source: ntrip/trunk/BNC/src/PPP/pppSatObs.cpp@ 10298

Last change on this file since 10298 was 10256, checked in by stuerze, 12 months ago

changes regarding PPP

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 24.6 KB
Line 
1/* -------------------------------------------------------------------------
2 * BKG NTRIP Client
3 * -------------------------------------------------------------------------
4 *
5 * Class: t_pppSatObs
6 *
7 * Purpose: Satellite observations
8 *
9 * Author: L. Mervart
10 *
11 * Created: 29-Jul-2014
12 *
13 * Changes:
14 *
15 * -----------------------------------------------------------------------*/
16
17
18#include <iostream>
19#include <iomanip>
20#include <cmath>
21#include <newmatio.h>
22
23#include "pppSatObs.h"
24#include "bncconst.h"
25#include "pppEphPool.h"
26#include "pppStation.h"
27#include "bncutils.h"
28#include "bncantex.h"
29#include "pppObsPool.h"
30#include "pppClient.h"
31
32using namespace BNC_PPP;
33using namespace std;
34
35const double GLO_WEIGHT_FACTOR = 1.0;
36const double BDS_WEIGHT_FACTOR = 1.0;
37
38// Constructor
39////////////////////////////////////////////////////////////////////////////
40t_pppSatObs::t_pppSatObs(const t_satObs& pppSatObs) {
41 _prn = pppSatObs._prn;
42 _time = pppSatObs._time;
43 _outlier = false;
44 _valid = true;
45 _reference = false;
46 _stecSat = 0.0;
47 _signalPriorities = QString::fromStdString(OPT->_signalPriorities);
48 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
49 _obs[ii] = 0;
50 }
51 prepareObs(pppSatObs);
52}
53
54// Destructor
55////////////////////////////////////////////////////////////////////////////
56t_pppSatObs::~t_pppSatObs() {
57 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
58 delete _obs[iFreq];
59 }
60}
61
62//
63////////////////////////////////////////////////////////////////////////////
64void t_pppSatObs::prepareObs(const t_satObs& pppSatObs) {//cout << "SATELLITE: " << _prn.toString() << endl;
65
66 _model.reset();
67
68 std::vector<char> bb = OPT->frqBands(_prn.system());
69 char frqNum1 = '0';
70 if (bb.size() >= 1) {
71 frqNum1 = bb[0];
72 }
73 char frqNum2 = '0';
74 if (bb.size() == 2) {
75 frqNum2 = bb[1];
76 }
77
78 // Select pseudo-ranges and phase observations
79 // -------------------------------------------
80 QStringList priorList = _signalPriorities.split(" ", QString::SkipEmptyParts);
81 string preferredAttrib;
82 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
83 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
84 char frqSys = t_frequency::toString(frqType)[0]; //cout << "frqSys: " << frqSys << endl;
85 char frqNum = t_frequency::toString(frqType)[1]; //cout << "frqNum: " << frqNum << endl;
86 if (frqSys != _prn.system()) {
87 continue;
88 }
89 if (frqNum != frqNum1 &&
90 frqNum != frqNum2 ) {
91 continue;
92 }
93 QStringList hlp;
94 for (int ii = 0; ii < priorList.size(); ii++) {
95 if (priorList[ii].indexOf(":") != -1) {
96 hlp = priorList[ii].split(":", QString::SkipEmptyParts);
97 if (hlp.size() == 2 && hlp[0].length() == 1 && hlp[0][0] == frqSys) {
98 hlp = hlp[1].split("&", QString::SkipEmptyParts);
99 }
100 if (hlp.size() == 2 && hlp[0].indexOf(frqNum) != -1) {
101 preferredAttrib = hlp[1].toStdString(); //cout << "preferredAttrib: " << preferredAttrib << endl;
102 }
103 }
104 for (unsigned iPref = 0; iPref < preferredAttrib.length(); iPref++) {
105 QString obsType = QString("%1").arg(frqNum) + preferredAttrib[iPref]; //cout << "obstype: " << obsType.toStdString().c_str() << endl;
106 if (_obs[iFreq] == 0) {
107 for (unsigned ii = 0; ii < pppSatObs._obs.size(); ii++) {
108 const t_frqObs* obs = pppSatObs._obs[ii];
109 //cout << "observation2char: " << obs->_rnxType2ch << " vs. " << obsType.toStdString().c_str()<< endl;
110 if (obs->_rnxType2ch == obsType.toStdString() &&
111 obs->_codeValid && obs->_code &&
112 obs->_phaseValid && obs->_phase) {
113 _obs[iFreq] = new t_frqObs(*obs); //cout << "================> newObs: " << obs->_rnxType2ch <<endl;
114 }
115 }
116 }
117 }
118 }
119 }
120
121 // Used frequency types
122 // --------------------
123 _fType1 = t_frqBand::toFreq(_prn.system(), frqNum1);
124 _fType2 = t_frqBand::toFreq(_prn.system(), frqNum2);
125
126 // Check whether all required frequencies available
127 // ------------------------------------------------
128 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
129 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
130 if (tLC == t_lc::GIM) {continue;}
131 if (!isValid(tLC)) {
132 _valid = false;
133 return;
134 }
135 }
136
137 // Find GLONASS Channel Number
138 // ---------------------------
139 if (_prn.system() == 'R') {
140 _channel = PPP_CLIENT->ephPool()->getChannel(_prn);
141 }
142 else {
143 _channel = 0;
144 }
145
146 // Compute Satellite Coordinates at Time of Transmission
147 // -----------------------------------------------------
148 _xcSat.ReSize(6); _xcSat = 0.0;
149 _vvSat.ReSize(3); _vvSat = 0.0;
150 bool totOK = false;
151 ColumnVector satPosOld(6); satPosOld = 0.0;
152 t_lc::type tLC = t_lc::dummy;
153 if (isValid(t_lc::cIF)) {
154 tLC = t_lc::cIF;
155 }
156 if (tLC == t_lc::dummy && isValid(t_lc::c1)) {
157 tLC = t_lc::c1;
158 }
159 if (tLC == t_lc::dummy && isValid(t_lc::c2)) {
160 tLC = t_lc::c2;
161 }
162 if (tLC == t_lc::dummy) {
163 _valid = false;
164 return;
165 }
166 double prange = obsValue(tLC);
167 for (int ii = 1; ii <= 10; ii++) {
168 bncTime ToT = _time - prange / t_CST::c - _xcSat[3];
169 if (PPP_CLIENT->ephPool()->getCrd(_prn, ToT, _xcSat, _vvSat) != success) {
170 _valid = false;
171 return;
172 }
173 ColumnVector dx = _xcSat - satPosOld;
174 dx[3] *= t_CST::c;
175 if (dx.NormFrobenius() < 1.e-4) {
176 totOK = true;
177 break;
178 }
179 satPosOld = _xcSat;
180 }
181 if (totOK) {
182 _signalPropagationTime = prange / t_CST::c - _xcSat[3];
183 _model._satClkM = _xcSat[3] * t_CST::c;
184 }
185 else {
186 _valid = false;
187 }
188}
189
190//
191////////////////////////////////////////////////////////////////////////////
192void t_pppSatObs::lcCoeff(t_lc::type tLC,
193 map<t_frequency::type, double>& codeCoeff,
194 map<t_frequency::type, double>& phaseCoeff,
195 map<t_frequency::type, double>& ionoCoeff) const {
196
197 codeCoeff.clear();
198 phaseCoeff.clear();
199 ionoCoeff.clear();
200
201 double f1 = t_CST::freq(_fType1, _channel);
202 double f2 = t_CST::freq(_fType2, _channel);
203 double f1GPS = t_CST::freq(t_frequency::G1, 0);
204
205 switch (tLC) {
206 case t_lc::l1:
207 phaseCoeff[_fType1] = 1.0;
208 ionoCoeff [_fType1] = -1.0 * pow(f1GPS, 2) / pow(f1, 2);
209 return;
210 case t_lc::l2:
211 phaseCoeff[_fType2] = 1.0;
212 ionoCoeff [_fType2] = -1.0 * pow(f1GPS, 2) / pow(f2, 2);
213 return;
214 case t_lc::lIF:
215 phaseCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
216 phaseCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
217 return;
218 case t_lc::MW:
219 phaseCoeff[_fType1] = f1 / (f1 - f2);
220 phaseCoeff[_fType2] = -f2 / (f1 - f2);
221 codeCoeff[_fType1] = -f1 / (f1 + f2);
222 codeCoeff[_fType2] = -f2 / (f1 + f2);
223 return;
224 case t_lc::CL:
225 phaseCoeff[_fType1] = 0.5;
226 codeCoeff [_fType1] = 0.5;
227 return;
228 case t_lc::c1:
229 codeCoeff[_fType1] = 1.0;
230 ionoCoeff[_fType1] = pow(f1GPS, 2) / pow(f1, 2);
231 return;
232 case t_lc::c2:
233 codeCoeff[_fType2] = 1.0;
234 ionoCoeff[_fType2] = pow(f1GPS, 2) / pow(f2, 2);
235 return;
236 case t_lc::cIF:
237 codeCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
238 codeCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
239 return;
240 case t_lc::GIM:
241 case t_lc::dummy:
242 case t_lc::maxLc:
243 return;
244 }
245}
246
247//
248////////////////////////////////////////////////////////////////////////////
249bool t_pppSatObs::isValid(t_lc::type tLC) const {
250 bool valid = true;
251 obsValue(tLC, &valid);
252
253 return valid;
254}
255//
256////////////////////////////////////////////////////////////////////////////
257double t_pppSatObs::obsValue(t_lc::type tLC, bool* valid) const {
258
259 double retVal = 0.0;
260 if (valid) *valid = true;
261
262 // Pseudo observations
263 if (tLC == t_lc::GIM) {
264 if (_stecSat == 0.0) {
265 if (valid) *valid = false;
266 return 0.0;
267 }
268 else {
269 return _stecSat;
270 }
271 }
272
273 map<t_frequency::type, double> codeCoeff;
274 map<t_frequency::type, double> phaseCoeff;
275 map<t_frequency::type, double> ionoCoeff;
276 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
277
278 map<t_frequency::type, double>::const_iterator it;
279
280 // Code observations
281 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
282 t_frequency::type tFreq = it->first;
283 if (_obs[tFreq] == 0) {
284 if (valid) *valid = false;
285 return 0.0;
286 }
287 else {
288 retVal += it->second * _obs[tFreq]->_code;
289 }
290 }
291 // Phase observations
292 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
293 t_frequency::type tFreq = it->first;
294 if (_obs[tFreq] == 0) {
295 if (valid) *valid = false;
296 return 0.0;
297 }
298 else {
299 retVal += it->second * _obs[tFreq]->_phase * t_CST::lambda(tFreq, _channel);
300 }
301 }
302 return retVal;
303}
304
305//
306////////////////////////////////////////////////////////////////////////////
307double t_pppSatObs::lambda(t_lc::type tLC) const {
308
309 double f1 = t_CST::freq(_fType1, _channel);
310 double f2 = t_CST::freq(_fType2, _channel);
311
312 if (tLC == t_lc::l1) {
313 return t_CST::c / f1;
314 }
315 else if (tLC == t_lc::l2) {
316 return t_CST::c / f2;
317 }
318 else if (tLC == t_lc::lIF) {
319 return t_CST::c / (f1 + f2);
320 }
321 else if (tLC == t_lc::MW) {
322 return t_CST::c / (f1 - f2);
323 }
324 else if (tLC == t_lc::CL) {
325 return t_CST::c / f1 / 2.0;
326 }
327
328 return 0.0;
329}
330
331//
332////////////////////////////////////////////////////////////////////////////
333double t_pppSatObs::sigma(t_lc::type tLC) const {
334
335 double retVal = 0.0;
336 map<t_frequency::type, double> codeCoeff;
337 map<t_frequency::type, double> phaseCoeff;
338 map<t_frequency::type, double> ionoCoeff;
339 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
340
341 if (tLC == t_lc::GIM) {
342 retVal = OPT->_sigmaGIM * OPT->_sigmaGIM;
343 }
344
345 map<t_frequency::type, double>::const_iterator it;
346 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
347 retVal += it->second * it->second * OPT->_sigmaC1 * OPT->_sigmaC1;
348 }
349
350 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
351 retVal += it->second * it->second * OPT->_sigmaL1 * OPT->_sigmaL1;
352 }
353
354 retVal = sqrt(retVal);
355
356 // De-Weight GLO+BDS
357 // -----------------
358 if (_prn.system() == 'R' && t_lc::includesCode(tLC)) {
359 retVal *= GLO_WEIGHT_FACTOR;
360 }
361 if (_prn.system() == 'C' && t_lc::includesCode(tLC)){
362 retVal *= BDS_WEIGHT_FACTOR;
363 }
364
365
366 // Elevation-Dependent Weighting
367 // -----------------------------
368 double cEle = 1.0;
369 if ( (OPT->_eleWgtCode && t_lc::includesCode(tLC)) ||
370 (OPT->_eleWgtPhase && t_lc::includesPhase(tLC)) ) {
371 double eleD = eleSat()*180.0/M_PI;
372 double hlp = fabs(90.0 - eleD);
373 cEle = (1.0 + hlp*hlp*hlp*0.000004);
374 }
375
376 return cEle * retVal;
377}
378
379//
380////////////////////////////////////////////////////////////////////////////
381double t_pppSatObs::maxRes(t_lc::type tLC) const {
382 double retVal = 0.0;
383
384 map<t_frequency::type, double> codeCoeff;
385 map<t_frequency::type, double> phaseCoeff;
386 map<t_frequency::type, double> ionoCoeff;
387 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
388
389 map<t_frequency::type, double>::const_iterator it;
390 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
391 retVal += it->second * it->second * OPT->_maxResC1 * OPT->_maxResC1;
392 }
393 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
394 retVal += it->second * it->second * OPT->_maxResL1 * OPT->_maxResL1;
395 }
396 if (tLC == t_lc::GIM) {
397 retVal = OPT->_maxResGIM * OPT->_maxResGIM + OPT->_maxResGIM * OPT->_maxResGIM;
398 }
399
400 retVal = sqrt(retVal);
401
402
403 // Enlarge maxRes GLO+BDS
404 /* ----------------------
405 if (_prn.system() == 'R' && t_lc::includesCode(tLC)) {
406 retVal *= GLO_WEIGHT_FACTOR;
407 }
408 if (_prn.system() == 'C' && t_lc::includesCode(tLC)){
409 retVal *= BDS_WEIGHT_FACTOR;
410 }*/
411
412 return retVal;
413}
414
415
416//
417////////////////////////////////////////////////////////////////////////////
418t_irc t_pppSatObs::cmpModel(const t_pppStation* station) {
419
420 // Reset all model values
421 // ----------------------
422 _model.reset();
423
424 // Topocentric Satellite Position
425 // ------------------------------
426 ColumnVector rSat = _xcSat.Rows(1,3);
427 ColumnVector rRec = station->xyzApr();
428 ColumnVector rhoV = rSat - rRec;
429 _model._rho = rhoV.NormFrobenius();
430
431 ColumnVector vSat = _vvSat;
432
433 ColumnVector neu(3);
434 xyz2neu(station->ellApr().data(), rhoV.data(), neu.data());
435
436 _model._eleSat = acos(sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / _model._rho);
437 if (neu[2] < 0.0) {
438 _model._eleSat *= -1.0;
439 }
440 _model._azSat = atan2(neu[1], neu[0]);
441
442 // Sun unit vector
443 ColumnVector xSun = t_astro::Sun(_time.mjddec());
444 xSun /= xSun.norm_Frobenius();
445
446 // Satellite unit vectors sz, sy, sx
447 ColumnVector sz = -rSat / rSat.norm_Frobenius();
448 ColumnVector sy = crossproduct(sz, xSun);
449 ColumnVector sx = crossproduct(sy, sz);
450
451 sx /= sx.norm_Frobenius();
452 sy /= sy.norm_Frobenius();
453
454 // LOS unit vector satellite --> receiver
455 ColumnVector rho = rRec - rSat;
456 rho /= rho.norm_Frobenius();
457
458 // LOS vector in satellite frame
459 ColumnVector u(3);
460 u(1) = dotproduct(sx, rho);
461 u(2) = dotproduct(sy, rho);
462 u(3) = dotproduct(sz, rho);
463
464 // Azimuth and elevation in satellite antenna frame
465 _model._elTx = atan2(u(3),sqrt(pow(u(2),2)+pow(u(1),2)));
466 _model._azTx = atan2(u(2),u(1));
467
468
469 // Satellite Clocks
470 // ----------------
471 _model._satClkM = _xcSat[3] * t_CST::c;
472
473 // Receiver Clocks
474 // ---------------
475 _model._recClkM = station->dClk() * t_CST::c;
476
477 // Sagnac Effect (correction due to Earth rotation)
478 // ------------------------------------------------
479 ColumnVector Omega(3);
480 Omega[0] = 0.0;
481 Omega[1] = 0.0;
482 Omega[2] = t_CST::omega / t_CST::c;
483 _model._sagnac = DotProduct(Omega, crossproduct(rSat, rRec));
484
485 // Antenna Eccentricity
486 // --------------------
487 _model._antEcc = -DotProduct(station->xyzEcc(), rhoV) / _model._rho;
488
489 // Antenna Phase Center Offsets and Variations
490 // -------------------------------------------
491 if (PPP_CLIENT->antex()) {
492 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
493 t_frequency::type frqType = static_cast<t_frequency::type>(ii);
494 string frqStr = t_frequency::toString(frqType);
495 if (frqStr[0] != _prn.system()) {continue;}
496 bool found;
497 QString prn(_prn.toString().c_str());
498 _model._antPCO[ii] = PPP_CLIENT->antex()->rcvCorr(station->antName(), frqType, _model._eleSat, _model._azSat, found);
499 _model._antPCO[ii] += PPP_CLIENT->antex()->satCorr(prn, frqType, _model._elTx, _model._azTx, found);
500 if (OPT->_isAPC && found) {
501 // the PCOs as given in the satellite antenna correction for all frequencies
502 // have to be reduced by the PCO of the respective reference frequency
503 if (_prn.system() == 'G') {
504 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::G1, _model._elTx, _model._azTx, found);
505 }
506 else if (_prn.system() == 'R') {
507 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::R1, _model._elTx, _model._azTx, found);
508 }
509 else if (_prn.system() == 'E') {
510 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::E1, _model._elTx, _model._azTx, found);
511 }
512 else if (_prn.system() == 'C') {
513 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::C2, _model._elTx, _model._azTx, found);
514 }
515 }
516 }
517 }
518
519 // Tropospheric Delay
520 // ------------------
521 _model._tropo = t_tropo::delay_saast(rRec, _model._eleSat);
522
523 // Code Biases
524 // -----------
525 const t_satCodeBias* satCodeBias = PPP_CLIENT->obsPool()->satCodeBias(_prn);
526 if (satCodeBias) {
527 for (unsigned ii = 0; ii < satCodeBias->_bias.size(); ii++) {
528 const t_frqCodeBias& bias = satCodeBias->_bias[ii];
529 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
530 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
531 if (frqStr[0] != _prn.system()) {
532 continue;
533 }
534 const t_frqObs* obs = _obs[iFreq];
535 if (obs &&
536 obs->_rnxType2ch == bias._rnxType2ch) {
537 _model._codeBias[iFreq] = bias._value;
538 }
539 }
540 }
541 }
542
543 // Phase Biases
544 // -----------
545 const t_satPhaseBias* satPhaseBias = PPP_CLIENT->obsPool()->satPhaseBias(_prn);
546 double yaw = 0.0;
547 bool ssr = false;
548 if (satPhaseBias) {
549 double dt = station->epochTime() - satPhaseBias->_time;
550 if (satPhaseBias->_updateInt) {
551 dt -= (0.5 * ssrUpdateInt[satPhaseBias->_updateInt]);
552 }
553 yaw = satPhaseBias->_yaw + satPhaseBias->_yawRate * dt;
554 ssr = true;
555 for (unsigned ii = 0; ii < satPhaseBias->_bias.size(); ii++) {
556 const t_frqPhaseBias& bias = satPhaseBias->_bias[ii];
557 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
558 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
559 if (frqStr[0] != _prn.system()) {
560 continue;
561 }
562 const t_frqObs* obs = _obs[iFreq];
563 if (obs &&
564 obs->_rnxType2ch == bias._rnxType2ch) {
565 _model._phaseBias[iFreq] = bias._value;
566 }
567 }
568 }
569 }
570
571 // Phase Wind-Up
572 // -------------
573 _model._windUp = station->windUp(_time, _prn, rSat, ssr, yaw, vSat) ;
574
575 // Relativistic effect due to earth gravity
576 // ----------------------------------------
577 double a = rSat.NormFrobenius() + rRec.NormFrobenius();
578 double b = (rSat - rRec).NormFrobenius();
579 double gm = 3.986004418e14; // m3/s2
580 _model._rel = 2 * gm / t_CST::c / t_CST::c * log((a + b) / (a - b));
581
582 // Tidal Correction
583 // ----------------
584 _model._tideEarth = -DotProduct(station->tideDsplEarth(), rhoV) / _model._rho;
585 _model._tideOcean = -DotProduct(station->tideDsplOcean(), rhoV) / _model._rho;
586
587 // Ionospheric Delay
588 // -----------------
589 const t_vTec* vTec = PPP_CLIENT->obsPool()->vTec();
590 bool vTecUsage = true;
591 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
592 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
593 if (tLC == t_lc::cIF || tLC == t_lc::lIF) {
594 vTecUsage = false;
595 }
596 }
597
598 if (vTecUsage && vTec) {
599 double stec = station->stec(vTec, _signalPropagationTime, rSat);
600 double f1GPS = t_CST::freq(t_frequency::G1, 0);
601 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
602 if (OPT->_pseudoObsIono) {
603 // For scaling the slant ionospheric delays the trick is to be consistent with units!
604 // The conversion of TECU into meters requires the frequency of the signal.
605 // Hence, GPS L1 frequency is used for all systems. The same is true for mu_i in lcCoeff().
606 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(f1GPS, 2) * stec;
607 }
608 else { // PPP-RTK
609 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
610 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(t_CST::freq(frqType, _channel), 2) * stec;
611 }
612 }
613 }
614
615 // Set Model Set Flag
616 // ------------------
617 _model._set = true;
618
619 //printModel();
620
621 return success;
622}
623
624//
625////////////////////////////////////////////////////////////////////////////
626void t_pppSatObs::printModel() const {
627
628 LOG.setf(ios::fixed);
629 LOG << "\nMODEL for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "")
630
631 << "\n======================= " << endl
632 << "PPP "
633 << ((OPT->_pseudoObsIono) ? " with pseudo-observations for STEC" : "") << endl
634 << "RHO : " << setw(12) << setprecision(3) << _model._rho << endl
635 << "ELE : " << setw(12) << setprecision(3) << _model._eleSat * RHO_DEG << endl
636 << "AZI : " << setw(12) << setprecision(3) << _model._azSat * RHO_DEG << endl
637 << "SATCLK : " << setw(12) << setprecision(3) << _model._satClkM << endl
638 << "RECCLK : " << setw(12) << setprecision(3) << _model._recClkM << endl
639 << "SAGNAC : " << setw(12) << setprecision(3) << _model._sagnac << endl
640 << "ANTECC : " << setw(12) << setprecision(3) << _model._antEcc << endl
641 << "TROPO : " << setw(12) << setprecision(3) << _model._tropo << endl
642 << "WINDUP : " << setw(12) << setprecision(3) << _model._windUp << endl
643 << "REL : " << setw(12) << setprecision(3) << _model._rel << endl
644 << "EARTH TIDES : " << setw(12) << setprecision(3) << _model._tideEarth << endl
645 << "OCEAN TIDES : " << setw(12) << setprecision(3) << _model._tideOcean << endl
646 << endl
647 << "FREQUENCY DEPENDENT CORRECTIONS:" << endl
648 << "-------------------------------" << endl;
649 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
650 if (_obs[iFreq]) {
651 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
652 if (_prn.system() == frqStr[0]) {
653 LOG << "PCO : " << frqStr << setw(12) << setprecision(3) << _model._antPCO[iFreq] << endl
654 << "BIAS CODE : " << frqStr << setw(12) << setprecision(3) << _model._codeBias[iFreq] << "\t(" << _obs[iFreq]->_rnxType2ch[1] << ") " << endl
655 << "BIAS PHASE : " << frqStr << setw(12) << setprecision(3) << _model._phaseBias[iFreq] << "\t(" << _obs[iFreq]->_rnxType2ch[1] << ") " << endl
656 << "IONO CODEDELAY: " << frqStr << setw(12) << setprecision(3) << _model._ionoCodeDelay[iFreq]<< endl;
657 }
658 }
659 }
660}
661
662//
663////////////////////////////////////////////////////////////////////////////
664void t_pppSatObs::printObsMinusComputed() const {
665 LOG.setf(ios::fixed);
666 LOG << "\nOBS-COMP for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "") << endl
667 << "========================== " << endl;
668 char sys = _prn.system();
669 for (unsigned ii = 0; ii < OPT->LCs(sys).size(); ii++) {
670 t_lc::type tLC = OPT->LCs(sys)[ii];
671 double offGlo = 0;
672 if (sys == 'R' && tLC != t_lc::MW) {
673 offGlo = PPP_CLIENT->offGlo();
674 }
675 double offGal = 0;
676 if (sys == 'E' && tLC != t_lc::MW) {
677 offGal = PPP_CLIENT->offGal();
678 }
679 double offBds = 0;
680 if (sys == 'C' && tLC != t_lc::MW) {
681 offBds = PPP_CLIENT->offBds();
682 }
683 LOG << "OBS-CMP " << setw(4) << t_lc::toString(tLC) << ": " << _prn.toString() << " "
684 << setw(12) << setprecision(3) << obsValue(tLC) << " "
685 << setw(12) << setprecision(3) << cmpValue(tLC) << " "
686 << setw(12) << setprecision(3) << obsValue(tLC) - offGlo - offGal - offBds - cmpValue(tLC) << endl;
687 }
688}
689
690//
691////////////////////////////////////////////////////////////////////////////
692double t_pppSatObs::cmpValueForBanc(t_lc::type tLC) const {
693 return cmpValue(tLC) - _model._rho - _model._sagnac - _model._recClkM;
694}
695
696//
697////////////////////////////////////////////////////////////////////////////
698double t_pppSatObs::cmpValue(t_lc::type tLC) const {
699 double cmpValue;
700
701 if (!isValid(tLC)) {
702 cmpValue = 0.0;
703 }
704 else if (tLC == t_lc::GIM) {
705 cmpValue = _stecSat;
706 }
707 else {
708 // Non-Dispersive Part
709 // -------------------
710 double nonDisp = _model._rho
711 + _model._recClkM - _model._satClkM
712 + _model._sagnac + _model._antEcc + _model._tropo
713 + _model._tideEarth + _model._tideOcean + _model._rel;
714
715 // Add Dispersive Part
716 // -------------------
717 double dispPart = 0.0;
718 map<t_frequency::type, double> codeCoeff;
719 map<t_frequency::type, double> phaseCoeff;
720 map<t_frequency::type, double> ionoCoeff;
721 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
722 map<t_frequency::type, double>::const_iterator it;
723 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
724 t_frequency::type tFreq = it->first;
725 dispPart += it->second * (_model._antPCO[tFreq] - _model._codeBias[tFreq]);
726 if (OPT->PPP_RTK) {
727 dispPart += it->second * (_model._ionoCodeDelay[tFreq]);
728 }
729 }
730 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
731 t_frequency::type tFreq = it->first;
732 dispPart += it->second * (_model._antPCO[tFreq] - _model._phaseBias[tFreq] +
733 _model._windUp * t_CST::lambda(tFreq, _channel));
734 if (OPT->PPP_RTK) {
735 dispPart += it->second * (- _model._ionoCodeDelay[tFreq]);
736 }
737 }
738 cmpValue = nonDisp + dispPart;
739 }
740
741 return cmpValue;
742}
743
744//
745////////////////////////////////////////////////////////////////////////////
746void t_pppSatObs::setRes(t_lc::type tLC, double res) {
747 _res[tLC] = res;
748}
749
750//
751////////////////////////////////////////////////////////////////////////////
752double t_pppSatObs::getRes(t_lc::type tLC) const {
753 map<t_lc::type, double>::const_iterator it = _res.find(tLC);
754 if (it != _res.end()) {
755 return it->second;
756 }
757 else {
758 return 0.0;
759 }
760}
761
762//
763////////////////////////////////////////////////////////////////////////////
764bool t_pppSatObs::setPseudoObsIono(t_frequency::type freq) {
765 bool pseudoObsIono = false;
766 _stecSat = _model._ionoCodeDelay[freq];
767 if (_stecSat) {
768 pseudoObsIono = true;
769 }
770 return pseudoObsIono;
771}
Note: See TracBrowser for help on using the repository browser.