source: ntrip/trunk/BNC/src/PPP/pppSatObs.cpp@ 9561

Last change on this file since 9561 was 9561, checked in by stuerze, 2 years ago

update regarding PPP

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 22.3 KB
Line 
1/* -------------------------------------------------------------------------
2 * BKG NTRIP Client
3 * -------------------------------------------------------------------------
4 *
5 * Class: t_pppSatObs
6 *
7 * Purpose: Satellite observations
8 *
9 * Author: L. Mervart
10 *
11 * Created: 29-Jul-2014
12 *
13 * Changes:
14 *
15 * -----------------------------------------------------------------------*/
16
17
18#include <iostream>
19#include <iomanip>
20#include <cmath>
21#include <newmatio.h>
22
23#include "pppSatObs.h"
24#include "bncconst.h"
25#include "pppEphPool.h"
26#include "pppStation.h"
27#include "bncutils.h"
28#include "bncantex.h"
29#include "pppObsPool.h"
30#include "pppClient.h"
31
32using namespace BNC_PPP;
33using namespace std;
34
35// Constructor
36////////////////////////////////////////////////////////////////////////////
37t_pppSatObs::t_pppSatObs(const t_satObs& pppSatObs) {
38 _prn = pppSatObs._prn;
39 _time = pppSatObs._time;
40 _outlier = false;
41 _valid = true;
42 _reference = false;
43 _stecRefSat = 0.0;
44 _stecSat = 0.0;
45 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
46 _obs[ii] = 0;
47 }
48 prepareObs(pppSatObs);
49}
50
51// Destructor
52////////////////////////////////////////////////////////////////////////////
53t_pppSatObs::~t_pppSatObs() {
54 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
55 delete _obs[iFreq];
56 }
57}
58
59//
60////////////////////////////////////////////////////////////////////////////
61void t_pppSatObs::prepareObs(const t_satObs& pppSatObs) {
62
63 _model.reset();
64
65 // Select pseudo-ranges and phase observations
66 // -------------------------------------------
67 string preferredAttrib = "G:12&WCPSLX R:12&PC E:1&CBX E:5&QIX C:26&IQX";
68 if (OPT->_obsModelType == OPT->DCMcodeBias ||
69 OPT->_obsModelType == OPT->DCMphaseBias) {
70 // at the moment only one code or phase bias per system (G,E,C)/modulation considered,
71 preferredAttrib = "G:12&W R:12&PC E:1&CX E:5&QX C:26&I";
72 }
73
74 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
75 string frqNum = t_frequency::toString(t_frequency::type(iFreq)).substr(1);
76 for (unsigned iPref = 0; iPref < preferredAttrib.length(); iPref++) {
77 string obsType = (preferredAttrib[iPref] == '_') ? frqNum : frqNum + preferredAttrib[iPref];
78 if (_obs[iFreq] == 0) {
79 for (unsigned ii = 0; ii < pppSatObs._obs.size(); ii++) {
80 const t_frqObs* obs = pppSatObs._obs[ii];
81 if (obs->_rnxType2ch == obsType &&
82 obs->_codeValid && obs->_code &&
83 obs->_phaseValid && obs->_phase) {
84 _obs[iFreq] = new t_frqObs(*obs);
85 }
86 }
87 }
88 }
89 }
90
91 // Used frequency types
92 // --------------------
93 _fType1 = t_lc::toFreq(_prn.system(),t_lc::l1);
94 _fType2 = t_lc::toFreq(_prn.system(),t_lc::l2);
95
96 // Check whether all required frequencies available
97 // ------------------------------------------------
98 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
99 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
100 if (tLC == t_lc::GIM) {continue;}
101 if (!isValid(tLC)) {
102 _valid = false;
103 return;
104 }
105 }
106
107 // Find GLONASS Channel Number
108 // ---------------------------
109 if (_prn.system() == 'R') {
110 _channel = PPP_CLIENT->ephPool()->getChannel(_prn);
111 }
112 else {
113 _channel = 0;
114 }
115
116 // Compute Satellite Coordinates at Time of Transmission
117 // -----------------------------------------------------
118 _xcSat.ReSize(6); _xcSat = 0.0;
119 _vvSat.ReSize(3); _vvSat = 0.0;
120 bool totOK = false;
121 ColumnVector satPosOld(6); satPosOld = 0.0;
122 t_lc::type tLC = isValid(t_lc::cIF) ? t_lc::cIF : t_lc::c1;
123 double prange = obsValue(tLC);
124 for (int ii = 1; ii <= 10; ii++) {
125 bncTime ToT = _time - prange / t_CST::c - _xcSat[3];
126 if (PPP_CLIENT->ephPool()->getCrd(_prn, ToT, _xcSat, _vvSat) != success) {
127 _valid = false;
128 return;
129 }
130 ColumnVector dx = _xcSat - satPosOld;
131 dx[3] *= t_CST::c;
132 if (dx.NormFrobenius() < 1.e-4) {
133 totOK = true;
134 break;
135 }
136 satPosOld = _xcSat;
137 }
138 if (totOK) {
139 _signalPropagationTime = prange / t_CST::c - _xcSat[3];
140 _model._satClkM = _xcSat[3] * t_CST::c;
141 }
142 else {
143 _valid = false;
144 }
145}
146
147//
148////////////////////////////////////////////////////////////////////////////
149void t_pppSatObs::lcCoeff(t_lc::type tLC,
150 map<t_frequency::type, double>& codeCoeff,
151 map<t_frequency::type, double>& phaseCoeff,
152 map<t_frequency::type, double>& ionoCoeff) const {
153
154 codeCoeff.clear();
155 phaseCoeff.clear();
156 ionoCoeff.clear();
157
158 double f1 = t_CST::freq(_fType1, _channel);
159 double f2 = t_CST::freq(_fType2, _channel);
160 double f1GPS = t_CST::freq(t_frequency::G1, 0);
161
162 switch (tLC) {
163 case t_lc::l1:
164 phaseCoeff[_fType1] = 1.0;
165 ionoCoeff [_fType1] = -1.0 * pow(f1GPS, 2) / pow(f1, 2);
166 return;
167 case t_lc::l2:
168 phaseCoeff[_fType2] = 1.0;
169 ionoCoeff [_fType2] = -1.0 * pow(f1GPS, 2) / pow(f2, 2);
170 return;
171 case t_lc::lIF:
172 phaseCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
173 phaseCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
174 return;
175 case t_lc::MW:
176 phaseCoeff[_fType1] = f1 / (f1 - f2);
177 phaseCoeff[_fType2] = -f2 / (f1 - f2);
178 codeCoeff[_fType1] = -f1 / (f1 + f2);
179 codeCoeff[_fType2] = -f2 / (f1 + f2);
180 return;
181 case t_lc::CL:
182 phaseCoeff[_fType1] = 0.5;
183 codeCoeff [_fType1] = 0.5;
184 return;
185 case t_lc::c1:
186 codeCoeff[_fType1] = 1.0;
187 ionoCoeff[_fType1] = pow(f1GPS, 2) / pow(f1, 2);
188 return;
189 case t_lc::c2:
190 codeCoeff[_fType2] = 1.0;
191 ionoCoeff[_fType2] = pow(f1GPS, 2) / pow(f2, 2);
192 return;
193 case t_lc::cIF:
194 codeCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
195 codeCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
196 return;
197 case t_lc::GIM:
198 case t_lc::dummy:
199 case t_lc::maxLc:
200 return;
201 }
202}
203
204//
205////////////////////////////////////////////////////////////////////////////
206bool t_pppSatObs::isValid(t_lc::type tLC) const {
207 bool valid = true;
208 obsValue(tLC, &valid);
209
210 return valid;
211}
212//
213////////////////////////////////////////////////////////////////////////////
214double t_pppSatObs::obsValue(t_lc::type tLC, bool* valid) const {
215
216 double retVal = 0.0;
217 if (valid) *valid = true;
218
219 // Pseudo observations
220 if (tLC == t_lc::GIM) {
221 if (_stecRefSat == 0.0 || _stecSat == 0.0) {
222 if (valid) *valid = false;
223 return 0.0;
224 }
225 else {
226 return _stecRefSat;
227 }
228 }
229
230 map<t_frequency::type, double> codeCoeff;
231 map<t_frequency::type, double> phaseCoeff;
232 map<t_frequency::type, double> ionoCoeff;
233 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
234
235 map<t_frequency::type, double>::const_iterator it;
236
237 // Code observations
238 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
239 t_frequency::type tFreq = it->first;
240 if (_obs[tFreq] == 0) {
241 if (valid) *valid = false;
242 return 0.0;
243 }
244 else {
245 retVal += it->second * _obs[tFreq]->_code;
246 }
247 }
248 // Phase observations
249 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
250 t_frequency::type tFreq = it->first;
251 if (_obs[tFreq] == 0) {
252 if (valid) *valid = false;
253 return 0.0;
254 }
255 else {
256 retVal += it->second * _obs[tFreq]->_phase * t_CST::lambda(tFreq, _channel);
257 }
258 }
259 return retVal;
260}
261
262//
263////////////////////////////////////////////////////////////////////////////
264double t_pppSatObs::lambda(t_lc::type tLC) const {
265
266 double f1 = t_CST::freq(_fType1, _channel);
267 double f2 = t_CST::freq(_fType2, _channel);
268
269 if (tLC == t_lc::l1) {
270 return t_CST::c / f1;
271 }
272 else if (tLC == t_lc::l2) {
273 return t_CST::c / f2;
274 }
275 else if (tLC == t_lc::lIF) {
276 return t_CST::c / (f1 + f2);
277 }
278 else if (tLC == t_lc::MW) {
279 return t_CST::c / (f1 - f2);
280 }
281 else if (tLC == t_lc::CL) {
282 return t_CST::c / f1 / 2.0;
283 }
284
285 return 0.0;
286}
287
288//
289////////////////////////////////////////////////////////////////////////////
290double t_pppSatObs::sigma(t_lc::type tLC) const {
291
292 double retVal = 0.0;
293 map<t_frequency::type, double> codeCoeff;
294 map<t_frequency::type, double> phaseCoeff;
295 map<t_frequency::type, double> ionoCoeff;
296 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
297
298 if (tLC == t_lc::GIM) {
299 retVal = OPT->_sigmaGIM * OPT->_sigmaGIM + OPT->_sigmaGIM * OPT->_sigmaGIM;
300 }
301
302 map<t_frequency::type, double>::const_iterator it;
303 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
304 retVal += it->second * it->second * OPT->_sigmaC1 * OPT->_sigmaC1;
305 }
306
307 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
308 retVal += it->second * it->second * OPT->_sigmaL1 * OPT->_sigmaL1;
309 }
310
311 retVal = sqrt(retVal);
312
313 // De-Weight GLONASS code measurements
314 // -----------------------------------
315 if (_prn.system() == 'R' && t_lc::includesCode(tLC) ) {
316 retVal *= 5.0;
317 }
318
319 // Elevation-Dependent Weighting
320 // -----------------------------
321 double cEle = 1.0;
322 if ( (OPT->_eleWgtCode && t_lc::includesCode(tLC)) ||
323 (OPT->_eleWgtPhase && t_lc::includesPhase(tLC)) ) {
324 double eleD = eleSat()*180.0/M_PI;
325 double hlp = fabs(90.0 - eleD);
326 cEle = (1.0 + hlp*hlp*hlp*0.000004);
327 }
328
329 return cEle * retVal;
330}
331
332//
333////////////////////////////////////////////////////////////////////////////
334double t_pppSatObs::maxRes(t_lc::type tLC) const {
335 double retVal = 0.0;
336
337 map<t_frequency::type, double> codeCoeff;
338 map<t_frequency::type, double> phaseCoeff;
339 map<t_frequency::type, double> ionoCoeff;
340 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
341
342 map<t_frequency::type, double>::const_iterator it;
343 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
344 retVal += it->second * it->second * OPT->_maxResC1 * OPT->_maxResC1;
345 }
346 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
347 retVal += it->second * it->second * OPT->_maxResL1 * OPT->_maxResL1;
348 }
349 if (tLC == t_lc::GIM) {
350 retVal = OPT->_maxResGIM * OPT->_maxResGIM + OPT->_maxResGIM * OPT->_maxResGIM;
351 }
352
353 retVal = sqrt(retVal);
354
355 return retVal;
356}
357
358
359//
360////////////////////////////////////////////////////////////////////////////
361t_irc t_pppSatObs::cmpModel(const t_pppStation* station) {
362
363 // Reset all model values
364 // ----------------------
365 _model.reset();
366
367 // Topocentric Satellite Position
368 // ------------------------------
369 ColumnVector rSat = _xcSat.Rows(1,3);
370 ColumnVector rRec = station->xyzApr();
371 ColumnVector rhoV = rSat - rRec;
372 _model._rho = rhoV.NormFrobenius();
373
374 ColumnVector vSat = _vvSat;
375
376 ColumnVector neu(3);
377 xyz2neu(station->ellApr().data(), rhoV.data(), neu.data());
378
379 _model._eleSat = acos(sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / _model._rho);
380 if (neu[2] < 0) {
381 _model._eleSat *= -1.0;
382 }
383 _model._azSat = atan2(neu[1], neu[0]);
384
385 // Sun unit vector
386 ColumnVector xSun = t_astro::Sun(_time.mjddec());
387 xSun /= xSun.norm_Frobenius();
388
389 // Satellite unit vectors sz, sy, sx
390 ColumnVector sz = -rSat / rSat.norm_Frobenius();
391 ColumnVector sy = crossproduct(sz, xSun);
392 ColumnVector sx = crossproduct(sy, sz);
393
394 sx /= sx.norm_Frobenius();
395 sy /= sy.norm_Frobenius();
396
397 // LOS unit vector satellite --> receiver
398 ColumnVector rho = rRec - rSat;
399 rho /= rho.norm_Frobenius();
400
401 // LOS vector in satellite frame
402 ColumnVector u(3);
403 u(1) = dotproduct(sx, rho);
404 u(2) = dotproduct(sy, rho);
405 u(3) = dotproduct(sz, rho);
406
407 // Azimuth and elevation in satellite antenna frame
408 _model._elTx = atan2(u(3),sqrt(pow(u(2),2)+pow(u(1),2)));
409 _model._azTx = atan2(u(2),u(1));
410
411
412 // Satellite Clocks
413 // ----------------
414 _model._satClkM = _xcSat[3] * t_CST::c;
415
416 // Receiver Clocks
417 // ---------------
418 _model._recClkM = station->dClk() * t_CST::c;
419
420 // Sagnac Effect (correction due to Earth rotation)
421 // ------------------------------------------------
422 ColumnVector Omega(3);
423 Omega[0] = 0.0;
424 Omega[1] = 0.0;
425 Omega[2] = t_CST::omega / t_CST::c;
426 _model._sagnac = DotProduct(Omega, crossproduct(rSat, rRec));
427
428 // Antenna Eccentricity
429 // --------------------
430 _model._antEcc = -DotProduct(station->xyzEcc(), rhoV) / _model._rho;
431
432 // Antenna Phase Center Offsets and Variations
433 // -------------------------------------------
434 if (PPP_CLIENT->antex()) {
435 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
436 t_frequency::type frqType = static_cast<t_frequency::type>(ii);
437 bool found;
438 QString prn(_prn.toString().c_str());
439 _model._antPCO[ii] = PPP_CLIENT->antex()->rcvCorr(station->antName(), frqType, _model._eleSat, _model._azSat, found);
440 _model._antPCO[ii] += PPP_CLIENT->antex()->satCorr(prn, frqType, _model._elTx, _model._azTx, found);
441 if (OPT->_isAPC && found) {
442 // the PCOs as given in the satellite antenna correction for all frequencies
443 // have to be reduced by the PCO of the reference frequency
444 if (_prn.system() == 'G') {
445 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::G1, _model._elTx, _model._azTx, found);
446 }
447 else if (_prn.system() == 'R') {
448 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::R1, _model._elTx, _model._azTx, found);
449 }
450 else if (_prn.system() == 'E') {
451 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::E1, _model._elTx, _model._azTx, found);
452 }
453 else if (_prn.system() == 'C') {
454 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::C2, _model._elTx, _model._azTx, found);
455 }
456 }
457 }
458 }
459
460 // Tropospheric Delay
461 // ------------------
462 _model._tropo = t_tropo::delay_saast(rRec, _model._eleSat);
463 _model._tropo0 = t_tropo::delay_saast(rRec, M_PI/2.0);
464
465 // Code Biases
466 // -----------
467 const t_satCodeBias* satCodeBias = PPP_CLIENT->obsPool()->satCodeBias(_prn);
468 if (satCodeBias) {
469 for (unsigned ii = 0; ii < satCodeBias->_bias.size(); ii++) {
470 const t_frqCodeBias& bias = satCodeBias->_bias[ii];
471 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
472 const t_frqObs* obs = _obs[iFreq];
473 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
474 _model._codeBias[iFreq] = bias._value;
475 }
476 }
477 }
478 }
479
480 // Phase Biases
481 // -----------
482 const t_satPhaseBias* satPhaseBias = PPP_CLIENT->obsPool()->satPhaseBias(_prn);
483 double yaw = 0.0;
484 bool ssr = false;
485 if (satPhaseBias) {
486 double dt = station->epochTime() - satPhaseBias->_time;
487 if (satPhaseBias->_updateInt) {
488 dt -= (0.5 * ssrUpdateInt[satPhaseBias->_updateInt]);
489 }
490 yaw = satPhaseBias->_yaw + satPhaseBias->_yawRate * dt;
491 ssr = true;
492 for (unsigned ii = 0; ii < satPhaseBias->_bias.size(); ii++) {
493 const t_frqPhaseBias& bias = satPhaseBias->_bias[ii];
494 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
495 const t_frqObs* obs = _obs[iFreq];
496 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
497 _model._phaseBias[iFreq] = bias._value;
498 }
499 }
500 }
501 }
502
503 // Phase Wind-Up
504 // -------------
505 _model._windUp = station->windUp(_time, _prn, rSat, ssr, yaw, vSat) ;
506
507 // Relativistic effect due to earth gravity
508 // ----------------------------------------
509 double a = rSat.NormFrobenius() + rRec.NormFrobenius();
510 double b = (rSat - rRec).NormFrobenius();
511 double gm = 3.986004418e14; // m3/s2
512 _model._rel = 2 * gm / t_CST::c / t_CST::c * log((a + b) / (a - b));
513
514 // Tidal Correction
515 // ----------------
516 _model._tideEarth = -DotProduct(station->tideDsplEarth(), rhoV) / _model._rho;
517 _model._tideOcean = -DotProduct(station->tideDsplOcean(), rhoV) / _model._rho;
518
519 // Ionospheric Delay
520 // -----------------
521 const t_vTec* vTec = PPP_CLIENT->obsPool()->vTec();
522 bool vTecUsage = true;
523 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
524 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
525 if (tLC == t_lc::cIF || tLC == t_lc::lIF) {
526 vTecUsage = false;
527 }
528 }
529
530 if (vTecUsage && vTec) {
531 double stec = station->stec(vTec, _signalPropagationTime, rSat);
532 double f1GPS = t_CST::freq(t_frequency::G1, 0);
533 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
534 if (OPT->_pseudoObsIono) { // DCMcodeBias, DCMphaseBias
535 // For scaling the slant ionospheric delays the trick is to be consistent with units!
536 // The conversion of TECU into meters requires the frequency of the signal.
537 // Hence, GPS L1 frequency is used for all systems. The same is true for mu_i in lcCoeff().
538 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(f1GPS, 2) * stec;
539 }
540 else { // PPP-RTK
541 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
542 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(t_CST::freq(frqType, _channel), 2) * stec;
543 }
544 }
545 }
546
547 // Set Model Set Flag
548 // ------------------
549 _model._set = true;
550
551 //printModel();
552
553 return success;
554}
555
556//
557////////////////////////////////////////////////////////////////////////////
558void t_pppSatObs::printModel() const {
559
560 LOG.setf(ios::fixed);
561 LOG << "\nMODEL for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "")
562
563 << "======================= " << endl
564 << "PPP STRATEGY : " << OPT->_obsmodelTypeStr.at((int)OPT->_obsModelType).toLocal8Bit().constData()
565 << ((OPT->_pseudoObsIono) ? " with pseudo-observations for STEC" : "") << endl
566 << "RHO : " << setw(12) << setprecision(3) << _model._rho << endl
567 << "ELE : " << setw(12) << setprecision(3) << _model._eleSat * RHO_DEG << endl
568 << "AZI : " << setw(12) << setprecision(3) << _model._azSat * RHO_DEG << endl
569 << "SATCLK : " << setw(12) << setprecision(3) << _model._satClkM << endl
570 << "RECCLK : " << setw(12) << setprecision(3) << _model._recClkM << endl
571 << "SAGNAC : " << setw(12) << setprecision(3) << _model._sagnac << endl
572 << "ANTECC : " << setw(12) << setprecision(3) << _model._antEcc << endl
573 << "TROPO : " << setw(12) << setprecision(3) << _model._tropo << endl
574 << "WINDUP : " << setw(12) << setprecision(3) << _model._windUp << endl
575 << "REL : " << setw(12) << setprecision(3) << _model._rel << endl
576 << "EARTH TIDES : " << setw(12) << setprecision(3) << _model._tideEarth << endl
577 << "OCEAN TIDES : " << setw(12) << setprecision(3) << _model._tideOcean << endl
578 << endl
579 << "FREQUENCY DEPENDENT CORRECTIONS:" << endl
580 << "-------------------------------" << endl;
581 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
582 if (_obs[iFreq]) {
583 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
584 if (_prn.system() == frqStr[0]) {
585 LOG << "PCO : " << frqStr << setw(12) << setprecision(3) << _model._antPCO[iFreq] << endl
586 << "BIAS CODE : " << frqStr << setw(12) << setprecision(3) << _model._codeBias[iFreq] << endl
587 << "BIAS PHASE : " << frqStr << setw(12) << setprecision(3) << _model._phaseBias[iFreq] << endl
588 << "IONO CODEDELAY: " << frqStr << setw(12) << setprecision(3) << _model._ionoCodeDelay[iFreq]<< endl;
589 }
590 }
591 }
592}
593
594//
595////////////////////////////////////////////////////////////////////////////
596void t_pppSatObs::printObsMinusComputed() const {
597// TODO: cout should be LOG
598 cout.setf(ios::fixed);
599 cout << "\nOBS-COMP for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "") << endl
600 << "========================== " << endl;
601 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
602 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
603 cout << "OBS-CMP " << setw(4) << t_lc::toString(tLC) << ": " << _prn.toString() << " "
604 << setw(12) << setprecision(3) << obsValue(tLC) << " "
605 << setw(12) << setprecision(3) << cmpValue(tLC) << " "
606 << setw(12) << setprecision(3) << obsValue(tLC) - cmpValue(tLC) << endl;
607 }
608}
609
610
611//
612////////////////////////////////////////////////////////////////////////////
613double t_pppSatObs::cmpValueForBanc(t_lc::type tLC) const {
614 return cmpValue(tLC) - _model._rho - _model._sagnac - _model._recClkM;
615}
616
617//
618////////////////////////////////////////////////////////////////////////////
619double t_pppSatObs::cmpValue(t_lc::type tLC) const {
620 double cmpValue;
621
622 if (!isValid(tLC)) {
623 cmpValue = 0.0;
624 }
625 else if (tLC == t_lc::GIM) {
626 cmpValue = _stecSat;
627 }
628 else {
629 // Non-Dispersive Part
630 // -------------------
631 double nonDisp = _model._rho
632 + _model._recClkM - _model._satClkM
633 + _model._sagnac + _model._antEcc + _model._tropo
634 + _model._tideEarth + _model._tideOcean + _model._rel;
635
636 // Add Dispersive Part
637 // -------------------
638 double dispPart = 0.0;
639 map<t_frequency::type, double> codeCoeff;
640 map<t_frequency::type, double> phaseCoeff;
641 map<t_frequency::type, double> ionoCoeff;
642 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
643 map<t_frequency::type, double>::const_iterator it;
644 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
645 t_frequency::type tFreq = it->first;
646 dispPart += it->second * (_model._antPCO[tFreq] - _model._codeBias[tFreq]);
647 if (OPT->PPPRTK) {
648 dispPart += it->second * (_model._ionoCodeDelay[tFreq]);
649 }
650 }
651 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
652 t_frequency::type tFreq = it->first;
653 dispPart += it->second * (_model._antPCO[tFreq] - _model._phaseBias[tFreq] +
654 _model._windUp * t_CST::lambda(tFreq, _channel));
655 if (OPT->PPPRTK) {
656 dispPart += it->second * (- _model._ionoCodeDelay[tFreq]);
657 }
658 }
659 cmpValue = nonDisp + dispPart;
660 }
661
662 return cmpValue;
663}
664
665//
666////////////////////////////////////////////////////////////////////////////
667void t_pppSatObs::setRes(t_lc::type tLC, double res) {
668 _res[tLC] = res;
669}
670
671//
672////////////////////////////////////////////////////////////////////////////
673double t_pppSatObs::getRes(t_lc::type tLC) const {
674 map<t_lc::type, double>::const_iterator it = _res.find(tLC);
675 if (it != _res.end()) {
676 return it->second;
677 }
678 else {
679 return 0.0;
680 }
681}
682
683//
684////////////////////////////////////////////////////////////////////////////
685void t_pppSatObs::setPseudoObsIono(t_frequency::type freq, double stecRefSat) {
686 _stecSat = _model._ionoCodeDelay[freq];
687 _stecRefSat = stecRefSat;
688}
689
690
691//
692////////////////////////////////////////////////////////////////////////////
693void t_pppSatObs::setPseudoObsTropo() {
694 _tropo0 = _model._tropo0;
695}
Note: See TracBrowser for help on using the repository browser.