source: ntrip/trunk/BNC/src/PPP/pppSatObs.cpp@ 10012

Last change on this file since 10012 was 10012, checked in by stuerze, 13 months ago

minor changes

  • Property svn:keywords set to Author Date Id Rev URL;svn:eol-style=native
  • Property svn:mime-type set to text/plain
File size: 24.3 KB
Line 
1/* -------------------------------------------------------------------------
2 * BKG NTRIP Client
3 * -------------------------------------------------------------------------
4 *
5 * Class: t_pppSatObs
6 *
7 * Purpose: Satellite observations
8 *
9 * Author: L. Mervart
10 *
11 * Created: 29-Jul-2014
12 *
13 * Changes:
14 *
15 * -----------------------------------------------------------------------*/
16
17
18#include <iostream>
19#include <iomanip>
20#include <cmath>
21#include <newmatio.h>
22
23#include "pppSatObs.h"
24#include "bncconst.h"
25#include "pppEphPool.h"
26#include "pppStation.h"
27#include "bncutils.h"
28#include "bncantex.h"
29#include "pppObsPool.h"
30#include "pppClient.h"
31
32using namespace BNC_PPP;
33using namespace std;
34
35const double GLO_WEIGHT_FACTOR = 1.0;
36const double BDS_WEIGHT_FACTOR = 1.0;
37
38// Constructor
39////////////////////////////////////////////////////////////////////////////
40t_pppSatObs::t_pppSatObs(const t_satObs& pppSatObs) {
41 _prn = pppSatObs._prn;
42 _time = pppSatObs._time;
43 _outlier = false;
44 _valid = true;
45 _reference = false;
46 _stecRefSat = 0.0;
47 _stecSat = 0.0;
48 _signalPriorities = QString::fromStdString(OPT->_signalPriorities);
49 if (!_signalPriorities.size()) {
50 if (OPT->_obsModelType == OPT->DCMcodeBias ||
51 OPT->_obsModelType == OPT->DCMphaseBias) {
52 // at the moment only one code or phase bias per system (G,R,E,C)/modulation considered
53 _signalPriorities = "G:12&CW R:12&CP E:1&CX E:5&QX C:26&I";
54 }
55 else {
56 _signalPriorities = "G:12&CWPSLX R:12&CP E:1&CBX E:5&QIX C:26&IQX";
57 }
58 }
59
60 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
61 _obs[ii] = 0;
62 }
63 prepareObs(pppSatObs);
64}
65
66// Destructor
67////////////////////////////////////////////////////////////////////////////
68t_pppSatObs::~t_pppSatObs() {
69 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
70 delete _obs[iFreq];
71 }
72}
73
74//
75////////////////////////////////////////////////////////////////////////////
76void t_pppSatObs::prepareObs(const t_satObs& pppSatObs) {
77
78 _model.reset();
79
80 // Select pseudo-ranges and phase observations
81 // -------------------------------------------
82 QStringList priorList = _signalPriorities.split(" ", QString::SkipEmptyParts);
83 string preferredAttrib;
84 char obsSys = pppSatObs._prn.system(); //cout << "SATELLITE: " << pppSatObs._prn.toString() << endl;
85 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
86 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
87 char frqSys = t_frequency::toString(frqType)[0]; //cout << "frqSys: " << frqSys << endl;
88 char frqNum = t_frequency::toString(frqType)[1]; //cout << "frqNum: " << frqNum << endl;
89 if (obsSys != frqSys) {
90 continue;
91 }
92 QStringList hlp;
93 for (int ii = 0; ii < priorList.size(); ii++) {
94 if (priorList[ii].indexOf(":") != -1) {
95 hlp = priorList[ii].split(":", QString::SkipEmptyParts);
96 if (hlp.size() == 2 && hlp[0].length() == 1 && hlp[0][0] == frqSys) {
97 hlp = hlp[1].split("&", QString::SkipEmptyParts);
98 }
99 if (hlp.size() == 2 && hlp[0].indexOf(frqNum) != -1) {
100 preferredAttrib = hlp[1].toStdString(); //cout << "preferredAttrib: " << preferredAttrib << endl;
101 }
102 }
103 for (unsigned iPref = 0; iPref < preferredAttrib.length(); iPref++) {
104 QString obsType = QString("%1").arg(frqNum) + preferredAttrib[iPref]; //cout << "obstype: " << obsType.toStdString().c_str() << endl;
105 if (_obs[iFreq] == 0) {
106 for (unsigned ii = 0; ii < pppSatObs._obs.size(); ii++) {
107 const t_frqObs* obs = pppSatObs._obs[ii];
108 //cout << "observation2char: " << obs->_rnxType2ch << " vs. " << obsType.toStdString().c_str()<< endl;
109 if (obs->_rnxType2ch == obsType.toStdString() &&
110 obs->_codeValid && obs->_code &&
111 obs->_phaseValid && obs->_phase) {
112 _obs[iFreq] = new t_frqObs(*obs); //cout << "================> newObs: " << obs->_rnxType2ch <<endl;
113 }
114 }
115 }
116 }
117 }
118 }
119
120 // Used frequency types
121 // --------------------
122 _fType1 = t_lc::toFreq(_prn.system(),t_lc::l1);
123 _fType2 = t_lc::toFreq(_prn.system(),t_lc::l2);
124
125 // Check whether all required frequencies available
126 // ------------------------------------------------
127 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
128 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
129 if (tLC == t_lc::GIM) {continue;}
130 if (!isValid(tLC)) {
131 _valid = false;
132 return;
133 }
134 }
135
136 // Find GLONASS Channel Number
137 // ---------------------------
138 if (_prn.system() == 'R') {
139 _channel = PPP_CLIENT->ephPool()->getChannel(_prn);
140 }
141 else {
142 _channel = 0;
143 }
144
145 // Compute Satellite Coordinates at Time of Transmission
146 // -----------------------------------------------------
147 _xcSat.ReSize(6); _xcSat = 0.0;
148 _vvSat.ReSize(3); _vvSat = 0.0;
149 bool totOK = false;
150 ColumnVector satPosOld(6); satPosOld = 0.0;
151 t_lc::type tLC = t_lc::dummy;
152 if (isValid(t_lc::cIF)) {
153 tLC = t_lc::cIF;
154 }
155 if (tLC == t_lc::dummy && isValid(t_lc::c1)) {
156 tLC = t_lc::c1;
157 }
158 if (tLC == t_lc::dummy && isValid(t_lc::c2)) {
159 tLC = t_lc::c2;
160 }
161 if (tLC == t_lc::dummy) {
162 _valid = false;
163 return;
164 }
165 double prange = obsValue(tLC);
166 for (int ii = 1; ii <= 10; ii++) {
167 bncTime ToT = _time - prange / t_CST::c - _xcSat[3];
168 if (PPP_CLIENT->ephPool()->getCrd(_prn, ToT, _xcSat, _vvSat) != success) {
169 _valid = false;
170 return;
171 }
172 ColumnVector dx = _xcSat - satPosOld;
173 dx[3] *= t_CST::c;
174 if (dx.NormFrobenius() < 1.e-4) {
175 totOK = true;
176 break;
177 }
178 satPosOld = _xcSat;
179 }
180 if (totOK) {
181 _signalPropagationTime = prange / t_CST::c - _xcSat[3];
182 _model._satClkM = _xcSat[3] * t_CST::c;
183 }
184 else {
185 _valid = false;
186 }
187}
188
189//
190////////////////////////////////////////////////////////////////////////////
191void t_pppSatObs::lcCoeff(t_lc::type tLC,
192 map<t_frequency::type, double>& codeCoeff,
193 map<t_frequency::type, double>& phaseCoeff,
194 map<t_frequency::type, double>& ionoCoeff) const {
195
196 codeCoeff.clear();
197 phaseCoeff.clear();
198 ionoCoeff.clear();
199
200 double f1 = t_CST::freq(_fType1, _channel);
201 double f2 = t_CST::freq(_fType2, _channel);
202 double f1GPS = t_CST::freq(t_frequency::G1, 0);
203
204 switch (tLC) {
205 case t_lc::l1:
206 phaseCoeff[_fType1] = 1.0;
207 ionoCoeff [_fType1] = -1.0 * pow(f1GPS, 2) / pow(f1, 2);
208 return;
209 case t_lc::l2:
210 phaseCoeff[_fType2] = 1.0;
211 ionoCoeff [_fType2] = -1.0 * pow(f1GPS, 2) / pow(f2, 2);
212 return;
213 case t_lc::lIF:
214 phaseCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
215 phaseCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
216 return;
217 case t_lc::MW:
218 phaseCoeff[_fType1] = f1 / (f1 - f2);
219 phaseCoeff[_fType2] = -f2 / (f1 - f2);
220 codeCoeff[_fType1] = -f1 / (f1 + f2);
221 codeCoeff[_fType2] = -f2 / (f1 + f2);
222 return;
223 case t_lc::CL:
224 phaseCoeff[_fType1] = 0.5;
225 codeCoeff [_fType1] = 0.5;
226 return;
227 case t_lc::c1:
228 codeCoeff[_fType1] = 1.0;
229 ionoCoeff[_fType1] = pow(f1GPS, 2) / pow(f1, 2);
230 return;
231 case t_lc::c2:
232 codeCoeff[_fType2] = 1.0;
233 ionoCoeff[_fType2] = pow(f1GPS, 2) / pow(f2, 2);
234 return;
235 case t_lc::cIF:
236 codeCoeff[_fType1] = f1 * f1 / (f1 * f1 - f2 * f2);
237 codeCoeff[_fType2] = -f2 * f2 / (f1 * f1 - f2 * f2);
238 return;
239 case t_lc::GIM:
240 case t_lc::dummy:
241 case t_lc::maxLc:
242 return;
243 }
244}
245
246//
247////////////////////////////////////////////////////////////////////////////
248bool t_pppSatObs::isValid(t_lc::type tLC) const {
249 bool valid = true;
250 obsValue(tLC, &valid);
251
252 return valid;
253}
254//
255////////////////////////////////////////////////////////////////////////////
256double t_pppSatObs::obsValue(t_lc::type tLC, bool* valid) const {
257
258 double retVal = 0.0;
259 if (valid) *valid = true;
260
261 // Pseudo observations
262 if (tLC == t_lc::GIM) {
263 if (_stecRefSat == 0.0 || _stecSat == 0.0) {
264 if (valid) *valid = false;
265 return 0.0;
266 }
267 else {
268 return _stecRefSat;
269 }
270 }
271
272 map<t_frequency::type, double> codeCoeff;
273 map<t_frequency::type, double> phaseCoeff;
274 map<t_frequency::type, double> ionoCoeff;
275 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
276
277 map<t_frequency::type, double>::const_iterator it;
278
279 // Code observations
280 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
281 t_frequency::type tFreq = it->first;
282 if (_obs[tFreq] == 0) {
283 if (valid) *valid = false;
284 return 0.0;
285 }
286 else {
287 retVal += it->second * _obs[tFreq]->_code;
288 }
289 }
290 // Phase observations
291 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
292 t_frequency::type tFreq = it->first;
293 if (_obs[tFreq] == 0) {
294 if (valid) *valid = false;
295 return 0.0;
296 }
297 else {
298 retVal += it->second * _obs[tFreq]->_phase * t_CST::lambda(tFreq, _channel);
299 }
300 }
301 return retVal;
302}
303
304//
305////////////////////////////////////////////////////////////////////////////
306double t_pppSatObs::lambda(t_lc::type tLC) const {
307
308 double f1 = t_CST::freq(_fType1, _channel);
309 double f2 = t_CST::freq(_fType2, _channel);
310
311 if (tLC == t_lc::l1) {
312 return t_CST::c / f1;
313 }
314 else if (tLC == t_lc::l2) {
315 return t_CST::c / f2;
316 }
317 else if (tLC == t_lc::lIF) {
318 return t_CST::c / (f1 + f2);
319 }
320 else if (tLC == t_lc::MW) {
321 return t_CST::c / (f1 - f2);
322 }
323 else if (tLC == t_lc::CL) {
324 return t_CST::c / f1 / 2.0;
325 }
326
327 return 0.0;
328}
329
330//
331////////////////////////////////////////////////////////////////////////////
332double t_pppSatObs::sigma(t_lc::type tLC) const {
333
334 double retVal = 0.0;
335 map<t_frequency::type, double> codeCoeff;
336 map<t_frequency::type, double> phaseCoeff;
337 map<t_frequency::type, double> ionoCoeff;
338 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
339
340 if (tLC == t_lc::GIM) {
341 retVal = OPT->_sigmaGIM * OPT->_sigmaGIM + OPT->_sigmaGIM * OPT->_sigmaGIM;
342 }
343
344 map<t_frequency::type, double>::const_iterator it;
345 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
346 retVal += it->second * it->second * OPT->_sigmaC1 * OPT->_sigmaC1;
347 }
348
349 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
350 retVal += it->second * it->second * OPT->_sigmaL1 * OPT->_sigmaL1;
351 }
352
353 retVal = sqrt(retVal);
354
355 // De-Weight GLO+BDS
356 // -----------------
357 if (_prn.system() == 'R' && t_lc::includesCode(tLC)) {
358 retVal *= GLO_WEIGHT_FACTOR;
359 }
360 if (_prn.system() == 'C' && t_lc::includesCode(tLC)){
361 retVal *= BDS_WEIGHT_FACTOR;
362 }
363
364
365 // Elevation-Dependent Weighting
366 // -----------------------------
367 double cEle = 1.0;
368 if ( (OPT->_eleWgtCode && t_lc::includesCode(tLC)) ||
369 (OPT->_eleWgtPhase && t_lc::includesPhase(tLC)) ) {
370 double eleD = eleSat()*180.0/M_PI;
371 double hlp = fabs(90.0 - eleD);
372 cEle = (1.0 + hlp*hlp*hlp*0.000004);
373 }
374
375 return cEle * retVal;
376}
377
378//
379////////////////////////////////////////////////////////////////////////////
380double t_pppSatObs::maxRes(t_lc::type tLC) const {
381 double retVal = 0.0;
382
383 map<t_frequency::type, double> codeCoeff;
384 map<t_frequency::type, double> phaseCoeff;
385 map<t_frequency::type, double> ionoCoeff;
386 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
387
388 map<t_frequency::type, double>::const_iterator it;
389 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
390 retVal += it->second * it->second * OPT->_maxResC1 * OPT->_maxResC1;
391 }
392 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
393 retVal += it->second * it->second * OPT->_maxResL1 * OPT->_maxResL1;
394 }
395 if (tLC == t_lc::GIM) {
396 retVal = OPT->_maxResGIM * OPT->_maxResGIM + OPT->_maxResGIM * OPT->_maxResGIM;
397 }
398
399 retVal = sqrt(retVal);
400
401 return retVal;
402}
403
404
405//
406////////////////////////////////////////////////////////////////////////////
407t_irc t_pppSatObs::cmpModel(const t_pppStation* station) {
408
409 // Reset all model values
410 // ----------------------
411 _model.reset();
412
413 // Topocentric Satellite Position
414 // ------------------------------
415 ColumnVector rSat = _xcSat.Rows(1,3);
416 ColumnVector rRec = station->xyzApr();
417 ColumnVector rhoV = rSat - rRec;
418 _model._rho = rhoV.NormFrobenius();
419
420 ColumnVector vSat = _vvSat;
421
422 ColumnVector neu(3);
423 xyz2neu(station->ellApr().data(), rhoV.data(), neu.data());
424
425 _model._eleSat = acos(sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / _model._rho);
426 if (neu[2] < 0) {
427 _model._eleSat *= -1.0;
428 }
429 _model._azSat = atan2(neu[1], neu[0]);
430
431 // Sun unit vector
432 ColumnVector xSun = t_astro::Sun(_time.mjddec());
433 xSun /= xSun.norm_Frobenius();
434
435 // Satellite unit vectors sz, sy, sx
436 ColumnVector sz = -rSat / rSat.norm_Frobenius();
437 ColumnVector sy = crossproduct(sz, xSun);
438 ColumnVector sx = crossproduct(sy, sz);
439
440 sx /= sx.norm_Frobenius();
441 sy /= sy.norm_Frobenius();
442
443 // LOS unit vector satellite --> receiver
444 ColumnVector rho = rRec - rSat;
445 rho /= rho.norm_Frobenius();
446
447 // LOS vector in satellite frame
448 ColumnVector u(3);
449 u(1) = dotproduct(sx, rho);
450 u(2) = dotproduct(sy, rho);
451 u(3) = dotproduct(sz, rho);
452
453 // Azimuth and elevation in satellite antenna frame
454 _model._elTx = atan2(u(3),sqrt(pow(u(2),2)+pow(u(1),2)));
455 _model._azTx = atan2(u(2),u(1));
456
457
458 // Satellite Clocks
459 // ----------------
460 _model._satClkM = _xcSat[3] * t_CST::c;
461
462 // Receiver Clocks
463 // ---------------
464 _model._recClkM = station->dClk() * t_CST::c;
465
466 // Sagnac Effect (correction due to Earth rotation)
467 // ------------------------------------------------
468 ColumnVector Omega(3);
469 Omega[0] = 0.0;
470 Omega[1] = 0.0;
471 Omega[2] = t_CST::omega / t_CST::c;
472 _model._sagnac = DotProduct(Omega, crossproduct(rSat, rRec));
473
474 // Antenna Eccentricity
475 // --------------------
476 _model._antEcc = -DotProduct(station->xyzEcc(), rhoV) / _model._rho;
477
478 // Antenna Phase Center Offsets and Variations
479 // -------------------------------------------
480 if (PPP_CLIENT->antex()) {
481 for (unsigned ii = 0; ii < t_frequency::max; ii++) {
482 t_frequency::type frqType = static_cast<t_frequency::type>(ii);
483 string frqStr = t_frequency::toString(frqType);
484 if (frqStr[0] != _prn.system()) {continue;}
485 bool found;
486 QString prn(_prn.toString().c_str());
487 _model._antPCO[ii] = PPP_CLIENT->antex()->rcvCorr(station->antName(), frqType, _model._eleSat, _model._azSat, found);
488 _model._antPCO[ii] += PPP_CLIENT->antex()->satCorr(prn, frqType, _model._elTx, _model._azTx, found);
489 if (OPT->_isAPC && found) {
490 // the PCOs as given in the satellite antenna correction for all frequencies
491 // have to be reduced by the PCO of the respective reference frequency
492 if (_prn.system() == 'G') {
493 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::G1, _model._elTx, _model._azTx, found);
494 }
495 else if (_prn.system() == 'R') {
496 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::R1, _model._elTx, _model._azTx, found);
497 }
498 else if (_prn.system() == 'E') {
499 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::E1, _model._elTx, _model._azTx, found);
500 }
501 else if (_prn.system() == 'C') {
502 _model._antPCO[ii] -= PPP_CLIENT->antex()->satCorr(prn, t_frequency::C2, _model._elTx, _model._azTx, found);
503 }
504 }
505 }
506 }
507
508 // Tropospheric Delay
509 // ------------------
510 _model._tropo = t_tropo::delay_saast(rRec, _model._eleSat);
511
512 // Code Biases
513 // -----------
514 const t_satCodeBias* satCodeBias = PPP_CLIENT->obsPool()->satCodeBias(_prn);
515 if (satCodeBias) {
516 for (unsigned ii = 0; ii < satCodeBias->_bias.size(); ii++) {
517 const t_frqCodeBias& bias = satCodeBias->_bias[ii];
518 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
519 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
520 if (frqStr[0] != _prn.system()) {
521 continue;
522 }
523 const t_frqObs* obs = _obs[iFreq];
524 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
525 _model._codeBias[iFreq] = bias._value;
526 }
527 }
528 }
529 }
530
531 // Phase Biases
532 // -----------
533 const t_satPhaseBias* satPhaseBias = PPP_CLIENT->obsPool()->satPhaseBias(_prn);
534 double yaw = 0.0;
535 bool ssr = false;
536 if (satPhaseBias) {
537 double dt = station->epochTime() - satPhaseBias->_time;
538 if (satPhaseBias->_updateInt) {
539 dt -= (0.5 * ssrUpdateInt[satPhaseBias->_updateInt]);
540 }
541 yaw = satPhaseBias->_yaw + satPhaseBias->_yawRate * dt;
542 ssr = true;
543 for (unsigned ii = 0; ii < satPhaseBias->_bias.size(); ii++) {
544 const t_frqPhaseBias& bias = satPhaseBias->_bias[ii];
545 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
546 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
547 if (frqStr[0] != _prn.system()) {
548 continue;
549 }
550 const t_frqObs* obs = _obs[iFreq];
551 if (obs && obs->_rnxType2ch == bias._rnxType2ch) {
552 _model._phaseBias[iFreq] = bias._value;
553 }
554 }
555 }
556 }
557
558 // Phase Wind-Up
559 // -------------
560 _model._windUp = station->windUp(_time, _prn, rSat, ssr, yaw, vSat) ;
561
562 // Relativistic effect due to earth gravity
563 // ----------------------------------------
564 double a = rSat.NormFrobenius() + rRec.NormFrobenius();
565 double b = (rSat - rRec).NormFrobenius();
566 double gm = 3.986004418e14; // m3/s2
567 _model._rel = 2 * gm / t_CST::c / t_CST::c * log((a + b) / (a - b));
568
569 // Tidal Correction
570 // ----------------
571 _model._tideEarth = -DotProduct(station->tideDsplEarth(), rhoV) / _model._rho;
572 _model._tideOcean = -DotProduct(station->tideDsplOcean(), rhoV) / _model._rho;
573
574 // Ionospheric Delay
575 // -----------------
576 const t_vTec* vTec = PPP_CLIENT->obsPool()->vTec();
577 bool vTecUsage = true;
578 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
579 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
580 if (tLC == t_lc::cIF || tLC == t_lc::lIF) {
581 vTecUsage = false;
582 }
583 }
584
585 if (vTecUsage && vTec) {
586 double stec = station->stec(vTec, _signalPropagationTime, rSat);
587 double f1GPS = t_CST::freq(t_frequency::G1, 0);
588 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
589 if (OPT->_pseudoObsIono) { // DCMcodeBias, DCMphaseBias
590 // For scaling the slant ionospheric delays the trick is to be consistent with units!
591 // The conversion of TECU into meters requires the frequency of the signal.
592 // Hence, GPS L1 frequency is used for all systems. The same is true for mu_i in lcCoeff().
593 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(f1GPS, 2) * stec;
594 }
595 else { // PPP-RTK
596 t_frequency::type frqType = static_cast<t_frequency::type>(iFreq);
597 _model._ionoCodeDelay[iFreq] = 40.3E16 / pow(t_CST::freq(frqType, _channel), 2) * stec;
598 }
599 }
600 }
601
602 // Set Model Set Flag
603 // ------------------
604 _model._set = true;
605
606 //printModel();
607
608 return success;
609}
610
611//
612////////////////////////////////////////////////////////////////////////////
613void t_pppSatObs::printModel() const {
614
615 LOG.setf(ios::fixed);
616 LOG << "\nMODEL for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "")
617
618 << "\n======================= " << endl
619 << "PPP STRATEGY : " << OPT->_obsmodelTypeStr.at((int)OPT->_obsModelType).toLocal8Bit().constData()
620 << ((OPT->_pseudoObsIono) ? " with pseudo-observations for STEC" : "") << endl
621 << "RHO : " << setw(12) << setprecision(3) << _model._rho << endl
622 << "ELE : " << setw(12) << setprecision(3) << _model._eleSat * RHO_DEG << endl
623 << "AZI : " << setw(12) << setprecision(3) << _model._azSat * RHO_DEG << endl
624 << "SATCLK : " << setw(12) << setprecision(3) << _model._satClkM << endl
625 << "RECCLK : " << setw(12) << setprecision(3) << _model._recClkM << endl
626 << "SAGNAC : " << setw(12) << setprecision(3) << _model._sagnac << endl
627 << "ANTECC : " << setw(12) << setprecision(3) << _model._antEcc << endl
628 << "TROPO : " << setw(12) << setprecision(3) << _model._tropo << endl
629 << "WINDUP : " << setw(12) << setprecision(3) << _model._windUp << endl
630 << "REL : " << setw(12) << setprecision(3) << _model._rel << endl
631 << "EARTH TIDES : " << setw(12) << setprecision(3) << _model._tideEarth << endl
632 << "OCEAN TIDES : " << setw(12) << setprecision(3) << _model._tideOcean << endl
633 << endl
634 << "FREQUENCY DEPENDENT CORRECTIONS:" << endl
635 << "-------------------------------" << endl;
636 for (unsigned iFreq = 1; iFreq < t_frequency::max; iFreq++) {
637 if (_obs[iFreq]) {
638 string frqStr = t_frequency::toString(t_frequency::type(iFreq));
639 if (_prn.system() == frqStr[0]) {
640 LOG << "PCO : " << frqStr << setw(12) << setprecision(3) << _model._antPCO[iFreq] << endl
641 << "BIAS CODE : " << frqStr << setw(12) << setprecision(3) << _model._codeBias[iFreq] << "\t(" << _obs[iFreq]->_rnxType2ch[1] << ") " << endl
642 << "BIAS PHASE : " << frqStr << setw(12) << setprecision(3) << _model._phaseBias[iFreq] << "\t(" << _obs[iFreq]->_rnxType2ch[1] << ") " << endl
643 << "IONO CODEDELAY: " << frqStr << setw(12) << setprecision(3) << _model._ionoCodeDelay[iFreq]<< endl;
644 }
645 }
646 }
647}
648
649//
650////////////////////////////////////////////////////////////////////////////
651void t_pppSatObs::printObsMinusComputed() const {
652// TODO: cout should be LOG
653 LOG.setf(ios::fixed);
654 LOG << "\nOBS-COMP for Satellite " << _prn.toString() << (isReference() ? " (Reference Satellite)" : "") << endl
655 << "========================== " << endl;
656 for (unsigned ii = 0; ii < OPT->LCs(_prn.system()).size(); ii++) {
657 t_lc::type tLC = OPT->LCs(_prn.system())[ii];
658 LOG << "OBS-CMP " << setw(4) << t_lc::toString(tLC) << ": " << _prn.toString() << " "
659 << setw(12) << setprecision(3) << obsValue(tLC) << " "
660 << setw(12) << setprecision(3) << cmpValue(tLC) << " "
661 << setw(12) << setprecision(3) << obsValue(tLC) - cmpValue(tLC) << endl;
662 }
663}
664
665//
666////////////////////////////////////////////////////////////////////////////
667double t_pppSatObs::cmpValueForBanc(t_lc::type tLC) const {
668 return cmpValue(tLC) - _model._rho - _model._sagnac - _model._recClkM;
669}
670
671//
672////////////////////////////////////////////////////////////////////////////
673double t_pppSatObs::cmpValue(t_lc::type tLC) const {
674 double cmpValue;
675
676 if (!isValid(tLC)) {
677 cmpValue = 0.0;
678 }
679 else if (tLC == t_lc::GIM) {
680 cmpValue = _stecSat;
681 }
682 else {
683 // Non-Dispersive Part
684 // -------------------
685 double nonDisp = _model._rho
686 + _model._recClkM - _model._satClkM
687 + _model._sagnac + _model._antEcc + _model._tropo
688 + _model._tideEarth + _model._tideOcean + _model._rel;
689
690 // Add Dispersive Part
691 // -------------------
692 double dispPart = 0.0;
693 map<t_frequency::type, double> codeCoeff;
694 map<t_frequency::type, double> phaseCoeff;
695 map<t_frequency::type, double> ionoCoeff;
696 lcCoeff(tLC, codeCoeff, phaseCoeff, ionoCoeff);
697 map<t_frequency::type, double>::const_iterator it;
698 for (it = codeCoeff.begin(); it != codeCoeff.end(); it++) {
699 t_frequency::type tFreq = it->first;
700 dispPart += it->second * (_model._antPCO[tFreq] - _model._codeBias[tFreq]);
701 if (OPT->PPPRTK) {
702 dispPart += it->second * (_model._ionoCodeDelay[tFreq]);
703 }
704 }
705 for (it = phaseCoeff.begin(); it != phaseCoeff.end(); it++) {
706 t_frequency::type tFreq = it->first;
707 dispPart += it->second * (_model._antPCO[tFreq] - _model._phaseBias[tFreq] +
708 _model._windUp * t_CST::lambda(tFreq, _channel));
709 if (OPT->PPPRTK) {
710 dispPart += it->second * (- _model._ionoCodeDelay[tFreq]);
711 }
712 }
713 cmpValue = nonDisp + dispPart;
714 }
715
716 return cmpValue;
717}
718
719//
720////////////////////////////////////////////////////////////////////////////
721void t_pppSatObs::setRes(t_lc::type tLC, double res) {
722 _res[tLC] = res;
723}
724
725//
726////////////////////////////////////////////////////////////////////////////
727double t_pppSatObs::getRes(t_lc::type tLC) const {
728 map<t_lc::type, double>::const_iterator it = _res.find(tLC);
729 if (it != _res.end()) {
730 return it->second;
731 }
732 else {
733 return 0.0;
734 }
735}
736
737//
738////////////////////////////////////////////////////////////////////////////
739void t_pppSatObs::setPseudoObsIono(t_frequency::type freq, double stecRefSat) {
740 _stecSat = _model._ionoCodeDelay[freq];
741 _stecRefSat = stecRefSat;
742}
Note: See TracBrowser for help on using the repository browser.