiagonalMatrix& PP, SymmetricMatrix& QQ, ColumnVector& xx) { Tracer tracer("kalman"); int nPar = AA.Ncols(); int nObs = AA.Nrows(); UpperTriangularMatrix SS = Cholesky(QQ).t(); Matrix SA = SS*AA.t(); Matrix SRF(nObs+nPar, nObs+nPar); SRF = 0; for (int ii = 1; ii <= nObs; ++ii) { SRF(ii,ii) = 1.0 / sqrt(PP(ii,ii)); } SRF.SubMatrix (nObs+1, nObs+nPar, 1, nObs) = SA; SRF.SymSubMatrix(nObs+1, nObs+nPar) = SS; UpperTriangularMatrix UU; QRZ(SRF, UU); SS = UU.SymSubMatrix(nObs+1, nObs+nPar); UpperTriangularMatrix SH_rt = UU.SymSubMatrix(1, nObs); Matrix YY = UU.SubMatrix(1, nObs, nObs+1, nObs+nPar); UpperTriangularMatrix SHi = SH_rt.i(); Matrix KT = SHi * YY; SymmetricMatrix Hi; Hi << SHi * SHi.t(); xx += KT.t() * (ll - AA * xx); QQ << (SS.t() * SS); } double accuracyFromIndex(int index, t_eph::e_type type) { if (type == t_eph::GPS || type == t_eph::BDS || type == t_eph::SBAS || type == t_eph::QZSS) { if ((index >= 0) && (index <= 6)) { if (index == 3) { return ceil(10.0 * pow(2.0, (double(index) / 2.0) + 1.0)) / 10.0; } else { return floor(10.0 * pow(2.0, (double(index) / 2.0) + 1.0)) / 10.0; } } else if ((index > 6) && (index <= 15)) { return (10.0 * pow(2.0, (double(index) - 2.0))) / 10.0; } else { return 8192.0; } } if (type == t_eph::Galileo) { if ((index >= 0) && (index <= 49)) { return (double(index) / 100.0); } else if ((index > 49) && (index <= 74)) { return (50.0 + (double(index) - 50.0) * 2.0) / 100.0; } else if ((index > 74) && (index <= 99)) { return 1.0 + (double(index) - 75.0) * 0.04; } else if ((index > 99) && (index <= 125)) { return 2.0 + (double(index) - 100.0) * 0.16; } else { return -1.0; } } return double(index); } int indexFromAccuracy(double accuracy, t_eph::e_type type) { if (type == t_eph::GPS || type == t_eph::BDS || type == t_eph::SBAS || type == t_eph::QZSS) { if (accuracy <= 2.40) { return 0; } else if (accuracy <= 3.40) { return 1; } else if (accuracy <= 4.85) { return 2; } else if (accuracy <= 6.85) { return 3; } else if (accuracy <= 9.65) { return 4; } else if (accuracy <= 13.65) { return 5; } else if (accuracy <= 24.00) { return 6; } else if (accuracy <= 48.00) { return 7; } else if (accuracy <= 96.00) { return 8; } else if (accuracy <= 192.00) { return 9; } else if (accuracy <= 384.00) { return 10; } else if (accuracy <= 768.00) { return 11; } else if (accuracy <= 1536.00) { return 12; } else if (accuracy <= 3072.00) { return 13; } else if (accuracy <= 6144.00) { return 14; } else { return 15; } } if (type == t_eph::Galileo) { if (accuracy <= 0.49) { return int(ceil(accuracy * 100.0)); } else if (accuracy <= 0.98) { return int(50.0 + (((accuracy * 100.0) - 50) / 2.0)); } else if (accuracy <= 2.0) { return int(75.0 + ((accuracy - 1.0) / 0.04)); } else if (accuracy <= 6.0) { return int(100.0 + ((accuracy - 2.0) / 0.16)); } else { return 255; } } return (type == t_eph::Galileo) ? 255 : 15; } // Returns CRC24 //////////////////////////////////////////////////////////////////////////// unsigned long CRC24(long size, const unsigned char *buf) { unsigned long crc = 0; int ii; while (size--) { crc ^= (*buf++) << (16); for(ii = 0; ii < 8; ii++) { crc <<= 1; if (crc & 0x1000000) { crc ^= 0x01864cfb; } } } return crc; }