source: ntrip/trunk/BNC/src/PPP_SSR_I/pppFilter.cpp@ 7536

Last change on this file since 7536 was 7536, checked in by stuerze, 9 years ago

minor changes to harmonize PPP output formats

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 38.1 KB
Line 
1// Part of BNC, a utility for retrieving decoding and
2// converting GNSS data streams from NTRIP broadcasters.
3//
4// Copyright (C) 2007
5// German Federal Agency for Cartography and Geodesy (BKG)
6// http://www.bkg.bund.de
7// Czech Technical University Prague, Department of Geodesy
8// http://www.fsv.cvut.cz
9//
10// Email: euref-ip@bkg.bund.de
11//
12// This program is free software; you can redistribute it and/or
13// modify it under the terms of the GNU General Public License
14// as published by the Free Software Foundation, version 2.
15//
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25/* -------------------------------------------------------------------------
26 * BKG NTRIP Client
27 * -------------------------------------------------------------------------
28 *
29 * Class: t_pppParam, t_pppFilter
30 *
31 * Purpose: Model for PPP
32 *
33 * Author: L. Mervart
34 *
35 * Created: 01-Dec-2009
36 *
37 * Changes:
38 *
39 * -----------------------------------------------------------------------*/
40
41#include <iomanip>
42#include <cmath>
43#include <sstream>
44#include <newmatio.h>
45#include <newmatap.h>
46
47#include "pppFilter.h"
48#include "pppClient.h"
49#include "bncutils.h"
50#include "bncantex.h"
51#include "pppOptions.h"
52#include "pppModel.h"
53
54using namespace BNC_PPP;
55using namespace std;
56
57const double MAXRES_CODE = 2.98 * 3.0;
58const double MAXRES_PHASE_GPS = 2.98 * 0.03;
59const double MAXRES_PHASE_GLONASS = 2.98 * 0.03;
60const double GLONASS_WEIGHT_FACTOR = 1.0;
61const double BDS_WEIGHT_FACTOR = 2.0;
62
63#define LOG (_pppClient->log())
64#define OPT (_pppClient->opt())
65
66// Constructor
67////////////////////////////////////////////////////////////////////////////
68t_pppParam::t_pppParam(t_pppParam::parType typeIn, int indexIn,
69 const QString& prnIn) {
70 type = typeIn;
71 index = indexIn;
72 prn = prnIn;
73 index_old = 0;
74 xx = 0.0;
75 numEpo = 0;
76}
77
78// Destructor
79////////////////////////////////////////////////////////////////////////////
80t_pppParam::~t_pppParam() {
81}
82
83// Partial
84////////////////////////////////////////////////////////////////////////////
85double t_pppParam::partial(t_satData* satData, bool phase) {
86
87 Tracer tracer("t_pppParam::partial");
88
89 // Coordinates
90 // -----------
91 if (type == CRD_X) {
92 return (xx - satData->xx(1)) / satData->rho;
93 }
94 else if (type == CRD_Y) {
95 return (xx - satData->xx(2)) / satData->rho;
96 }
97 else if (type == CRD_Z) {
98 return (xx - satData->xx(3)) / satData->rho;
99 }
100
101 // Receiver Clocks
102 // ---------------
103 else if (type == RECCLK) {
104 return 1.0;
105 }
106
107 // Troposphere
108 // -----------
109 else if (type == TROPO) {
110 return 1.0 / sin(satData->eleSat);
111 }
112
113 // Glonass Offset
114 // --------------
115 else if (type == GLONASS_OFFSET) {
116 if (satData->prn[0] == 'R') {
117 return 1.0;
118 }
119 else {
120 return 0.0;
121 }
122 }
123
124 // Galileo Offset
125 // --------------
126 else if (type == GALILEO_OFFSET) {
127 if (satData->prn[0] == 'E') {
128 return 1.0;
129 }
130 else {
131 return 0.0;
132 }
133 }
134
135 // BDS Offset
136 // ----------
137 else if (type == BDS_OFFSET) {
138 if (satData->prn[0] == 'C') {
139 return 1.0;
140 }
141 else {
142 return 0.0;
143 }
144 }
145
146 // Ambiguities
147 // -----------
148 else if (type == AMB_L3) {
149 if (phase && satData->prn == prn) {
150 return 1.0;
151 }
152 else {
153 return 0.0;
154 }
155 }
156
157 // Default return
158 // --------------
159 return 0.0;
160}
161
162// Constructor
163////////////////////////////////////////////////////////////////////////////
164t_pppFilter::t_pppFilter(t_pppClient* pppClient) {
165
166 _pppClient = pppClient;
167 _tides = new t_tides();
168
169 // Antenna Name, ANTEX File
170 // ------------------------
171 _antex = 0;
172 if (!OPT->_antexFileName.empty()) {
173 _antex = new bncAntex(OPT->_antexFileName.c_str());
174 }
175
176 // Bancroft Coordinates
177 // --------------------
178 _xcBanc.ReSize(4); _xcBanc = 0.0;
179 _ellBanc.ReSize(3); _ellBanc = 0.0;
180
181 // Save copy of data (used in outlier detection)
182 // ---------------------------------------------
183 _epoData_sav = new t_epoData();
184
185 // Some statistics
186 // ---------------
187 _neu.ReSize(3); _neu = 0.0;
188 _numSat = 0;
189 _pDop = 0.0;
190}
191
192// Destructor
193////////////////////////////////////////////////////////////////////////////
194t_pppFilter::~t_pppFilter() {
195 delete _tides;
196 delete _antex;
197 for (int iPar = 1; iPar <= _params.size(); iPar++) {
198 delete _params[iPar-1];
199 }
200 for (int iPar = 1; iPar <= _params_sav.size(); iPar++) {
201 delete _params_sav[iPar-1];
202 }
203 delete _epoData_sav;
204}
205
206// Reset Parameters and Variance-Covariance Matrix
207////////////////////////////////////////////////////////////////////////////
208void t_pppFilter::reset() {
209
210 Tracer tracer("t_pppFilter::reset");
211
212 double lastTrp = 0.0;
213 for (int ii = 0; ii < _params.size(); ii++) {
214 t_pppParam* pp = _params[ii];
215 if (pp->type == t_pppParam::TROPO) {
216 lastTrp = pp->xx;
217 }
218 delete pp;
219 }
220 _params.clear();
221
222 int nextPar = 0;
223 _params.push_back(new t_pppParam(t_pppParam::CRD_X, ++nextPar, ""));
224 _params.push_back(new t_pppParam(t_pppParam::CRD_Y, ++nextPar, ""));
225 _params.push_back(new t_pppParam(t_pppParam::CRD_Z, ++nextPar, ""));
226 _params.push_back(new t_pppParam(t_pppParam::RECCLK, ++nextPar, ""));
227 if (OPT->estTrp()) {
228 _params.push_back(new t_pppParam(t_pppParam::TROPO, ++nextPar, ""));
229 }
230 if (OPT->useSystem('R')) {
231 _params.push_back(new t_pppParam(t_pppParam::GLONASS_OFFSET, ++nextPar, ""));
232 }
233 if (OPT->useSystem('E')) {
234 _params.push_back(new t_pppParam(t_pppParam::GALILEO_OFFSET, ++nextPar, ""));
235 }
236 if (OPT->useSystem('C')) {
237 _params.push_back(new t_pppParam(t_pppParam::BDS_OFFSET, ++nextPar, ""));
238 }
239
240 _QQ.ReSize(_params.size());
241 _QQ = 0.0;
242 for (int iPar = 1; iPar <= _params.size(); iPar++) {
243 t_pppParam* pp = _params[iPar-1];
244 pp->xx = 0.0;
245 if (pp->isCrd()) {
246 _QQ(iPar,iPar) = OPT->_aprSigCrd(1) * OPT->_aprSigCrd(1);
247 }
248 else if (pp->type == t_pppParam::RECCLK) {
249 _QQ(iPar,iPar) = OPT->_noiseClk * OPT->_noiseClk;
250 }
251 else if (pp->type == t_pppParam::TROPO) {
252 _QQ(iPar,iPar) = OPT->_aprSigTrp * OPT->_aprSigTrp;
253 pp->xx = lastTrp;
254 }
255 else if (pp->type == t_pppParam::GLONASS_OFFSET) {
256 _QQ(iPar,iPar) = 1000.0 * 1000.0;
257 }
258 else if (pp->type == t_pppParam::GALILEO_OFFSET) {
259 _QQ(iPar,iPar) = 1000.0 * 1000.0;
260 }
261 else if (pp->type == t_pppParam::BDS_OFFSET) {
262 _QQ(iPar,iPar) = 1000.0 * 1000.0;
263 }
264 }
265}
266
267// Bancroft Solution
268////////////////////////////////////////////////////////////////////////////
269t_irc t_pppFilter::cmpBancroft(t_epoData* epoData) {
270
271 Tracer tracer("t_pppFilter::cmpBancroft");
272
273 if (int(epoData->sizeSys('G')) < OPT->_minObs) {
274 LOG << "t_pppFilter::cmpBancroft: not enough data\n";
275 return failure;
276 }
277
278 Matrix BB(epoData->sizeSys('G'), 4);
279
280 QMapIterator<QString, t_satData*> it(epoData->satData);
281 int iObsBanc = 0;
282 while (it.hasNext()) {
283 it.next();
284 t_satData* satData = it.value();
285 if (satData->system() == 'G') {
286 ++iObsBanc;
287 QString prn = it.key();
288 BB(iObsBanc, 1) = satData->xx(1);
289 BB(iObsBanc, 2) = satData->xx(2);
290 BB(iObsBanc, 3) = satData->xx(3);
291 BB(iObsBanc, 4) = satData->P3 + satData->clk;
292 }
293 }
294
295 bancroft(BB, _xcBanc);
296
297 // Ellipsoidal Coordinates
298 // ------------------------
299 xyz2ell(_xcBanc.data(), _ellBanc.data());
300
301 // Compute Satellite Elevations
302 // ----------------------------
303 QMutableMapIterator<QString, t_satData*> im(epoData->satData);
304 while (im.hasNext()) {
305 im.next();
306 t_satData* satData = im.value();
307 cmpEle(satData);
308 if (satData->eleSat < OPT->_minEle) {
309 delete satData;
310 im.remove();
311 }
312 }
313
314 return success;
315}
316
317// Computed Value
318////////////////////////////////////////////////////////////////////////////
319double t_pppFilter::cmpValue(t_satData* satData, bool phase) {
320
321 Tracer tracer("t_pppFilter::cmpValue");
322
323 ColumnVector xRec(3);
324 xRec(1) = x();
325 xRec(2) = y();
326 xRec(3) = z();
327
328 double rho0 = (satData->xx - xRec).norm_Frobenius();
329 double dPhi = t_CST::omega * rho0 / t_CST::c;
330
331 xRec(1) = x() * cos(dPhi) - y() * sin(dPhi);
332 xRec(2) = y() * cos(dPhi) + x() * sin(dPhi);
333 xRec(3) = z();
334
335 xRec += _tides->displacement(_time, xRec);
336
337 satData->rho = (satData->xx - xRec).norm_Frobenius();
338
339 double tropDelay = delay_saast(satData->eleSat) +
340 trp() / sin(satData->eleSat);
341
342 double wind = 0.0;
343 if (phase) {
344 wind = windUp(satData->prn, satData->xx, xRec) * satData->lambda3;
345 }
346
347 double offset = 0.0;
348 t_frequency::type frqA = t_frequency::G1;
349 t_frequency::type frqB = t_frequency::G2;
350 if (satData->prn[0] == 'R') {
351 offset = Glonass_offset();
352 frqA = t_frequency::R1;
353 frqB = t_frequency::R2;
354 }
355 else if (satData->prn[0] == 'E') {
356 offset = Galileo_offset();
357 //frqA = t_frequency::E1; as soon as available
358 //frqB = t_frequency::E5; -"-
359 }
360 else if (satData->prn[0] == 'C') {
361 offset = Bds_offset();
362 //frqA = t_frequency::C2; as soon as available
363 //frqB = t_frequency::C7; -"-
364 }
365 double phaseCenter = 0.0;
366 if (_antex) {
367 bool found;
368 phaseCenter = satData->lkA * _antex->rcvCorr(OPT->_antNameRover, frqA,
369 satData->eleSat, satData->azSat,
370 found)
371 + satData->lkB * _antex->rcvCorr(OPT->_antNameRover, frqB,
372 satData->eleSat, satData->azSat,
373 found);
374 if (!found) {
375 LOG << "ANTEX: antenna >" << OPT->_antNameRover << "< not found\n";
376 }
377 }
378
379 double antennaOffset = 0.0;
380 double cosa = cos(satData->azSat);
381 double sina = sin(satData->azSat);
382 double cose = cos(satData->eleSat);
383 double sine = sin(satData->eleSat);
384 antennaOffset = -OPT->_neuEccRover(1) * cosa*cose
385 -OPT->_neuEccRover(2) * sina*cose
386 -OPT->_neuEccRover(3) * sine;
387
388 return satData->rho + phaseCenter + antennaOffset + clk()
389 + offset - satData->clk + tropDelay + wind;
390}
391
392// Tropospheric Model (Saastamoinen)
393////////////////////////////////////////////////////////////////////////////
394double t_pppFilter::delay_saast(double Ele) {
395
396 Tracer tracer("t_pppFilter::delay_saast");
397
398 double xyz[3];
399 xyz[0] = x();
400 xyz[1] = y();
401 xyz[2] = z();
402 double ell[3];
403 xyz2ell(xyz, ell);
404 double height = ell[2];
405
406 double pp = 1013.25 * pow(1.0 - 2.26e-5 * height, 5.225);
407 double TT = 18.0 - height * 0.0065 + 273.15;
408 double hh = 50.0 * exp(-6.396e-4 * height);
409 double ee = hh / 100.0 * exp(-37.2465 + 0.213166*TT - 0.000256908*TT*TT);
410
411 double h_km = height / 1000.0;
412
413 if (h_km < 0.0) h_km = 0.0;
414 if (h_km > 5.0) h_km = 5.0;
415 int ii = int(h_km + 1);
416 double href = ii - 1;
417
418 double bCor[6];
419 bCor[0] = 1.156;
420 bCor[1] = 1.006;
421 bCor[2] = 0.874;
422 bCor[3] = 0.757;
423 bCor[4] = 0.654;
424 bCor[5] = 0.563;
425
426 double BB = bCor[ii-1] + (bCor[ii]-bCor[ii-1]) * (h_km - href);
427
428 double zen = M_PI/2.0 - Ele;
429
430 return (0.002277/cos(zen)) * (pp + ((1255.0/TT)+0.05)*ee - BB*(tan(zen)*tan(zen)));
431}
432
433// Prediction Step of the Filter
434////////////////////////////////////////////////////////////////////////////
435void t_pppFilter::predict(int iPhase, t_epoData* epoData) {
436
437 Tracer tracer("t_pppFilter::predict");
438
439 if (iPhase == 0) {
440
441 const double maxSolGap = 60.0;
442
443 bool firstCrd = false;
444 if (!_lastTimeOK.valid() || (maxSolGap > 0.0 && _time - _lastTimeOK > maxSolGap)) {
445 firstCrd = true;
446 _startTime = epoData->tt;
447 reset();
448 }
449
450 // Use different white noise for Quick-Start mode
451 // ----------------------------------------------
452 double sigCrdP_used = OPT->_noiseCrd(1);
453 if ( OPT->_seedingTime > 0.0 && OPT->_seedingTime > (epoData->tt - _startTime) ) {
454 sigCrdP_used = 0.0;
455 }
456
457 // Predict Parameter values, add white noise
458 // -----------------------------------------
459 for (int iPar = 1; iPar <= _params.size(); iPar++) {
460 t_pppParam* pp = _params[iPar-1];
461
462 // Coordinates
463 // -----------
464 if (pp->type == t_pppParam::CRD_X) {
465 if (firstCrd) {
466 if (OPT->xyzAprRoverSet()) {
467 pp->xx = OPT->_xyzAprRover[0];
468 }
469 else {
470 pp->xx = _xcBanc(1);
471 }
472 }
473 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
474 }
475 else if (pp->type == t_pppParam::CRD_Y) {
476 if (firstCrd) {
477 if (OPT->xyzAprRoverSet()) {
478 pp->xx = OPT->_xyzAprRover[1];
479 }
480 else {
481 pp->xx = _xcBanc(2);
482 }
483 }
484 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
485 }
486 else if (pp->type == t_pppParam::CRD_Z) {
487 if (firstCrd) {
488 if (OPT->xyzAprRoverSet()) {
489 pp->xx = OPT->_xyzAprRover[2];
490 }
491 else {
492 pp->xx = _xcBanc(3);
493 }
494 }
495 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
496 }
497
498 // Receiver Clocks
499 // ---------------
500 else if (pp->type == t_pppParam::RECCLK) {
501 pp->xx = _xcBanc(4);
502 for (int jj = 1; jj <= _params.size(); jj++) {
503 _QQ(iPar, jj) = 0.0;
504 }
505 _QQ(iPar,iPar) = OPT->_noiseClk * OPT->_noiseClk;
506 }
507
508 // Tropospheric Delay
509 // ------------------
510 else if (pp->type == t_pppParam::TROPO) {
511 _QQ(iPar,iPar) += OPT->_noiseTrp * OPT->_noiseTrp;
512 }
513
514 // Glonass Offset
515 // --------------
516 else if (pp->type == t_pppParam::GLONASS_OFFSET) {
517 pp->xx = 0.0;
518 for (int jj = 1; jj <= _params.size(); jj++) {
519 _QQ(iPar, jj) = 0.0;
520 }
521 _QQ(iPar,iPar) = 1000.0 * 1000.0;
522 }
523
524 // Galileo Offset
525 // --------------
526 else if (pp->type == t_pppParam::GALILEO_OFFSET) {
527 _QQ(iPar,iPar) += 0.1 * 0.1;
528 }
529
530 // BDS Offset
531 // ----------
532 else if (pp->type == t_pppParam::BDS_OFFSET) {
533 _QQ(iPar,iPar) += 0.1 * 0.1; //TODO: TEST
534 }
535 }
536 }
537
538 // Add New Ambiguities if necessary
539 // --------------------------------
540 if (OPT->ambLCs('G').size() || OPT->ambLCs('R').size() ||
541 OPT->ambLCs('E').size() || OPT->ambLCs('C').size()) {
542
543 // Make a copy of QQ and xx, set parameter indices
544 // -----------------------------------------------
545 SymmetricMatrix QQ_old = _QQ;
546
547 for (int iPar = 1; iPar <= _params.size(); iPar++) {
548 _params[iPar-1]->index_old = _params[iPar-1]->index;
549 _params[iPar-1]->index = 0;
550 }
551
552 // Remove Ambiguity Parameters without observations
553 // ------------------------------------------------
554 int iPar = 0;
555 QMutableVectorIterator<t_pppParam*> im(_params);
556 while (im.hasNext()) {
557 t_pppParam* par = im.next();
558 bool removed = false;
559 if (par->type == t_pppParam::AMB_L3) {
560 if (epoData->satData.find(par->prn) == epoData->satData.end()) {
561 removed = true;
562 delete par;
563 im.remove();
564 }
565 }
566 if (! removed) {
567 ++iPar;
568 par->index = iPar;
569 }
570 }
571
572 // Add new ambiguity parameters
573 // ----------------------------
574 QMapIterator<QString, t_satData*> it(epoData->satData);
575 while (it.hasNext()) {
576 it.next();
577 t_satData* satData = it.value();
578 addAmb(satData);
579 }
580
581 int nPar = _params.size();
582 _QQ.ReSize(nPar); _QQ = 0.0;
583 for (int i1 = 1; i1 <= nPar; i1++) {
584 t_pppParam* p1 = _params[i1-1];
585 if (p1->index_old != 0) {
586 _QQ(p1->index, p1->index) = QQ_old(p1->index_old, p1->index_old);
587 for (int i2 = 1; i2 <= nPar; i2++) {
588 t_pppParam* p2 = _params[i2-1];
589 if (p2->index_old != 0) {
590 _QQ(p1->index, p2->index) = QQ_old(p1->index_old, p2->index_old);
591 }
592 }
593 }
594 }
595
596 for (int ii = 1; ii <= nPar; ii++) {
597 t_pppParam* par = _params[ii-1];
598 if (par->index_old == 0) {
599 _QQ(par->index, par->index) = OPT->_aprSigAmb * OPT->_aprSigAmb;
600 }
601 par->index_old = par->index;
602 }
603 }
604}
605
606// Update Step of the Filter (currently just a single-epoch solution)
607////////////////////////////////////////////////////////////////////////////
608t_irc t_pppFilter::update(t_epoData* epoData) {
609
610 Tracer tracer("t_pppFilter::update");
611
612 _time = epoData->tt; // current epoch time
613
614 if (OPT->useOrbClkCorr()) {
615 LOG << "Precise Point Positioning of Epoch " << _time.datestr() << "_" << _time.timestr(3)
616 << "\n---------------------------------------------------------------\n";
617 }
618 else {
619 LOG << "Single Point Positioning of Epoch " << _time.datestr() << "_" << _time.timestr(3)
620 << "\n---------------------------------------------------------------\n";
621 }
622
623 // Outlier Detection Loop
624 // ----------------------
625 if (update_p(epoData) != success) {
626 return failure;
627 }
628
629 // Set Solution Vector
630 // -------------------
631 LOG.setf(ios::fixed);
632 QVectorIterator<t_pppParam*> itPar(_params);
633 while (itPar.hasNext()) {
634 t_pppParam* par = itPar.next();
635 if (par->type == t_pppParam::RECCLK) {
636 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
637 << " CLK " << setw(10) << setprecision(3) << par->xx
638 << " +- " << setw(6) << setprecision(3)
639 << sqrt(_QQ(par->index,par->index));
640 }
641 else if (par->type == t_pppParam::AMB_L3) {
642 ++par->numEpo;
643 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
644 << " AMB " << par->prn.mid(0,3).toAscii().data() << " "
645 << setw(10) << setprecision(3) << par->xx
646 << " +- " << setw(6) << setprecision(3)
647 << sqrt(_QQ(par->index,par->index))
648 << " nEpo = " << par->numEpo;
649 }
650 else if (par->type == t_pppParam::TROPO) {
651 double aprTrp = delay_saast(M_PI/2.0);
652 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
653 << " TRP " << par->prn.mid(0,3).toAscii().data()
654 << setw(7) << setprecision(3) << aprTrp << " "
655 << setw(6) << setprecision(3) << showpos << par->xx << noshowpos
656 << " +- " << setw(6) << setprecision(3)
657 << sqrt(_QQ(par->index,par->index));
658 }
659 else if (par->type == t_pppParam::GLONASS_OFFSET) {
660 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
661 << " OFFGLO " << setw(10) << setprecision(3) << par->xx
662 << " +- " << setw(6) << setprecision(3)
663 << sqrt(_QQ(par->index,par->index));
664 }
665 else if (par->type == t_pppParam::GALILEO_OFFSET) {
666 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
667 << " OFFGAL " << setw(10) << setprecision(3) << par->xx
668 << " +- " << setw(6) << setprecision(3)
669 << sqrt(_QQ(par->index,par->index));
670 }
671 else if (par->type == t_pppParam::BDS_OFFSET) {
672 LOG << "\n" << _time.datestr() << "_" << _time.timestr(3)
673 << " OFFBDS " << setw(10) << setprecision(3) << par->xx
674 << " +- " << setw(6) << setprecision(3)
675 << sqrt(_QQ(par->index,par->index));
676 }
677 }
678
679 LOG << endl << endl;
680
681 // Compute dilution of precision
682 // -----------------------------
683 cmpDOP(epoData);
684
685 // Final Message (both log file and screen)
686 // ----------------------------------------
687 LOG << OPT->_roverName << " PPP "
688 << epoData->tt.datestr() << "_" << epoData->tt.timestr(3) << " " << epoData->sizeAll() << " "
689 << setw(14) << setprecision(3) << x() << " +- "
690 << setw(6) << setprecision(3) << sqrt(_QQ(1,1)) << " "
691 << setw(14) << setprecision(3) << y() << " +- "
692 << setw(6) << setprecision(3) << sqrt(_QQ(2,2)) << " "
693 << setw(14) << setprecision(3) << z() << " +- "
694 << setw(6) << setprecision(3) << sqrt(_QQ(3,3));
695
696 // NEU Output
697 // ----------
698 if (OPT->xyzAprRoverSet()) {
699 double xyz[3];
700 xyz[0] = x() - OPT->_xyzAprRover[0];
701 xyz[1] = y() - OPT->_xyzAprRover[1];
702 xyz[2] = z() - OPT->_xyzAprRover[2];
703
704 double ellRef[3];
705 xyz2ell(OPT->_xyzAprRover.data(), ellRef);
706 xyz2neu(ellRef, xyz, _neu.data());
707
708 LOG << " NEU "
709 << setw(8) << setprecision(3) << _neu[0] << " "
710 << setw(8) << setprecision(3) << _neu[1] << " "
711 << setw(8) << setprecision(3) << _neu[2] << endl << endl;
712 }
713 else {
714 LOG << endl << endl;
715 }
716
717 _lastTimeOK = _time; // remember time of last successful update
718 return success;
719}
720
721// Outlier Detection
722////////////////////////////////////////////////////////////////////////////
723QString t_pppFilter::outlierDetection(int iPhase, const ColumnVector& vv,
724 QMap<QString, t_satData*>& satData) {
725
726 Tracer tracer("t_pppFilter::outlierDetection");
727
728 QString prnGPS;
729 QString prnGlo;
730 double maxResGPS = 0.0; // GPS + Galileo
731 double maxResGlo = 0.0; // GLONASS + BDS
732 findMaxRes(vv, satData, prnGPS, prnGlo, maxResGPS, maxResGlo);
733
734 if (iPhase == 1) {
735 if (maxResGlo > 2.98 * OPT->_maxResL1) {
736 LOG << "Outlier Phase " << prnGlo.mid(0,3).toAscii().data() << ' ' << maxResGlo << endl;
737 return prnGlo;
738 }
739 else if (maxResGPS > 2.98 * OPT->_maxResL1) {
740 LOG << "Outlier Phase " << prnGPS.mid(0,3).toAscii().data() << ' ' << maxResGPS << endl;
741 return prnGPS;
742 }
743 }
744 else if (iPhase == 0 && maxResGPS > 2.98 * OPT->_maxResC1) {
745 LOG << "Outlier Code " << prnGPS.mid(0,3).toAscii().data() << ' ' << maxResGPS << endl;
746 return prnGPS;
747 }
748
749 return QString();
750}
751
752// Phase Wind-Up Correction
753///////////////////////////////////////////////////////////////////////////
754double t_pppFilter::windUp(const QString& prn, const ColumnVector& rSat,
755 const ColumnVector& rRec) {
756
757 Tracer tracer("t_pppFilter::windUp");
758
759 double Mjd = _time.mjd() + _time.daysec() / 86400.0;
760
761 // First time - initialize to zero
762 // -------------------------------
763 if (!_windUpTime.contains(prn)) {
764 _windUpSum[prn] = 0.0;
765 }
766
767 // Compute the correction for new time
768 // -----------------------------------
769 if (!_windUpTime.contains(prn) || _windUpTime[prn] != Mjd) {
770 _windUpTime[prn] = Mjd;
771
772 // Unit Vector GPS Satellite --> Receiver
773 // --------------------------------------
774 ColumnVector rho = rRec - rSat;
775 rho /= rho.norm_Frobenius();
776
777 // GPS Satellite unit Vectors sz, sy, sx
778 // -------------------------------------
779 ColumnVector sz = -rSat / rSat.norm_Frobenius();
780
781 ColumnVector xSun = t_astro::Sun(Mjd);
782 xSun /= xSun.norm_Frobenius();
783
784 ColumnVector sy = crossproduct(sz, xSun);
785 ColumnVector sx = crossproduct(sy, sz);
786
787 // Effective Dipole of the GPS Satellite Antenna
788 // ---------------------------------------------
789 ColumnVector dipSat = sx - rho * DotProduct(rho,sx)
790 - crossproduct(rho, sy);
791
792 // Receiver unit Vectors rx, ry
793 // ----------------------------
794 ColumnVector rx(3);
795 ColumnVector ry(3);
796
797 double recEll[3]; xyz2ell(rRec.data(), recEll) ;
798 double neu[3];
799
800 neu[0] = 1.0;
801 neu[1] = 0.0;
802 neu[2] = 0.0;
803 neu2xyz(recEll, neu, rx.data());
804
805 neu[0] = 0.0;
806 neu[1] = -1.0;
807 neu[2] = 0.0;
808 neu2xyz(recEll, neu, ry.data());
809
810 // Effective Dipole of the Receiver Antenna
811 // ----------------------------------------
812 ColumnVector dipRec = rx - rho * DotProduct(rho,rx)
813 + crossproduct(rho, ry);
814
815 // Resulting Effect
816 // ----------------
817 double alpha = DotProduct(dipSat,dipRec) /
818 (dipSat.norm_Frobenius() * dipRec.norm_Frobenius());
819
820 if (alpha > 1.0) alpha = 1.0;
821 if (alpha < -1.0) alpha = -1.0;
822
823 double dphi = acos(alpha) / 2.0 / M_PI; // in cycles
824
825 if ( DotProduct(rho, crossproduct(dipSat, dipRec)) < 0.0 ) {
826 dphi = -dphi;
827 }
828
829 _windUpSum[prn] = floor(_windUpSum[prn] - dphi + 0.5) + dphi;
830 }
831
832 return _windUpSum[prn];
833}
834
835//
836///////////////////////////////////////////////////////////////////////////
837void t_pppFilter::cmpEle(t_satData* satData) {
838 Tracer tracer("t_pppFilter::cmpEle");
839 ColumnVector rr = satData->xx - _xcBanc.Rows(1,3);
840 double rho = rr.norm_Frobenius();
841
842 double neu[3];
843 xyz2neu(_ellBanc.data(), rr.data(), neu);
844
845 satData->eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho );
846 if (neu[2] < 0) {
847 satData->eleSat *= -1.0;
848 }
849 satData->azSat = atan2(neu[1], neu[0]);
850}
851
852//
853///////////////////////////////////////////////////////////////////////////
854void t_pppFilter::addAmb(t_satData* satData) {
855 Tracer tracer("t_pppFilter::addAmb");
856 if (!OPT->ambLCs(satData->system()).size()){
857 return;
858 }
859 bool found = false;
860 for (int iPar = 1; iPar <= _params.size(); iPar++) {
861 if (_params[iPar-1]->type == t_pppParam::AMB_L3 &&
862 _params[iPar-1]->prn == satData->prn) {
863 found = true;
864 break;
865 }
866 }
867 if (!found) {
868 t_pppParam* par = new t_pppParam(t_pppParam::AMB_L3,
869 _params.size()+1, satData->prn);
870 _params.push_back(par);
871 par->xx = satData->L3 - cmpValue(satData, true);
872 }
873}
874
875//
876///////////////////////////////////////////////////////////////////////////
877void t_pppFilter::addObs(int iPhase, unsigned& iObs, t_satData* satData,
878 Matrix& AA, ColumnVector& ll, DiagonalMatrix& PP) {
879
880 Tracer tracer("t_pppFilter::addObs");
881
882 const double ELEWGHT = 20.0;
883 double ellWgtCoef = 1.0;
884 double eleD = satData->eleSat * 180.0 / M_PI;
885 if (eleD < ELEWGHT) {
886 ellWgtCoef = 1.5 - 0.5 / (ELEWGHT - 10.0) * (eleD - 10.0);
887 }
888
889 // Remember Observation Index
890 // --------------------------
891 ++iObs;
892 satData->obsIndex = iObs;
893
894 // Phase Observations
895 // ------------------
896
897 if (iPhase == 1) {
898 ll(iObs) = satData->L3 - cmpValue(satData, true);
899 double sigL3 = 2.98 * OPT->_sigmaL1;
900 if (satData->system() == 'R') {
901 sigL3 *= GLONASS_WEIGHT_FACTOR;
902 }
903 if (satData->system() == 'C') {
904 sigL3 *= BDS_WEIGHT_FACTOR;
905 }
906 PP(iObs,iObs) = 1.0 / (sigL3 * sigL3) / (ellWgtCoef * ellWgtCoef);
907 for (int iPar = 1; iPar <= _params.size(); iPar++) {
908 if (_params[iPar-1]->type == t_pppParam::AMB_L3 &&
909 _params[iPar-1]->prn == satData->prn) {
910 ll(iObs) -= _params[iPar-1]->xx;
911 }
912 AA(iObs, iPar) = _params[iPar-1]->partial(satData, true);
913 }
914 }
915
916 // Code Observations
917 // -----------------
918 else {
919 double sigP3 = 2.98 * OPT->_sigmaC1;
920 ll(iObs) = satData->P3 - cmpValue(satData, false);
921 PP(iObs,iObs) = 1.0 / (sigP3 * sigP3) / (ellWgtCoef * ellWgtCoef);
922 for (int iPar = 1; iPar <= _params.size(); iPar++) {
923 AA(iObs, iPar) = _params[iPar-1]->partial(satData, false);
924 }
925 }
926}
927
928//
929///////////////////////////////////////////////////////////////////////////
930QByteArray t_pppFilter::printRes(int iPhase, const ColumnVector& vv,
931 const QMap<QString, t_satData*>& satDataMap) {
932
933 Tracer tracer("t_pppFilter::printRes");
934
935 ostringstream str;
936 str.setf(ios::fixed);
937 bool useObs;
938 QMapIterator<QString, t_satData*> it(satDataMap);
939 while (it.hasNext()) {
940 it.next();
941 t_satData* satData = it.value();
942 (iPhase == 0) ? useObs = OPT->codeLCs(satData->system()).size() :
943 useObs = OPT->ambLCs(satData->system()).size();
944 if (satData->obsIndex != 0 && useObs) {
945 str << _time.datestr() << "_" << _time.timestr(3)
946 << " RES " << satData->prn.mid(0,3).toAscii().data()
947 << (iPhase ? " L3 " : " P3 ")
948 << setw(9) << setprecision(4) << vv(satData->obsIndex) << endl;
949 }
950 }
951
952 return QByteArray(str.str().c_str());
953}
954
955//
956///////////////////////////////////////////////////////////////////////////
957void t_pppFilter::findMaxRes(const ColumnVector& vv,
958 const QMap<QString, t_satData*>& satData,
959 QString& prnGPS, QString& prnGlo,
960 double& maxResGPS, double& maxResGlo) {
961
962 Tracer tracer("t_pppFilter::findMaxRes");
963
964 maxResGPS = 0.0;
965 maxResGlo = 0.0;
966
967 QMapIterator<QString, t_satData*> it(satData);
968 while (it.hasNext()) {
969 it.next();
970 t_satData* satData = it.value();
971 if (satData->obsIndex != 0) {
972 QString prn = satData->prn;
973 if (prn[0] == 'R' || prn[0] == 'C') {
974 if (fabs(vv(satData->obsIndex)) > maxResGlo) {
975 maxResGlo = fabs(vv(satData->obsIndex));
976 prnGlo = prn;
977 }
978 }
979 else {
980 if (fabs(vv(satData->obsIndex)) > maxResGPS) {
981 maxResGPS = fabs(vv(satData->obsIndex));
982 prnGPS = prn;
983 }
984 }
985 }
986 }
987}
988
989// Update Step (private - loop over outliers)
990////////////////////////////////////////////////////////////////////////////
991t_irc t_pppFilter::update_p(t_epoData* epoData) {
992
993 Tracer tracer("t_pppFilter::update_p");
994
995 // Save Variance-Covariance Matrix, and Status Vector
996 // --------------------------------------------------
997 rememberState(epoData);
998
999 QString lastOutlierPrn;
1000
1001 // Try with all satellites, then with all minus one, etc.
1002 // ------------------------------------------------------
1003 while (selectSatellites(lastOutlierPrn, epoData->satData) == success) {
1004
1005 QByteArray strResCode;
1006 QByteArray strResPhase;
1007
1008 // Bancroft Solution
1009 // -----------------
1010 if (cmpBancroft(epoData) != success) {
1011 break;
1012 }
1013
1014 // First update using code observations, then phase observations
1015 // -------------------------------------------------------------
1016 bool usePhase = OPT->ambLCs('G').size() || OPT->ambLCs('R').size() ||
1017 OPT->ambLCs('E').size() || OPT->ambLCs('C').size() ;
1018
1019 for (int iPhase = 0; iPhase <= (usePhase ? 1 : 0); iPhase++) {
1020
1021 // Status Prediction
1022 // -----------------
1023 predict(iPhase, epoData);
1024
1025 // Create First-Design Matrix
1026 // --------------------------
1027 unsigned nPar = _params.size();
1028 unsigned nObs = 0;
1029 nObs = epoData->sizeAll();
1030 bool useObs = false;
1031 char sys[] ={'G', 'R', 'E', 'C'};
1032 for (unsigned ii = 0; ii < sizeof(sys); ii++) {
1033 const char s = sys[ii];
1034 (iPhase == 0) ? useObs = OPT->codeLCs(s).size() : useObs = OPT->ambLCs(s).size();
1035 if (!useObs) {
1036 nObs -= epoData->sizeSys(s);
1037 }
1038 else {
1039 LOG << _time.datestr() << "_" << _time.timestr(3)
1040 << " SATNUM " << s << ' ' << right << setw(2)
1041 << epoData->sizeSys(s) << endl;
1042 }
1043 }
1044
1045 // Prepare first-design Matrix, vector observed-computed
1046 // -----------------------------------------------------
1047 Matrix AA(nObs, nPar); // first design matrix
1048 ColumnVector ll(nObs); // terms observed-computed
1049 DiagonalMatrix PP(nObs); PP = 0.0;
1050
1051 unsigned iObs = 0;
1052 QMapIterator<QString, t_satData*> it(epoData->satData);
1053
1054 while (it.hasNext()) {
1055 it.next();
1056 t_satData* satData = it.value();
1057 QString prn = satData->prn;
1058 (iPhase == 0) ? useObs = OPT->codeLCs(satData->system()).size() :
1059 useObs = OPT->ambLCs(satData->system()).size();
1060 if (useObs) {
1061 addObs(iPhase, iObs, satData, AA, ll, PP);
1062 } else {
1063 satData->obsIndex = 0;
1064 }
1065 }
1066
1067 // Compute Filter Update
1068 // ---------------------
1069 ColumnVector dx(nPar); dx = 0.0;
1070 kalman(AA, ll, PP, _QQ, dx);
1071 ColumnVector vv = ll - AA * dx;
1072
1073 // Print Residuals
1074 // ---------------
1075 if (iPhase == 0) {
1076 strResCode = printRes(iPhase, vv, epoData->satData);
1077 }
1078 else {
1079 strResPhase = printRes(iPhase, vv, epoData->satData);
1080 }
1081
1082 // Check the residuals
1083 // -------------------
1084 lastOutlierPrn = outlierDetection(iPhase, vv, epoData->satData);
1085
1086 // No Outlier Detected
1087 // -------------------
1088 if (lastOutlierPrn.isEmpty()) {
1089
1090 QVectorIterator<t_pppParam*> itPar(_params);
1091 while (itPar.hasNext()) {
1092 t_pppParam* par = itPar.next();
1093 par->xx += dx(par->index);
1094 }
1095
1096 if (!usePhase || iPhase == 1) {
1097 if (_outlierGPS.size() > 0 || _outlierGlo.size() > 0) {
1098 LOG << "Neglected PRNs: ";
1099 if (!_outlierGPS.isEmpty()) {
1100 LOG << _outlierGPS.last().mid(0,3).toAscii().data() << ' ';
1101 }
1102 QStringListIterator itGlo(_outlierGlo);
1103 while (itGlo.hasNext()) {
1104 QString prn = itGlo.next();
1105 LOG << prn.mid(0,3).toAscii().data() << ' ';
1106 }
1107 }
1108 LOG << strResCode.data() << strResPhase.data();
1109
1110 return success;
1111 }
1112 }
1113
1114 // Outlier Found
1115 // -------------
1116 else {
1117 restoreState(epoData);
1118 break;
1119 }
1120
1121 } // for iPhase
1122
1123 } // while selectSatellites
1124
1125 restoreState(epoData);
1126 return failure;
1127}
1128
1129// Remeber Original State Vector and Variance-Covariance Matrix
1130////////////////////////////////////////////////////////////////////////////
1131void t_pppFilter::rememberState(t_epoData* epoData) {
1132
1133 _QQ_sav = _QQ;
1134
1135 QVectorIterator<t_pppParam*> itSav(_params_sav);
1136 while (itSav.hasNext()) {
1137 t_pppParam* par = itSav.next();
1138 delete par;
1139 }
1140 _params_sav.clear();
1141
1142 QVectorIterator<t_pppParam*> it(_params);
1143 while (it.hasNext()) {
1144 t_pppParam* par = it.next();
1145 _params_sav.push_back(new t_pppParam(*par));
1146 }
1147
1148 _epoData_sav->deepCopy(epoData);
1149}
1150
1151// Restore Original State Vector and Variance-Covariance Matrix
1152////////////////////////////////////////////////////////////////////////////
1153void t_pppFilter::restoreState(t_epoData* epoData) {
1154
1155 _QQ = _QQ_sav;
1156
1157 QVectorIterator<t_pppParam*> it(_params);
1158 while (it.hasNext()) {
1159 t_pppParam* par = it.next();
1160 delete par;
1161 }
1162 _params.clear();
1163
1164 QVectorIterator<t_pppParam*> itSav(_params_sav);
1165 while (itSav.hasNext()) {
1166 t_pppParam* par = itSav.next();
1167 _params.push_back(new t_pppParam(*par));
1168 }
1169
1170 epoData->deepCopy(_epoData_sav);
1171}
1172
1173//
1174////////////////////////////////////////////////////////////////////////////
1175t_irc t_pppFilter::selectSatellites(const QString& lastOutlierPrn,
1176 QMap<QString, t_satData*>& satData) {
1177
1178 // First Call
1179 // ----------
1180 if (lastOutlierPrn.isEmpty()) {
1181 _outlierGPS.clear();
1182 _outlierGlo.clear();
1183 return success;
1184 }
1185
1186 // Second and next trials
1187 // ----------------------
1188 else {
1189
1190 if (lastOutlierPrn[0] == 'R' || lastOutlierPrn[0] == 'C') {
1191 _outlierGlo << lastOutlierPrn;
1192 }
1193
1194 // Remove all Glonass Outliers
1195 // ---------------------------
1196 QStringListIterator it(_outlierGlo);
1197 while (it.hasNext()) {
1198 QString prn = it.next();
1199 if (satData.contains(prn)) {
1200 delete satData.take(prn);
1201 }
1202 }
1203
1204 if (lastOutlierPrn[0] == 'R' || lastOutlierPrn[0] == 'C') {
1205 _outlierGPS.clear();
1206 return success;
1207 }
1208
1209 // GPS Outlier appeared for the first time - try to delete it
1210 // ----------------------------------------------------------
1211 if (_outlierGPS.indexOf(lastOutlierPrn) == -1) {
1212 _outlierGPS << lastOutlierPrn;
1213 if (satData.contains(lastOutlierPrn)) {
1214 delete satData.take(lastOutlierPrn);
1215 }
1216 return success;
1217 }
1218
1219 }
1220
1221 return failure;
1222}
1223
1224//
1225////////////////////////////////////////////////////////////////////////////
1226double lorentz(const ColumnVector& aa, const ColumnVector& bb) {
1227 return aa(1)*bb(1) + aa(2)*bb(2) + aa(3)*bb(3) - aa(4)*bb(4);
1228}
1229
1230//
1231////////////////////////////////////////////////////////////////////////////
1232void t_pppFilter::bancroft(const Matrix& BBpass, ColumnVector& pos) {
1233
1234 if (pos.Nrows() != 4) {
1235 pos.ReSize(4);
1236 }
1237 pos = 0.0;
1238
1239 for (int iter = 1; iter <= 2; iter++) {
1240 Matrix BB = BBpass;
1241 int mm = BB.Nrows();
1242 for (int ii = 1; ii <= mm; ii++) {
1243 double xx = BB(ii,1);
1244 double yy = BB(ii,2);
1245 double traveltime = 0.072;
1246 if (iter > 1) {
1247 double zz = BB(ii,3);
1248 double rho = sqrt( (xx-pos(1)) * (xx-pos(1)) +
1249 (yy-pos(2)) * (yy-pos(2)) +
1250 (zz-pos(3)) * (zz-pos(3)) );
1251 traveltime = rho / t_CST::c;
1252 }
1253 double angle = traveltime * t_CST::omega;
1254 double cosa = cos(angle);
1255 double sina = sin(angle);
1256 BB(ii,1) = cosa * xx + sina * yy;
1257 BB(ii,2) = -sina * xx + cosa * yy;
1258 }
1259
1260 Matrix BBB;
1261 if (mm > 4) {
1262 SymmetricMatrix hlp; hlp << BB.t() * BB;
1263 BBB = hlp.i() * BB.t();
1264 }
1265 else {
1266 BBB = BB.i();
1267 }
1268 ColumnVector ee(mm); ee = 1.0;
1269 ColumnVector alpha(mm); alpha = 0.0;
1270 for (int ii = 1; ii <= mm; ii++) {
1271 alpha(ii) = lorentz(BB.Row(ii).t(),BB.Row(ii).t())/2.0;
1272 }
1273 ColumnVector BBBe = BBB * ee;
1274 ColumnVector BBBalpha = BBB * alpha;
1275 double aa = lorentz(BBBe, BBBe);
1276 double bb = lorentz(BBBe, BBBalpha)-1;
1277 double cc = lorentz(BBBalpha, BBBalpha);
1278 double root = sqrt(bb*bb-aa*cc);
1279
1280 Matrix hlpPos(4,2);
1281 hlpPos.Column(1) = (-bb-root)/aa * BBBe + BBBalpha;
1282 hlpPos.Column(2) = (-bb+root)/aa * BBBe + BBBalpha;
1283
1284 ColumnVector omc(2);
1285 for (int pp = 1; pp <= 2; pp++) {
1286 hlpPos(4,pp) = -hlpPos(4,pp);
1287 omc(pp) = BB(1,4) -
1288 sqrt( (BB(1,1)-hlpPos(1,pp)) * (BB(1,1)-hlpPos(1,pp)) +
1289 (BB(1,2)-hlpPos(2,pp)) * (BB(1,2)-hlpPos(2,pp)) +
1290 (BB(1,3)-hlpPos(3,pp)) * (BB(1,3)-hlpPos(3,pp)) ) -
1291 hlpPos(4,pp);
1292 }
1293 if ( fabs(omc(1)) > fabs(omc(2)) ) {
1294 pos = hlpPos.Column(2);
1295 }
1296 else {
1297 pos = hlpPos.Column(1);
1298 }
1299 }
1300}
1301
1302//
1303////////////////////////////////////////////////////////////////////////////
1304void t_pppFilter::cmpDOP(t_epoData* epoData) {
1305
1306 Tracer tracer("t_pppFilter::cmpDOP");
1307
1308 _numSat = 0;
1309 _pDop = 0.0;
1310
1311 if (_params.size() < 4) {
1312 return;
1313 }
1314
1315 const unsigned numPar = 4;
1316 Matrix AA(epoData->sizeAll(), numPar);
1317 QMapIterator<QString, t_satData*> it(epoData->satData);
1318 while (it.hasNext()) {
1319 it.next();
1320 t_satData* satData = it.value();
1321 _numSat += 1;
1322 for (unsigned iPar = 0; iPar < numPar; iPar++) {
1323 AA[_numSat-1][iPar] = _params[iPar]->partial(satData, false);
1324 }
1325 }
1326 if (_numSat < 4) {
1327 return;
1328 }
1329 AA = AA.Rows(1, _numSat);
1330 SymmetricMatrix NN; NN << AA.t() * AA;
1331 SymmetricMatrix QQ = NN.i();
1332
1333 _pDop = sqrt(QQ(1,1) + QQ(2,2) + QQ(3,3));
1334}
Note: See TracBrowser for help on using the repository browser.