source: ntrip/trunk/BNC/src/bncmodel.cpp@ 5794

Last change on this file since 5794 was 5794, checked in by mervart, 8 years ago
File size: 39.6 KB
Line 
1// Part of BNC, a utility for retrieving decoding and
2// converting GNSS data streams from NTRIP broadcasters.
3//
4// Copyright (C) 2007
5// German Federal Agency for Cartography and Geodesy (BKG)
6// http://www.bkg.bund.de
7// Czech Technical University Prague, Department of Geodesy
8// http://www.fsv.cvut.cz
9//
10// Email: euref-ip@bkg.bund.de
11//
12// This program is free software; you can redistribute it and/or
13// modify it under the terms of the GNU General Public License
14// as published by the Free Software Foundation, version 2.
15//
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25/* -------------------------------------------------------------------------
26 * BKG NTRIP Client
27 * -------------------------------------------------------------------------
28 *
29 * Class: bncParam, bncModel
30 *
31 * Purpose: Model for PPP
32 *
33 * Author: L. Mervart
34 *
35 * Created: 01-Dec-2009
36 *
37 * Changes:
38 *
39 * -----------------------------------------------------------------------*/
40
41#include <iomanip>
42#include <cmath>
43#include <newmatio.h>
44#include <sstream>
45
46#include "bncmodel.h"
47#include "bncpppclient.h"
48#include "bnccore.h"
49#include "bncpppclient.h"
50#include "bancroft.h"
51#include "bncutils.h"
52#include "bnctides.h"
53#include "bncantex.h"
54#include "pppopt.h"
55
56using namespace std;
57
58const unsigned MINOBS = 5;
59const double MINELE = 10.0 * M_PI / 180.0;
60const double MAXRES_CODE = 15.0;
61const double MAXRES_PHASE_GPS = 0.04;
62const double MAXRES_PHASE_GLONASS = 0.08;
63const double GLONASS_WEIGHT_FACTOR = 5.0;
64
65// Constructor
66////////////////////////////////////////////////////////////////////////////
67bncParam::bncParam(bncParam::parType typeIn, int indexIn,
68 const QString& prnIn) {
69 type = typeIn;
70 index = indexIn;
71 prn = prnIn;
72 index_old = 0;
73 xx = 0.0;
74 numEpo = 0;
75}
76
77// Destructor
78////////////////////////////////////////////////////////////////////////////
79bncParam::~bncParam() {
80}
81
82// Partial
83////////////////////////////////////////////////////////////////////////////
84double bncParam::partial(t_satData* satData, bool phase) {
85
86 Tracer tracer("bncParam::partial");
87
88 // Coordinates
89 // -----------
90 if (type == CRD_X) {
91 return (xx - satData->xx(1)) / satData->rho;
92 }
93 else if (type == CRD_Y) {
94 return (xx - satData->xx(2)) / satData->rho;
95 }
96 else if (type == CRD_Z) {
97 return (xx - satData->xx(3)) / satData->rho;
98 }
99
100 // Receiver Clocks
101 // ---------------
102 else if (type == RECCLK) {
103 return 1.0;
104 }
105
106 // Troposphere
107 // -----------
108 else if (type == TROPO) {
109 return 1.0 / sin(satData->eleSat);
110 }
111
112 // Glonass Offset
113 // --------------
114 else if (type == GLONASS_OFFSET) {
115 if (satData->prn[0] == 'R') {
116 return 1.0;
117 }
118 else {
119 return 0.0;
120 }
121 }
122
123 // Galileo Offset
124 // --------------
125 else if (type == GALILEO_OFFSET) {
126 if (satData->prn[0] == 'E') {
127 return 1.0;
128 }
129 else {
130 return 0.0;
131 }
132 }
133
134 // Ambiguities
135 // -----------
136 else if (type == AMB_L3) {
137 if (phase && satData->prn == prn) {
138 return 1.0;
139 }
140 else {
141 return 0.0;
142 }
143 }
144
145 // Default return
146 // --------------
147 return 0.0;
148}
149
150// Constructor
151////////////////////////////////////////////////////////////////////////////
152bncModel::bncModel(bncPPPclient* pppClient) {
153
154 _pppClient = pppClient;
155 _staID = pppClient->staID();
156 _opt = pppClient->opt();
157
158 // NMEA Output
159 // -----------
160 if (_opt->nmeaFile.isEmpty()) {
161 _nmeaFile = 0;
162 _nmeaStream = 0;
163 }
164 else {
165 QString hlpName = _opt->nmeaFile; expandEnvVar(hlpName);
166 _nmeaFile = new QFile(hlpName);
167 if (_opt->rnxAppend) {
168 _nmeaFile->open(QIODevice::WriteOnly | QIODevice::Append);
169 }
170 else {
171 _nmeaFile->open(QIODevice::WriteOnly);
172 }
173 _nmeaStream = new QTextStream();
174 _nmeaStream->setDevice(_nmeaFile);
175 }
176
177 // Antenna Name, ANTEX File
178 // ------------------------
179 _antex = 0;
180 if (!_opt->antexFile.isEmpty()) {
181 _antex = new bncAntex();
182 if (_antex->readFile(_opt->antexFile) != success) {
183 _pppClient->emitNewMessage("wrong ANTEX file", true);
184 delete _antex;
185 _antex = 0;
186 }
187 }
188
189 // Bancroft Coordinates
190 // --------------------
191 _xcBanc.ReSize(4); _xcBanc = 0.0;
192 _ellBanc.ReSize(3); _ellBanc = 0.0;
193
194 // Save copy of data (used in outlier detection)
195 // ---------------------------------------------
196 _epoData_sav = new t_epoData();
197}
198
199// Destructor
200////////////////////////////////////////////////////////////////////////////
201bncModel::~bncModel() {
202 delete _nmeaStream;
203 delete _nmeaFile;
204 for (int ii = 0; ii < _posAverage.size(); ++ii) {
205 delete _posAverage[ii];
206 }
207 delete _antex;
208 for (int iPar = 1; iPar <= _params.size(); iPar++) {
209 delete _params[iPar-1];
210 }
211 for (int iPar = 1; iPar <= _params_sav.size(); iPar++) {
212 delete _params_sav[iPar-1];
213 }
214 delete _epoData_sav;
215}
216
217// Reset Parameters and Variance-Covariance Matrix
218////////////////////////////////////////////////////////////////////////////
219void bncModel::reset() {
220
221 Tracer tracer("bncModel::reset");
222
223 double lastTrp = 0.0;
224 for (int ii = 0; ii < _params.size(); ii++) {
225 bncParam* pp = _params[ii];
226 if (pp->type == bncParam::TROPO) {
227 lastTrp = pp->xx;
228 }
229 delete pp;
230 }
231 _params.clear();
232
233 int nextPar = 0;
234 _params.push_back(new bncParam(bncParam::CRD_X, ++nextPar, ""));
235 _params.push_back(new bncParam(bncParam::CRD_Y, ++nextPar, ""));
236 _params.push_back(new bncParam(bncParam::CRD_Z, ++nextPar, ""));
237 _params.push_back(new bncParam(bncParam::RECCLK, ++nextPar, ""));
238 if (_opt->estTropo) {
239 _params.push_back(new bncParam(bncParam::TROPO, ++nextPar, ""));
240 }
241 if (_opt->useGlonass) {
242 _params.push_back(new bncParam(bncParam::GLONASS_OFFSET, ++nextPar, ""));
243 }
244 if (_opt->useGalileo) {
245 _params.push_back(new bncParam(bncParam::GALILEO_OFFSET, ++nextPar, ""));
246 }
247
248 _QQ.ReSize(_params.size());
249 _QQ = 0.0;
250 for (int iPar = 1; iPar <= _params.size(); iPar++) {
251 bncParam* pp = _params[iPar-1];
252 pp->xx = 0.0;
253 if (pp->isCrd()) {
254 _QQ(iPar,iPar) = _opt->sigCrd0 * _opt->sigCrd0;
255 }
256 else if (pp->type == bncParam::RECCLK) {
257 _QQ(iPar,iPar) = _opt->sigClk0 * _opt->sigClk0;
258 }
259 else if (pp->type == bncParam::TROPO) {
260 _QQ(iPar,iPar) = _opt->sigTrp0 * _opt->sigTrp0;
261 pp->xx = lastTrp;
262 }
263 else if (pp->type == bncParam::GLONASS_OFFSET) {
264 _QQ(iPar,iPar) = _opt->sigGlonassOffset0 * _opt->sigGlonassOffset0;
265 }
266 else if (pp->type == bncParam::GALILEO_OFFSET) {
267 _QQ(iPar,iPar) = _opt->sigGalileoOffset0 * _opt->sigGalileoOffset0;
268 }
269 }
270}
271
272// Bancroft Solution
273////////////////////////////////////////////////////////////////////////////
274t_irc bncModel::cmpBancroft(t_epoData* epoData) {
275
276 Tracer tracer("bncModel::cmpBancroft");
277
278 if (epoData->sizeSys('G') < MINOBS) {
279 _log += "bncModel::cmpBancroft: not enough data\n";
280 return failure;
281 }
282
283 Matrix BB(epoData->sizeSys('G'), 4);
284
285 QMapIterator<QString, t_satData*> it(epoData->satData);
286 int iObsBanc = 0;
287 while (it.hasNext()) {
288 it.next();
289 t_satData* satData = it.value();
290 if (satData->system() == 'G') {
291 ++iObsBanc;
292 QString prn = it.key();
293 BB(iObsBanc, 1) = satData->xx(1);
294 BB(iObsBanc, 2) = satData->xx(2);
295 BB(iObsBanc, 3) = satData->xx(3);
296 BB(iObsBanc, 4) = satData->P3 + satData->clk;
297 }
298 }
299
300 bancroft(BB, _xcBanc);
301
302 // Ellipsoidal Coordinates
303 // ------------------------
304 xyz2ell(_xcBanc.data(), _ellBanc.data());
305
306 // Compute Satellite Elevations
307 // ----------------------------
308 QMutableMapIterator<QString, t_satData*> im(epoData->satData);
309 while (im.hasNext()) {
310 im.next();
311 t_satData* satData = im.value();
312 cmpEle(satData);
313 if (satData->eleSat < MINELE) {
314 delete satData;
315 im.remove();
316 }
317 }
318
319 return success;
320}
321
322// Computed Value
323////////////////////////////////////////////////////////////////////////////
324double bncModel::cmpValue(t_satData* satData, bool phase) {
325
326 Tracer tracer("bncModel::cmpValue");
327
328 ColumnVector xRec(3);
329 xRec(1) = x();
330 xRec(2) = y();
331 xRec(3) = z();
332
333 double rho0 = (satData->xx - xRec).norm_Frobenius();
334 double dPhi = t_CST::omega * rho0 / t_CST::c;
335
336 xRec(1) = x() * cos(dPhi) - y() * sin(dPhi);
337 xRec(2) = y() * cos(dPhi) + x() * sin(dPhi);
338 xRec(3) = z();
339
340 tides(_time, xRec);
341
342 satData->rho = (satData->xx - xRec).norm_Frobenius();
343
344 double tropDelay = delay_saast(xRec, satData->eleSat) +
345 trp() / sin(satData->eleSat);
346
347 double wind = 0.0;
348 if (phase) {
349 wind = windUp(satData->prn, satData->xx, xRec) * satData->lambda3;
350 }
351
352 double offset = 0.0;
353 if (satData->prn[0] == 'R') {
354 offset = Glonass_offset();
355 }
356 else if (satData->prn[0] == 'E') {
357 offset = Galileo_offset();
358 }
359
360 double phaseCenter = 0.0;
361 if (_antex) {
362 bool found;
363 phaseCenter = _antex->pco(_opt->antennaName, satData->eleSat, found);
364 if (!found) {
365 _pppClient->emitNewMessage("ANTEX: antenna >"
366 + _opt->antennaName.toAscii() + "< not found", true);
367 }
368 }
369
370 double antennaOffset = 0.0;
371 if (_opt->antEccSet()) {
372 double cosa = cos(satData->azSat);
373 double sina = sin(satData->azSat);
374 double cose = cos(satData->eleSat);
375 double sine = sin(satData->eleSat);
376 antennaOffset = -_opt->antEccNEU[0] * cosa*cose
377 -_opt->antEccNEU[1] * sina*cose
378 -_opt->antEccNEU[2] * sine;
379 }
380
381 return satData->rho + phaseCenter + antennaOffset + clk()
382 + offset - satData->clk + tropDelay + wind;
383}
384
385// Tropospheric Model (Saastamoinen)
386////////////////////////////////////////////////////////////////////////////
387double bncModel::delay_saast(const ColumnVector& xyz, double Ele) {
388
389 Tracer tracer("bncModel::delay_saast");
390
391 if (xyz[0] == 0.0 && xyz[1] == 0.0 && xyz[2] == 0.0) {
392 return 0.0;
393 }
394
395 double ell[3];
396 xyz2ell(xyz.data(), ell);
397 double height = ell[2];
398
399 double pp = 1013.25 * pow(1.0 - 2.26e-5 * height, 5.225);
400 double TT = 18.0 - height * 0.0065 + 273.15;
401 double hh = 50.0 * exp(-6.396e-4 * height);
402 double ee = hh / 100.0 * exp(-37.2465 + 0.213166*TT - 0.000256908*TT*TT);
403
404 double h_km = height / 1000.0;
405
406 if (h_km < 0.0) h_km = 0.0;
407 if (h_km > 5.0) h_km = 5.0;
408 int ii = int(h_km + 1);
409 double href = ii - 1;
410
411 double bCor[6];
412 bCor[0] = 1.156;
413 bCor[1] = 1.006;
414 bCor[2] = 0.874;
415 bCor[3] = 0.757;
416 bCor[4] = 0.654;
417 bCor[5] = 0.563;
418
419 double BB = bCor[ii-1] + (bCor[ii]-bCor[ii-1]) * (h_km - href);
420
421 double zen = M_PI/2.0 - Ele;
422
423 return (0.002277/cos(zen)) * (pp + ((1255.0/TT)+0.05)*ee - BB*(tan(zen)*tan(zen)));
424}
425
426// Prediction Step of the Filter
427////////////////////////////////////////////////////////////////////////////
428void bncModel::predict(int iPhase, t_epoData* epoData) {
429
430 Tracer tracer("bncModel::predict");
431
432 if (iPhase == 0) {
433
434 bool firstCrd = false;
435 if (!_lastTimeOK.valid() || (_opt->maxSolGap > 0 && _time - _lastTimeOK > _opt->maxSolGap)) {
436 firstCrd = true;
437 _startTime = epoData->tt;
438 reset();
439 }
440
441 // Use different white noise for Quick-Start mode
442 // ----------------------------------------------
443 double sigCrdP_used = _opt->sigCrdP;
444 if ( _opt->quickStart > 0.0 && _opt->quickStart > (epoData->tt - _startTime) ) {
445 sigCrdP_used = 0.0;
446 }
447
448 // Predict Parameter values, add white noise
449 // -----------------------------------------
450 for (int iPar = 1; iPar <= _params.size(); iPar++) {
451 bncParam* pp = _params[iPar-1];
452
453 // Coordinates
454 // -----------
455 if (pp->type == bncParam::CRD_X) {
456 if (firstCrd) {
457 if (_opt->refCrdSet()) {
458 pp->xx = _opt->refCrd[0];
459 }
460 else {
461 pp->xx = _xcBanc(1);
462 }
463 }
464 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
465 }
466 else if (pp->type == bncParam::CRD_Y) {
467 if (firstCrd) {
468 if (_opt->refCrdSet()) {
469 pp->xx = _opt->refCrd[1];
470 }
471 else {
472 pp->xx = _xcBanc(2);
473 }
474 }
475 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
476 }
477 else if (pp->type == bncParam::CRD_Z) {
478 if (firstCrd) {
479 if (_opt->refCrdSet()) {
480 pp->xx = _opt->refCrd[2];
481 }
482 else {
483 pp->xx = _xcBanc(3);
484 }
485 }
486 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
487 }
488
489 // Receiver Clocks
490 // ---------------
491 else if (pp->type == bncParam::RECCLK) {
492 pp->xx = _xcBanc(4);
493 for (int jj = 1; jj <= _params.size(); jj++) {
494 _QQ(iPar, jj) = 0.0;
495 }
496 _QQ(iPar,iPar) = _opt->sigClk0 * _opt->sigClk0;
497 }
498
499 // Tropospheric Delay
500 // ------------------
501 else if (pp->type == bncParam::TROPO) {
502 _QQ(iPar,iPar) += _opt->sigTrpP * _opt->sigTrpP;
503 }
504
505 // Glonass Offset
506 // --------------
507 else if (pp->type == bncParam::GLONASS_OFFSET) {
508 bool epoSpec = true;
509 if (epoSpec) {
510 pp->xx = 0.0;
511 for (int jj = 1; jj <= _params.size(); jj++) {
512 _QQ(iPar, jj) = 0.0;
513 }
514 _QQ(iPar,iPar) = _opt->sigGlonassOffset0 * _opt->sigGlonassOffset0;
515 }
516 else {
517 _QQ(iPar,iPar) += _opt->sigGlonassOffsetP * _opt->sigGlonassOffsetP;
518 }
519 }
520
521 // Galileo Offset
522 // --------------
523 else if (pp->type == bncParam::GALILEO_OFFSET) {
524 _QQ(iPar,iPar) += _opt->sigGalileoOffsetP * _opt->sigGalileoOffsetP;
525 }
526 }
527 }
528
529 // Add New Ambiguities if necessary
530 // --------------------------------
531 if (_opt->usePhase) {
532
533 // Make a copy of QQ and xx, set parameter indices
534 // -----------------------------------------------
535 SymmetricMatrix QQ_old = _QQ;
536
537 for (int iPar = 1; iPar <= _params.size(); iPar++) {
538 _params[iPar-1]->index_old = _params[iPar-1]->index;
539 _params[iPar-1]->index = 0;
540 }
541
542 // Remove Ambiguity Parameters without observations
543 // ------------------------------------------------
544 int iPar = 0;
545 QMutableVectorIterator<bncParam*> im(_params);
546 while (im.hasNext()) {
547 bncParam* par = im.next();
548 bool removed = false;
549 if (par->type == bncParam::AMB_L3) {
550 if (epoData->satData.find(par->prn) == epoData->satData.end()) {
551 removed = true;
552 delete par;
553 im.remove();
554 }
555 }
556 if (! removed) {
557 ++iPar;
558 par->index = iPar;
559 }
560 }
561
562 // Add new ambiguity parameters
563 // ----------------------------
564 QMapIterator<QString, t_satData*> it(epoData->satData);
565 while (it.hasNext()) {
566 it.next();
567 t_satData* satData = it.value();
568 addAmb(satData);
569 }
570
571 int nPar = _params.size();
572 _QQ.ReSize(nPar); _QQ = 0.0;
573 for (int i1 = 1; i1 <= nPar; i1++) {
574 bncParam* p1 = _params[i1-1];
575 if (p1->index_old != 0) {
576 _QQ(p1->index, p1->index) = QQ_old(p1->index_old, p1->index_old);
577 for (int i2 = 1; i2 <= nPar; i2++) {
578 bncParam* p2 = _params[i2-1];
579 if (p2->index_old != 0) {
580 _QQ(p1->index, p2->index) = QQ_old(p1->index_old, p2->index_old);
581 }
582 }
583 }
584 }
585
586 for (int ii = 1; ii <= nPar; ii++) {
587 bncParam* par = _params[ii-1];
588 if (par->index_old == 0) {
589 _QQ(par->index, par->index) = _opt->sigAmb0 * _opt->sigAmb0;
590 }
591 par->index_old = par->index;
592 }
593 }
594}
595
596// Update Step of the Filter (currently just a single-epoch solution)
597////////////////////////////////////////////////////////////////////////////
598t_irc bncModel::update(t_epoData* epoData) {
599
600 Tracer tracer("bncModel::update");
601
602 _log.clear();
603
604 _time = epoData->tt; // current epoch time
605
606 if (_opt->pppMode) {
607 _log += "Precise Point Positioning of Epoch "
608 + QByteArray(_time.timestr(1).c_str()) +
609 "\n---------------------------------------------------------------\n";
610 }
611 else {
612 _log += "Single Point Positioning of Epoch "
613 + QByteArray(_time.timestr(1).c_str()) +
614 "\n--------------------------------------------------------------\n";
615 }
616
617 // Outlier Detection Loop
618 // ----------------------
619 if (update_p(epoData) != success) {
620 _pppClient->emitNewMessage(_log, false);
621 return failure;
622 }
623
624 // Remember the Epoch-specific Results for the computation of means
625 // ----------------------------------------------------------------
626 pppPos* newPos = new pppPos;
627 newPos->time = epoData->tt;
628
629 // Set Solution Vector
630 // -------------------
631 ostringstream strB;
632 strB.setf(ios::fixed);
633 QVectorIterator<bncParam*> itPar(_params);
634 while (itPar.hasNext()) {
635 bncParam* par = itPar.next();
636
637 if (par->type == bncParam::RECCLK) {
638 strB << "\n clk = " << setw(10) << setprecision(3) << par->xx
639 << " +- " << setw(6) << setprecision(3)
640 << sqrt(_QQ(par->index,par->index));
641 }
642 else if (par->type == bncParam::AMB_L3) {
643 ++par->numEpo;
644 strB << "\n amb " << par->prn.toAscii().data() << " = "
645 << setw(10) << setprecision(3) << par->xx
646 << " +- " << setw(6) << setprecision(3)
647 << sqrt(_QQ(par->index,par->index))
648 << " nEpo = " << par->numEpo;
649 }
650 else if (par->type == bncParam::TROPO) {
651 ColumnVector xyz(3); xyz(1) = x(); xyz(2) = y(); xyz(3) = z();
652 double aprTrp = delay_saast(xyz, M_PI/2.0);
653 strB << "\n trp = " << par->prn.toAscii().data()
654 << setw(7) << setprecision(3) << aprTrp << " "
655 << setw(6) << setprecision(3) << showpos << par->xx << noshowpos
656 << " +- " << setw(6) << setprecision(3)
657 << sqrt(_QQ(par->index,par->index));
658 newPos->xnt[6] = aprTrp + par->xx;
659 }
660 else if (par->type == bncParam::GLONASS_OFFSET) {
661 strB << "\n offGlo = " << setw(10) << setprecision(3) << par->xx
662 << " +- " << setw(6) << setprecision(3)
663 << sqrt(_QQ(par->index,par->index));
664 }
665 else if (par->type == bncParam::GALILEO_OFFSET) {
666 strB << "\n offGal = " << setw(10) << setprecision(3) << par->xx
667 << " +- " << setw(6) << setprecision(3)
668 << sqrt(_QQ(par->index,par->index));
669 }
670 }
671 strB << '\n';
672 _log += strB.str().c_str();
673 _pppClient->emitNewMessage(_log, false);
674
675 // Final Message (both log file and screen)
676 // ----------------------------------------
677 ostringstream strC;
678 strC.setf(ios::fixed);
679 strC << _staID.data() << " PPP "
680 << epoData->tt.timestr(1) << " " << epoData->sizeAll() << " "
681 << setw(14) << setprecision(3) << x() << " +- "
682 << setw(6) << setprecision(3) << sqrt(_QQ(1,1)) << " "
683 << setw(14) << setprecision(3) << y() << " +- "
684 << setw(6) << setprecision(3) << sqrt(_QQ(2,2)) << " "
685 << setw(14) << setprecision(3) << z() << " +- "
686 << setw(6) << setprecision(3) << sqrt(_QQ(3,3));
687
688 // NEU Output
689 // ----------
690 if (_opt->refCrdSet()) {
691 newPos->xnt[0] = x() - _opt->refCrd[0];
692 newPos->xnt[1] = y() - _opt->refCrd[1];
693 newPos->xnt[2] = z() - _opt->refCrd[2];
694
695 double ellRef[3];
696 xyz2ell(_opt->refCrd, ellRef);
697 xyz2neu(ellRef, newPos->xnt, &newPos->xnt[3]);
698
699 strC << " NEU "
700 << setw(8) << setprecision(3) << newPos->xnt[3] << " "
701 << setw(8) << setprecision(3) << newPos->xnt[4] << " "
702 << setw(8) << setprecision(3) << newPos->xnt[5] << endl;
703
704 }
705
706 _pppClient->emitNewMessage(QByteArray(strC.str().c_str()), true);
707
708 if (_opt->pppAverage == 0.0) {
709 delete newPos;
710 }
711 else {
712
713 _posAverage.push_back(newPos);
714
715 // Compute the Mean
716 // ----------------
717 ColumnVector mean(7); mean = 0.0;
718
719 QMutableVectorIterator<pppPos*> it(_posAverage);
720 while (it.hasNext()) {
721 pppPos* pp = it.next();
722 if ( (epoData->tt - pp->time) >= _opt->pppAverage ) {
723 delete pp;
724 it.remove();
725 }
726 else {
727 for (int ii = 0; ii < 7; ++ii) {
728 mean[ii] += pp->xnt[ii];
729 }
730 }
731 }
732
733 int nn = _posAverage.size();
734
735 if (nn > 0) {
736
737 mean /= nn;
738
739 // Compute the Deviation
740 // ---------------------
741 ColumnVector std(7); std = 0.0;
742 QVectorIterator<pppPos*> it2(_posAverage);
743 while (it2.hasNext()) {
744 pppPos* pp = it2.next();
745 for (int ii = 0; ii < 7; ++ii) {
746 std[ii] += (pp->xnt[ii] - mean[ii]) * (pp->xnt[ii] - mean[ii]);
747 }
748 }
749 for (int ii = 0; ii < 7; ++ii) {
750 std[ii] = sqrt(std[ii] / nn);
751 }
752
753 if (_opt->refCrdSet()) {
754 ostringstream strD; strD.setf(ios::fixed);
755 strD << _staID.data() << " AVE-XYZ "
756 << epoData->tt.timestr(1) << " "
757 << setw(13) << setprecision(3) << mean[0] + _opt->refCrd[0] << " +- "
758 << setw(6) << setprecision(3) << std[0] << " "
759 << setw(14) << setprecision(3) << mean[1] + _opt->refCrd[1] << " +- "
760 << setw(6) << setprecision(3) << std[1] << " "
761 << setw(14) << setprecision(3) << mean[2] + _opt->refCrd[2] << " +- "
762 << setw(6) << setprecision(3) << std[2];
763 _pppClient->emitNewMessage(QByteArray(strD.str().c_str()), true);
764
765 ostringstream strE; strE.setf(ios::fixed);
766 strE << _staID.data() << " AVE-NEU "
767 << epoData->tt.timestr(1) << " "
768 << setw(13) << setprecision(3) << mean[3] << " +- "
769 << setw(6) << setprecision(3) << std[3] << " "
770 << setw(14) << setprecision(3) << mean[4] << " +- "
771 << setw(6) << setprecision(3) << std[4] << " "
772 << setw(14) << setprecision(3) << mean[5] << " +- "
773 << setw(6) << setprecision(3) << std[5];
774 _pppClient->emitNewMessage(QByteArray(strE.str().c_str()), true);
775
776 if (_opt->estTropo) {
777 ostringstream strF; strF.setf(ios::fixed);
778 strF << _staID.data() << " AVE-TRP "
779 << epoData->tt.timestr(1) << " "
780 << setw(13) << setprecision(3) << mean[6] << " +- "
781 << setw(6) << setprecision(3) << std[6] << endl;
782 _pppClient->emitNewMessage(QByteArray(strF.str().c_str()), true);
783 }
784 }
785 }
786 }
787
788 // NMEA Output
789 // -----------
790 double xyz[3];
791 xyz[0] = x();
792 xyz[1] = y();
793 xyz[2] = z();
794 double ell[3];
795 xyz2ell(xyz, ell);
796 double phiDeg = ell[0] * 180 / M_PI;
797 double lamDeg = ell[1] * 180 / M_PI;
798
799 char phiCh = 'N';
800 if (phiDeg < 0) {
801 phiDeg = -phiDeg;
802 phiCh = 'S';
803 }
804 char lamCh = 'E';
805 if (lamDeg < 0) {
806 lamDeg = -lamDeg;
807 lamCh = 'W';
808 }
809
810 string datestr = epoData->tt.datestr(0); // yyyymmdd
811 ostringstream strRMC;
812 strRMC.setf(ios::fixed);
813 strRMC << "GPRMC,"
814 << epoData->tt.timestr(0,0) << ",A,"
815 << setw(2) << setfill('0') << int(phiDeg)
816 << setw(6) << setprecision(3) << setfill('0')
817 << fmod(60*phiDeg,60) << ',' << phiCh << ','
818 << setw(3) << setfill('0') << int(lamDeg)
819 << setw(6) << setprecision(3) << setfill('0')
820 << fmod(60*lamDeg,60) << ',' << lamCh << ",,,"
821 << datestr[6] << datestr[7] << datestr[4] << datestr[5]
822 << datestr[2] << datestr[3] << ",,";
823
824 writeNMEAstr(QString(strRMC.str().c_str()));
825
826 double dop = 2.0; // TODO
827
828 ostringstream strGGA;
829 strGGA.setf(ios::fixed);
830 strGGA << "GPGGA,"
831 << epoData->tt.timestr(0,0) << ','
832 << setw(2) << setfill('0') << int(phiDeg)
833 << setw(10) << setprecision(7) << setfill('0')
834 << fmod(60*phiDeg,60) << ',' << phiCh << ','
835 << setw(3) << setfill('0') << int(lamDeg)
836 << setw(10) << setprecision(7) << setfill('0')
837 << fmod(60*lamDeg,60) << ',' << lamCh
838 << ",1," << setw(2) << setfill('0') << epoData->sizeAll() << ','
839 << setw(3) << setprecision(1) << dop << ','
840 << setprecision(3) << ell[2] << ",M,0.0,M,,";
841
842 writeNMEAstr(QString(strGGA.str().c_str()));
843
844 _lastTimeOK = _time; // remember time of last successful update
845 return success;
846}
847
848// Outlier Detection
849////////////////////////////////////////////////////////////////////////////
850QString bncModel::outlierDetection(int iPhase, const ColumnVector& vv,
851 QMap<QString, t_satData*>& satData) {
852
853 Tracer tracer("bncModel::outlierDetection");
854
855 QString prnGPS;
856 QString prnGlo;
857 double maxResGPS = 0.0;
858 double maxResGlo = 0.0;
859 findMaxRes(vv, satData, prnGPS, prnGlo, maxResGPS, maxResGlo);
860
861 if (iPhase == 1) {
862 if (maxResGlo > MAXRES_PHASE_GLONASS) {
863 _log += "Outlier Phase " + prnGlo + " "
864 + QByteArray::number(maxResGlo, 'f', 3) + "\n";
865 return prnGlo;
866 }
867 else if (maxResGPS > MAXRES_PHASE_GPS) {
868 _log += "Outlier Phase " + prnGPS + " "
869 + QByteArray::number(maxResGPS, 'f', 3) + "\n";
870 return prnGPS;
871 }
872 }
873 else if (iPhase == 0 && maxResGPS > MAXRES_CODE) {
874 _log += "Outlier Code " + prnGPS + " "
875 + QByteArray::number(maxResGPS, 'f', 3) + "\n";
876 return prnGPS;
877 }
878
879 return QString();
880}
881
882//
883////////////////////////////////////////////////////////////////////////////
884void bncModel::writeNMEAstr(const QString& nmStr) {
885
886 Tracer tracer("bncModel::writeNMEAstr");
887
888 unsigned char XOR = 0;
889 for (int ii = 0; ii < nmStr.length(); ii++) {
890 XOR ^= (unsigned char) nmStr[ii].toAscii();
891 }
892
893 QString outStr = '$' + nmStr
894 + QString("*%1\n").arg(int(XOR), 0, 16).toUpper();
895
896 if (_nmeaStream) {
897 *_nmeaStream << outStr;
898 _nmeaStream->flush();
899 }
900
901 _pppClient->emitNewNMEAstr(outStr.toAscii());
902}
903
904//
905//////////////////////////////////////////////////////////////////////////////
906void bncModel::kalman(const Matrix& AA, const ColumnVector& ll,
907 const DiagonalMatrix& PP,
908 SymmetricMatrix& QQ, ColumnVector& dx) {
909
910 Tracer tracer("bncModel::kalman");
911
912 int nPar = AA.Ncols();
913#if 1
914 int nObs = AA.Nrows();
915 UpperTriangularMatrix SS = Cholesky(QQ).t();
916
917 Matrix SA = SS*AA.t();
918 Matrix SRF(nObs+nPar, nObs+nPar); SRF = 0;
919 for (int ii = 1; ii <= nObs; ++ii) {
920 SRF(ii,ii) = 1.0 / sqrt(PP(ii,ii));
921 }
922
923 SRF.SubMatrix (nObs+1, nObs+nPar, 1, nObs) = SA;
924 SRF.SymSubMatrix(nObs+1, nObs+nPar) = SS;
925
926 UpperTriangularMatrix UU;
927 QRZ(SRF, UU);
928
929 SS = UU.SymSubMatrix(nObs+1, nObs+nPar);
930 UpperTriangularMatrix SH_rt = UU.SymSubMatrix(1, nObs);
931 Matrix YY = UU.SubMatrix(1, nObs, nObs+1, nObs+nPar);
932
933 UpperTriangularMatrix SHi = SH_rt.i();
934
935 Matrix KT = SHi * YY;
936 SymmetricMatrix Hi; Hi << SHi * SHi.t();
937
938 dx = KT.t() * ll;
939 QQ << (SS.t() * SS);
940#else
941 DiagonalMatrix Ql = PP.i();
942 Matrix DD = QQ * AA.t();
943 SymmetricMatrix SM(nPar); SM << AA * DD + Ql;
944 UpperTriangularMatrix UU = Cholesky(SM).t();
945 UpperTriangularMatrix Ui = UU.i();
946 Matrix EE = DD * Ui;
947 Matrix KK = EE * Ui.t();
948 QQ << QQ - EE * EE.t();
949 dx = KK * ll;
950#endif
951}
952
953// Phase Wind-Up Correction
954///////////////////////////////////////////////////////////////////////////
955double bncModel::windUp(const QString& prn, const ColumnVector& rSat,
956 const ColumnVector& rRec) {
957
958 Tracer tracer("bncModel::windUp");
959
960 double Mjd = _time.mjd() + _time.daysec() / 86400.0;
961
962 // First time - initialize to zero
963 // -------------------------------
964 if (!_windUpTime.contains(prn)) {
965 _windUpSum[prn] = 0.0;
966 }
967
968 // Compute the correction for new time
969 // -----------------------------------
970 if (!_windUpTime.contains(prn) || _windUpTime[prn] != Mjd) {
971 _windUpTime[prn] = Mjd;
972
973 // Unit Vector GPS Satellite --> Receiver
974 // --------------------------------------
975 ColumnVector rho = rRec - rSat;
976 rho /= rho.norm_Frobenius();
977
978 // GPS Satellite unit Vectors sz, sy, sx
979 // -------------------------------------
980 ColumnVector sz = -rSat / rSat.norm_Frobenius();
981
982 ColumnVector xSun = Sun(Mjd);
983 xSun /= xSun.norm_Frobenius();
984
985 ColumnVector sy = crossproduct(sz, xSun);
986 ColumnVector sx = crossproduct(sy, sz);
987
988 // Effective Dipole of the GPS Satellite Antenna
989 // ---------------------------------------------
990 ColumnVector dipSat = sx - rho * DotProduct(rho,sx)
991 - crossproduct(rho, sy);
992
993 // Receiver unit Vectors rx, ry
994 // ----------------------------
995 ColumnVector rx(3);
996 ColumnVector ry(3);
997
998 double recEll[3]; xyz2ell(rRec.data(), recEll) ;
999 double neu[3];
1000
1001 neu[0] = 1.0;
1002 neu[1] = 0.0;
1003 neu[2] = 0.0;
1004 neu2xyz(recEll, neu, rx.data());
1005
1006 neu[0] = 0.0;
1007 neu[1] = -1.0;
1008 neu[2] = 0.0;
1009 neu2xyz(recEll, neu, ry.data());
1010
1011 // Effective Dipole of the Receiver Antenna
1012 // ----------------------------------------
1013 ColumnVector dipRec = rx - rho * DotProduct(rho,rx)
1014 + crossproduct(rho, ry);
1015
1016 // Resulting Effect
1017 // ----------------
1018 double alpha = DotProduct(dipSat,dipRec) /
1019 (dipSat.norm_Frobenius() * dipRec.norm_Frobenius());
1020
1021 if (alpha > 1.0) alpha = 1.0;
1022 if (alpha < -1.0) alpha = -1.0;
1023
1024 double dphi = acos(alpha) / 2.0 / M_PI; // in cycles
1025
1026 if ( DotProduct(rho, crossproduct(dipSat, dipRec)) < 0.0 ) {
1027 dphi = -dphi;
1028 }
1029
1030 _windUpSum[prn] = floor(_windUpSum[prn] - dphi + 0.5) + dphi;
1031 }
1032
1033 return _windUpSum[prn];
1034}
1035
1036//
1037///////////////////////////////////////////////////////////////////////////
1038void bncModel::cmpEle(t_satData* satData) {
1039 Tracer tracer("bncModel::cmpEle");
1040 ColumnVector rr = satData->xx - _xcBanc.Rows(1,3);
1041 double rho = rr.norm_Frobenius();
1042
1043 double neu[3];
1044 xyz2neu(_ellBanc.data(), rr.data(), neu);
1045
1046 satData->eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho );
1047 if (neu[2] < 0) {
1048 satData->eleSat *= -1.0;
1049 }
1050 satData->azSat = atan2(neu[1], neu[0]);
1051}
1052
1053//
1054///////////////////////////////////////////////////////////////////////////
1055void bncModel::addAmb(t_satData* satData) {
1056 Tracer tracer("bncModel::addAmb");
1057 bool found = false;
1058 for (int iPar = 1; iPar <= _params.size(); iPar++) {
1059 if (_params[iPar-1]->type == bncParam::AMB_L3 &&
1060 _params[iPar-1]->prn == satData->prn) {
1061 found = true;
1062 break;
1063 }
1064 }
1065 if (!found) {
1066 bncParam* par = new bncParam(bncParam::AMB_L3,
1067 _params.size()+1, satData->prn);
1068 _params.push_back(par);
1069 par->xx = satData->L3 - cmpValue(satData, true);
1070 }
1071}
1072
1073//
1074///////////////////////////////////////////////////////////////////////////
1075void bncModel::addObs(int iPhase, unsigned& iObs, t_satData* satData,
1076 Matrix& AA, ColumnVector& ll, DiagonalMatrix& PP) {
1077
1078 Tracer tracer("bncModel::addObs");
1079
1080 const double ELEWGHT = 20.0;
1081 double ellWgtCoef = 1.0;
1082 double eleD = satData->eleSat * 180.0 / M_PI;
1083 if (eleD < ELEWGHT) {
1084 ellWgtCoef = 1.5 - 0.5 / (ELEWGHT - 10.0) * (eleD - 10.0);
1085 }
1086
1087 // Remember Observation Index
1088 // --------------------------
1089 ++iObs;
1090 satData->obsIndex = iObs;
1091
1092 // Phase Observations
1093 // ------------------
1094 if (iPhase == 1) {
1095 ll(iObs) = satData->L3 - cmpValue(satData, true);
1096 double sigL3 = _opt->sigL3;
1097 if (satData->system() == 'R') {
1098 sigL3 *= GLONASS_WEIGHT_FACTOR;
1099 }
1100 PP(iObs,iObs) = 1.0 / (sigL3 * sigL3) / (ellWgtCoef * ellWgtCoef);
1101 for (int iPar = 1; iPar <= _params.size(); iPar++) {
1102 if (_params[iPar-1]->type == bncParam::AMB_L3 &&
1103 _params[iPar-1]->prn == satData->prn) {
1104 ll(iObs) -= _params[iPar-1]->xx;
1105 }
1106 AA(iObs, iPar) = _params[iPar-1]->partial(satData, true);
1107 }
1108 }
1109
1110 // Code Observations
1111 // -----------------
1112 else {
1113 ll(iObs) = satData->P3 - cmpValue(satData, false);
1114 PP(iObs,iObs) = 1.0 / (_opt->sigP3 * _opt->sigP3) / (ellWgtCoef * ellWgtCoef);
1115 for (int iPar = 1; iPar <= _params.size(); iPar++) {
1116 AA(iObs, iPar) = _params[iPar-1]->partial(satData, false);
1117 }
1118 }
1119}
1120
1121//
1122///////////////////////////////////////////////////////////////////////////
1123QByteArray bncModel::printRes(int iPhase, const ColumnVector& vv,
1124 const QMap<QString, t_satData*>& satDataMap) {
1125
1126 Tracer tracer("bncModel::printRes");
1127
1128 ostringstream str;
1129 str.setf(ios::fixed);
1130
1131 QMapIterator<QString, t_satData*> it(satDataMap);
1132 while (it.hasNext()) {
1133 it.next();
1134 t_satData* satData = it.value();
1135 if (satData->obsIndex != 0) {
1136 str << _time.timestr(1)
1137 << " RES " << satData->prn.toAscii().data()
1138 << (iPhase ? " L3 " : " P3 ")
1139 << setw(9) << setprecision(4) << vv(satData->obsIndex) << endl;
1140 }
1141 }
1142
1143 return QByteArray(str.str().c_str());
1144}
1145
1146//
1147///////////////////////////////////////////////////////////////////////////
1148void bncModel::findMaxRes(const ColumnVector& vv,
1149 const QMap<QString, t_satData*>& satData,
1150 QString& prnGPS, QString& prnGlo,
1151 double& maxResGPS, double& maxResGlo) {
1152
1153 Tracer tracer("bncModel::findMaxRes");
1154
1155 maxResGPS = 0.0;
1156 maxResGlo = 0.0;
1157
1158 QMapIterator<QString, t_satData*> it(satData);
1159 while (it.hasNext()) {
1160 it.next();
1161 t_satData* satData = it.value();
1162 if (satData->obsIndex != 0) {
1163 QString prn = satData->prn;
1164 if (prn[0] == 'R') {
1165 if (fabs(vv(satData->obsIndex)) > maxResGlo) {
1166 maxResGlo = fabs(vv(satData->obsIndex));
1167 prnGlo = prn;
1168 }
1169 }
1170 else {
1171 if (fabs(vv(satData->obsIndex)) > maxResGPS) {
1172 maxResGPS = fabs(vv(satData->obsIndex));
1173 prnGPS = prn;
1174 }
1175 }
1176 }
1177 }
1178}
1179
1180// Update Step (private - loop over outliers)
1181////////////////////////////////////////////////////////////////////////////
1182t_irc bncModel::update_p(t_epoData* epoData) {
1183
1184 Tracer tracer("bncModel::update_p");
1185
1186 // Save Variance-Covariance Matrix, and Status Vector
1187 // --------------------------------------------------
1188 rememberState(epoData);
1189
1190 QString lastOutlierPrn;
1191
1192 // Try with all satellites, then with all minus one, etc.
1193 // ------------------------------------------------------
1194 while (selectSatellites(lastOutlierPrn, epoData->satData) == success) {
1195
1196 QByteArray strResCode;
1197 QByteArray strResPhase;
1198
1199 // Bancroft Solution
1200 // -----------------
1201 if (cmpBancroft(epoData) != success) {
1202 break;
1203 }
1204
1205 // First update using code observations, then phase observations
1206 // -------------------------------------------------------------
1207 for (int iPhase = 0; iPhase <= (_opt->usePhase ? 1 : 0); iPhase++) {
1208
1209 // Status Prediction
1210 // -----------------
1211 predict(iPhase, epoData);
1212
1213 // Create First-Design Matrix
1214 // --------------------------
1215 unsigned nPar = _params.size();
1216 unsigned nObs = 0;
1217 if (iPhase == 0) {
1218 nObs = epoData->sizeAll() - epoData->sizeSys('R'); // Glonass code not used
1219 }
1220 else {
1221 nObs = epoData->sizeAll();
1222 }
1223
1224 // Prepare first-design Matrix, vector observed-computed
1225 // -----------------------------------------------------
1226 Matrix AA(nObs, nPar); // first design matrix
1227 ColumnVector ll(nObs); // tems observed-computed
1228 DiagonalMatrix PP(nObs); PP = 0.0;
1229
1230 unsigned iObs = 0;
1231 QMapIterator<QString, t_satData*> it(epoData->satData);
1232 while (it.hasNext()) {
1233 it.next();
1234 t_satData* satData = it.value();
1235 if (iPhase == 1 || satData->system() != 'R') {
1236 QString prn = satData->prn;
1237 addObs(iPhase, iObs, satData, AA, ll, PP);
1238 }
1239 }
1240
1241 // Compute Filter Update
1242 // ---------------------
1243 ColumnVector dx;
1244 kalman(AA, ll, PP, _QQ, dx);
1245 ColumnVector vv = ll - AA * dx;
1246
1247 // Print Residuals
1248 // ---------------
1249 if (iPhase == 0) {
1250 strResCode = printRes(iPhase, vv, epoData->satData);
1251 }
1252 else {
1253 strResPhase = printRes(iPhase, vv, epoData->satData);
1254 }
1255
1256 // Check the residuals
1257 // -------------------
1258 lastOutlierPrn = outlierDetection(iPhase, vv, epoData->satData);
1259
1260 // No Outlier Detected
1261 // -------------------
1262 if (lastOutlierPrn.isEmpty()) {
1263
1264 QVectorIterator<bncParam*> itPar(_params);
1265 while (itPar.hasNext()) {
1266 bncParam* par = itPar.next();
1267 par->xx += dx(par->index);
1268 }
1269
1270 if (!_opt->usePhase || iPhase == 1) {
1271 if (_outlierGPS.size() > 0 || _outlierGlo.size() > 0) {
1272 _log += "Neglected PRNs: ";
1273 if (!_outlierGPS.isEmpty()) {
1274 _log += _outlierGPS.last() + ' ';
1275 }
1276 QStringListIterator itGlo(_outlierGlo);
1277 while (itGlo.hasNext()) {
1278 QString prn = itGlo.next();
1279 _log += prn + ' ';
1280 }
1281 }
1282 _log += '\n';
1283
1284 _log += strResCode + strResPhase;
1285
1286 return success;
1287 }
1288 }
1289
1290 // Outlier Found
1291 // -------------
1292 else {
1293 restoreState(epoData);
1294 break;
1295 }
1296
1297 } // for iPhase
1298
1299 } // while selectSatellites
1300
1301 restoreState(epoData);
1302 return failure;
1303}
1304
1305// Remeber Original State Vector and Variance-Covariance Matrix
1306////////////////////////////////////////////////////////////////////////////
1307void bncModel::rememberState(t_epoData* epoData) {
1308
1309 _QQ_sav = _QQ;
1310
1311 QVectorIterator<bncParam*> itSav(_params_sav);
1312 while (itSav.hasNext()) {
1313 bncParam* par = itSav.next();
1314 delete par;
1315 }
1316 _params_sav.clear();
1317
1318 QVectorIterator<bncParam*> it(_params);
1319 while (it.hasNext()) {
1320 bncParam* par = it.next();
1321 _params_sav.push_back(new bncParam(*par));
1322 }
1323
1324 _epoData_sav->deepCopy(epoData);
1325}
1326
1327// Restore Original State Vector and Variance-Covariance Matrix
1328////////////////////////////////////////////////////////////////////////////
1329void bncModel::restoreState(t_epoData* epoData) {
1330
1331 _QQ = _QQ_sav;
1332
1333 QVectorIterator<bncParam*> it(_params);
1334 while (it.hasNext()) {
1335 bncParam* par = it.next();
1336 delete par;
1337 }
1338 _params.clear();
1339
1340 QVectorIterator<bncParam*> itSav(_params_sav);
1341 while (itSav.hasNext()) {
1342 bncParam* par = itSav.next();
1343 _params.push_back(new bncParam(*par));
1344 }
1345
1346 epoData->deepCopy(_epoData_sav);
1347}
1348
1349//
1350////////////////////////////////////////////////////////////////////////////
1351t_irc bncModel::selectSatellites(const QString& lastOutlierPrn,
1352 QMap<QString, t_satData*>& satData) {
1353
1354 // First Call
1355 // ----------
1356 if (lastOutlierPrn.isEmpty()) {
1357 _outlierGPS.clear();
1358 _outlierGlo.clear();
1359 return success;
1360 }
1361
1362 // Second and next trials
1363 // ----------------------
1364 else {
1365
1366 if (lastOutlierPrn[0] == 'R') {
1367 _outlierGlo << lastOutlierPrn;
1368 }
1369
1370 // Remove all Glonass Outliers
1371 // ---------------------------
1372 QStringListIterator it(_outlierGlo);
1373 while (it.hasNext()) {
1374 QString prn = it.next();
1375 if (satData.contains(prn)) {
1376 delete satData.take(prn);
1377 }
1378 }
1379
1380 if (lastOutlierPrn[0] == 'R') {
1381 _outlierGPS.clear();
1382 return success;
1383 }
1384
1385 // GPS Outlier appeared for the first time - try to delete it
1386 // ----------------------------------------------------------
1387 if (_outlierGPS.indexOf(lastOutlierPrn) == -1) {
1388 _outlierGPS << lastOutlierPrn;
1389 if (satData.contains(lastOutlierPrn)) {
1390 delete satData.take(lastOutlierPrn);
1391 }
1392 return success;
1393 }
1394
1395 }
1396
1397 return failure;
1398}
Note: See TracBrowser for help on using the repository browser.