source: ntrip/trunk/BNC/src/PPP_SSR_I/pppFilter.cpp@ 7235

Last change on this file since 7235 was 7235, checked in by stuerze, 9 years ago

some renaming regarding PPP

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 37.8 KB
Line 
1// Part of BNC, a utility for retrieving decoding and
2// converting GNSS data streams from NTRIP broadcasters.
3//
4// Copyright (C) 2007
5// German Federal Agency for Cartography and Geodesy (BKG)
6// http://www.bkg.bund.de
7// Czech Technical University Prague, Department of Geodesy
8// http://www.fsv.cvut.cz
9//
10// Email: euref-ip@bkg.bund.de
11//
12// This program is free software; you can redistribute it and/or
13// modify it under the terms of the GNU General Public License
14// as published by the Free Software Foundation, version 2.
15//
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25/* -------------------------------------------------------------------------
26 * BKG NTRIP Client
27 * -------------------------------------------------------------------------
28 *
29 * Class: t_pppParam, t_pppFilter
30 *
31 * Purpose: Model for PPP
32 *
33 * Author: L. Mervart
34 *
35 * Created: 01-Dec-2009
36 *
37 * Changes:
38 *
39 * -----------------------------------------------------------------------*/
40
41#include <iomanip>
42#include <cmath>
43#include <sstream>
44#include <newmatio.h>
45#include <newmatap.h>
46
47#include "pppFilter.h"
48#include "pppClient.h"
49#include "bncutils.h"
50#include "bncantex.h"
51#include "pppOptions.h"
52#include "pppModel.h"
53
54using namespace BNC_PPP;
55using namespace std;
56
57const double MAXRES_CODE = 2.98 * 3.0;
58const double MAXRES_PHASE_GPS = 2.98 * 0.03;
59const double MAXRES_PHASE_GLONASS = 2.98 * 0.03;
60const double GLONASS_WEIGHT_FACTOR = 1.0;
61const double BDS_WEIGHT_FACTOR = 2.0;
62
63#define LOG (_pppClient->log())
64#define OPT (_pppClient->opt())
65
66// Constructor
67////////////////////////////////////////////////////////////////////////////
68t_pppParam::t_pppParam(t_pppParam::parType typeIn, int indexIn,
69 const QString& prnIn) {
70 type = typeIn;
71 index = indexIn;
72 prn = prnIn;
73 index_old = 0;
74 xx = 0.0;
75 numEpo = 0;
76}
77
78// Destructor
79////////////////////////////////////////////////////////////////////////////
80t_pppParam::~t_pppParam() {
81}
82
83// Partial
84////////////////////////////////////////////////////////////////////////////
85double t_pppParam::partial(t_satData* satData, bool phase) {
86
87 Tracer tracer("t_pppParam::partial");
88
89 // Coordinates
90 // -----------
91 if (type == CRD_X) {
92 return (xx - satData->xx(1)) / satData->rho;
93 }
94 else if (type == CRD_Y) {
95 return (xx - satData->xx(2)) / satData->rho;
96 }
97 else if (type == CRD_Z) {
98 return (xx - satData->xx(3)) / satData->rho;
99 }
100
101 // Receiver Clocks
102 // ---------------
103 else if (type == RECCLK) {
104 return 1.0;
105 }
106
107 // Troposphere
108 // -----------
109 else if (type == TROPO) {
110 return 1.0 / sin(satData->eleSat);
111 }
112
113 // Glonass Offset
114 // --------------
115 else if (type == GLONASS_OFFSET) {
116 if (satData->prn[0] == 'R') {
117 return 1.0;
118 }
119 else {
120 return 0.0;
121 }
122 }
123
124 // Galileo Offset
125 // --------------
126 else if (type == GALILEO_OFFSET) {
127 if (satData->prn[0] == 'E') {
128 return 1.0;
129 }
130 else {
131 return 0.0;
132 }
133 }
134
135 // BDS Offset
136 // ----------
137 else if (type == BDS_OFFSET) {
138 if (satData->prn[0] == 'C') {
139 return 1.0;
140 }
141 else {
142 return 0.0;
143 }
144 }
145
146 // Ambiguities
147 // -----------
148 else if (type == AMB_L3) {
149 if (phase && satData->prn == prn) {
150 return 1.0;
151 }
152 else {
153 return 0.0;
154 }
155 }
156
157 // Default return
158 // --------------
159 return 0.0;
160}
161
162// Constructor
163////////////////////////////////////////////////////////////////////////////
164t_pppFilter::t_pppFilter(t_pppClient* pppClient) {
165
166 _pppClient = pppClient;
167 _tides = new t_tides();
168
169 // Antenna Name, ANTEX File
170 // ------------------------
171 _antex = 0;
172 if (!OPT->_antexFileName.empty()) {
173 _antex = new bncAntex(OPT->_antexFileName.c_str());
174 }
175
176 // Bancroft Coordinates
177 // --------------------
178 _xcBanc.ReSize(4); _xcBanc = 0.0;
179 _ellBanc.ReSize(3); _ellBanc = 0.0;
180
181 // Save copy of data (used in outlier detection)
182 // ---------------------------------------------
183 _epoData_sav = new t_epoData();
184
185 // Some statistics
186 // ---------------
187 _neu.ReSize(3); _neu = 0.0;
188 _numSat = 0;
189 _pDop = 0.0;
190}
191
192// Destructor
193////////////////////////////////////////////////////////////////////////////
194t_pppFilter::~t_pppFilter() {
195 delete _tides;
196 delete _antex;
197 for (int iPar = 1; iPar <= _params.size(); iPar++) {
198 delete _params[iPar-1];
199 }
200 for (int iPar = 1; iPar <= _params_sav.size(); iPar++) {
201 delete _params_sav[iPar-1];
202 }
203 delete _epoData_sav;
204}
205
206// Reset Parameters and Variance-Covariance Matrix
207////////////////////////////////////////////////////////////////////////////
208void t_pppFilter::reset() {
209
210 Tracer tracer("t_pppFilter::reset");
211
212 double lastTrp = 0.0;
213 for (int ii = 0; ii < _params.size(); ii++) {
214 t_pppParam* pp = _params[ii];
215 if (pp->type == t_pppParam::TROPO) {
216 lastTrp = pp->xx;
217 }
218 delete pp;
219 }
220 _params.clear();
221
222 int nextPar = 0;
223 _params.push_back(new t_pppParam(t_pppParam::CRD_X, ++nextPar, ""));
224 _params.push_back(new t_pppParam(t_pppParam::CRD_Y, ++nextPar, ""));
225 _params.push_back(new t_pppParam(t_pppParam::CRD_Z, ++nextPar, ""));
226 _params.push_back(new t_pppParam(t_pppParam::RECCLK, ++nextPar, ""));
227 if (OPT->estTrp()) {
228 _params.push_back(new t_pppParam(t_pppParam::TROPO, ++nextPar, ""));
229 }
230 if (OPT->useSystem('R')) {
231 _params.push_back(new t_pppParam(t_pppParam::GLONASS_OFFSET, ++nextPar, ""));
232 }
233 if (OPT->useSystem('E')) {
234 _params.push_back(new t_pppParam(t_pppParam::GALILEO_OFFSET, ++nextPar, ""));
235 }
236 if (OPT->useSystem('C')) {
237 _params.push_back(new t_pppParam(t_pppParam::BDS_OFFSET, ++nextPar, ""));
238 }
239
240 _QQ.ReSize(_params.size());
241 _QQ = 0.0;
242 for (int iPar = 1; iPar <= _params.size(); iPar++) {
243 t_pppParam* pp = _params[iPar-1];
244 pp->xx = 0.0;
245 if (pp->isCrd()) {
246 _QQ(iPar,iPar) = OPT->_aprSigCrd(1) * OPT->_aprSigCrd(1);
247 }
248 else if (pp->type == t_pppParam::RECCLK) {
249 _QQ(iPar,iPar) = OPT->_noiseClk * OPT->_noiseClk;
250 }
251 else if (pp->type == t_pppParam::TROPO) {
252 _QQ(iPar,iPar) = OPT->_aprSigTrp * OPT->_aprSigTrp;
253 pp->xx = lastTrp;
254 }
255 else if (pp->type == t_pppParam::GLONASS_OFFSET) {
256 _QQ(iPar,iPar) = 1000.0 * 1000.0;
257 }
258 else if (pp->type == t_pppParam::GALILEO_OFFSET) {
259 _QQ(iPar,iPar) = 1000.0 * 1000.0;
260 }
261 else if (pp->type == t_pppParam::BDS_OFFSET) {
262 _QQ(iPar,iPar) = 1000.0 * 1000.0;
263 }
264 }
265}
266
267// Bancroft Solution
268////////////////////////////////////////////////////////////////////////////
269t_irc t_pppFilter::cmpBancroft(t_epoData* epoData) {
270
271 Tracer tracer("t_pppFilter::cmpBancroft");
272
273 if (int(epoData->sizeSys('G')) < OPT->_minObs) {
274 LOG << "t_pppFilter::cmpBancroft: not enough data\n";
275 return failure;
276 }
277
278 Matrix BB(epoData->sizeSys('G'), 4);
279
280 QMapIterator<QString, t_satData*> it(epoData->satData);
281 int iObsBanc = 0;
282 while (it.hasNext()) {
283 it.next();
284 t_satData* satData = it.value();
285 if (satData->system() == 'G') {
286 ++iObsBanc;
287 QString prn = it.key();
288 BB(iObsBanc, 1) = satData->xx(1);
289 BB(iObsBanc, 2) = satData->xx(2);
290 BB(iObsBanc, 3) = satData->xx(3);
291 BB(iObsBanc, 4) = satData->P3 + satData->clk;
292 }
293 }
294
295 bancroft(BB, _xcBanc);
296
297 // Ellipsoidal Coordinates
298 // ------------------------
299 xyz2ell(_xcBanc.data(), _ellBanc.data());
300
301 // Compute Satellite Elevations
302 // ----------------------------
303 QMutableMapIterator<QString, t_satData*> im(epoData->satData);
304 while (im.hasNext()) {
305 im.next();
306 t_satData* satData = im.value();
307 cmpEle(satData);
308 if (satData->eleSat < OPT->_minEle) {
309 delete satData;
310 im.remove();
311 }
312 }
313
314 return success;
315}
316
317// Computed Value
318////////////////////////////////////////////////////////////////////////////
319double t_pppFilter::cmpValue(t_satData* satData, bool phase) {
320
321 Tracer tracer("t_pppFilter::cmpValue");
322
323 ColumnVector xRec(3);
324 xRec(1) = x();
325 xRec(2) = y();
326 xRec(3) = z();
327
328 double rho0 = (satData->xx - xRec).norm_Frobenius();
329 double dPhi = t_CST::omega * rho0 / t_CST::c;
330
331 xRec(1) = x() * cos(dPhi) - y() * sin(dPhi);
332 xRec(2) = y() * cos(dPhi) + x() * sin(dPhi);
333 xRec(3) = z();
334
335 xRec += _tides->displacement(_time, xRec);
336
337 satData->rho = (satData->xx - xRec).norm_Frobenius();
338
339 double tropDelay = delay_saast(satData->eleSat) +
340 trp() / sin(satData->eleSat);
341
342 double wind = 0.0;
343 if (phase) {
344 wind = windUp(satData->prn, satData->xx, xRec) * satData->lambda3;
345 }
346
347 double offset = 0.0;
348 t_frequency::type frqA = t_frequency::G1;
349 t_frequency::type frqB = t_frequency::G2;
350 if (satData->prn[0] == 'R') {
351 offset = Glonass_offset();
352 frqA = t_frequency::R1;
353 frqB = t_frequency::R2;
354 }
355 else if (satData->prn[0] == 'E') {
356 offset = Galileo_offset();
357 //frqA = t_frequency::E1; as soon as available
358 //frqB = t_frequency::E5; -"-
359 }
360 else if (satData->prn[0] == 'C') {
361 offset = Bds_offset();
362 //frqA = t_frequency::C2; as soon as available
363 //frqB = t_frequency::C7; -"-
364 }
365 double phaseCenter = 0.0;
366 if (_antex) {
367 bool found;
368 phaseCenter = satData->lkA * _antex->rcvCorr(OPT->_antNameRover, frqA,
369 satData->eleSat, satData->azSat,
370 found)
371 + satData->lkB * _antex->rcvCorr(OPT->_antNameRover, frqB,
372 satData->eleSat, satData->azSat,
373 found);
374 if (!found) {
375 LOG << "ANTEX: antenna >" << OPT->_antNameRover << "< not found\n";
376 }
377 }
378
379 double antennaOffset = 0.0;
380 double cosa = cos(satData->azSat);
381 double sina = sin(satData->azSat);
382 double cose = cos(satData->eleSat);
383 double sine = sin(satData->eleSat);
384 antennaOffset = -OPT->_neuEccRover(1) * cosa*cose
385 -OPT->_neuEccRover(2) * sina*cose
386 -OPT->_neuEccRover(3) * sine;
387
388 return satData->rho + phaseCenter + antennaOffset + clk()
389 + offset - satData->clk + tropDelay + wind;
390}
391
392// Tropospheric Model (Saastamoinen)
393////////////////////////////////////////////////////////////////////////////
394double t_pppFilter::delay_saast(double Ele) {
395
396 Tracer tracer("t_pppFilter::delay_saast");
397
398 double xyz[3];
399 xyz[0] = x();
400 xyz[1] = y();
401 xyz[2] = z();
402 double ell[3];
403 xyz2ell(xyz, ell);
404 double height = ell[2];
405
406 double pp = 1013.25 * pow(1.0 - 2.26e-5 * height, 5.225);
407 double TT = 18.0 - height * 0.0065 + 273.15;
408 double hh = 50.0 * exp(-6.396e-4 * height);
409 double ee = hh / 100.0 * exp(-37.2465 + 0.213166*TT - 0.000256908*TT*TT);
410
411 double h_km = height / 1000.0;
412
413 if (h_km < 0.0) h_km = 0.0;
414 if (h_km > 5.0) h_km = 5.0;
415 int ii = int(h_km + 1);
416 double href = ii - 1;
417
418 double bCor[6];
419 bCor[0] = 1.156;
420 bCor[1] = 1.006;
421 bCor[2] = 0.874;
422 bCor[3] = 0.757;
423 bCor[4] = 0.654;
424 bCor[5] = 0.563;
425
426 double BB = bCor[ii-1] + (bCor[ii]-bCor[ii-1]) * (h_km - href);
427
428 double zen = M_PI/2.0 - Ele;
429
430 return (0.002277/cos(zen)) * (pp + ((1255.0/TT)+0.05)*ee - BB*(tan(zen)*tan(zen)));
431}
432
433// Prediction Step of the Filter
434////////////////////////////////////////////////////////////////////////////
435void t_pppFilter::predict(int iPhase, t_epoData* epoData) {
436
437 Tracer tracer("t_pppFilter::predict");
438
439 if (iPhase == 0) {
440
441 const double maxSolGap = 60.0;
442
443 bool firstCrd = false;
444 if (!_lastTimeOK.valid() || (maxSolGap > 0.0 && _time - _lastTimeOK > maxSolGap)) {
445 firstCrd = true;
446 _startTime = epoData->tt;
447 reset();
448 }
449
450 // Use different white noise for Quick-Start mode
451 // ----------------------------------------------
452 double sigCrdP_used = OPT->_noiseCrd(1);
453 if ( OPT->_seedingTime > 0.0 && OPT->_seedingTime > (epoData->tt - _startTime) ) {
454 sigCrdP_used = 0.0;
455 }
456
457 // Predict Parameter values, add white noise
458 // -----------------------------------------
459 for (int iPar = 1; iPar <= _params.size(); iPar++) {
460 t_pppParam* pp = _params[iPar-1];
461
462 // Coordinates
463 // -----------
464 if (pp->type == t_pppParam::CRD_X) {
465 if (firstCrd) {
466 if (OPT->xyzAprRoverSet()) {
467 pp->xx = OPT->_xyzAprRover[0];
468 }
469 else {
470 pp->xx = _xcBanc(1);
471 }
472 }
473 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
474 }
475 else if (pp->type == t_pppParam::CRD_Y) {
476 if (firstCrd) {
477 if (OPT->xyzAprRoverSet()) {
478 pp->xx = OPT->_xyzAprRover[1];
479 }
480 else {
481 pp->xx = _xcBanc(2);
482 }
483 }
484 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
485 }
486 else if (pp->type == t_pppParam::CRD_Z) {
487 if (firstCrd) {
488 if (OPT->xyzAprRoverSet()) {
489 pp->xx = OPT->_xyzAprRover[2];
490 }
491 else {
492 pp->xx = _xcBanc(3);
493 }
494 }
495 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
496 }
497
498 // Receiver Clocks
499 // ---------------
500 else if (pp->type == t_pppParam::RECCLK) {
501 pp->xx = _xcBanc(4);
502 for (int jj = 1; jj <= _params.size(); jj++) {
503 _QQ(iPar, jj) = 0.0;
504 }
505 _QQ(iPar,iPar) = OPT->_noiseClk * OPT->_noiseClk;
506 }
507
508 // Tropospheric Delay
509 // ------------------
510 else if (pp->type == t_pppParam::TROPO) {
511 _QQ(iPar,iPar) += OPT->_noiseTrp * OPT->_noiseTrp;
512 }
513
514 // Glonass Offset
515 // --------------
516 else if (pp->type == t_pppParam::GLONASS_OFFSET) {
517 pp->xx = 0.0;
518 for (int jj = 1; jj <= _params.size(); jj++) {
519 _QQ(iPar, jj) = 0.0;
520 }
521 _QQ(iPar,iPar) = 1000.0 * 1000.0;
522 }
523
524 // Galileo Offset
525 // --------------
526 else if (pp->type == t_pppParam::GALILEO_OFFSET) {
527 _QQ(iPar,iPar) += 0.1 * 0.1;
528 }
529
530 // BDS Offset
531 // ----------
532 else if (pp->type == t_pppParam::BDS_OFFSET) {
533 _QQ(iPar,iPar) = 1000.0 * 1000.0; //TODO: TEST
534 }
535 }
536 }
537
538 // Add New Ambiguities if necessary
539 // --------------------------------
540 if (OPT->ambLCs('G').size() || OPT->ambLCs('R').size() ||
541 OPT->ambLCs('E').size() || OPT->ambLCs('C').size()) {
542
543 // Make a copy of QQ and xx, set parameter indices
544 // -----------------------------------------------
545 SymmetricMatrix QQ_old = _QQ;
546
547 for (int iPar = 1; iPar <= _params.size(); iPar++) {
548 _params[iPar-1]->index_old = _params[iPar-1]->index;
549 _params[iPar-1]->index = 0;
550 }
551
552 // Remove Ambiguity Parameters without observations
553 // ------------------------------------------------
554 int iPar = 0;
555 QMutableVectorIterator<t_pppParam*> im(_params);
556 while (im.hasNext()) {
557 t_pppParam* par = im.next();
558 bool removed = false;
559 if (par->type == t_pppParam::AMB_L3) {
560 if (epoData->satData.find(par->prn) == epoData->satData.end()) {
561 removed = true;
562 delete par;
563 im.remove();
564 }
565 }
566 if (! removed) {
567 ++iPar;
568 par->index = iPar;
569 }
570 }
571
572 // Add new ambiguity parameters
573 // ----------------------------
574 QMapIterator<QString, t_satData*> it(epoData->satData);
575 while (it.hasNext()) {
576 it.next();
577 t_satData* satData = it.value();
578 addAmb(satData);
579 }
580
581 int nPar = _params.size();
582 _QQ.ReSize(nPar); _QQ = 0.0;
583 for (int i1 = 1; i1 <= nPar; i1++) {
584 t_pppParam* p1 = _params[i1-1];
585 if (p1->index_old != 0) {
586 _QQ(p1->index, p1->index) = QQ_old(p1->index_old, p1->index_old);
587 for (int i2 = 1; i2 <= nPar; i2++) {
588 t_pppParam* p2 = _params[i2-1];
589 if (p2->index_old != 0) {
590 _QQ(p1->index, p2->index) = QQ_old(p1->index_old, p2->index_old);
591 }
592 }
593 }
594 }
595
596 for (int ii = 1; ii <= nPar; ii++) {
597 t_pppParam* par = _params[ii-1];
598 if (par->index_old == 0) {
599 _QQ(par->index, par->index) = OPT->_aprSigAmb * OPT->_aprSigAmb;
600 }
601 par->index_old = par->index;
602 }
603 }
604}
605
606// Update Step of the Filter (currently just a single-epoch solution)
607////////////////////////////////////////////////////////////////////////////
608t_irc t_pppFilter::update(t_epoData* epoData) {
609
610 Tracer tracer("t_pppFilter::update");
611
612 _time = epoData->tt; // current epoch time
613
614 if (OPT->useOrbClkCorr()) {
615 LOG << "Precise Point Positioning of Epoch " << _time.datestr() << "_" << _time.timestr(1)
616 << "\n---------------------------------------------------------------\n";
617 }
618 else {
619 LOG << "Single Point Positioning of Epoch " << _time.datestr() << "_" << _time.timestr(1)
620 << "\n--------------------------------------------------------------\n";
621 }
622
623 // Outlier Detection Loop
624 // ----------------------
625 if (update_p(epoData) != success) {
626 return failure;
627 }
628
629 // Set Solution Vector
630 // -------------------
631 LOG.setf(ios::fixed);
632 QVectorIterator<t_pppParam*> itPar(_params);
633 while (itPar.hasNext()) {
634 t_pppParam* par = itPar.next();
635 if (par->type == t_pppParam::RECCLK) {
636 LOG << "\n clk = " << setw(10) << setprecision(3) << par->xx
637 << " +- " << setw(6) << setprecision(3)
638 << sqrt(_QQ(par->index,par->index));
639 }
640 else if (par->type == t_pppParam::AMB_L3) {
641 ++par->numEpo;
642 LOG << "\n amb " << par->prn.mid(0,3).toAscii().data() << " = "
643 << setw(10) << setprecision(3) << par->xx
644 << " +- " << setw(6) << setprecision(3)
645 << sqrt(_QQ(par->index,par->index))
646 << " nEpo = " << par->numEpo;
647 }
648 else if (par->type == t_pppParam::TROPO) {
649 double aprTrp = delay_saast(M_PI/2.0);
650 LOG << "\n trp = " << par->prn.mid(0,3).toAscii().data()
651 << setw(7) << setprecision(3) << aprTrp << " "
652 << setw(6) << setprecision(3) << showpos << par->xx << noshowpos
653 << " +- " << setw(6) << setprecision(3)
654 << sqrt(_QQ(par->index,par->index));
655 }
656 else if (par->type == t_pppParam::GLONASS_OFFSET) {
657 LOG << "\n offGlo = " << setw(10) << setprecision(3) << par->xx
658 << " +- " << setw(6) << setprecision(3)
659 << sqrt(_QQ(par->index,par->index));
660 }
661 else if (par->type == t_pppParam::GALILEO_OFFSET) {
662 LOG << "\n offGal = " << setw(10) << setprecision(3) << par->xx
663 << " +- " << setw(6) << setprecision(3)
664 << sqrt(_QQ(par->index,par->index));
665 }
666 else if (par->type == t_pppParam::BDS_OFFSET) {
667 LOG << "\n offBds = " << setw(10) << setprecision(3) << par->xx
668 << " +- " << setw(6) << setprecision(3)
669 << sqrt(_QQ(par->index,par->index));
670 }
671 }
672
673 LOG << endl << endl;
674
675 // Compute dilution of precision
676 // -----------------------------
677 cmpDOP(epoData);
678
679 // Final Message (both log file and screen)
680 // ----------------------------------------
681 LOG << OPT->_roverName << " PPP "
682 << epoData->tt.timestr(1) << " " << epoData->sizeAll() << " "
683 << setw(14) << setprecision(3) << x() << " +- "
684 << setw(6) << setprecision(3) << sqrt(_QQ(1,1)) << " "
685 << setw(14) << setprecision(3) << y() << " +- "
686 << setw(6) << setprecision(3) << sqrt(_QQ(2,2)) << " "
687 << setw(14) << setprecision(3) << z() << " +- "
688 << setw(6) << setprecision(3) << sqrt(_QQ(3,3));
689
690 // NEU Output
691 // ----------
692 if (OPT->xyzAprRoverSet()) {
693 double xyz[3];
694 xyz[0] = x() - OPT->_xyzAprRover[0];
695 xyz[1] = y() - OPT->_xyzAprRover[1];
696 xyz[2] = z() - OPT->_xyzAprRover[2];
697
698 double ellRef[3];
699 xyz2ell(OPT->_xyzAprRover.data(), ellRef);
700 xyz2neu(ellRef, xyz, _neu.data());
701
702 LOG << " NEU "
703 << setw(8) << setprecision(3) << _neu[0] << " "
704 << setw(8) << setprecision(3) << _neu[1] << " "
705 << setw(8) << setprecision(3) << _neu[2] << endl << endl;
706 }
707 else {
708 LOG << endl << endl;
709 }
710
711 _lastTimeOK = _time; // remember time of last successful update
712 return success;
713}
714
715// Outlier Detection
716////////////////////////////////////////////////////////////////////////////
717QString t_pppFilter::outlierDetection(int iPhase, const ColumnVector& vv,
718 QMap<QString, t_satData*>& satData) {
719
720 Tracer tracer("t_pppFilter::outlierDetection");
721
722 QString prnGPS;
723 QString prnGlo;
724 double maxResGPS = 0.0; // all the other systems except GLONASS
725 double maxResGlo = 0.0; // GLONASS
726 findMaxRes(vv, satData, prnGPS, prnGlo, maxResGPS, maxResGlo);
727
728 if (iPhase == 1) {
729 if (maxResGlo > 2.98 * OPT->_maxResL1) {
730 LOG << "Outlier Phase " << prnGlo.mid(0,3).toAscii().data() << ' ' << maxResGlo << endl;
731 return prnGlo;
732 }
733 else if (maxResGPS > 2.98 * OPT->_maxResL1) {
734 LOG << "Outlier Phase " << prnGPS.mid(0,3).toAscii().data() << ' ' << maxResGPS << endl;
735 return prnGPS;
736 }
737 }
738 else if (iPhase == 0 && maxResGPS > 2.98 * OPT->_maxResC1) {
739 LOG << "Outlier Code " << prnGPS.mid(0,3).toAscii().data() << ' ' << maxResGPS << endl;
740 return prnGPS;
741 }
742
743 return QString();
744}
745
746// Phase Wind-Up Correction
747///////////////////////////////////////////////////////////////////////////
748double t_pppFilter::windUp(const QString& prn, const ColumnVector& rSat,
749 const ColumnVector& rRec) {
750
751 Tracer tracer("t_pppFilter::windUp");
752
753 double Mjd = _time.mjd() + _time.daysec() / 86400.0;
754
755 // First time - initialize to zero
756 // -------------------------------
757 if (!_windUpTime.contains(prn)) {
758 _windUpSum[prn] = 0.0;
759 }
760
761 // Compute the correction for new time
762 // -----------------------------------
763 if (!_windUpTime.contains(prn) || _windUpTime[prn] != Mjd) {
764 _windUpTime[prn] = Mjd;
765
766 // Unit Vector GPS Satellite --> Receiver
767 // --------------------------------------
768 ColumnVector rho = rRec - rSat;
769 rho /= rho.norm_Frobenius();
770
771 // GPS Satellite unit Vectors sz, sy, sx
772 // -------------------------------------
773 ColumnVector sz = -rSat / rSat.norm_Frobenius();
774
775 ColumnVector xSun = t_astro::Sun(Mjd);
776 xSun /= xSun.norm_Frobenius();
777
778 ColumnVector sy = crossproduct(sz, xSun);
779 ColumnVector sx = crossproduct(sy, sz);
780
781 // Effective Dipole of the GPS Satellite Antenna
782 // ---------------------------------------------
783 ColumnVector dipSat = sx - rho * DotProduct(rho,sx)
784 - crossproduct(rho, sy);
785
786 // Receiver unit Vectors rx, ry
787 // ----------------------------
788 ColumnVector rx(3);
789 ColumnVector ry(3);
790
791 double recEll[3]; xyz2ell(rRec.data(), recEll) ;
792 double neu[3];
793
794 neu[0] = 1.0;
795 neu[1] = 0.0;
796 neu[2] = 0.0;
797 neu2xyz(recEll, neu, rx.data());
798
799 neu[0] = 0.0;
800 neu[1] = -1.0;
801 neu[2] = 0.0;
802 neu2xyz(recEll, neu, ry.data());
803
804 // Effective Dipole of the Receiver Antenna
805 // ----------------------------------------
806 ColumnVector dipRec = rx - rho * DotProduct(rho,rx)
807 + crossproduct(rho, ry);
808
809 // Resulting Effect
810 // ----------------
811 double alpha = DotProduct(dipSat,dipRec) /
812 (dipSat.norm_Frobenius() * dipRec.norm_Frobenius());
813
814 if (alpha > 1.0) alpha = 1.0;
815 if (alpha < -1.0) alpha = -1.0;
816
817 double dphi = acos(alpha) / 2.0 / M_PI; // in cycles
818
819 if ( DotProduct(rho, crossproduct(dipSat, dipRec)) < 0.0 ) {
820 dphi = -dphi;
821 }
822
823 _windUpSum[prn] = floor(_windUpSum[prn] - dphi + 0.5) + dphi;
824 }
825
826 return _windUpSum[prn];
827}
828
829//
830///////////////////////////////////////////////////////////////////////////
831void t_pppFilter::cmpEle(t_satData* satData) {
832 Tracer tracer("t_pppFilter::cmpEle");
833 ColumnVector rr = satData->xx - _xcBanc.Rows(1,3);
834 double rho = rr.norm_Frobenius();
835
836 double neu[3];
837 xyz2neu(_ellBanc.data(), rr.data(), neu);
838
839 satData->eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho );
840 if (neu[2] < 0) {
841 satData->eleSat *= -1.0;
842 }
843 satData->azSat = atan2(neu[1], neu[0]);
844}
845
846//
847///////////////////////////////////////////////////////////////////////////
848void t_pppFilter::addAmb(t_satData* satData) {
849 Tracer tracer("t_pppFilter::addAmb");
850 if (!OPT->ambLCs(satData->system()).size()){
851 return;
852 }
853 bool found = false;
854 for (int iPar = 1; iPar <= _params.size(); iPar++) {
855 if (_params[iPar-1]->type == t_pppParam::AMB_L3 &&
856 _params[iPar-1]->prn == satData->prn) {
857 found = true;
858 break;
859 }
860 }
861 if (!found) {
862 t_pppParam* par = new t_pppParam(t_pppParam::AMB_L3,
863 _params.size()+1, satData->prn);
864 _params.push_back(par);
865 par->xx = satData->L3 - cmpValue(satData, true);
866 }
867}
868
869//
870///////////////////////////////////////////////////////////////////////////
871void t_pppFilter::addObs(int iPhase, unsigned& iObs, t_satData* satData,
872 Matrix& AA, ColumnVector& ll, DiagonalMatrix& PP) {
873
874 Tracer tracer("t_pppFilter::addObs");
875
876 const double ELEWGHT = 20.0;
877 double ellWgtCoef = 1.0;
878 double eleD = satData->eleSat * 180.0 / M_PI;
879 if (eleD < ELEWGHT) {
880 ellWgtCoef = 1.5 - 0.5 / (ELEWGHT - 10.0) * (eleD - 10.0);
881 }
882
883 // Remember Observation Index
884 // --------------------------
885 ++iObs;
886 satData->obsIndex = iObs;
887
888 // Phase Observations
889 // ------------------
890
891 if (iPhase == 1) {
892 ll(iObs) = satData->L3 - cmpValue(satData, true);
893 double sigL3 = 2.98 * OPT->_sigmaL1;
894 if (satData->system() == 'R') {
895 sigL3 *= GLONASS_WEIGHT_FACTOR;
896 }
897 if (satData->system() == 'C') {
898 sigL3 *= BDS_WEIGHT_FACTOR;
899 }
900 PP(iObs,iObs) = 1.0 / (sigL3 * sigL3) / (ellWgtCoef * ellWgtCoef);
901 for (int iPar = 1; iPar <= _params.size(); iPar++) {
902 if (_params[iPar-1]->type == t_pppParam::AMB_L3 &&
903 _params[iPar-1]->prn == satData->prn) {
904 ll(iObs) -= _params[iPar-1]->xx;
905 }
906 AA(iObs, iPar) = _params[iPar-1]->partial(satData, true);
907 }
908 }
909
910 // Code Observations
911 // -----------------
912 else {
913 double sigP3 = 2.98 * OPT->_sigmaC1;
914 if (satData->system() == 'C') {
915 sigP3 *= BDS_WEIGHT_FACTOR;
916 }
917 ll(iObs) = satData->P3 - cmpValue(satData, false);
918 PP(iObs,iObs) = 1.0 / (sigP3 * sigP3) / (ellWgtCoef * ellWgtCoef);
919 for (int iPar = 1; iPar <= _params.size(); iPar++) {
920 AA(iObs, iPar) = _params[iPar-1]->partial(satData, false);
921 }
922 }
923}
924
925//
926///////////////////////////////////////////////////////////////////////////
927QByteArray t_pppFilter::printRes(int iPhase, const ColumnVector& vv,
928 const QMap<QString, t_satData*>& satDataMap) {
929
930 Tracer tracer("t_pppFilter::printRes");
931
932 ostringstream str;
933 str.setf(ios::fixed);
934 bool useObs;
935 QMapIterator<QString, t_satData*> it(satDataMap);
936 while (it.hasNext()) {
937 it.next();
938 t_satData* satData = it.value();
939 (iPhase == 0) ? useObs = OPT->codeLCs(satData->system()).size() :
940 useObs = OPT->ambLCs(satData->system()).size();
941 if (satData->obsIndex != 0 && useObs) {
942 str << _time.timestr(1)
943 << " RES " << satData->prn.mid(0,3).toAscii().data()
944 << (iPhase ? " L3 " : " P3 ")
945 << setw(9) << setprecision(4) << vv(satData->obsIndex) << endl;
946 }
947 }
948
949 return QByteArray(str.str().c_str());
950}
951
952//
953///////////////////////////////////////////////////////////////////////////
954void t_pppFilter::findMaxRes(const ColumnVector& vv,
955 const QMap<QString, t_satData*>& satData,
956 QString& prnGPS, QString& prnGlo,
957 double& maxResGPS, double& maxResGlo) {
958
959 Tracer tracer("t_pppFilter::findMaxRes");
960
961 maxResGPS = 0.0;
962 maxResGlo = 0.0;
963
964 QMapIterator<QString, t_satData*> it(satData);
965 while (it.hasNext()) {
966 it.next();
967 t_satData* satData = it.value();
968 if (satData->obsIndex != 0) {
969 QString prn = satData->prn;
970 if (prn[0] == 'R') {
971 if (fabs(vv(satData->obsIndex)) > maxResGlo) {
972 maxResGlo = fabs(vv(satData->obsIndex));
973 prnGlo = prn;
974 }
975 }
976 else {
977 if (fabs(vv(satData->obsIndex)) > maxResGPS) {
978 maxResGPS = fabs(vv(satData->obsIndex));
979 prnGPS = prn;
980 }
981 }
982 }
983 }
984}
985
986// Update Step (private - loop over outliers)
987////////////////////////////////////////////////////////////////////////////
988t_irc t_pppFilter::update_p(t_epoData* epoData) {
989
990 Tracer tracer("t_pppFilter::update_p");
991
992 // Save Variance-Covariance Matrix, and Status Vector
993 // --------------------------------------------------
994 rememberState(epoData);
995
996 QString lastOutlierPrn;
997
998 // Try with all satellites, then with all minus one, etc.
999 // ------------------------------------------------------
1000 while (selectSatellites(lastOutlierPrn, epoData->satData) == success) {
1001
1002 QByteArray strResCode;
1003 QByteArray strResPhase;
1004
1005 // Bancroft Solution
1006 // -----------------
1007 if (cmpBancroft(epoData) != success) {
1008 break;
1009 }
1010
1011 // First update using code observations, then phase observations
1012 // -------------------------------------------------------------
1013 bool usePhase = OPT->ambLCs('G').size() || OPT->ambLCs('R').size() ||
1014 OPT->ambLCs('E').size() || OPT->ambLCs('C').size() ;
1015
1016 for (int iPhase = 0; iPhase <= (usePhase ? 1 : 0); iPhase++) {
1017
1018 // Status Prediction
1019 // -----------------
1020 predict(iPhase, epoData);
1021
1022 // Create First-Design Matrix
1023 // --------------------------
1024 unsigned nPar = _params.size();
1025 unsigned nObs = 0;
1026 nObs = epoData->sizeAll();
1027 bool useObs = false;
1028 char sys[] ={'G', 'R', 'E', 'C'};
1029 for (unsigned ii = 0; ii < sizeof(sys); ii++) {
1030 const char s = sys[ii];
1031 (iPhase == 0) ? useObs = OPT->codeLCs(s).size() : useObs = OPT->ambLCs(s).size();
1032 if (!useObs) {
1033 nObs -= epoData->sizeSys(s);
1034 }
1035 }
1036
1037 // Prepare first-design Matrix, vector observed-computed
1038 // -----------------------------------------------------
1039 Matrix AA(nObs, nPar); // first design matrix
1040 ColumnVector ll(nObs); // tems observed-computed
1041 DiagonalMatrix PP(nObs); PP = 0.0;
1042
1043 unsigned iObs = 0;
1044 QMapIterator<QString, t_satData*> it(epoData->satData);
1045 while (it.hasNext()) {
1046 it.next();
1047 t_satData* satData = it.value();
1048 QString prn = satData->prn;
1049 (iPhase == 0) ? useObs = OPT->codeLCs(satData->system()).size() :
1050 useObs = OPT->ambLCs(satData->system()).size();
1051 if (useObs) {
1052 addObs(iPhase, iObs, satData, AA, ll, PP);
1053 } else {
1054 satData->obsIndex = 0;
1055 }
1056 }
1057
1058 // Compute Filter Update
1059 // ---------------------
1060 ColumnVector dx(nPar); dx = 0.0;
1061 kalman(AA, ll, PP, _QQ, dx);
1062 ColumnVector vv = ll - AA * dx;
1063
1064 // Print Residuals
1065 // ---------------
1066 if (iPhase == 0) {
1067 strResCode = printRes(iPhase, vv, epoData->satData);
1068 }
1069 else {
1070 strResPhase = printRes(iPhase, vv, epoData->satData);
1071 }
1072
1073 // Check the residuals
1074 // -------------------
1075 lastOutlierPrn = outlierDetection(iPhase, vv, epoData->satData);
1076
1077 // No Outlier Detected
1078 // -------------------
1079 if (lastOutlierPrn.isEmpty()) {
1080
1081 QVectorIterator<t_pppParam*> itPar(_params);
1082 while (itPar.hasNext()) {
1083 t_pppParam* par = itPar.next();
1084 par->xx += dx(par->index);
1085 }
1086
1087 if (!usePhase || iPhase == 1) {
1088 if (_outlierGPS.size() > 0 || _outlierGlo.size() > 0) {
1089 LOG << "Neglected PRNs: ";
1090 if (!_outlierGPS.isEmpty()) {
1091 LOG << _outlierGPS.last().mid(0,3).toAscii().data() << ' ';
1092 }
1093 QStringListIterator itGlo(_outlierGlo);
1094 while (itGlo.hasNext()) {
1095 QString prn = itGlo.next();
1096 LOG << prn.mid(0,3).toAscii().data() << ' ';
1097 }
1098 }
1099 LOG << strResCode.data() << strResPhase.data();
1100
1101 return success;
1102 }
1103 }
1104
1105 // Outlier Found
1106 // -------------
1107 else {
1108 restoreState(epoData);
1109 break;
1110 }
1111
1112 } // for iPhase
1113
1114 } // while selectSatellites
1115
1116 restoreState(epoData);
1117 return failure;
1118}
1119
1120// Remeber Original State Vector and Variance-Covariance Matrix
1121////////////////////////////////////////////////////////////////////////////
1122void t_pppFilter::rememberState(t_epoData* epoData) {
1123
1124 _QQ_sav = _QQ;
1125
1126 QVectorIterator<t_pppParam*> itSav(_params_sav);
1127 while (itSav.hasNext()) {
1128 t_pppParam* par = itSav.next();
1129 delete par;
1130 }
1131 _params_sav.clear();
1132
1133 QVectorIterator<t_pppParam*> it(_params);
1134 while (it.hasNext()) {
1135 t_pppParam* par = it.next();
1136 _params_sav.push_back(new t_pppParam(*par));
1137 }
1138
1139 _epoData_sav->deepCopy(epoData);
1140}
1141
1142// Restore Original State Vector and Variance-Covariance Matrix
1143////////////////////////////////////////////////////////////////////////////
1144void t_pppFilter::restoreState(t_epoData* epoData) {
1145
1146 _QQ = _QQ_sav;
1147
1148 QVectorIterator<t_pppParam*> it(_params);
1149 while (it.hasNext()) {
1150 t_pppParam* par = it.next();
1151 delete par;
1152 }
1153 _params.clear();
1154
1155 QVectorIterator<t_pppParam*> itSav(_params_sav);
1156 while (itSav.hasNext()) {
1157 t_pppParam* par = itSav.next();
1158 _params.push_back(new t_pppParam(*par));
1159 }
1160
1161 epoData->deepCopy(_epoData_sav);
1162}
1163
1164//
1165////////////////////////////////////////////////////////////////////////////
1166t_irc t_pppFilter::selectSatellites(const QString& lastOutlierPrn,
1167 QMap<QString, t_satData*>& satData) {
1168
1169 // First Call
1170 // ----------
1171 if (lastOutlierPrn.isEmpty()) {
1172 _outlierGPS.clear();
1173 _outlierGlo.clear();
1174 return success;
1175 }
1176
1177 // Second and next trials
1178 // ----------------------
1179 else {
1180
1181 if (lastOutlierPrn[0] == 'R') {
1182 _outlierGlo << lastOutlierPrn;
1183 }
1184
1185 // Remove all Glonass Outliers
1186 // ---------------------------
1187 QStringListIterator it(_outlierGlo);
1188 while (it.hasNext()) {
1189 QString prn = it.next();
1190 if (satData.contains(prn)) {
1191 delete satData.take(prn);
1192 }
1193 }
1194
1195 if (lastOutlierPrn[0] == 'R') {
1196 _outlierGPS.clear();
1197 return success;
1198 }
1199
1200 // GPS Outlier appeared for the first time - try to delete it
1201 // ----------------------------------------------------------
1202 if (_outlierGPS.indexOf(lastOutlierPrn) == -1) {
1203 _outlierGPS << lastOutlierPrn;
1204 if (satData.contains(lastOutlierPrn)) {
1205 delete satData.take(lastOutlierPrn);
1206 }
1207 return success;
1208 }
1209
1210 }
1211
1212 return failure;
1213}
1214
1215//
1216////////////////////////////////////////////////////////////////////////////
1217double lorentz(const ColumnVector& aa, const ColumnVector& bb) {
1218 return aa(1)*bb(1) + aa(2)*bb(2) + aa(3)*bb(3) - aa(4)*bb(4);
1219}
1220
1221//
1222////////////////////////////////////////////////////////////////////////////
1223void t_pppFilter::bancroft(const Matrix& BBpass, ColumnVector& pos) {
1224
1225 if (pos.Nrows() != 4) {
1226 pos.ReSize(4);
1227 }
1228 pos = 0.0;
1229
1230 for (int iter = 1; iter <= 2; iter++) {
1231 Matrix BB = BBpass;
1232 int mm = BB.Nrows();
1233 for (int ii = 1; ii <= mm; ii++) {
1234 double xx = BB(ii,1);
1235 double yy = BB(ii,2);
1236 double traveltime = 0.072;
1237 if (iter > 1) {
1238 double zz = BB(ii,3);
1239 double rho = sqrt( (xx-pos(1)) * (xx-pos(1)) +
1240 (yy-pos(2)) * (yy-pos(2)) +
1241 (zz-pos(3)) * (zz-pos(3)) );
1242 traveltime = rho / t_CST::c;
1243 }
1244 double angle = traveltime * t_CST::omega;
1245 double cosa = cos(angle);
1246 double sina = sin(angle);
1247 BB(ii,1) = cosa * xx + sina * yy;
1248 BB(ii,2) = -sina * xx + cosa * yy;
1249 }
1250
1251 Matrix BBB;
1252 if (mm > 4) {
1253 SymmetricMatrix hlp; hlp << BB.t() * BB;
1254 BBB = hlp.i() * BB.t();
1255 }
1256 else {
1257 BBB = BB.i();
1258 }
1259 ColumnVector ee(mm); ee = 1.0;
1260 ColumnVector alpha(mm); alpha = 0.0;
1261 for (int ii = 1; ii <= mm; ii++) {
1262 alpha(ii) = lorentz(BB.Row(ii).t(),BB.Row(ii).t())/2.0;
1263 }
1264 ColumnVector BBBe = BBB * ee;
1265 ColumnVector BBBalpha = BBB * alpha;
1266 double aa = lorentz(BBBe, BBBe);
1267 double bb = lorentz(BBBe, BBBalpha)-1;
1268 double cc = lorentz(BBBalpha, BBBalpha);
1269 double root = sqrt(bb*bb-aa*cc);
1270
1271 Matrix hlpPos(4,2);
1272 hlpPos.Column(1) = (-bb-root)/aa * BBBe + BBBalpha;
1273 hlpPos.Column(2) = (-bb+root)/aa * BBBe + BBBalpha;
1274
1275 ColumnVector omc(2);
1276 for (int pp = 1; pp <= 2; pp++) {
1277 hlpPos(4,pp) = -hlpPos(4,pp);
1278 omc(pp) = BB(1,4) -
1279 sqrt( (BB(1,1)-hlpPos(1,pp)) * (BB(1,1)-hlpPos(1,pp)) +
1280 (BB(1,2)-hlpPos(2,pp)) * (BB(1,2)-hlpPos(2,pp)) +
1281 (BB(1,3)-hlpPos(3,pp)) * (BB(1,3)-hlpPos(3,pp)) ) -
1282 hlpPos(4,pp);
1283 }
1284 if ( fabs(omc(1)) > fabs(omc(2)) ) {
1285 pos = hlpPos.Column(2);
1286 }
1287 else {
1288 pos = hlpPos.Column(1);
1289 }
1290 }
1291}
1292
1293//
1294////////////////////////////////////////////////////////////////////////////
1295void t_pppFilter::cmpDOP(t_epoData* epoData) {
1296
1297 Tracer tracer("t_pppFilter::cmpDOP");
1298
1299 _numSat = 0;
1300 _pDop = 0.0;
1301
1302 if (_params.size() < 4) {
1303 return;
1304 }
1305
1306 const unsigned numPar = 4;
1307 Matrix AA(epoData->sizeAll(), numPar);
1308 QMapIterator<QString, t_satData*> it(epoData->satData);
1309 while (it.hasNext()) {
1310 it.next();
1311 t_satData* satData = it.value();
1312 _numSat += 1;
1313 for (unsigned iPar = 0; iPar < numPar; iPar++) {
1314 AA[_numSat-1][iPar] = _params[iPar]->partial(satData, false);
1315 }
1316 }
1317 if (_numSat < 4) {
1318 return;
1319 }
1320 AA = AA.Rows(1, _numSat);
1321 SymmetricMatrix NN; NN << AA.t() * AA;
1322 SymmetricMatrix QQ = NN.i();
1323
1324 _pDop = sqrt(QQ(1,1) + QQ(2,2) + QQ(3,3));
1325}
Note: See TracBrowser for help on using the repository browser.