source: ntrip/trunk/BNC/src/PPP/pppSatObs.cpp@ 9575

Last change on this file since 9575 was 9575, checked in by stuerze, 3 years ago

minor changes

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 22.2 KB
Line 
1/* -------------------------------------------------------------------------
2 * BKG NTRIP Client
3 * -------------------------------------------------------------------------
4 *
5 * Class: t_pppSatObs
6 *
7 * Purpose: Satellite observations
8 *
9 * Author: L. Mervart
10 *
11 * Created: 29-Jul-2014
12 *
13 * Changes:
14 *
15 * -----------------------------------------------------------------------*/
16
17
18#include <iostream>
19#include <iomanip>
20#include <cmath>
21#include <newmatio.h>
22
23#include "pppSatObs.h"
24#include "bncconst.h"
25#include "pppEphPool.h"
26#include "pppStation.h"
27#include "bncutils.h"
28#include "bncantex.h"
29#include "pppObsPool.h"
30#include "pppClient.h"
31
32using namespace BNC_PPP;
33using namespace std;
34
35// Constructor
36////////////////////////////////////////////////////////////////////////////
37t_pppSatObs::t_pppSatObs(const t_satObs& pppSatObs) {
38 _prn = pppSatObs._prn;
39 _time = pppSatObs._time;
40 _outlier = false;
41 _valid = true;
42 _reference = false;
43 _stecRefSat = 0.0;
44 _stecSat = 0.0;
45 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
46 _obs[ii] = 0;
47 }
48 prepareObs(pppSatObs);
49}
50
51// Destructor
52////////////////////////////////////////////////////////////////////////////
53t_pppSatObs::~t_pppSatObs() {
54 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
55 delete _obs[iFreq];
56 }
57}
58
59//
60////////////////////////////////////////////////////////////////////////////
61void t_pppSatObs::prepareObs(const t_satObs& pppSatObs) {
62
63 _model.reset();
64
65 // Select pseudo-ranges and phase observations
66 // -------------------------------------------
67 string preferredAttrib = "G:12&WCPSLX R:12&PC E:1&CBX E:5&QIX C:26&IQX";
68 if (OPT->_obsModelType == OPT->DCMcodeBias ||
69 OPT->_obsModelType == OPT->DCMphaseBias) {
70 // at the moment only one code or phase bias per system (G,R,E,C)/modulation considered,
71 preferredAttrib = "G:12&W R:12&P E:1&CX E:5&QX C:26&I";
72 }
73
74 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
75 string frqNum = t_frequency::toString(t_frequency::type(iFreq)).substr(1);
76 for (unsigned iPref = 0; iPref < preferredAttrib.length(); iPref++) {
77 string obsType = (preferredAttrib[iPref] == '_') ? frqNum : frqNum + preferredAttrib[iPref];
78 if (_obs[iFreq] == 0) {
79 for (unsigned ii = 0; ii < pppSatObs._obs.size(); ii++) {
80 const t_frqObs* obs = pppSatObs._obs[ii];
81 if (obs->_rnxType2ch == obsType &&
82 obs->_codeValid && obs->_code &&
83 obs->_phaseValid && obs->_phase &&
84 obs->_lockTimeValid && obs->_lockTime > 5.0) {
85 _obs[iFreq] = new t_frqObs(*obs);
86 }
87 }
88 }
89 }
90 }
91
92 // Used frequency types
93 // --------------------
94 _fType1 = t_lc::toFreq(_prn.system(),t_lc::l1);
95 _fType2 = t_lc::toFreq(_prn.system(),t_lc::l2);
96
97 // Check whether all required frequencies available
98 // ------------------------------------------------
99 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
100 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
101 if (tLC == t_lc::GIM) {continue;}
102 if (!isValid(tLC)) {
103 _valid = false;
104 return;
105 }
106 }
107
108 // Find GLONASS Channel Number
109 // ---------------------------
110 if (_prn.system() == 'R') {
111 _channel = PPP_CLIENT->ephPool()->getChannel(_prn);
112 }
113 else {
114 _channel = 0;
115 }
116
117 // Compute Satellite Coordinates at Time of Transmission
118 // -----------------------------------------------------
119 _xcSat.ReSize(6); _xcSat = 0.0;
120 _vvSat.ReSize(3); _vvSat = 0.0;
121 bool totOK = false;
122 ColumnVector satPosOld(6); satPosOld = 0.0;
123 t_lc::type tLC = isValid(t_lc::cIF) ? t_lc::cIF : t_lc::c1;
124 double prange = obsValue(tLC);
125 for (int ii = 1; ii <= 10; ii++) {
126 bncTime ToT = _time - prange / t_CST::c - _xcSat[3];
127 if (PPP_CLIENT->ephPool()->getCrd(_prn, ToT, _xcSat, _vvSat) != success) {
128 _valid = false;
129 return;
130 }
131 ColumnVector dx = _xcSat - satPosOld;
132 dx[3] *= t_CST::c;
133 if (dx.NormFrobenius() < 1.e-4) {
134 totOK = true;
135 break;
136 }
137 satPosOld = _xcSat;
138 }
139 if (totOK) {
140 _signalPropagationTime = prange / t_CST::c - _xcSat[3];
141 _model._satClkM = _xcSat[3] * t_CST::c;
142 }
143 else {
144 _valid = false;
145 }
146}
147
148//
149////////////////////////////////////////////////////////////////////////////
150void t_pppSatObs::lcCoeff(t_lc::type tLC,
151 map<t_frequency::type, double>& codeCoeff,
152 map<t_frequency::type, double>& phaseCoeff,
153 map<t_frequency::type, double>& ionoCoeff) const {
154
155 codeCoeff.clear();
156 phaseCoeff.clear();
157 ionoCoeff.clear();
158
159 double f1 = t_CST::freq(_fType1, _channel);
160 double f2 = t_CST::freq(_fType2, _channel);
161 double f1GPS = t_CST::freq(t_frequency::G1, 0);
162
163 switch (tLC) {
164 case t_lc::l1:
165 phaseCoeff[_fType1] = 1.0;
166 ionoCoeff [_fType1] = -1.0 * pow(f1GPS, 2) / pow(f1, 2);
167 return;
168 case t_lc::l2:
169 phaseCoeff[_fType2] = 1.0;
170 ionoCoeff [_fType2] = -1.0 * pow(f1GPS, 2) / pow(f2, 2);
171 return;
172 case t_lc::lIF:
173 phaseCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
174 phaseCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
175 return;
176 case t_lc::MW:
177 phaseCoeff[_fType1] = f1 / (f1 - f2);
178 phaseCoeff[_fType2] = -f2 / (f1 - f2);
179 codeCoeff[_fType1] = -f1 / (f1 + f2);
180 codeCoeff[_fType2] = -f2 / (f1 + f2);
181 return;
182 case t_lc::CL:
183 phaseCoeff[_fType1] = 0.5;
184 codeCoeff [_fType1] = 0.5;
185 return;
186 case t_lc::c1:
187 codeCoeff[_fType1] = 1.0;
188 ionoCoeff[_fType1] = pow(f1GPS, 2) / pow(f1, 2);
189 return;
190 case t_lc::c2:
191 codeCoeff[_fType2] = 1.0;
192 ionoCoeff[_fType2] = pow(f1GPS, 2) / pow(f2, 2);
193 return;
194 case t_lc::cIF:
195 codeCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
196 codeCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
197 return;
198 case t_lc::GIM:
199 case t_lc::dummy:
200 case t_lc::maxLc:
201 return;
202 }
203}
204
205//
206////////////////////////////////////////////////////////////////////////////
207bool t_pppSatObs::isValid(t_lc::type tLC) const {
208 bool valid = true;
209 obsValue(tLC, &valid);
210
211 return valid;
212}
213//
214////////////////////////////////////////////////////////////////////////////
215double t_pppSatObs::obsValue(t_lc::type tLC, bool* valid) const {
216
217 double retVal = 0.0;
218 if (valid) *valid = true;
219
220 // Pseudo observations
221 if (tLC == t_lc::GIM) {
222 if (_stecRefSat == 0.0 || _stecSat == 0.0) {
223 if (valid) *valid = false;
224 return 0.0;
225 }
226 else {
227 return _stecRefSat;
228 }
229 }
230
231 map<t_frequency::type, double> codeCoeff;
232 map<t_frequency::type, double> phaseCoeff;
233 map<t_frequency::type, double> ionoCoeff;
234 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
235
236 map<t_frequency::type, double>::const_iterator it;
237
238 // Code observations
239 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
240 t_frequency::type tFreq = it->first;
241 if (_obs[tFreq] == 0) {
242 if (valid) *valid = false;
243 return 0.0;
244 }
245 else {
246 retVal += it->second * _obs[tFreq]->_code;
247 }
248 }
249 // Phase observations
250 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
251 t_frequency::type tFreq = it->first;
252 if (_obs[tFreq] == 0) {
253 if (valid) *valid = false;
254 return 0.0;
255 }
256 else {
257 retVal += it->second * _obs[tFreq]->_phase * t_CST::lambda(tFreq, _channel);
258 }
259 }
260 return retVal;
261}
262
263//
264////////////////////////////////////////////////////////////////////////////
265double t_pppSatObs::lambda(t_lc::type tLC) const {
266
267 double f1 = t_CST::freq(_fType1, _channel);
268 double f2 = t_CST::freq(_fType2, _channel);
269
270 if (tLC == t_lc::l1) {
271 return t_CST::c / f1;
272 }
273 else if (tLC == t_lc::l2) {
274 return t_CST::c / f2;
275 }
276 else if (tLC == t_lc::lIF) {
277 return t_CST::c / (f1 + f2);
278 }
279 else if (tLC == t_lc::MW) {
280 return t_CST::c / (f1 - f2);
281 }
282 else if (tLC == t_lc::CL) {
283 return t_CST::c / f1 / 2.0;
284 }
285
286 return 0.0;
287}
288
289//
290////////////////////////////////////////////////////////////////////////////
291double t_pppSatObs::sigma(t_lc::type tLC) const {
292
293 double retVal = 0.0;
294 map<t_frequency::type, double> codeCoeff;
295 map<t_frequency::type, double> phaseCoeff;
296 map<t_frequency::type, double> ionoCoeff;
297 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
298
299 if (tLC == t_lc::GIM) {
300 retVal = OPT->_sigmaGIM * OPT->_sigmaGIM + OPT->_sigmaGIM * OPT->_sigmaGIM;
301 }
302
303 map<t_frequency::type, double>::const_iterator it;
304 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
305 retVal += it->second * it->second * OPT->_sigmaC1 * OPT->_sigmaC1;
306 }
307
308 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
309 retVal += it->second * it->second * OPT->_sigmaL1 * OPT->_sigmaL1;
310 }
311
312 retVal = sqrt(retVal);
313
314 // De-Weight measurements
315 // ----------------------
316 if (_prn.system() == 'R' &&
317 (t_lc::includesCode(tLC) || t_lc::includesPhase(tLC))) {
318 retVal *= 10.0;
319 }
320
321 if (_prn.system() == 'C' && t_lc::includesCode(tLC)) {
322 retVal *= 2.0;
323 }
324
325 // Elevation-Dependent Weighting
326 // -----------------------------
327 double cEle = 1.0;
328 if ( (OPT->_eleWgtCode && t_lc::includesCode(tLC)) ||
329 (OPT->_eleWgtPhase && t_lc::includesPhase(tLC)) ) {
330 double eleD = eleSat()*180.0/M_PI;
331 double hlp = fabs(90.0 - eleD);
332 cEle = (1.0 + hlp*hlp*hlp*0.000004);
333 }
334
335 return cEle * retVal;
336}
337
338//
339////////////////////////////////////////////////////////////////////////////
340double t_pppSatObs::maxRes(t_lc::type tLC) const {
341 double retVal = 0.0;
342
343 map<t_frequency::type, double> codeCoeff;
344 map<t_frequency::type, double> phaseCoeff;
345 map<t_frequency::type, double> ionoCoeff;
346 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
347
348 map<t_frequency::type, double>::const_iterator it;
349 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
350 retVal += it->second * it->second * OPT->_maxResC1 * OPT->_maxResC1;
351 }
352 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
353 retVal += it->second * it->second * OPT->_maxResL1 * OPT->_maxResL1;
354 }
355 if (tLC == t_lc::GIM) {
356 retVal = OPT->_maxResGIM * OPT->_maxResGIM + OPT->_maxResGIM * OPT->_maxResGIM;
357 }
358
359 retVal = sqrt(retVal);
360
361 return retVal;
362}
363
364
365//
366////////////////////////////////////////////////////////////////////////////
367t_irc t_pppSatObs::cmpModel(const t_pppStation* station) {
368
369 // Reset all model values
370 // ----------------------
371 _model.reset();
372
373 // Topocentric Satellite Position
374 // ------------------------------
375 ColumnVector rSat = _xcSat.Rows(1,3);
376 ColumnVector rRec = station->xyzApr();
377 ColumnVector rhoV = rSat - rRec;
378 _model._rho = rhoV.NormFrobenius();
379
380 ColumnVector vSat = _vvSat;
381
382 ColumnVector neu(3);
383 xyz2neu(station->ellApr().data(), rhoV.data(), neu.data());
384
385 _model._eleSat = acos(sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / _model._rho);
386 if (neu[2] < 0) {
387 _model._eleSat *= -1.0;
388 }
389 _model._azSat = atan2(neu[1], neu[0]);
390
391 // Sun unit vector
392 ColumnVector xSun = t_astro::Sun(_time.mjddec());
393 xSun /= xSun.norm_Frobenius();
394
395 // Satellite unit vectors sz, sy, sx
396 ColumnVector sz = -rSat / rSat.norm_Frobenius();
397 ColumnVector sy = crossproduct(sz, xSun);
398 ColumnVector sx = crossproduct(sy, sz);
399
400 sx /= sx.norm_Frobenius();
401 sy /= sy.norm_Frobenius();
402
403 // LOS unit vector satellite --> receiver
404 ColumnVector rho = rRec - rSat;
405 rho /= rho.norm_Frobenius();
406
407 // LOS vector in satellite frame
408 ColumnVector u(3);
409 u(1) = dotproduct(sx, rho);
410 u(2) = dotproduct(sy, rho);
411 u(3) = dotproduct(sz, rho);
412
413 // Azimuth and elevation in satellite antenna frame
414 _model._elTx = atan2(u(3),sqrt(pow(u(2),2)+pow(u(1),2)));
415 _model._azTx = atan2(u(2),u(1));
416
417
418 // Satellite Clocks
419 // ----------------
420 _model._satClkM = _xcSat[3] * t_CST::c;
421
422 // Receiver Clocks
423 // ---------------
424 _model._recClkM = station->dClk() * t_CST::c;
425
426 // Sagnac Effect (correction due to Earth rotation)
427 // ------------------------------------------------
428 ColumnVector Omega(3);
429 Omega[0] = 0.0;
430 Omega[1] = 0.0;
431 Omega[2] = t_CST::omega / t_CST::c;
432 _model._sagnac = DotProduct(Omega, crossproduct(rSat, rRec));
433
434 // Antenna Eccentricity
435 // --------------------
436 _model._antEcc = -DotProduct(station->xyzEcc(), rhoV) / _model._rho;
437
438 // Antenna Phase Center Offsets and Variations
439 // -------------------------------------------
440 if (PPP_CLIENT->antex()) {
441 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
442 t_frequency::type frqType = static_cast<t_frequency::type>(ii);
443 bool found;
444 QString prn(_prn.toString().c_str());
445 _model._antPCO[ii] = PPP_CLIENT->antex()->rcvCorr(station->antName(), frqType, _model._eleSat, _model._azSat, found);
446 _model._antPCO[ii] += PPP_CLIENT->antex()->satCorr(prn, frqType, _model._elTx, _model._azTx, found);
447 if (OPT->_isAPC && found) {
448 // the PCOs as given in the satellite antenna correction for all frequencies
449 // have to be reduced by the PCO of the reference frequency
450 if (_prn.system() == 'G') {
451 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::G1, _model._elTx, _model._azTx, found);
452 }
453 else if (_prn.system() == 'R') {
454 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::R1, _model._elTx, _model._azTx, found);
455 }
456 else if (_prn.system() == 'E') {
457 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::E1, _model._elTx, _model._azTx, found);
458 }
459 else if (_prn.system() == 'C') {
460 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::C2, _model._elTx, _model._azTx, found);
461 }
462 }
463 }
464 }
465
466 // Tropospheric Delay
467 // ------------------
468 _model._tropo = t_tropo::delay_saast(rRec, _model._eleSat);
469
470 // Code Biases
471 // -----------
472 const t_satCodeBias* satCodeBias = PPP_CLIENT->obsPool()->satCodeBias(_prn);
473 if (satCodeBias) {
474 for (unsigned ii = 0; ii < satCodeBias->_bias.size(); ii++) {
475 const t_frqCodeBias& bias = satCodeBias->_bias[ii];
476 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
477 const t_frqObs* obs = _obs[iFreq];
478 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
479 _model._codeBias[iFreq] = bias._value;
480 }
481 }
482 }
483 }
484
485 // Phase Biases
486 // -----------
487 const t_satPhaseBias* satPhaseBias = PPP_CLIENT->obsPool()->satPhaseBias(_prn);
488 double yaw = 0.0;
489 bool ssr = false;
490 if (satPhaseBias) {
491 double dt = station->epochTime() - satPhaseBias->_time;
492 if (satPhaseBias->_updateInt) {
493 dt -= (0.5 * ssrUpdateInt[satPhaseBias->_updateInt]);
494 }
495 yaw = satPhaseBias->_yaw + satPhaseBias->_yawRate * dt;
496 ssr = true;
497 for (unsigned ii = 0; ii < satPhaseBias->_bias.size(); ii++) {
498 const t_frqPhaseBias& bias = satPhaseBias->_bias[ii];
499 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
500 const t_frqObs* obs = _obs[iFreq];
501 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
502 _model._phaseBias[iFreq] = bias._value;
503 }
504 }
505 }
506 }
507
508 // Phase Wind-Up
509 // -------------
510 _model._windUp = station->windUp(_time, _prn, rSat, ssr, yaw, vSat) ;
511
512 // Relativistic effect due to earth gravity
513 // ----------------------------------------
514 double a = rSat.NormFrobenius() + rRec.NormFrobenius();
515 double b = (rSat - rRec).NormFrobenius();
516 double gm = 3.986004418e14; // m3/s2
517 _model._rel = 2 * gm / t_CST::c / t_CST::c * log((a + b) / (a - b));
518
519 // Tidal Correction
520 // ----------------
521 _model._tideEarth = -DotProduct(station->tideDsplEarth(), rhoV) / _model._rho;
522 _model._tideOcean = -DotProduct(station->tideDsplOcean(), rhoV) / _model._rho;
523
524 // Ionospheric Delay
525 // -----------------
526 const t_vTec* vTec = PPP_CLIENT->obsPool()->vTec();
527 bool vTecUsage = true;
528 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
529 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
530 if (tLC == t_lc::cIF || tLC == t_lc::lIF) {
531 vTecUsage = false;
532 }
533 }
534
535 if (vTecUsage && vTec) {
536 double stec = station->stec(vTec, _signalPropagationTime, rSat);
537 double f1GPS = t_CST::freq(t_frequency::G1, 0);
538 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
539 if (OPT->_pseudoObsIono) { // DCMcodeBias, DCMphaseBias
540 // For scaling the slant ionospheric delays the trick is to be consistent with units!
541 // The conversion of TECU into meters requires the frequency of the signal.
542 // Hence, GPS L1 frequency is used for all systems. The same is true for mu_i in lcCoeff().
543 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(f1GPS, 2) * stec;
544 }
545 else { // PPP-RTK
546 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
547 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(t_CST::freq(frqType, _channel), 2) * stec;
548 }
549 }
550 }
551
552 // Set Model Set Flag
553 // ------------------
554 _model._set = true;
555
556 //printModel();
557
558 return success;
559}
560
561//
562////////////////////////////////////////////////////////////////////////////
563void t_pppSatObs::printModel() const {
564
565 LOG.setf(ios::fixed);
566 LOG << "\nMODEL for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "")
567
568 << "======================= " << endl
569 << "PPP STRATEGY : " << OPT->_obsmodelTypeStr.at((int)OPT->_obsModelType).toLocal8Bit().constData()
570 << ((OPT->_pseudoObsIono) ? " with pseudo-observations for STEC" : "") << endl
571 << "RHO : " << setw(12) << setprecision(3) << _model._rho << endl
572 << "ELE : " << setw(12) << setprecision(3) << _model._eleSat * RHO_DEG << endl
573 << "AZI : " << setw(12) << setprecision(3) << _model._azSat * RHO_DEG << endl
574 << "SATCLK : " << setw(12) << setprecision(3) << _model._satClkM << endl
575 << "RECCLK : " << setw(12) << setprecision(3) << _model._recClkM << endl
576 << "SAGNAC : " << setw(12) << setprecision(3) << _model._sagnac << endl
577 << "ANTECC : " << setw(12) << setprecision(3) << _model._antEcc << endl
578 << "TROPO : " << setw(12) << setprecision(3) << _model._tropo << endl
579 << "WINDUP : " << setw(12) << setprecision(3) << _model._windUp << endl
580 << "REL : " << setw(12) << setprecision(3) << _model._rel << endl
581 << "EARTH TIDES : " << setw(12) << setprecision(3) << _model._tideEarth << endl
582 << "OCEAN TIDES : " << setw(12) << setprecision(3) << _model._tideOcean << endl
583 << endl
584 << "FREQUENCY DEPENDENT CORRECTIONS:" << endl
585 << "-------------------------------" << endl;
586 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
587 if (_obs[iFreq]) {
588 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
589 if (_prn.system() == frqStr[0]) {
590 LOG << "PCO : " << frqStr << setw(12) << setprecision(3) << _model._antPCO[iFreq] << endl
591 << "BIAS CODE : " << frqStr << setw(12) << setprecision(3) << _model._codeBias[iFreq] << endl
592 << "BIAS PHASE : " << frqStr << setw(12) << setprecision(3) << _model._phaseBias[iFreq] << endl
593 << "IONO CODEDELAY: " << frqStr << setw(12) << setprecision(3) << _model._ionoCodeDelay[iFreq]<< endl;
594 }
595 }
596 }
597}
598
599//
600////////////////////////////////////////////////////////////////////////////
601void t_pppSatObs::printObsMinusComputed() const {
602// TODO: cout should be LOG
603 cout.setf(ios::fixed);
604 cout << "\nOBS-COMP for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "") << endl
605 << "========================== " << endl;
606 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
607 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
608 cout << "OBS-CMP " << setw(4) << t_lc::toString(tLC) << ": " << _prn.toString() << " "
609 << setw(12) << setprecision(3) << obsValue(tLC) << " "
610 << setw(12) << setprecision(3) << cmpValue(tLC) << " "
611 << setw(12) << setprecision(3) << obsValue(tLC) - cmpValue(tLC) << endl;
612 }
613}
614
615
616//
617////////////////////////////////////////////////////////////////////////////
618double t_pppSatObs::cmpValueForBanc(t_lc::type tLC) const {
619 return cmpValue(tLC) - _model._rho - _model._sagnac - _model._recClkM;
620}
621
622//
623////////////////////////////////////////////////////////////////////////////
624double t_pppSatObs::cmpValue(t_lc::type tLC) const {
625 double cmpValue;
626
627 if (!isValid(tLC)) {
628 cmpValue = 0.0;
629 }
630 else if (tLC == t_lc::GIM) {
631 cmpValue = _stecSat;
632 }
633 else {
634 // Non-Dispersive Part
635 // -------------------
636 double nonDisp = _model._rho
637 + _model._recClkM - _model._satClkM
638 + _model._sagnac + _model._antEcc + _model._tropo
639 + _model._tideEarth + _model._tideOcean + _model._rel;
640
641 // Add Dispersive Part
642 // -------------------
643 double dispPart = 0.0;
644 map<t_frequency::type, double> codeCoeff;
645 map<t_frequency::type, double> phaseCoeff;
646 map<t_frequency::type, double> ionoCoeff;
647 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
648 map<t_frequency::type, double>::const_iterator it;
649 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
650 t_frequency::type tFreq = it->first;
651 dispPart += it->second * (_model._antPCO[tFreq] - _model._codeBias[tFreq]);
652 if (OPT->PPPRTK) {
653 dispPart += it->second * (_model._ionoCodeDelay[tFreq]);
654 }
655 }
656 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
657 t_frequency::type tFreq = it->first;
658 dispPart += it->second * (_model._antPCO[tFreq] - _model._phaseBias[tFreq] +
659 _model._windUp * t_CST::lambda(tFreq, _channel));
660 if (OPT->PPPRTK) {
661 dispPart += it->second * (- _model._ionoCodeDelay[tFreq]);
662 }
663 }
664 cmpValue = nonDisp + dispPart;
665 }
666
667 return cmpValue;
668}
669
670//
671////////////////////////////////////////////////////////////////////////////
672void t_pppSatObs::setRes(t_lc::type tLC, double res) {
673 _res[tLC] = res;
674}
675
676//
677////////////////////////////////////////////////////////////////////////////
678double t_pppSatObs::getRes(t_lc::type tLC) const {
679 map<t_lc::type, double>::const_iterator it = _res.find(tLC);
680 if (it != _res.end()) {
681 return it->second;
682 }
683 else {
684 return 0.0;
685 }
686}
687
688//
689////////////////////////////////////////////////////////////////////////////
690void t_pppSatObs::setPseudoObsIono(t_frequency::type freq, double stecRefSat) {
691 _stecSat = _model._ionoCodeDelay[freq];
692 _stecRefSat = stecRefSat;
693}
Note: See TracBrowser for help on using the repository browser.