source: ntrip/trunk/BNC/src/PPP/pppSatObs.cpp@ 9649

Last change on this file since 9649 was 9649, checked in by stuerze, 2 years ago

minor changes regarding PPP

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 23.9 KB
Line 
1/* -------------------------------------------------------------------------
2 * BKG NTRIP Client
3 * -------------------------------------------------------------------------
4 *
5 * Class: t_pppSatObs
6 *
7 * Purpose: Satellite observations
8 *
9 * Author: L. Mervart
10 *
11 * Created: 29-Jul-2014
12 *
13 * Changes:
14 *
15 * -----------------------------------------------------------------------*/
16
17
18#include <iostream>
19#include <iomanip>
20#include <cmath>
21#include <newmatio.h>
22
23#include "pppSatObs.h"
24#include "bncconst.h"
25#include "pppEphPool.h"
26#include "pppStation.h"
27#include "bncutils.h"
28#include "bncantex.h"
29#include "pppObsPool.h"
30#include "pppClient.h"
31
32using namespace BNC_PPP;
33using namespace std;
34
35// Constructor
36////////////////////////////////////////////////////////////////////////////
37t_pppSatObs::t_pppSatObs(const t_satObs& pppSatObs) {
38 _prn = pppSatObs._prn;
39 _time = pppSatObs._time;
40 _outlier = false;
41 _valid = true;
42 _reference = false;
43 _stecRefSat = 0.0;
44 _stecSat = 0.0;
45 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
46 _obs[ii] = 0;
47 }
48 prepareObs(pppSatObs);
49}
50
51// Destructor
52////////////////////////////////////////////////////////////////////////////
53t_pppSatObs::~t_pppSatObs() {
54 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
55 delete _obs[iFreq];
56 }
57}
58
59//
60////////////////////////////////////////////////////////////////////////////
61void t_pppSatObs::prepareObs(const t_satObs& pppSatObs) {
62
63 _model.reset();
64
65 // Select pseudo-ranges and phase observations
66 // -------------------------------------------
67
68 QString preferredAttribList = "G:12&CWPSLX R:12&CP E:1&CBX E:5&QIX C:26&IQX";
69 if (OPT->_obsModelType == OPT->DCMcodeBias ||
70 OPT->_obsModelType == OPT->DCMphaseBias) {
71 // at the moment only one code or phase bias per system (G,R,E,C)/modulation considered
72 preferredAttribList = "G:12&CW R:12&CP E:1&CX E:5&QX C:26&I";
73 }
74 QStringList priorList = preferredAttribList.split(" ", QString::SkipEmptyParts);
75 string preferredAttrib;
76 char obsSys = pppSatObs._prn.system(); //cout << "SATELLITE: " << pppSatObs._prn.toString() << endl;
77 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
78 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
79 char frqSys = t_frequency::toString(frqType)[0]; //cout << "frqSys: " << frqSys << endl;
80 char frqNum = t_frequency::toString(frqType)[1]; //cout << "frqNum: " << frqNum << endl;
81 if (obsSys != frqSys) {
82 continue;
83 }
84 QStringList hlp;
85 for (int ii = 0; ii < priorList.size(); ii++) {
86 if (priorList[ii].indexOf(":") != -1) {
87 hlp = priorList[ii].split(":", QString::SkipEmptyParts);
88 if (hlp.size() == 2 && hlp[0].length() == 1 && hlp[0][0] == frqSys) {
89 hlp = hlp[1].split("&", QString::SkipEmptyParts);
90 }
91 if (hlp.size() == 2 && hlp[0].indexOf(frqNum) != -1) {
92 preferredAttrib = hlp[1].toStdString(); //cout << "preferredAttrib: " << preferredAttrib << endl;
93 }
94 }
95 for (unsigned iPref = 0; iPref < preferredAttrib.length(); iPref++) {
96 QString obsType = QString("%1").arg(frqNum) + preferredAttrib[iPref]; //cout << "obstype: " << obsType.toStdString().c_str() << endl;
97 if (_obs[iFreq] == 0) {
98 for (unsigned ii = 0; ii < pppSatObs._obs.size(); ii++) {
99 const t_frqObs* obs = pppSatObs._obs[ii];
100 //cout << "observation2char: " << obs->_rnxType2ch << " vs. " << obsType.toStdString().c_str()<< endl;
101 if (obs->_rnxType2ch == obsType.toStdString() &&
102 obs->_codeValid && obs->_code &&
103 obs->_phaseValid && obs->_phase) {
104 _obs[iFreq] = new t_frqObs(*obs); //cout << "================> newObs: " << obs->_rnxType2ch <<endl;
105 }
106 }
107 }
108 }
109 }
110 }
111
112 // Used frequency types
113 // --------------------
114 _fType1 = t_lc::toFreq(_prn.system(),t_lc::l1);
115 _fType2 = t_lc::toFreq(_prn.system(),t_lc::l2);
116
117 // Check whether all required frequencies available
118 // ------------------------------------------------
119 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
120 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
121 if (tLC == t_lc::GIM) {continue;}
122 if (!isValid(tLC)) {
123 _valid = false;
124 return;
125 }
126 }
127
128 // Find GLONASS Channel Number
129 // ---------------------------
130 if (_prn.system() == 'R') {
131 _channel = PPP_CLIENT->ephPool()->getChannel(_prn);
132 }
133 else {
134 _channel = 0;
135 }
136
137 // Compute Satellite Coordinates at Time of Transmission
138 // -----------------------------------------------------
139 _xcSat.ReSize(6); _xcSat = 0.0;
140 _vvSat.ReSize(3); _vvSat = 0.0;
141 bool totOK = false;
142 ColumnVector satPosOld(6); satPosOld = 0.0;
143 t_lc::type tLC = t_lc::dummy;
144 if (isValid(t_lc::cIF)) {
145 tLC = t_lc::cIF;
146 }
147 if (tLC == t_lc::dummy && isValid(t_lc::c1)) {
148 tLC = t_lc::c1;
149 }
150 if (tLC == t_lc::dummy && isValid(t_lc::c2)) {
151 tLC = t_lc::c2;
152 }
153 if (tLC == t_lc::dummy) {
154 _valid = false;
155 return;
156 }
157 double prange = obsValue(tLC);
158 for (int ii = 1; ii <= 10; ii++) {
159 bncTime ToT = _time - prange / t_CST::c - _xcSat[3];
160 if (PPP_CLIENT->ephPool()->getCrd(_prn, ToT, _xcSat, _vvSat) != success) {
161 _valid = false;
162 return;
163 }
164 ColumnVector dx = _xcSat - satPosOld;
165 dx[3] *= t_CST::c;
166 if (dx.NormFrobenius() < 1.e-4) {
167 totOK = true;
168 break;
169 }
170 satPosOld = _xcSat;
171 }
172 if (totOK) {
173 _signalPropagationTime = prange / t_CST::c - _xcSat[3];
174 _model._satClkM = _xcSat[3] * t_CST::c;
175 }
176 else {
177 _valid = false;
178 }
179}
180
181//
182////////////////////////////////////////////////////////////////////////////
183void t_pppSatObs::lcCoeff(t_lc::type tLC,
184 map<t_frequency::type, double>& codeCoeff,
185 map<t_frequency::type, double>& phaseCoeff,
186 map<t_frequency::type, double>& ionoCoeff) const {
187
188 codeCoeff.clear();
189 phaseCoeff.clear();
190 ionoCoeff.clear();
191
192 double f1 = t_CST::freq(_fType1, _channel);
193 double f2 = t_CST::freq(_fType2, _channel);
194 double f1GPS = t_CST::freq(t_frequency::G1, 0);
195
196 switch (tLC) {
197 case t_lc::l1:
198 phaseCoeff[_fType1] = 1.0;
199 ionoCoeff [_fType1] = -1.0 * pow(f1GPS, 2) / pow(f1, 2);
200 return;
201 case t_lc::l2:
202 phaseCoeff[_fType2] = 1.0;
203 ionoCoeff [_fType2] = -1.0 * pow(f1GPS, 2) / pow(f2, 2);
204 return;
205 case t_lc::lIF:
206 phaseCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
207 phaseCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
208 return;
209 case t_lc::MW:
210 phaseCoeff[_fType1] = f1 / (f1 - f2);
211 phaseCoeff[_fType2] = -f2 / (f1 - f2);
212 codeCoeff[_fType1] = -f1 / (f1 + f2);
213 codeCoeff[_fType2] = -f2 / (f1 + f2);
214 return;
215 case t_lc::CL:
216 phaseCoeff[_fType1] = 0.5;
217 codeCoeff [_fType1] = 0.5;
218 return;
219 case t_lc::c1:
220 codeCoeff[_fType1] = 1.0;
221 ionoCoeff[_fType1] = pow(f1GPS, 2) / pow(f1, 2);
222 return;
223 case t_lc::c2:
224 codeCoeff[_fType2] = 1.0;
225 ionoCoeff[_fType2] = pow(f1GPS, 2) / pow(f2, 2);
226 return;
227 case t_lc::cIF:
228 codeCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
229 codeCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
230 return;
231 case t_lc::GIM:
232 case t_lc::dummy:
233 case t_lc::maxLc:
234 return;
235 }
236}
237
238//
239////////////////////////////////////////////////////////////////////////////
240bool t_pppSatObs::isValid(t_lc::type tLC) const {
241 bool valid = true;
242 obsValue(tLC, &valid);
243
244 return valid;
245}
246//
247////////////////////////////////////////////////////////////////////////////
248double t_pppSatObs::obsValue(t_lc::type tLC, bool* valid) const {
249
250 double retVal = 0.0;
251 if (valid) *valid = true;
252
253 // Pseudo observations
254 if (tLC == t_lc::GIM) {
255 if (_stecRefSat == 0.0 || _stecSat == 0.0) {
256 if (valid) *valid = false;
257 return 0.0;
258 }
259 else {
260 return _stecRefSat;
261 }
262 }
263
264 map<t_frequency::type, double> codeCoeff;
265 map<t_frequency::type, double> phaseCoeff;
266 map<t_frequency::type, double> ionoCoeff;
267 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
268
269 map<t_frequency::type, double>::const_iterator it;
270
271 // Code observations
272 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
273 t_frequency::type tFreq = it->first;
274 if (_obs[tFreq] == 0) {
275 if (valid) *valid = false;
276 return 0.0;
277 }
278 else {
279 retVal += it->second * _obs[tFreq]->_code;
280 }
281 }
282 // Phase observations
283 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
284 t_frequency::type tFreq = it->first;
285 if (_obs[tFreq] == 0) {
286 if (valid) *valid = false;
287 return 0.0;
288 }
289 else {
290 retVal += it->second * _obs[tFreq]->_phase * t_CST::lambda(tFreq, _channel);
291 }
292 }
293 return retVal;
294}
295
296//
297////////////////////////////////////////////////////////////////////////////
298double t_pppSatObs::lambda(t_lc::type tLC) const {
299
300 double f1 = t_CST::freq(_fType1, _channel);
301 double f2 = t_CST::freq(_fType2, _channel);
302
303 if (tLC == t_lc::l1) {
304 return t_CST::c / f1;
305 }
306 else if (tLC == t_lc::l2) {
307 return t_CST::c / f2;
308 }
309 else if (tLC == t_lc::lIF) {
310 return t_CST::c / (f1 + f2);
311 }
312 else if (tLC == t_lc::MW) {
313 return t_CST::c / (f1 - f2);
314 }
315 else if (tLC == t_lc::CL) {
316 return t_CST::c / f1 / 2.0;
317 }
318
319 return 0.0;
320}
321
322//
323////////////////////////////////////////////////////////////////////////////
324double t_pppSatObs::sigma(t_lc::type tLC) const {
325
326 double retVal = 0.0;
327 map<t_frequency::type, double> codeCoeff;
328 map<t_frequency::type, double> phaseCoeff;
329 map<t_frequency::type, double> ionoCoeff;
330 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
331
332 if (tLC == t_lc::GIM) {
333 retVal = OPT->_sigmaGIM * OPT->_sigmaGIM + OPT->_sigmaGIM * OPT->_sigmaGIM;
334 }
335
336 map<t_frequency::type, double>::const_iterator it;
337 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
338 retVal += it->second * it->second * OPT->_sigmaC1 * OPT->_sigmaC1;
339 }
340
341 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
342 retVal += it->second * it->second * OPT->_sigmaL1 * OPT->_sigmaL1;
343 }
344
345 retVal = sqrt(retVal);
346
347 // De-Weight GLONASS
348 // -----------------
349 if (_prn.system() == 'R') {
350 retVal *= 5.0;
351 }
352
353 // Elevation-Dependent Weighting
354 // -----------------------------
355 double cEle = 1.0;
356 if ( (OPT->_eleWgtCode && t_lc::includesCode(tLC)) ||
357 (OPT->_eleWgtPhase && t_lc::includesPhase(tLC)) ) {
358 double eleD = eleSat()*180.0/M_PI;
359 double hlp = fabs(90.0 - eleD);
360 cEle = (1.0 + hlp*hlp*hlp*0.000004);
361 }
362
363 return cEle * retVal;
364}
365
366//
367////////////////////////////////////////////////////////////////////////////
368double t_pppSatObs::maxRes(t_lc::type tLC) const {
369 double retVal = 0.0;
370
371 map<t_frequency::type, double> codeCoeff;
372 map<t_frequency::type, double> phaseCoeff;
373 map<t_frequency::type, double> ionoCoeff;
374 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
375
376 map<t_frequency::type, double>::const_iterator it;
377 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
378 retVal += it->second * it->second * OPT->_maxResC1 * OPT->_maxResC1;
379 }
380 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
381 retVal += it->second * it->second * OPT->_maxResL1 * OPT->_maxResL1;
382 }
383 if (tLC == t_lc::GIM) {
384 retVal = OPT->_maxResGIM * OPT->_maxResGIM + OPT->_maxResGIM * OPT->_maxResGIM;
385 }
386
387 retVal = sqrt(retVal);
388
389 return retVal;
390}
391
392
393//
394////////////////////////////////////////////////////////////////////////////
395t_irc t_pppSatObs::cmpModel(const t_pppStation* station) {
396
397 // Reset all model values
398 // ----------------------
399 _model.reset();
400
401 // Topocentric Satellite Position
402 // ------------------------------
403 ColumnVector rSat = _xcSat.Rows(1,3);
404 ColumnVector rRec = station->xyzApr();
405 ColumnVector rhoV = rSat - rRec;
406 _model._rho = rhoV.NormFrobenius();
407
408 ColumnVector vSat = _vvSat;
409
410 ColumnVector neu(3);
411 xyz2neu(station->ellApr().data(), rhoV.data(), neu.data());
412
413 _model._eleSat = acos(sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / _model._rho);
414 if (neu[2] < 0) {
415 _model._eleSat *= -1.0;
416 }
417 _model._azSat = atan2(neu[1], neu[0]);
418
419 // Sun unit vector
420 ColumnVector xSun = t_astro::Sun(_time.mjddec());
421 xSun /= xSun.norm_Frobenius();
422
423 // Satellite unit vectors sz, sy, sx
424 ColumnVector sz = -rSat / rSat.norm_Frobenius();
425 ColumnVector sy = crossproduct(sz, xSun);
426 ColumnVector sx = crossproduct(sy, sz);
427
428 sx /= sx.norm_Frobenius();
429 sy /= sy.norm_Frobenius();
430
431 // LOS unit vector satellite --> receiver
432 ColumnVector rho = rRec - rSat;
433 rho /= rho.norm_Frobenius();
434
435 // LOS vector in satellite frame
436 ColumnVector u(3);
437 u(1) = dotproduct(sx, rho);
438 u(2) = dotproduct(sy, rho);
439 u(3) = dotproduct(sz, rho);
440
441 // Azimuth and elevation in satellite antenna frame
442 _model._elTx = atan2(u(3),sqrt(pow(u(2),2)+pow(u(1),2)));
443 _model._azTx = atan2(u(2),u(1));
444
445
446 // Satellite Clocks
447 // ----------------
448 _model._satClkM = _xcSat[3] * t_CST::c;
449
450 // Receiver Clocks
451 // ---------------
452 _model._recClkM = station->dClk() * t_CST::c;
453
454 // Sagnac Effect (correction due to Earth rotation)
455 // ------------------------------------------------
456 ColumnVector Omega(3);
457 Omega[0] = 0.0;
458 Omega[1] = 0.0;
459 Omega[2] = t_CST::omega / t_CST::c;
460 _model._sagnac = DotProduct(Omega, crossproduct(rSat, rRec));
461
462 // Antenna Eccentricity
463 // --------------------
464 _model._antEcc = -DotProduct(station->xyzEcc(), rhoV) / _model._rho;
465
466 // Antenna Phase Center Offsets and Variations
467 // -------------------------------------------
468 if (PPP_CLIENT->antex()) {
469 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
470 t_frequency::type frqType = static_cast<t_frequency::type>(ii);
471 string frqStr = t_frequency::toString(frqType);
472 if (frqStr[0] != _prn.system()) {continue;}
473 bool found;
474 QString prn(_prn.toString().c_str());
475 _model._antPCO[ii] = PPP_CLIENT->antex()->rcvCorr(station->antName(), frqType, _model._eleSat, _model._azSat, found);
476 _model._antPCO[ii] += PPP_CLIENT->antex()->satCorr(prn, frqType, _model._elTx, _model._azTx, found);
477 if (OPT->_isAPC && found) {
478 // the PCOs as given in the satellite antenna correction for all frequencies
479 // have to be reduced by the PCO of the reference frequency
480 if (_prn.system() == 'G') {
481 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::G1, _model._elTx, _model._azTx, found);
482 }
483 else if (_prn.system() == 'R') {
484 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::R1, _model._elTx, _model._azTx, found);
485 }
486 else if (_prn.system() == 'E') {
487 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::E1, _model._elTx, _model._azTx, found);
488 }
489 else if (_prn.system() == 'C') {
490 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::C2, _model._elTx, _model._azTx, found);
491 }
492 }
493 }
494 }
495
496 // Tropospheric Delay
497 // ------------------
498 _model._tropo = t_tropo::delay_saast(rRec, _model._eleSat);
499
500 // Code Biases
501 // -----------
502 const t_satCodeBias* satCodeBias = PPP_CLIENT->obsPool()->satCodeBias(_prn);
503 if (satCodeBias) {
504 for (unsigned ii = 0; ii < satCodeBias->_bias.size(); ii++) {
505 const t_frqCodeBias& bias = satCodeBias->_bias[ii];
506 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
507 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
508 if (frqStr[0] != _prn.system()) {
509 continue;
510 }
511 const t_frqObs* obs = _obs[iFreq];
512 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
513 _model._codeBias[iFreq] = bias._value;
514 }
515 }
516 }
517 }
518
519 // Phase Biases
520 // -----------
521 const t_satPhaseBias* satPhaseBias = PPP_CLIENT->obsPool()->satPhaseBias(_prn);
522 double yaw = 0.0;
523 bool ssr = false;
524 if (satPhaseBias) {
525 double dt = station->epochTime() - satPhaseBias->_time;
526 if (satPhaseBias->_updateInt) {
527 dt -= (0.5 * ssrUpdateInt[satPhaseBias->_updateInt]);
528 }
529 yaw = satPhaseBias->_yaw + satPhaseBias->_yawRate * dt;
530 ssr = true;
531 for (unsigned ii = 0; ii < satPhaseBias->_bias.size(); ii++) {
532 const t_frqPhaseBias& bias = satPhaseBias->_bias[ii];
533 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
534 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
535 if (frqStr[0] != _prn.system()) {
536 continue;
537 }
538 const t_frqObs* obs = _obs[iFreq];
539 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
540 _model._phaseBias[iFreq] = bias._value;
541 }
542 }
543 }
544 }
545
546 // Phase Wind-Up
547 // -------------
548 _model._windUp = station->windUp(_time, _prn, rSat, ssr, yaw, vSat) ;
549
550 // Relativistic effect due to earth gravity
551 // ----------------------------------------
552 double a = rSat.NormFrobenius() + rRec.NormFrobenius();
553 double b = (rSat - rRec).NormFrobenius();
554 double gm = 3.986004418e14; // m3/s2
555 _model._rel = 2 * gm / t_CST::c / t_CST::c * log((a + b) / (a - b));
556
557 // Tidal Correction
558 // ----------------
559 _model._tideEarth = -DotProduct(station->tideDsplEarth(), rhoV) / _model._rho;
560 _model._tideOcean = -DotProduct(station->tideDsplOcean(), rhoV) / _model._rho;
561
562 // Ionospheric Delay
563 // -----------------
564 const t_vTec* vTec = PPP_CLIENT->obsPool()->vTec();
565 bool vTecUsage = true;
566 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
567 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
568 if (tLC == t_lc::cIF || tLC == t_lc::lIF) {
569 vTecUsage = false;
570 }
571 }
572
573 if (vTecUsage && vTec) {
574 double stec = station->stec(vTec, _signalPropagationTime, rSat);
575 double f1GPS = t_CST::freq(t_frequency::G1, 0);
576 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
577 if (OPT->_pseudoObsIono) { // DCMcodeBias, DCMphaseBias
578 // For scaling the slant ionospheric delays the trick is to be consistent with units!
579 // The conversion of TECU into meters requires the frequency of the signal.
580 // Hence, GPS L1 frequency is used for all systems. The same is true for mu_i in lcCoeff().
581 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(f1GPS, 2) * stec;
582 }
583 else { // PPP-RTK
584 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
585 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(t_CST::freq(frqType, _channel), 2) * stec;
586 }
587 }
588 }
589
590 // Set Model Set Flag
591 // ------------------
592 _model._set = true;
593
594 //printModel();
595
596 return success;
597}
598
599//
600////////////////////////////////////////////////////////////////////////////
601void t_pppSatObs::printModel() const {
602
603 LOG.setf(ios::fixed);
604 LOG << "\nMODEL for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "")
605
606 << "\n======================= " << endl
607 << "PPP STRATEGY : " << OPT->_obsmodelTypeStr.at((int)OPT->_obsModelType).toLocal8Bit().constData()
608 << ((OPT->_pseudoObsIono) ? " with pseudo-observations for STEC" : "") << endl
609 << "RHO : " << setw(12) << setprecision(3) << _model._rho << endl
610 << "ELE : " << setw(12) << setprecision(3) << _model._eleSat * RHO_DEG << endl
611 << "AZI : " << setw(12) << setprecision(3) << _model._azSat * RHO_DEG << endl
612 << "SATCLK : " << setw(12) << setprecision(3) << _model._satClkM << endl
613 << "RECCLK : " << setw(12) << setprecision(3) << _model._recClkM << endl
614 << "SAGNAC : " << setw(12) << setprecision(3) << _model._sagnac << endl
615 << "ANTECC : " << setw(12) << setprecision(3) << _model._antEcc << endl
616 << "TROPO : " << setw(12) << setprecision(3) << _model._tropo << endl
617 << "WINDUP : " << setw(12) << setprecision(3) << _model._windUp << endl
618 << "REL : " << setw(12) << setprecision(3) << _model._rel << endl
619 << "EARTH TIDES : " << setw(12) << setprecision(3) << _model._tideEarth << endl
620 << "OCEAN TIDES : " << setw(12) << setprecision(3) << _model._tideOcean << endl
621 << endl
622 << "FREQUENCY DEPENDENT CORRECTIONS:" << endl
623 << "-------------------------------" << endl;
624 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
625 if (_obs[iFreq]) {
626 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
627 if (_prn.system() == frqStr[0]) {
628 LOG << "PCO : " << frqStr << setw(12) << setprecision(3) << _model._antPCO[iFreq] << endl
629 << "BIAS CODE : " << frqStr << setw(12) << setprecision(3) << _model._codeBias[iFreq] << "\t(" << _obs[iFreq]->_rnxType2ch[1] << ") " << endl
630 << "BIAS PHASE : " << frqStr << setw(12) << setprecision(3) << _model._phaseBias[iFreq] << "\t(" << _obs[iFreq]->_rnxType2ch[1] << ") " << endl
631 << "IONO CODEDELAY: " << frqStr << setw(12) << setprecision(3) << _model._ionoCodeDelay[iFreq]<< endl;
632 }
633 }
634 }
635}
636
637//
638////////////////////////////////////////////////////////////////////////////
639void t_pppSatObs::printObsMinusComputed() const {
640// TODO: cout should be LOG
641 LOG.setf(ios::fixed);
642 LOG << "\nOBS-COMP for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "") << endl
643 << "========================== " << endl;
644 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
645 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
646 LOG << "OBS-CMP " << setw(4) << t_lc::toString(tLC) << ": " << _prn.toString() << " "
647 << setw(12) << setprecision(3) << obsValue(tLC) << " "
648 << setw(12) << setprecision(3) << cmpValue(tLC) << " "
649 << setw(12) << setprecision(3) << obsValue(tLC) - cmpValue(tLC) << endl;
650 }
651}
652
653//
654////////////////////////////////////////////////////////////////////////////
655double t_pppSatObs::cmpValueForBanc(t_lc::type tLC) const {
656 return cmpValue(tLC) - _model._rho - _model._sagnac - _model._recClkM;
657}
658
659//
660////////////////////////////////////////////////////////////////////////////
661double t_pppSatObs::cmpValue(t_lc::type tLC) const {
662 double cmpValue;
663
664 if (!isValid(tLC)) {
665 cmpValue = 0.0;
666 }
667 else if (tLC == t_lc::GIM) {
668 cmpValue = _stecSat;
669 }
670 else {
671 // Non-Dispersive Part
672 // -------------------
673 double nonDisp = _model._rho
674 + _model._recClkM - _model._satClkM
675 + _model._sagnac + _model._antEcc + _model._tropo
676 + _model._tideEarth + _model._tideOcean + _model._rel;
677
678 // Add Dispersive Part
679 // -------------------
680 double dispPart = 0.0;
681 map<t_frequency::type, double> codeCoeff;
682 map<t_frequency::type, double> phaseCoeff;
683 map<t_frequency::type, double> ionoCoeff;
684 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
685 map<t_frequency::type, double>::const_iterator it;
686 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
687 t_frequency::type tFreq = it->first;
688 dispPart += it->second * (_model._antPCO[tFreq] - _model._codeBias[tFreq]);
689 if (OPT->PPPRTK) {
690 dispPart += it->second * (_model._ionoCodeDelay[tFreq]);
691 }
692 }
693 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
694 t_frequency::type tFreq = it->first;
695 dispPart += it->second * (_model._antPCO[tFreq] - _model._phaseBias[tFreq] +
696 _model._windUp * t_CST::lambda(tFreq, _channel));
697 if (OPT->PPPRTK) {
698 dispPart += it->second * (- _model._ionoCodeDelay[tFreq]);
699 }
700 }
701 cmpValue = nonDisp + dispPart;
702 }
703
704 return cmpValue;
705}
706
707//
708////////////////////////////////////////////////////////////////////////////
709void t_pppSatObs::setRes(t_lc::type tLC, double res) {
710 _res[tLC] = res;
711}
712
713//
714////////////////////////////////////////////////////////////////////////////
715double t_pppSatObs::getRes(t_lc::type tLC) const {
716 map<t_lc::type, double>::const_iterator it = _res.find(tLC);
717 if (it != _res.end()) {
718 return it->second;
719 }
720 else {
721 return 0.0;
722 }
723}
724
725//
726////////////////////////////////////////////////////////////////////////////
727void t_pppSatObs::setPseudoObsIono(t_frequency::type freq, double stecRefSat) {
728 _stecSat = _model._ionoCodeDelay[freq];
729 _stecRefSat = stecRefSat;
730}
Note: See TracBrowser for help on using the repository browser.