source: ntrip/trunk/BNC/src/bncutils.cpp@ 8795

Last change on this file since 8795 was 8790, checked in by stuerze, 5 years ago

some updates regarding IRNSS RTCM data decoding

File size: 29.7 KB
Line 
1// Part of BNC, a utility for retrieving decoding and
2// converting GNSS data streams from NTRIP broadcasters.
3//
4// Copyright (C) 2007
5// German Federal Agency for Cartography and Geodesy (BKG)
6// http://www.bkg.bund.de
7// Czech Technical University Prague, Department of Geodesy
8// http://www.fsv.cvut.cz
9//
10// Email: euref-ip@bkg.bund.de
11//
12// This program is free software; you can redistribute it and/or
13// modify it under the terms of the GNU General Public License
14// as published by the Free Software Foundation, version 2.
15//
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25/* -------------------------------------------------------------------------
26 * BKG NTRIP Client
27 * -------------------------------------------------------------------------
28 *
29 * Class: bncutils
30 *
31 * Purpose: Auxiliary Functions
32 *
33 * Author: L. Mervart
34 *
35 * Created: 30-Aug-2006
36 *
37 * Changes:
38 *
39 * -----------------------------------------------------------------------*/
40
41#include <iostream>
42#include <ctime>
43#include <math.h>
44
45#include <QRegExp>
46#include <QStringList>
47#include <QDateTime>
48
49#include <newmatap.h>
50
51#include "bncutils.h"
52#include "bnccore.h"
53
54using namespace std;
55
56struct leapseconds { /* specify the day of leap second */
57 int day; /* this is the day, where 23:59:59 exists 2 times */
58 int month; /* not the next day! */
59 int year;
60 int taicount;
61};
62static const int months[13] = {0,31,28,31,30,31,30,31,31,30,31,30,31};
63static const struct leapseconds leap[] = {
64/*{31, 12, 1971, 10},*/
65/*{30, 06, 1972, 11},*/
66/*{31, 12, 1972, 12},*/
67/*{31, 12, 1973, 13},*/
68/*{31, 12, 1974, 14},*/
69/*{31, 12, 1975, 15},*/
70/*{31, 12, 1976, 16},*/
71/*{31, 12, 1977, 17},*/
72/*{31, 12, 1978, 18},*/
73/*{31, 12, 1979, 19},*/
74{30, 06, 1981,20},
75{30, 06, 1982,21},
76{30, 06, 1983,22},
77{30, 06, 1985,23},
78{31, 12, 1987,24},
79{31, 12, 1989,25},
80{31, 12, 1990,26},
81{30, 06, 1992,27},
82{30, 06, 1993,28},
83{30, 06, 1994,29},
84{31, 12, 1995,30},
85{30, 06, 1997,31},
86{31, 12, 1998,32},
87{31, 12, 2005,33},
88{31, 12, 2008,34},
89{30, 06, 2012,35},
90{30, 06, 2015,36},
91{01, 01, 2017,37},
92{0,0,0,0} /* end marker */
93};
94
95#define GPSLEAPSTART 19 /* 19 leap seconds existed at 6.1.1980 */
96
97static int longyear(int year, int month)
98{
99 if(!(year % 4) && (!(year % 400) || (year % 100)))
100 {
101 if(!month || month == 2)
102 return 1;
103 }
104 return 0;
105}
106
107int gnumleap(int year, int month, int day)
108{
109 int ls = 0;
110 const struct leapseconds *l;
111
112 for(l = leap; l->taicount && year >= l->year; ++l)
113 {
114 if(year > l->year || month > l->month || (month == l->month && day > l->day))
115 ls = l->taicount - GPSLEAPSTART;
116 }
117 return ls;
118}
119
120/* Convert Moscow time into UTC (fixnumleap == 1) or GPS (fixnumleap == 0) */
121void updatetime(int *week, int *secOfWeek, int mSecOfWeek, bool fixnumleap)
122{
123 int y,m,d,k,l, nul;
124 unsigned int j = *week*(7*24*60*60) + *secOfWeek + 5*24*60*60+3*60*60;
125 int glo_daynumber = 0, glo_timeofday;
126 for(y = 1980; j >= (unsigned int)(k = (l = (365+longyear(y,0)))*24*60*60)
127 + gnumleap(y+1,1,1); ++y)
128 {
129 j -= k; glo_daynumber += l;
130 }
131 for(m = 1; j >= (unsigned int)(k = (l = months[m]+longyear(y, m))*24*60*60)
132 + gnumleap(y, m+1, 1); ++m)
133 {
134 j -= k; glo_daynumber += l;
135 }
136 for(d = 1; j >= 24UL*60UL*60UL + gnumleap(y, m, d+1); ++d)
137 j -= 24*60*60;
138 glo_daynumber -= 16*365+4-d;
139 nul = gnumleap(y, m, d);
140 glo_timeofday = j-nul;
141
142 // original version
143 // if(mSecOfWeek < 5*60*1000 && glo_timeofday > 23*60*60)
144 // *secOfWeek += 24*60*60;
145 // else if(glo_timeofday < 5*60 && mSecOfWeek > 23*60*60*1000)
146 // *secOfWeek -= 24*60*60;
147
148 // new version
149 if(mSecOfWeek < 4*60*60*1000 && glo_timeofday > 20*60*60)
150 *secOfWeek += 24*60*60;
151 else if(glo_timeofday < 4*60*60 && mSecOfWeek > 20*60*60*1000)
152 *secOfWeek -= 24*60*60;
153
154 *secOfWeek += mSecOfWeek/1000-glo_timeofday;
155 if(fixnumleap)
156 *secOfWeek -= nul;
157 if(*secOfWeek < 0) {*secOfWeek += 24*60*60*7; --*week; }
158 if(*secOfWeek >= 24*60*60*7) {*secOfWeek -= 24*60*60*7; ++*week; }
159}
160
161//
162////////////////////////////////////////////////////////////////////////////
163void expandEnvVar(QString& str) {
164
165 QRegExp rx("(\\$\\{.+\\})");
166
167 if (rx.indexIn(str) != -1) {
168 QStringListIterator it(rx.capturedTexts());
169 if (it.hasNext()) {
170 QString rxStr = it.next();
171 QString envVar = rxStr.mid(2,rxStr.length()-3);
172 str.replace(rxStr, qgetenv(envVar.toLatin1()));
173 }
174 }
175
176}
177
178// Strip White Space
179////////////////////////////////////////////////////////////////////////////
180void stripWhiteSpace(string& str) {
181 if (!str.empty()) {
182 string::size_type beg = str.find_first_not_of(" \t\f\n\r\v");
183 string::size_type end = str.find_last_not_of(" \t\f\n\r\v");
184 if (beg > str.max_size())
185 str.erase();
186 else
187 str = str.substr(beg, end-beg+1);
188 }
189}
190
191//
192////////////////////////////////////////////////////////////////////////////
193QDateTime dateAndTimeFromGPSweek(int GPSWeek, double GPSWeeks) {
194
195 static const QDate zeroEpoch(1980, 1, 6);
196
197 QDate date(zeroEpoch);
198 QTime time(0,0,0,0);
199
200 int weekDays = int(GPSWeeks) / 86400;
201 date = date.addDays( GPSWeek * 7 + weekDays );
202 time = time.addMSecs( int( (GPSWeeks - 86400 * weekDays) * 1e3 ) );
203
204 return QDateTime(date,time);
205}
206
207//
208////////////////////////////////////////////////////////////////////////////
209void currentGPSWeeks(int& week, double& sec) {
210
211 QDateTime currDateTimeGPS;
212
213 if ( BNC_CORE->dateAndTimeGPSSet() ) {
214 currDateTimeGPS = BNC_CORE->dateAndTimeGPS();
215 }
216 else {
217 currDateTimeGPS = QDateTime::currentDateTime().toUTC();
218 QDate hlp = currDateTimeGPS.date();
219 currDateTimeGPS = currDateTimeGPS.addSecs(gnumleap(hlp.year(),
220 hlp.month(), hlp.day()));
221 }
222
223 QDate currDateGPS = currDateTimeGPS.date();
224 QTime currTimeGPS = currDateTimeGPS.time();
225
226 week = int( (double(currDateGPS.toJulianDay()) - 2444244.5) / 7 );
227
228 sec = (currDateGPS.dayOfWeek() % 7) * 24.0 * 3600.0 +
229 currTimeGPS.hour() * 3600.0 +
230 currTimeGPS.minute() * 60.0 +
231 currTimeGPS.second() +
232 currTimeGPS.msec() / 1000.0;
233}
234
235//
236////////////////////////////////////////////////////////////////////////////
237QDateTime currentDateAndTimeGPS() {
238 if ( BNC_CORE->dateAndTimeGPSSet() ) {
239 return BNC_CORE->dateAndTimeGPS();
240 }
241 else {
242 int GPSWeek;
243 double GPSWeeks;
244 currentGPSWeeks(GPSWeek, GPSWeeks);
245 return dateAndTimeFromGPSweek(GPSWeek, GPSWeeks);
246 }
247}
248
249//
250////////////////////////////////////////////////////////////////////////////
251bool checkForWrongObsEpoch(bncTime obsEpoch) {
252 const double maxDt = 600.0;
253 bncTime obsTime = obsEpoch;
254 int week;
255 double sec;
256 currentGPSWeeks(week, sec);
257 bncTime currTime(week, sec);
258
259 if (((currTime - obsTime) < 0.0) ||
260 (fabs(currTime - obsTime) > maxDt)) {
261 return true;
262 }
263 return false;
264}
265//
266////////////////////////////////////////////////////////////////////////////
267QByteArray ggaString(const QByteArray& latitude,
268 const QByteArray& longitude,
269 const QByteArray& height,
270 const QString& ggaType) {
271
272 double lat = strtod(latitude,NULL);
273 double lon = strtod(longitude,NULL);
274 double hei = strtod(height,NULL);
275 QString sentences = "GPGGA,";
276 if (ggaType.contains("GNGGA")) {
277 sentences = "GNGGA,";
278 }
279
280 const char* flagN="N";
281 const char* flagE="E";
282 if (lon >180.) {lon=(lon-360.)*(-1.); flagE="W";}
283 if ((lon < 0.) && (lon >= -180.)) {lon=lon*(-1.); flagE="W";}
284 if (lon < -180.) {lon=(lon+360.); flagE="E";}
285 if (lat < 0.) {lat=lat*(-1.); flagN="S";}
286 QTime ttime(QDateTime::currentDateTime().toUTC().time());
287 int lat_deg = (int)lat;
288 double lat_min=(lat-lat_deg)*60.;
289 int lon_deg = (int)lon;
290 double lon_min=(lon-lon_deg)*60.;
291 int hh = 0 , mm = 0;
292 double ss = 0.0;
293 hh=ttime.hour();
294 mm=ttime.minute();
295 ss=(double)ttime.second()+0.001*ttime.msec();
296 QString gga;
297 gga += sentences;
298 gga += QString("%1%2%3,").arg((int)hh, 2, 10, QLatin1Char('0')).arg((int)mm, 2, 10, QLatin1Char('0')).arg((int)ss, 2, 10, QLatin1Char('0'));
299 gga += QString("%1%2,").arg((int)lat_deg,2, 10, QLatin1Char('0')).arg(lat_min, 7, 'f', 4, QLatin1Char('0'));
300 gga += flagN;
301 gga += QString(",%1%2,").arg((int)lon_deg,3, 10, QLatin1Char('0')).arg(lon_min, 7, 'f', 4, QLatin1Char('0'));
302 gga += flagE + QString(",1,05,1.00");
303 gga += QString(",%1,").arg(hei, 2, 'f', 1);
304 gga += QString("M,10.000,M,,");
305
306 unsigned char XOR = 0;
307 for (int ii = 0; ii < gga.length(); ii++) {
308 XOR ^= (unsigned char) gga[ii].toLatin1();
309 }
310 gga = "$" + gga + QString("*%1").arg(XOR, 2, 16, QLatin1Char('0')) + "\n";
311
312 return gga.toLatin1();
313}
314
315//
316////////////////////////////////////////////////////////////////////////////
317void RSW_to_XYZ(const ColumnVector& rr, const ColumnVector& vv,
318 const ColumnVector& rsw, ColumnVector& xyz) {
319
320 ColumnVector along = vv / vv.norm_Frobenius();
321 ColumnVector cross = crossproduct(rr, vv); cross /= cross.norm_Frobenius();
322 ColumnVector radial = crossproduct(along, cross);
323
324 Matrix RR(3,3);
325 RR.Column(1) = radial;
326 RR.Column(2) = along;
327 RR.Column(3) = cross;
328
329 xyz = RR * rsw;
330}
331
332// Transformation xyz --> radial, along track, out-of-plane
333////////////////////////////////////////////////////////////////////////////
334void XYZ_to_RSW(const ColumnVector& rr, const ColumnVector& vv,
335 const ColumnVector& xyz, ColumnVector& rsw) {
336
337 ColumnVector along = vv / vv.norm_Frobenius();
338 ColumnVector cross = crossproduct(rr, vv); cross /= cross.norm_Frobenius();
339 ColumnVector radial = crossproduct(along, cross);
340
341 rsw.ReSize(3);
342 rsw(1) = DotProduct(xyz, radial);
343 rsw(2) = DotProduct(xyz, along);
344 rsw(3) = DotProduct(xyz, cross);
345}
346
347// Rectangular Coordinates -> Ellipsoidal Coordinates
348////////////////////////////////////////////////////////////////////////////
349t_irc xyz2ell(const double* XYZ, double* Ell) {
350
351 const double bell = t_CST::aell*(1.0-1.0/t_CST::fInv) ;
352 const double e2 = (t_CST::aell*t_CST::aell-bell*bell)/(t_CST::aell*t_CST::aell) ;
353 const double e2c = (t_CST::aell*t_CST::aell-bell*bell)/(bell*bell) ;
354
355 double nn, ss, zps, hOld, phiOld, theta, sin3, cos3;
356
357 ss = sqrt(XYZ[0]*XYZ[0]+XYZ[1]*XYZ[1]) ;
358 zps = XYZ[2]/ss ;
359 theta = atan( (XYZ[2]*t_CST::aell) / (ss*bell) );
360 sin3 = sin(theta) * sin(theta) * sin(theta);
361 cos3 = cos(theta) * cos(theta) * cos(theta);
362
363 // Closed formula
364 Ell[0] = atan( (XYZ[2] + e2c * bell * sin3) / (ss - e2 * t_CST::aell * cos3) );
365 Ell[1] = atan2(XYZ[1],XYZ[0]) ;
366 nn = t_CST::aell/sqrt(1.0-e2*sin(Ell[0])*sin(Ell[0])) ;
367 Ell[2] = ss / cos(Ell[0]) - nn;
368
369 const int MAXITER = 100;
370 for (int ii = 1; ii <= MAXITER; ii++) {
371 nn = t_CST::aell/sqrt(1.0-e2*sin(Ell[0])*sin(Ell[0])) ;
372 hOld = Ell[2] ;
373 phiOld = Ell[0] ;
374 Ell[2] = ss/cos(Ell[0])-nn ;
375 Ell[0] = atan(zps/(1.0-e2*nn/(nn+Ell[2]))) ;
376 if ( fabs(phiOld-Ell[0]) <= 1.0e-11 && fabs(hOld-Ell[2]) <= 1.0e-5 ) {
377 return success;
378 }
379 }
380
381 return failure;
382}
383
384// Rectangular Coordinates -> North, East, Up Components
385////////////////////////////////////////////////////////////////////////////
386void xyz2neu(const double* Ell, const double* xyz, double* neu) {
387
388 double sinPhi = sin(Ell[0]);
389 double cosPhi = cos(Ell[0]);
390 double sinLam = sin(Ell[1]);
391 double cosLam = cos(Ell[1]);
392
393 neu[0] = - sinPhi*cosLam * xyz[0]
394 - sinPhi*sinLam * xyz[1]
395 + cosPhi * xyz[2];
396
397 neu[1] = - sinLam * xyz[0]
398 + cosLam * xyz[1];
399
400 neu[2] = + cosPhi*cosLam * xyz[0]
401 + cosPhi*sinLam * xyz[1]
402 + sinPhi * xyz[2];
403}
404
405// North, East, Up Components -> Rectangular Coordinates
406////////////////////////////////////////////////////////////////////////////
407void neu2xyz(const double* Ell, const double* neu, double* xyz) {
408
409 double sinPhi = sin(Ell[0]);
410 double cosPhi = cos(Ell[0]);
411 double sinLam = sin(Ell[1]);
412 double cosLam = cos(Ell[1]);
413
414 xyz[0] = - sinPhi*cosLam * neu[0]
415 - sinLam * neu[1]
416 + cosPhi*cosLam * neu[2];
417
418 xyz[1] = - sinPhi*sinLam * neu[0]
419 + cosLam * neu[1]
420 + cosPhi*sinLam * neu[2];
421
422 xyz[2] = + cosPhi * neu[0]
423 + sinPhi * neu[2];
424}
425
426// Rectangular Coordinates -> Geocentric Coordinates
427////////////////////////////////////////////////////////////////////////////
428t_irc xyz2geoc(const double* XYZ, double* Geoc) {
429
430 const double bell = t_CST::aell*(1.0-1.0/t_CST::fInv) ;
431 const double e2 = (t_CST::aell*t_CST::aell-bell*bell)/(t_CST::aell*t_CST::aell) ;
432 double Ell[3];
433 if (xyz2ell(XYZ, Ell) != success) {
434 return failure;
435 }
436 double rho = sqrt(XYZ[0]*XYZ[0]+XYZ[1]*XYZ[1]+XYZ[2]*XYZ[2]);
437 double Rn = t_CST::aell/sqrt(1-e2*pow(sin(Ell[0]),2));
438
439 Geoc[0] = atan((1-e2 * Rn/(Rn + Ell[2])) * tan(Ell[0]));
440 Geoc[1] = Ell[1];
441 Geoc[2] = rho-t_CST::rgeoc;
442
443 return success;
444}
445
446//
447////////////////////////////////////////////////////////////////////////////
448double Frac (double x) {
449 return x-floor(x);
450}
451
452//
453////////////////////////////////////////////////////////////////////////////
454double Modulo (double x, double y) {
455 return y*Frac(x/y);
456}
457
458// Round to nearest integer
459////////////////////////////////////////////////////////////////////////////
460double nint(double val) {
461 return ((val < 0.0) ? -floor(fabs(val)+0.5) : floor(val+0.5));
462}
463
464//
465////////////////////////////////////////////////////////////////////////////
466double factorial(int n) {
467 if (n == 0) {
468 return 1;
469 }
470 else {
471 return (n * factorial(n - 1));
472 }
473}
474
475//
476////////////////////////////////////////////////////////////////////////////
477double associatedLegendreFunction(int n, int m, double t) {
478 double sum = 0.0;
479 int r = (int) floor((n - m) / 2);
480 for (int k = 0; k <= r; k++) {
481 sum += (pow(-1.0, (double)k) * factorial(2*n - 2*k)
482 / (factorial(k) * factorial(n-k) * factorial(n-m-2*k))
483 * pow(t, (double)n-m-2*k));
484 }
485 double fac = pow(2.0,(double) -n) * pow((1 - t*t), (double)m/2);
486 return sum *= fac;
487}
488
489
490// Jacobian XYZ --> NEU
491////////////////////////////////////////////////////////////////////////////
492void jacobiXYZ_NEU(const double* Ell, Matrix& jacobi) {
493
494 Tracer tracer("jacobiXYZ_NEU");
495
496 double sinPhi = sin(Ell[0]);
497 double cosPhi = cos(Ell[0]);
498 double sinLam = sin(Ell[1]);
499 double cosLam = cos(Ell[1]);
500
501 jacobi(1,1) = - sinPhi * cosLam;
502 jacobi(1,2) = - sinPhi * sinLam;
503 jacobi(1,3) = cosPhi;
504
505 jacobi(2,1) = - sinLam;
506 jacobi(2,2) = cosLam;
507 jacobi(2,3) = 0.0;
508
509 jacobi(3,1) = cosPhi * cosLam;
510 jacobi(3,2) = cosPhi * sinLam;
511 jacobi(3,3) = sinPhi;
512}
513
514// Jacobian Ell --> XYZ
515////////////////////////////////////////////////////////////////////////////
516void jacobiEll_XYZ(const double* Ell, Matrix& jacobi) {
517
518 Tracer tracer("jacobiEll_XYZ");
519
520 double sinPhi = sin(Ell[0]);
521 double cosPhi = cos(Ell[0]);
522 double sinLam = sin(Ell[1]);
523 double cosLam = cos(Ell[1]);
524 double hh = Ell[2];
525
526 double bell = t_CST::aell*(1.0-1.0/t_CST::fInv);
527 double e2 = (t_CST::aell*t_CST::aell-bell*bell)/(t_CST::aell*t_CST::aell) ;
528 double nn = t_CST::aell/sqrt(1.0-e2*sinPhi*sinPhi) ;
529
530 jacobi(1,1) = -(nn+hh) * sinPhi * cosLam;
531 jacobi(1,2) = -(nn+hh) * cosPhi * sinLam;
532 jacobi(1,3) = cosPhi * cosLam;
533
534 jacobi(2,1) = -(nn+hh) * sinPhi * sinLam;
535 jacobi(2,2) = (nn+hh) * cosPhi * cosLam;
536 jacobi(2,3) = cosPhi * sinLam;
537
538 jacobi(3,1) = (nn*(1.0-e2)+hh) * cosPhi;
539 jacobi(3,2) = 0.0;
540 jacobi(3,3) = sinPhi;
541}
542
543// Covariance Matrix in NEU
544////////////////////////////////////////////////////////////////////////////
545void covariXYZ_NEU(const SymmetricMatrix& QQxyz, const double* Ell,
546 SymmetricMatrix& Qneu) {
547
548 Tracer tracer("covariXYZ_NEU");
549
550 Matrix CC(3,3);
551 jacobiXYZ_NEU(Ell, CC);
552 Qneu << CC * QQxyz * CC.t();
553}
554
555// Covariance Matrix in XYZ
556////////////////////////////////////////////////////////////////////////////
557void covariNEU_XYZ(const SymmetricMatrix& QQneu, const double* Ell,
558 SymmetricMatrix& Qxyz) {
559
560 Tracer tracer("covariNEU_XYZ");
561
562 Matrix CC(3,3);
563 jacobiXYZ_NEU(Ell, CC);
564 Qxyz << CC.t() * QQneu * CC;
565}
566
567// Fourth order Runge-Kutta numerical integrator for ODEs
568////////////////////////////////////////////////////////////////////////////
569ColumnVector rungeKutta4(
570 double xi, // the initial x-value
571 const ColumnVector& yi, // vector of the initial y-values
572 double dx, // the step size for the integration
573 double* acc, // additional acceleration
574 ColumnVector (*der)(double x, const ColumnVector& y, double* acc)
575 // A pointer to a function that computes the
576 // derivative of a function at a point (x,y)
577 ) {
578
579 ColumnVector k1 = der(xi , yi , acc) * dx;
580 ColumnVector k2 = der(xi+dx/2.0, yi+k1/2.0, acc) * dx;
581 ColumnVector k3 = der(xi+dx/2.0, yi+k2/2.0, acc) * dx;
582 ColumnVector k4 = der(xi+dx , yi+k3 , acc) * dx;
583
584 ColumnVector yf = yi + k1/6.0 + k2/3.0 + k3/3.0 + k4/6.0;
585
586 return yf;
587}
588//
589////////////////////////////////////////////////////////////////////////////
590double djul(long jj, long mm, double tt) {
591 long ii, kk;
592 double djul ;
593 if( mm <= 2 ) {
594 jj = jj - 1;
595 mm = mm + 12;
596 }
597 ii = jj/100;
598 kk = 2 - ii + ii/4;
599 djul = (365.25*jj - fmod( 365.25*jj, 1.0 )) - 679006.0;
600 djul = djul + floor( 30.6001*(mm + 1) ) + tt + kk;
601 return djul;
602}
603
604//
605////////////////////////////////////////////////////////////////////////////
606double gpjd(double second, int nweek) {
607 double deltat;
608 deltat = nweek*7.0 + second/86400.0 ;
609 return( 44244.0 + deltat) ;
610}
611
612//
613////////////////////////////////////////////////////////////////////////////
614void jdgp(double tjul, double & second, long & nweek) {
615 double deltat;
616 deltat = tjul - 44244.0 ;
617 nweek = (long) floor(deltat/7.0);
618 second = (deltat - (nweek)*7.0)*86400.0;
619}
620
621//
622////////////////////////////////////////////////////////////////////////////
623void jmt(double djul, long& jj, long& mm, double& dd) {
624 long ih, ih1, ih2 ;
625 double t1, t2, t3, t4;
626 t1 = 1.0 + djul - fmod( djul, 1.0 ) + 2400000.0;
627 t4 = fmod( djul, 1.0 );
628 ih = long( (t1 - 1867216.25)/36524.25 );
629 t2 = t1 + 1 + ih - ih/4;
630 t3 = t2 - 1720995.0;
631 ih1 = long( (t3 - 122.1)/365.25 );
632 t1 = 365.25*ih1 - fmod( 365.25*ih1, 1.0 );
633 ih2 = long( (t3 - t1)/30.6001 );
634 dd = t3 - t1 - (int)( 30.6001*ih2 ) + t4;
635 mm = ih2 - 1;
636 if ( ih2 > 13 ) mm = ih2 - 13;
637 jj = ih1;
638 if ( mm <= 2 ) jj = jj + 1;
639}
640
641//
642////////////////////////////////////////////////////////////////////////////
643void GPSweekFromDateAndTime(const QDateTime& dateTime,
644 int& GPSWeek, double& GPSWeeks) {
645
646 static const QDateTime zeroEpoch(QDate(1980, 1, 6),QTime(),Qt::UTC);
647
648 GPSWeek = zeroEpoch.daysTo(dateTime) / 7;
649
650 int weekDay = dateTime.date().dayOfWeek() + 1; // Qt: Monday = 1
651 if (weekDay > 7) weekDay = 1;
652
653 GPSWeeks = (weekDay - 1) * 86400.0
654 - dateTime.time().msecsTo(QTime()) / 1e3;
655}
656
657//
658////////////////////////////////////////////////////////////////////////////
659void GPSweekFromYMDhms(int year, int month, int day, int hour, int min,
660 double sec, int& GPSWeek, double& GPSWeeks) {
661
662 double mjd = djul(year, month, day);
663
664 long GPSWeek_long;
665 jdgp(mjd, GPSWeeks, GPSWeek_long);
666 GPSWeek = GPSWeek_long;
667 GPSWeeks += hour * 3600.0 + min * 60.0 + sec;
668}
669
670//
671////////////////////////////////////////////////////////////////////////////
672void mjdFromDateAndTime(const QDateTime& dateTime, int& mjd, double& dayfrac) {
673
674 static const QDate zeroDate(1858, 11, 17);
675
676 mjd = zeroDate.daysTo(dateTime.date());
677
678 dayfrac = (dateTime.time().hour() +
679 (dateTime.time().minute() +
680 (dateTime.time().second() +
681 dateTime.time().msec() / 1000.0) / 60.0) / 60.0) / 24.0;
682}
683
684//
685////////////////////////////////////////////////////////////////////////////
686bool findInVector(const vector<QString>& vv, const QString& str) {
687 std::vector<QString>::const_iterator it;
688 for (it = vv.begin(); it != vv.end(); ++it) {
689 if ( (*it) == str) {
690 return true;
691 }
692 }
693 return false;
694}
695
696//
697////////////////////////////////////////////////////////////////////////////
698int readInt(const QString& str, int pos, int len, int& value) {
699 bool ok;
700 value = str.mid(pos, len).toInt(&ok);
701 return ok ? 0 : 1;
702}
703
704//
705////////////////////////////////////////////////////////////////////////////
706int readDbl(const QString& str, int pos, int len, double& value) {
707 QString hlp = str.mid(pos, len);
708 for (int ii = 0; ii < hlp.length(); ii++) {
709 if (hlp[ii]=='D' || hlp[ii]=='d' || hlp[ii] == 'E') {
710 hlp[ii]='e';
711 }
712 }
713 bool ok;
714 value = hlp.toDouble(&ok);
715 return ok ? 0 : 1;
716}
717
718// Topocentrical Distance and Elevation
719////////////////////////////////////////////////////////////////////////////
720void topos(double xRec, double yRec, double zRec,
721 double xSat, double ySat, double zSat,
722 double& rho, double& eleSat, double& azSat) {
723
724 double dx[3];
725 dx[0] = xSat-xRec;
726 dx[1] = ySat-yRec;
727 dx[2] = zSat-zRec;
728
729 rho = sqrt( dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2] );
730
731 double xyzRec[3];
732 xyzRec[0] = xRec;
733 xyzRec[1] = yRec;
734 xyzRec[2] = zRec;
735
736 double Ell[3];
737 double neu[3];
738 xyz2ell(xyzRec, Ell);
739 xyz2neu(Ell, dx, neu);
740
741 eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho );
742 if (neu[2] < 0) {
743 eleSat *= -1.0;
744 }
745
746 azSat = atan2(neu[1], neu[0]);
747}
748
749// Degrees -> degrees, minutes, seconds
750////////////////////////////////////////////////////////////////////////////
751void deg2DMS(double decDeg, int& deg, int& min, double& sec) {
752 int sgn = (decDeg < 0.0 ? -1 : 1);
753 deg = static_cast<int>(decDeg);
754 min = sgn * static_cast<int>((decDeg - deg)*60);
755 sec = (sgn* (decDeg - deg) - min/60.0) * 3600.0;
756}
757
758//
759////////////////////////////////////////////////////////////////////////////
760QString fortranFormat(double value, int width, int prec) {
761 int expo = value == 0.0 ? 0 : int(log10(fabs(value)));
762 double mant = value == 0.0 ? 0 : value / pow(10.0, double(expo));
763 if (fabs(mant) >= 1.0) {
764 mant /= 10.0;
765 expo += 1;
766 }
767 if (expo >= 0) {
768 return QString("%1e+%2").arg(mant, width-4, 'f', prec).arg(expo, 2, 10, QChar('0'));
769 }
770 else {
771 return QString("%1e-%2").arg(mant, width-4, 'f', prec).arg(-expo, 2, 10, QChar('0'));
772 }
773}
774
775//
776//////////////////////////////////////////////////////////////////////////////
777void kalman(const Matrix& AA, const ColumnVector& ll, const DiagonalMatrix& PP,
778 SymmetricMatrix& QQ, ColumnVector& xx) {
779
780 Tracer tracer("kalman");
781
782 int nPar = AA.Ncols();
783 int nObs = AA.Nrows();
784 UpperTriangularMatrix SS = Cholesky(QQ).t();
785
786 Matrix SA = SS*AA.t();
787 Matrix SRF(nObs+nPar, nObs+nPar); SRF = 0;
788 for (int ii = 1; ii <= nObs; ++ii) {
789 SRF(ii,ii) = 1.0 / sqrt(PP(ii,ii));
790 }
791
792 SRF.SubMatrix (nObs+1, nObs+nPar, 1, nObs) = SA;
793 SRF.SymSubMatrix(nObs+1, nObs+nPar) = SS;
794
795 UpperTriangularMatrix UU;
796 QRZ(SRF, UU);
797
798 SS = UU.SymSubMatrix(nObs+1, nObs+nPar);
799 UpperTriangularMatrix SH_rt = UU.SymSubMatrix(1, nObs);
800 Matrix YY = UU.SubMatrix(1, nObs, nObs+1, nObs+nPar);
801
802 UpperTriangularMatrix SHi = SH_rt.i();
803
804 Matrix KT = SHi * YY;
805 SymmetricMatrix Hi; Hi << SHi * SHi.t();
806
807 xx += KT.t() * (ll - AA * xx);
808 QQ << (SS.t() * SS);
809}
810
811double accuracyFromIndex(int index, t_eph::e_type type) {
812
813 if (type == t_eph::GPS ||
814 type == t_eph::BDS ||
815 type == t_eph::SBAS||
816 type == t_eph::QZSS) {
817 if ((index >= 0) && (index <= 6)) {
818 if (index == 3) {
819 return ceil(10.0 * pow(2.0, (double(index) / 2.0) + 1.0)) / 10.0;
820 }
821 else {
822 return floor(10.0 * pow(2.0, (double(index) / 2.0) + 1.0)) / 10.0;
823 }
824 }
825 else if ((index > 6) && (index <= 15)) {
826 return (10.0 * pow(2.0, (double(index) - 2.0))) / 10.0;
827 }
828 else {
829 return 8192.0;
830 }
831 }
832 else if (type == t_eph::Galileo) {
833
834 if ((index >= 0) && (index <= 49)) {
835 return (double(index) / 100.0);
836 }
837 else if ((index > 49) && (index <= 74)) {
838 return (50.0 + (double(index) - 50.0) * 2.0) / 100.0;
839 }
840 else if ((index > 74) && (index <= 99)) {
841 return 1.0 + (double(index) - 75.0) * 0.04;
842 }
843 else if ((index > 99) && (index <= 125)) {
844 return 2.0 + (double(index) - 100.0) * 0.16;
845 }
846 else {
847 return -1.0;
848 }
849 }
850 else if (type == t_eph::IRNSS) {
851 if ((index >= 0) && (index <= 6)) {
852 if (index == 1) {
853 return 2.8;
854 }
855 else if (index == 3) {
856 return 5.7;
857 }
858 else if (index == 5) {
859 return 11.3;
860 }
861 else {
862 return pow(2, 1 + index / 2);
863 }
864 }
865 else if ((index > 6) && (index <= 15)) {
866 return pow(2, index - 1);
867 }
868 }
869
870 return double(index);
871}
872
873int indexFromAccuracy(double accuracy, t_eph::e_type type) {
874
875 if (type == t_eph::GPS || type == t_eph::BDS || type == t_eph::SBAS
876 || type == t_eph::QZSS) {
877
878 if (accuracy <= 2.40) {
879 return 0;
880 }
881 else if (accuracy <= 3.40) {
882 return 1;
883 }
884 else if (accuracy <= 4.85) {
885 return 2;
886 }
887 else if (accuracy <= 6.85) {
888 return 3;
889 }
890 else if (accuracy <= 9.65) {
891 return 4;
892 }
893 else if (accuracy <= 13.65) {
894 return 5;
895 }
896 else if (accuracy <= 24.00) {
897 return 6;
898 }
899 else if (accuracy <= 48.00) {
900 return 7;
901 }
902 else if (accuracy <= 96.00) {
903 return 8;
904 }
905 else if (accuracy <= 192.00) {
906 return 9;
907 }
908 else if (accuracy <= 384.00) {
909 return 10;
910 }
911 else if (accuracy <= 768.00) {
912 return 11;
913 }
914 else if (accuracy <= 1536.00) {
915 return 12;
916 }
917 else if (accuracy <= 3072.00) {
918 return 13;
919 }
920 else if (accuracy <= 6144.00) {
921 return 14;
922 }
923 else {
924 return 15;
925 }
926 }
927
928 if (type == t_eph::Galileo) {
929
930 if (accuracy <= 0.49) {
931 return int(ceil(accuracy * 100.0));
932 }
933 else if (accuracy <= 0.98) {
934 return int(50.0 + (((accuracy * 100.0) - 50) / 2.0));
935 }
936 else if (accuracy <= 2.0) {
937 return int(75.0 + ((accuracy - 1.0) / 0.04));
938 }
939 else if (accuracy <= 6.0) {
940 return int(100.0 + ((accuracy - 2.0) / 0.16));
941 }
942 else {
943 return 255;
944 }
945 }
946
947 return (type == t_eph::Galileo) ? 255 : 15;
948}
949
950// Returns CRC24
951////////////////////////////////////////////////////////////////////////////
952unsigned long CRC24(long size, const unsigned char *buf) {
953 unsigned long crc = 0;
954 int ii;
955 while (size--) {
956 crc ^= (*buf++) << (16);
957 for(ii = 0; ii < 8; ii++) {
958 crc <<= 1;
959 if (crc & 0x1000000) {
960 crc ^= 0x01864cfb;
961 }
962 }
963 }
964 return crc;
965}
966
967// Convert RTCM3 lock-time indicator to lock time in seconds
968////////////////////////////////////////////////////////////////////////////
969double lti2sec(int type, int lti) {
970
971 if ( (type>=1001 && type<=1004) ||
972 (type>=1009 && type<=1012) ) { // RTCM3 msg 100[1...4] and 10[09...12]
973 if (lti< 0) return -1;
974 else if (lti< 24) return 1*lti; // [ 0 1 23]
975 else if (lti< 48) return 2*lti-24; // [ 24 2 70]
976 else if (lti< 72) return 4*lti-120; // [ 72 4 164]
977 else if (lti< 96) return 8*lti-408; // [168 8 352]
978 else if (lti< 120) return 16*lti-1176; // [360 16 728]
979 else if (lti< 127) return 32*lti-3096; // [744 32 905]
980 else if (lti==127) return 937;
981 else return -1;
982 }
983 else if (type%10==2 || type%10==3 ||
984 type%10==4 || type%10==5) { // RTCM3 MSM-2/-3/-4/-5
985 switch(lti) {
986 case( 0) : return 0;
987 case( 1) : return 32e-3;
988 case( 2) : return 64e-3;
989 case( 3) : return 128e-3;
990 case( 4) : return 256e-3;
991 case( 5) : return 512e-3;
992 case( 6) : return 1024e-3;
993 case( 7) : return 2048e-3;
994 case( 8) : return 4096e-3;
995 case( 9) : return 8192e-3;
996 case(10) : return 16384e-3;
997 case(11) : return 32768e-3;
998 case(12) : return 65536e-3;
999 case(13) : return 131072e-3;
1000 case(14) : return 262144e-3;
1001 case(15) : return 524288e-3;
1002 default : return -1;
1003 };
1004 }
1005 else if (type%10==6 || type%10==7) { // RTCM3 MSM-6 and MSM-7
1006 if (lti< 0) return ( -1 );
1007 else if (lti< 64) return ( 1*lti )*1e-3;
1008 else if (lti< 96) return ( 2*lti-64 )*1e-3;
1009 else if (lti< 128) return ( 4*lti-256 )*1e-3;
1010 else if (lti< 160) return ( 8*lti-768 )*1e-3;
1011 else if (lti< 192) return ( 16*lti-2048 )*1e-3;
1012 else if (lti< 224) return ( 32*lti-5120 )*1e-3;
1013 else if (lti< 256) return ( 64*lti-12288 )*1e-3;
1014 else if (lti< 288) return ( 128*lti-28672 )*1e-3;
1015 else if (lti< 320) return ( 256*lti-65536 )*1e-3;
1016 else if (lti< 352) return ( 512*lti-147456 )*1e-3;
1017 else if (lti< 384) return ( 1024*lti-327680 )*1e-3;
1018 else if (lti< 416) return ( 2048*lti-720896 )*1e-3;
1019 else if (lti< 448) return ( 4096*lti-1572864 )*1e-3;
1020 else if (lti< 480) return ( 8192*lti-3407872 )*1e-3;
1021 else if (lti< 512) return ( 16384*lti-7340032 )*1e-3;
1022 else if (lti< 544) return ( 32768*lti-15728640 )*1e-3;
1023 else if (lti< 576) return ( 65536*lti-33554432 )*1e-3;
1024 else if (lti< 608) return ( 131072*lti-71303168 )*1e-3;
1025 else if (lti< 640) return ( 262144*lti-150994944 )*1e-3;
1026 else if (lti< 672) return ( 524288*lti-318767104 )*1e-3;
1027 else if (lti< 704) return (1048576*lti-671088640 )*1e-3;
1028 else if (lti==704) return (2097152*lti-1409286144)*1e-3;
1029 else return ( -1 );
1030 }
1031 else {
1032 return -1;
1033 };
1034};
Note: See TracBrowser for help on using the repository browser.