source: ntrip/trunk/BNC/src/PPP/pppSatObs.cpp@ 10384

Last change on this file since 10384 was 10384, checked in by stuerze, 3 months ago

changes regarding PPP

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 23.9 KB
Line 
1/* -------------------------------------------------------------------------
2 * BKG NTRIP Client
3 * -------------------------------------------------------------------------
4 *
5 * Class: t_pppSatObs
6 *
7 * Purpose: Satellite observations
8 *
9 * Author: L. Mervart
10 *
11 * Created: 29-Jul-2014
12 *
13 * Changes:
14 *
15 * -----------------------------------------------------------------------*/
16
17
18#include <iostream>
19#include <iomanip>
20#include <cmath>
21#include <newmatio.h>
22
23#include "pppSatObs.h"
24#include "bncconst.h"
25#include "pppEphPool.h"
26#include "pppStation.h"
27#include "bncutils.h"
28#include "bncantex.h"
29#include "pppObsPool.h"
30#include "pppClient.h"
31
32using namespace BNC_PPP;
33using namespace std;
34
35const double GLO_WEIGHT_FACTOR = 5.0;
36const double BDS_WEIGHT_FACTOR = 1.0;
37
38// Constructor
39////////////////////////////////////////////////////////////////////////////
40t_pppSatObs::t_pppSatObs(const t_satObs& pppSatObs) {
41 _prn = pppSatObs._prn;
42 _time = pppSatObs._time;
43 _outlier = false;
44 _valid = true;
45 _reference = false;
46 _stecSat = 0.0;
47 _signalPriorities = QString::fromStdString(OPT->_signalPriorities);
48 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
49 _obs[ii] = 0;
50 }
51 prepareObs(pppSatObs);
52}
53
54// Destructor
55////////////////////////////////////////////////////////////////////////////
56t_pppSatObs::~t_pppSatObs() {
57 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
58 delete _obs[iFreq];
59 }
60}
61
62//
63////////////////////////////////////////////////////////////////////////////
64void t_pppSatObs::prepareObs(const t_satObs& pppSatObs) {
65
66 _model.reset();
67
68 std::vector<char> bb = OPT->frqBands(_prn.system());
69 char frqNum1 = '0';
70 if (bb.size() >= 1) {
71 frqNum1 = bb[0];
72 }
73 char frqNum2 = '0';
74 if (bb.size() == 2) {
75 frqNum2 = bb[1];
76 }
77
78 // Select pseudo-ranges and phase observations
79 // -------------------------------------------
80 QStringList priorList = _signalPriorities.split(" ", QString::SkipEmptyParts);
81 string preferredAttrib;
82 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
83 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
84 char frqSys = t_frequency::toString(frqType)[0]; //cout << "frqSys: " << frqSys << endl;
85 char frqNum = t_frequency::toString(frqType)[1]; //cout << "frqNum: " << frqNum << endl;
86 if (frqSys != _prn.system()) {
87 continue;
88 }
89 if (frqNum != frqNum1 &&
90 frqNum != frqNum2 ) {
91 continue;
92 }
93 QStringList hlp;
94 for (int ii = 0; ii < priorList.size(); ii++) {
95 if (priorList[ii].indexOf(":") != -1) {
96 hlp = priorList[ii].split(":", QString::SkipEmptyParts);
97 if (hlp.size() == 2 && hlp[0].length() == 1 && hlp[0][0] == frqSys) {
98 hlp = hlp[1].split("&", QString::SkipEmptyParts);
99 }
100 if (hlp.size() == 2 && hlp[0].indexOf(frqNum) != -1) {
101 preferredAttrib = hlp[1].toStdString(); //cout << "preferredAttrib: " << preferredAttrib << endl;
102 }
103 }
104 for (unsigned iPref = 0; iPref < preferredAttrib.length(); iPref++) {
105 QString obsType = QString("%1").arg(frqNum) + preferredAttrib[iPref]; //cout << "obstype: " << obsType.toStdString().c_str() << endl;
106 if (_obs[iFreq] == 0) {
107 for (unsigned ii = 0; ii < pppSatObs._obs.size(); ii++) {
108 const t_frqObs* obs = pppSatObs._obs[ii];
109 //cout << "observation2char: " << obs->_rnxType2ch << " vs. " << obsType.toStdString().c_str()<< endl;
110 if (obs->_rnxType2ch == obsType.toStdString() &&
111 obs->_codeValid && obs->_code &&
112 obs->_phaseValid && obs->_phase) {
113 _obs[iFreq] = new t_frqObs(*obs); //cout << "================> newObs: " << obs->_rnxType2ch << " obs->_lockTime: " << obs->_lockTime << endl;
114 }
115 }
116 }
117 }
118 }
119 }
120
121 // Used frequency types
122 // --------------------
123 _fType1 = t_frqBand::toFreq(_prn.system(), frqNum1);
124 _fType2 = t_frqBand::toFreq(_prn.system(), frqNum2);
125
126 // Check whether all required frequencies available
127 // ------------------------------------------------
128 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
129 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
130 if (tLC == t_lc::GIM) {continue;}
131 if (!isValid(tLC)) {
132 _valid = false;
133 return;
134 }
135 }
136
137 // Find GLONASS Channel Number
138 // ---------------------------
139 if (_prn.system() == 'R') {
140 _channel = PPP_CLIENT->ephPool()->getChannel(_prn);
141 }
142 else {
143 _channel = 0;
144 }
145
146 // Compute Satellite Coordinates at Time of Transmission
147 // -----------------------------------------------------
148 _xcSat.ReSize(6); _xcSat = 0.0;
149 _vvSat.ReSize(3); _vvSat = 0.0;
150 bool totOK = false;
151 ColumnVector satPosOld(6); satPosOld = 0.0;
152 t_lc::type tLC = t_lc::dummy;
153 if (isValid(t_lc::cIF)) {
154 tLC = t_lc::cIF;
155 }
156 if (tLC == t_lc::dummy && isValid(t_lc::c1)) {
157 tLC = t_lc::c1;
158 }
159 if (tLC == t_lc::dummy && isValid(t_lc::c2)) {
160 tLC = t_lc::c2;
161 }
162 if (tLC == t_lc::dummy) {
163 _valid = false;
164 return;
165 }
166 double prange = obsValue(tLC);
167 for (int ii = 1; ii <= 10; ii++) {
168 bncTime ToT = _time - prange / t_CST::c - _xcSat[3];
169 if (PPP_CLIENT->ephPool()->getCrd(_prn, ToT, _xcSat, _vvSat) != success) {
170 _valid = false;
171 return;
172 }
173 ColumnVector dx = _xcSat - satPosOld;
174 dx[3] *= t_CST::c;
175 if (dx.NormFrobenius() < 1.e-4) {
176 totOK = true;
177 break;
178 }
179 satPosOld = _xcSat;
180 }
181 if (totOK) {
182 _signalPropagationTime = prange / t_CST::c - _xcSat[3];
183 _model._satClkM = _xcSat[3] * t_CST::c;
184 }
185 else {
186 _valid = false;
187 }
188}
189
190//
191////////////////////////////////////////////////////////////////////////////
192void t_pppSatObs::lcCoeff(t_lc::type tLC,
193 map<t_frequency::type, double>& codeCoeff,
194 map<t_frequency::type, double>& phaseCoeff,
195 map<t_frequency::type, double>& ionoCoeff) const {
196
197 codeCoeff.clear();
198 phaseCoeff.clear();
199 ionoCoeff.clear();
200
201 double f1 = t_CST::freq(_fType1, _channel);
202 double f2 = t_CST::freq(_fType2, _channel);
203 double f1GPS = t_CST::freq(t_frequency::G1, 0);
204
205 switch (tLC) {
206 case t_lc::l1:
207 phaseCoeff[_fType1] = 1.0;
208 ionoCoeff [_fType1] = -1.0 * pow(f1GPS, 2) / pow(f1, 2);
209 return;
210 case t_lc::l2:
211 phaseCoeff[_fType2] = 1.0;
212 ionoCoeff [_fType2] = -1.0 * pow(f1GPS, 2) / pow(f2, 2);
213 return;
214 case t_lc::lIF:
215 phaseCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
216 phaseCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
217 return;
218 case t_lc::MW:
219 phaseCoeff[_fType1] = f1 / (f1 - f2);
220 phaseCoeff[_fType2] = -f2 / (f1 - f2);
221 codeCoeff[_fType1] = -f1 / (f1 + f2);
222 codeCoeff[_fType2] = -f2 / (f1 + f2);
223 return;
224 case t_lc::CL:
225 phaseCoeff[_fType1] = 0.5;
226 codeCoeff [_fType1] = 0.5;
227 return;
228 case t_lc::c1:
229 codeCoeff[_fType1] = 1.0;
230 ionoCoeff[_fType1] = pow(f1GPS, 2) / pow(f1, 2);
231 return;
232 case t_lc::c2:
233 codeCoeff[_fType2] = 1.0;
234 ionoCoeff[_fType2] = pow(f1GPS, 2) / pow(f2, 2);
235 return;
236 case t_lc::cIF:
237 codeCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
238 codeCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
239 return;
240 case t_lc::GIM:
241 case t_lc::dummy:
242 case t_lc::maxLc:
243 return;
244 }
245}
246
247//
248////////////////////////////////////////////////////////////////////////////
249bool t_pppSatObs::isValid(t_lc::type tLC) const {
250 bool valid = true;
251 obsValue(tLC, &valid);
252
253 return valid;
254}
255//
256////////////////////////////////////////////////////////////////////////////
257double t_pppSatObs::obsValue(t_lc::type tLC, bool* valid) const {
258
259 double retVal = 0.0;
260 if (valid) *valid = true;
261
262 // Pseudo observations
263 if (tLC == t_lc::GIM) {
264 if (_stecSat == 0.0) {
265 if (valid) *valid = false;
266 return 0.0;
267 }
268 else {
269 return _stecSat;
270 }
271 }
272
273 map<t_frequency::type, double> codeCoeff;
274 map<t_frequency::type, double> phaseCoeff;
275 map<t_frequency::type, double> ionoCoeff;
276 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
277
278 map<t_frequency::type, double>::const_iterator it;
279
280 // Code observations
281 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
282 t_frequency::type tFreq = it->first;
283 if (_obs[tFreq] == 0) {
284 if (valid) *valid = false;
285 return 0.0;
286 }
287 else {
288 retVal += it->second * _obs[tFreq]->_code;
289 }
290 }
291 // Phase observations
292 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
293 t_frequency::type tFreq = it->first;
294 if (_obs[tFreq] == 0) {
295 if (valid) *valid = false;
296 return 0.0;
297 }
298 else {
299 retVal += it->second * _obs[tFreq]->_phase * t_CST::lambda(tFreq, _channel);
300 }
301 }
302 return retVal;
303}
304
305//
306////////////////////////////////////////////////////////////////////////////
307double t_pppSatObs::lambda(t_lc::type tLC) const {
308
309 double f1 = t_CST::freq(_fType1, _channel);
310 double f2 = t_CST::freq(_fType2, _channel);
311
312 if (tLC == t_lc::l1) {
313 return t_CST::c / f1;
314 }
315 else if (tLC == t_lc::l2) {
316 return t_CST::c / f2;
317 }
318 else if (tLC == t_lc::lIF) {
319 return t_CST::c / (f1 + f2);
320 }
321 else if (tLC == t_lc::MW) {
322 return t_CST::c / (f1 - f2);
323 }
324 else if (tLC == t_lc::CL) {
325 return t_CST::c / f1 / 2.0;
326 }
327
328 return 0.0;
329}
330
331//
332////////////////////////////////////////////////////////////////////////////
333double t_pppSatObs::sigma(t_lc::type tLC) const {
334
335 double retVal = 0.0;
336 map<t_frequency::type, double> codeCoeff;
337 map<t_frequency::type, double> phaseCoeff;
338 map<t_frequency::type, double> ionoCoeff;
339 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
340
341 if (tLC == t_lc::GIM) {
342 retVal = OPT->_sigmaGIM * OPT->_sigmaGIM;
343 }
344
345 map<t_frequency::type, double>::const_iterator it;
346 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
347 retVal += it->second * it->second * OPT->_sigmaC1 * OPT->_sigmaC1;
348 }
349
350 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
351 retVal += it->second * it->second * OPT->_sigmaL1 * OPT->_sigmaL1;
352 }
353
354 retVal = sqrt(retVal);
355
356 // De-Weight R+C
357 // -------------
358 if (_prn.system() == 'R') {
359 retVal *= GLO_WEIGHT_FACTOR;
360 }
361 if (_prn.system() == 'C') {
362 retVal *= BDS_WEIGHT_FACTOR;
363 }
364
365 // Elevation-Dependent Weighting
366 // -----------------------------
367 double cEle = 1.0;
368 if ( (OPT->_eleWgtCode && t_lc::includesCode(tLC)) ||
369 (OPT->_eleWgtPhase && t_lc::includesPhase(tLC)) ) {
370 double eleD = eleSat()*180.0/M_PI;
371 double hlp = fabs(90.0 - eleD);
372 cEle = (1.0 + hlp*hlp*hlp*0.000004);
373 }
374
375 return cEle * retVal;
376}
377
378//
379////////////////////////////////////////////////////////////////////////////
380double t_pppSatObs::maxRes(t_lc::type tLC) const {
381 double retVal = 0.0;
382
383 map<t_frequency::type, double> codeCoeff;
384 map<t_frequency::type, double> phaseCoeff;
385 map<t_frequency::type, double> ionoCoeff;
386 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
387
388 map<t_frequency::type, double>::const_iterator it;
389 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
390 retVal += it->second * it->second * OPT->_maxResC1 * OPT->_maxResC1;
391 }
392 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
393 retVal += it->second * it->second * OPT->_maxResL1 * OPT->_maxResL1;
394 }
395 if (tLC == t_lc::GIM) {
396 retVal = OPT->_maxResGIM * OPT->_maxResGIM + OPT->_maxResGIM * OPT->_maxResGIM;
397 }
398
399 retVal = sqrt(retVal);
400
401 return retVal;
402}
403
404
405//
406////////////////////////////////////////////////////////////////////////////
407t_irc t_pppSatObs::cmpModel(const t_pppStation* station) {
408
409 // Reset all model values
410 // ----------------------
411 _model.reset();
412
413 // Topocentric Satellite Position
414 // ------------------------------
415 ColumnVector rSat = _xcSat.Rows(1,3);
416 ColumnVector rRec = station->xyzApr();
417 ColumnVector rhoV = rSat - rRec;
418 _model._rho = rhoV.NormFrobenius();
419
420 ColumnVector vSat = _vvSat;
421
422 ColumnVector neu(3);
423 xyz2neu(station->ellApr().data(), rhoV.data(), neu.data());
424
425 _model._eleSat = acos(sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / _model._rho);
426 if (neu[2] < 0.0) {
427 _model._eleSat *= -1.0;
428 }
429 _model._azSat = atan2(neu[1], neu[0]);
430
431 // Sun unit vector
432 ColumnVector xSun = t_astro::Sun(_time.mjddec());
433 xSun /= xSun.norm_Frobenius();
434
435 // Satellite unit vectors sz, sy, sx
436 ColumnVector sz = -rSat / rSat.norm_Frobenius();
437 ColumnVector sy = crossproduct(sz, xSun);
438 ColumnVector sx = crossproduct(sy, sz);
439
440 sx /= sx.norm_Frobenius();
441 sy /= sy.norm_Frobenius();
442
443 // LOS unit vector satellite --> receiver
444 ColumnVector rho = rRec - rSat;
445 rho /= rho.norm_Frobenius();
446
447 // LOS vector in satellite frame
448 ColumnVector u(3);
449 u(1) = dotproduct(sx, rho);
450 u(2) = dotproduct(sy, rho);
451 u(3) = dotproduct(sz, rho);
452
453 // Azimuth and elevation in satellite antenna frame
454 _model._elTx = atan2(u(3),sqrt(pow(u(2),2)+pow(u(1),2)));
455 _model._azTx = atan2(u(2),u(1));
456
457
458 // Satellite Clocks
459 // ----------------
460 _model._satClkM = _xcSat[3] * t_CST::c;
461
462 // Receiver Clocks
463 // ---------------
464 _model._recClkM = station->dClk() * t_CST::c;
465
466 // Sagnac Effect (correction due to Earth rotation)
467 // ------------------------------------------------
468 ColumnVector Omega(3);
469 Omega[0] = 0.0;
470 Omega[1] = 0.0;
471 Omega[2] = t_CST::omega / t_CST::c;
472 _model._sagnac = DotProduct(Omega, crossproduct(rSat, rRec));
473
474 // Antenna Eccentricity
475 // --------------------
476 _model._antEcc = -DotProduct(station->xyzEcc(), rhoV) / _model._rho;
477
478 // Antenna Phase Center Offsets and Variations
479 // -------------------------------------------
480 if (PPP_CLIENT->antex()) {
481 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
482 t_frequency::type frqType = static_cast<t_frequency::type>(ii);
483 string frqStr = t_frequency::toString(frqType);
484 if (frqStr[0] != _prn.system()) {continue;}
485 bool found;
486 QString prn(_prn.toString().c_str());
487 _model._antPCO[ii] = PPP_CLIENT->antex()->rcvCorr(station->antName(), frqType, _model._eleSat, _model._azSat, found);
488 _model._antPCO[ii] += PPP_CLIENT->antex()->satCorr(prn, frqType, _model._elTx, _model._azTx, found);
489 if (OPT->_isAPC && found) {
490 // the PCOs as given in the satellite antenna correction for all frequencies
491 // have to be reduced by the PCO of the respective reference frequency
492 if (_prn.system() == 'G') {
493 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::G1, _model._elTx, _model._azTx, found);
494 }
495 else if (_prn.system() == 'R') {
496 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::R1, _model._elTx, _model._azTx, found);
497 }
498 else if (_prn.system() == 'E') {
499 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::E1, _model._elTx, _model._azTx, found);
500 }
501 else if (_prn.system() == 'C') {
502 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::C2, _model._elTx, _model._azTx, found);
503 }
504 }
505 }
506 }
507
508 // Tropospheric Delay
509 // ------------------
510 _model._tropo = t_tropo::delay_saast(rRec, _model._eleSat);
511
512 // Code Biases
513 // -----------
514 const t_satCodeBias* satCodeBias = PPP_CLIENT->obsPool()->satCodeBias(_prn);
515 if (satCodeBias) {
516 for (unsigned ii = 0; ii < satCodeBias->_bias.size(); ii++) {
517 const t_frqCodeBias& bias = satCodeBias->_bias[ii];
518 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
519 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
520 if (frqStr[0] != _prn.system()) {
521 continue;
522 }
523 const t_frqObs* obs = _obs[iFreq];
524 if (obs &&
525 obs->_rnxType2ch == bias._rnxType2ch) {
526 _model._codeBias[iFreq] = bias._value;
527 }
528 }
529 }
530 }
531
532 // Phase Biases
533 // -----------
534 const t_satPhaseBias* satPhaseBias = PPP_CLIENT->obsPool()->satPhaseBias(_prn);
535 double yaw = 0.0;
536 bool ssr = false;
537 if (satPhaseBias) {
538 double dt = station->epochTime() - satPhaseBias->_time;
539 if (satPhaseBias->_updateInt) {
540 dt -= (0.5 * ssrUpdateInt[satPhaseBias->_updateInt]);
541 }
542 yaw = satPhaseBias->_yaw + satPhaseBias->_yawRate * dt;
543 ssr = true;
544 for (unsigned ii = 0; ii < satPhaseBias->_bias.size(); ii++) {
545 const t_frqPhaseBias& bias = satPhaseBias->_bias[ii];
546 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
547 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
548 if (frqStr[0] != _prn.system()) {
549 continue;
550 }
551 const t_frqObs* obs = _obs[iFreq];
552 if (obs &&
553 obs->_rnxType2ch == bias._rnxType2ch) {
554 _model._phaseBias[iFreq] = bias._value;
555 }
556 }
557 }
558 }
559
560 // Phase Wind-Up
561 // -------------
562 _model._windUp = station->windUp(_time, _prn, rSat, ssr, yaw, vSat) ;
563
564 // Relativistic effect due to earth gravity
565 // ----------------------------------------
566 double a = rSat.NormFrobenius() + rRec.NormFrobenius();
567 double b = (rSat - rRec).NormFrobenius();
568 double gm = 3.986004418e14; // m3/s2
569 _model._rel = 2 * gm / t_CST::c / t_CST::c * log((a + b) / (a - b));
570
571 // Tidal Correction
572 // ----------------
573 _model._tideEarth = -DotProduct(station->tideDsplEarth(), rhoV) / _model._rho;
574 _model._tideOcean = -DotProduct(station->tideDsplOcean(), rhoV) / _model._rho;
575
576 // Ionospheric Delay
577 // -----------------
578 const t_vTec* vTec = PPP_CLIENT->obsPool()->vTec();
579 bool vTecUsage = true;
580 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
581 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
582 if (tLC == t_lc::cIF || tLC == t_lc::lIF) {
583 vTecUsage = false;
584 }
585 }
586
587 if (vTecUsage && vTec) {
588 double stec = station->stec(vTec, _signalPropagationTime, rSat);
589 double f1GPS = t_CST::freq(t_frequency::G1, 0);
590 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
591 if (OPT->_pseudoObsIono) {
592 // For scaling the slant ionospheric delays the trick is to be consistent with units!
593 // The conversion of TECU into meters requires the frequency of the signal.
594 // Hence, GPS L1 frequency is used for all systems. The same is true for mu_i in lcCoeff().
595 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(f1GPS, 2) * stec;
596 }
597 else { // PPP-RTK
598 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
599 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(t_CST::freq(frqType, _channel), 2) * stec;
600 }
601 }
602 }
603
604 // Set Model Set Flag
605 // ------------------
606 _model._set = true;
607
608 //printModel();
609
610 return success;
611}
612
613//
614////////////////////////////////////////////////////////////////////////////
615void t_pppSatObs::printModel() const {
616
617 LOG.setf(ios::fixed);
618 LOG << "\nMODEL for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "")
619
620 << "\n======================= " << endl
621 << "PPP "
622 << ((OPT->_pseudoObsIono) ? " with pseudo-observations for STEC" : "") << endl
623 << "RHO : " << setw(12) << setprecision(3) << _model._rho << endl
624 << "ELE : " << setw(12) << setprecision(3) << _model._eleSat * RHO_DEG << endl
625 << "AZI : " << setw(12) << setprecision(3) << _model._azSat * RHO_DEG << endl
626 << "SATCLK : " << setw(12) << setprecision(3) << _model._satClkM << endl
627 << "RECCLK : " << setw(12) << setprecision(3) << _model._recClkM << endl
628 << "SAGNAC : " << setw(12) << setprecision(3) << _model._sagnac << endl
629 << "ANTECC : " << setw(12) << setprecision(3) << _model._antEcc << endl
630 << "TROPO : " << setw(12) << setprecision(3) << _model._tropo << endl
631 << "WINDUP : " << setw(12) << setprecision(3) << _model._windUp << endl
632 << "REL : " << setw(12) << setprecision(3) << _model._rel << endl
633 << "EARTH TIDES : " << setw(12) << setprecision(3) << _model._tideEarth << endl
634 << "OCEAN TIDES : " << setw(12) << setprecision(3) << _model._tideOcean << endl
635 << endl
636 << "FREQUENCY DEPENDENT CORRECTIONS:" << endl
637 << "-------------------------------" << endl;
638 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
639 if (_obs[iFreq]) {
640 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
641 if (_prn.system() == frqStr[0]) {
642 LOG << "PCO : " << frqStr << setw(12) << setprecision(3) << _model._antPCO[iFreq] << endl
643 << "BIAS CODE : " << frqStr << setw(12) << setprecision(3) << _model._codeBias[iFreq] << "\t(" << _obs[iFreq]->_rnxType2ch[1] << ") " << endl
644 << "BIAS PHASE : " << frqStr << setw(12) << setprecision(3) << _model._phaseBias[iFreq] << "\t(" << _obs[iFreq]->_rnxType2ch[1] << ") " << endl
645 << "IONO CODEDELAY: " << frqStr << setw(12) << setprecision(3) << _model._ionoCodeDelay[iFreq]<< endl;
646 }
647 }
648 }
649}
650
651//
652////////////////////////////////////////////////////////////////////////////
653void t_pppSatObs::printObsMinusComputed() const {
654 LOG.setf(ios::fixed);
655 LOG << "\nOBS-COMP for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "") << endl
656 << "========================== " << endl;
657 char sys = _prn.system();
658 for (unsigned ii = 0; ii < OPT->LCs(sys).size(); ii++) {
659 t_lc::type tLC = OPT->LCs(sys)[ii];
660 LOG << "OBS-CMP " << setw(4) << t_lc::toString(tLC) << ": " << _prn.toString() << " "
661 << setw(12) << setprecision(3) << obsValue(tLC) << " "
662 << setw(12) << setprecision(3) << cmpValue(tLC) << " "
663 << setw(12) << setprecision(3) << obsValue(tLC) - cmpValue(tLC) << endl;
664 }
665}
666
667//
668////////////////////////////////////////////////////////////////////////////
669double t_pppSatObs::cmpValueForBanc(t_lc::type tLC) const {
670 return cmpValue(tLC) - _model._rho - _model._sagnac - _model._recClkM;
671}
672
673//
674////////////////////////////////////////////////////////////////////////////
675double t_pppSatObs::cmpValue(t_lc::type tLC) const {
676 double cmpValue;
677
678 if (!isValid(tLC)) {
679 cmpValue = 0.0;
680 }
681 else if (tLC == t_lc::GIM) {
682 cmpValue = _stecSat;
683 }
684 else {
685 // Non-Dispersive Part
686 // -------------------
687 double nonDisp = _model._rho
688 + _model._recClkM - _model._satClkM
689 + _model._sagnac + _model._antEcc + _model._tropo
690 + _model._tideEarth + _model._tideOcean + _model._rel;
691
692 // Add Dispersive Part
693 // -------------------
694 double dispPart = 0.0;
695 map<t_frequency::type, double> codeCoeff;
696 map<t_frequency::type, double> phaseCoeff;
697 map<t_frequency::type, double> ionoCoeff;
698 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
699 map<t_frequency::type, double>::const_iterator it;
700 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
701 t_frequency::type tFreq = it->first;
702 dispPart += it->second * (_model._antPCO[tFreq] - _model._codeBias[tFreq]);
703 if (OPT->PPP_RTK) {
704 dispPart += it->second * (_model._ionoCodeDelay[tFreq]);
705 }
706 }
707 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
708 t_frequency::type tFreq = it->first;
709 dispPart += it->second * (_model._antPCO[tFreq] - _model._phaseBias[tFreq] +
710 _model._windUp * t_CST::lambda(tFreq, _channel));
711 if (OPT->PPP_RTK) {
712 dispPart += it->second * (- _model._ionoCodeDelay[tFreq]);
713 }
714 }
715 cmpValue = nonDisp + dispPart;
716 }
717
718 return cmpValue;
719}
720
721//
722////////////////////////////////////////////////////////////////////////////
723void t_pppSatObs::setRes(t_lc::type tLC, double res) {
724 _res[tLC] = res;
725}
726
727//
728////////////////////////////////////////////////////////////////////////////
729double t_pppSatObs::getRes(t_lc::type tLC) const {
730 map<t_lc::type, double>::const_iterator it = _res.find(tLC);
731 if (it != _res.end()) {
732 return it->second;
733 }
734 else {
735 return 0.0;
736 }
737}
738
739//
740////////////////////////////////////////////////////////////////////////////
741bool t_pppSatObs::setPseudoObsIono(t_frequency::type freq) {
742 bool pseudoObsIono = false;
743 _stecSat = _model._ionoCodeDelay[freq];
744 if (_stecSat) {
745 pseudoObsIono = true;
746 }
747 return pseudoObsIono;
748}
Note: See TracBrowser for help on using the repository browser.