#include #include "pppModel.h" #include "bncutils.h" using namespace BNC; using namespace std; double Frac (double x) { return x-floor(x); }; double Modulo (double x, double y) { return y*Frac(x/y); } Matrix t_astro::rotX(double Angle) { const double C = cos(Angle); const double S = sin(Angle); Matrix UU(3,3); UU[0][0] = 1.0; UU[0][1] = 0.0; UU[0][2] = 0.0; UU[1][0] = 0.0; UU[1][1] = +C; UU[1][2] = +S; UU[2][0] = 0.0; UU[2][1] = -S; UU[2][2] = +C; return UU; } Matrix t_astro::rotY(double Angle) { const double C = cos(Angle); const double S = sin(Angle); Matrix UU(3,3); UU[0][0] = +C; UU[0][1] = 0.0; UU[0][2] = -S; UU[1][0] = 0.0; UU[1][1] = 1.0; UU[1][2] = 0.0; UU[2][0] = +S; UU[2][1] = 0.0; UU[2][2] = +C; return UU; } Matrix t_astro::rotZ(double Angle) { const double C = cos(Angle); const double S = sin(Angle); Matrix UU(3,3); UU[0][0] = +C; UU[0][1] = +S; UU[0][2] = 0.0; UU[1][0] = -S; UU[1][1] = +C; UU[1][2] = 0.0; UU[2][0] = 0.0; UU[2][1] = 0.0; UU[2][2] = 1.0; return UU; } // Greenwich Mean Sidereal Time /////////////////////////////////////////////////////////////////////////// double t_astro::GMST(double Mjd_UT1) { const double Secs = 86400.0; double Mjd_0 = floor(Mjd_UT1); double UT1 = Secs*(Mjd_UT1-Mjd_0); double T_0 = (Mjd_0 -MJD_J2000)/36525.0; double T = (Mjd_UT1-MJD_J2000)/36525.0; double gmst = 24110.54841 + 8640184.812866*T_0 + 1.002737909350795*UT1 + (0.093104-6.2e-6*T)*T*T; return 2.0*M_PI*Frac(gmst/Secs); } // Nutation Matrix /////////////////////////////////////////////////////////////////////////// Matrix t_astro::NutMatrix(double Mjd_TT) { const double T = (Mjd_TT-MJD_J2000)/36525.0; double ls = 2.0*M_PI*Frac(0.993133+ 99.997306*T); double D = 2.0*M_PI*Frac(0.827362+1236.853087*T); double F = 2.0*M_PI*Frac(0.259089+1342.227826*T); double N = 2.0*M_PI*Frac(0.347346- 5.372447*T); double dpsi = ( -17.200*sin(N) - 1.319*sin(2*(F-D+N)) - 0.227*sin(2*(F+N)) + 0.206*sin(2*N) + 0.143*sin(ls) ) / RHO_SEC; double deps = ( + 9.203*cos(N) + 0.574*cos(2*(F-D+N)) + 0.098*cos(2*(F+N)) - 0.090*cos(2*N) ) / RHO_SEC; double eps = 0.4090928-2.2696E-4*T; return rotX(-eps-deps)*rotZ(-dpsi)*rotX(+eps); } // Precession Matrix /////////////////////////////////////////////////////////////////////////// Matrix t_astro::PrecMatrix(double Mjd_1, double Mjd_2) { const double T = (Mjd_1-MJD_J2000)/36525.0; const double dT = (Mjd_2-Mjd_1)/36525.0; double zeta = ( (2306.2181+(1.39656-0.000139*T)*T)+ ((0.30188-0.000344*T)+0.017998*dT)*dT )*dT/RHO_SEC; double z = zeta + ( (0.79280+0.000411*T)+0.000205*dT)*dT*dT/RHO_SEC; double theta = ( (2004.3109-(0.85330+0.000217*T)*T)- ((0.42665+0.000217*T)+0.041833*dT)*dT )*dT/RHO_SEC; return rotZ(-z) * rotY(theta) * rotZ(-zeta); } // Sun's position /////////////////////////////////////////////////////////////////////////// ColumnVector t_astro::Sun(double Mjd_TT) { const double eps = 23.43929111/RHO_DEG; const double T = (Mjd_TT-MJD_J2000)/36525.0; double M = 2.0*M_PI * Frac ( 0.9931267 + 99.9973583*T); double L = 2.0*M_PI * Frac ( 0.7859444 + M/2.0/M_PI + (6892.0*sin(M)+72.0*sin(2.0*M)) / 1296.0e3); double r = 149.619e9 - 2.499e9*cos(M) - 0.021e9*cos(2*M); ColumnVector r_Sun(3); r_Sun << r*cos(L) << r*sin(L) << 0.0; r_Sun = rotX(-eps) * r_Sun; return rotZ(GMST(Mjd_TT)) * NutMatrix(Mjd_TT) * PrecMatrix(MJD_J2000, Mjd_TT) * r_Sun; } // Moon's position /////////////////////////////////////////////////////////////////////////// ColumnVector t_astro::Moon(double Mjd_TT) { const double eps = 23.43929111/RHO_DEG; const double T = (Mjd_TT-MJD_J2000)/36525.0; double L_0 = Frac ( 0.606433 + 1336.851344*T ); double l = 2.0*M_PI*Frac ( 0.374897 + 1325.552410*T ); double lp = 2.0*M_PI*Frac ( 0.993133 + 99.997361*T ); double D = 2.0*M_PI*Frac ( 0.827361 + 1236.853086*T ); double F = 2.0*M_PI*Frac ( 0.259086 + 1342.227825*T ); double dL = +22640*sin(l) - 4586*sin(l-2*D) + 2370*sin(2*D) + 769*sin(2*l) -668*sin(lp) - 412*sin(2*F) - 212*sin(2*l-2*D)- 206*sin(l+lp-2*D) +192*sin(l+2*D) - 165*sin(lp-2*D) - 125*sin(D) - 110*sin(l+lp) +148*sin(l-lp) - 55*sin(2*F-2*D); double L = 2.0*M_PI * Frac( L_0 + dL/1296.0e3 ); double S = F + (dL+412*sin(2*F)+541*sin(lp)) / RHO_SEC; double h = F-2*D; double N = -526*sin(h) + 44*sin(l+h) - 31*sin(-l+h) - 23*sin(lp+h) +11*sin(-lp+h) - 25*sin(-2*l+F) + 21*sin(-l+F); double B = ( 18520.0*sin(S) + N ) / RHO_SEC; double cosB = cos(B); double R = 385000e3 - 20905e3*cos(l) - 3699e3*cos(2*D-l) - 2956e3*cos(2*D) -570e3*cos(2*l) + 246e3*cos(2*l-2*D) - 205e3*cos(lp-2*D) -171e3*cos(l+2*D) - 152e3*cos(l+lp-2*D); ColumnVector r_Moon(3); r_Moon << R*cos(L)*cosB << R*sin(L)*cosB << R*sin(B); r_Moon = rotX(-eps) * r_Moon; return rotZ(GMST(Mjd_TT)) * NutMatrix(Mjd_TT) * PrecMatrix(MJD_J2000, Mjd_TT) * r_Moon; } // Tidal Correction //////////////////////////////////////////////////////////////////////////// ColumnVector t_tides::displacement(const bncTime& time, const ColumnVector& xyz) { double Mjd = time.mjd() + time.daysec() / 86400.0; if (Mjd != _lastMjd) { _lastMjd = Mjd; _xSun = t_astro::Sun(Mjd); _rSun = sqrt(DotProduct(_xSun,_xSun)); _xSun /= _rSun; _xMoon = t_astro::Moon(Mjd); _rMoon = sqrt(DotProduct(_xMoon,_xMoon)); _xMoon /= _rMoon; } double rRec = sqrt(DotProduct(xyz, xyz)); ColumnVector xyzUnit = xyz / rRec; // Love's Numbers // -------------- const double H2 = 0.6078; const double L2 = 0.0847; // Tidal Displacement // ------------------ double scSun = DotProduct(xyzUnit, _xSun); double scMoon = DotProduct(xyzUnit, _xMoon); double p2Sun = 3.0 * (H2/2.0-L2) * scSun * scSun - H2/2.0; double p2Moon = 3.0 * (H2/2.0-L2) * scMoon * scMoon - H2/2.0; double x2Sun = 3.0 * L2 * scSun; double x2Moon = 3.0 * L2 * scMoon; const double gmWGS = 398.6005e12; const double gms = 1.3271250e20; const double gmm = 4.9027890e12; double facSun = gms / gmWGS * (rRec * rRec * rRec * rRec) / (_rSun * _rSun * _rSun); double facMoon = gmm / gmWGS * (rRec * rRec * rRec * rRec) / (_rMoon * _rMoon * _rMoon); ColumnVector dX = facSun * (x2Sun * _xSun + p2Sun * xyzUnit) + facMoon * (x2Moon * _xMoon + p2Moon * xyzUnit); return dX; } // Constructor /////////////////////////////////////////////////////////////////////////// t_windUp::t_windUp() { for (unsigned ii = 0; ii <= t_prn::MAXPRN; ii++) { sumWind[ii] = 0.0; lastEtime[ii] = 0.0; } } // Phase Wind-Up Correction /////////////////////////////////////////////////////////////////////////// double t_windUp::value(const bncTime& etime, const ColumnVector& rRec, t_prn prn, const ColumnVector& rSat) { if (etime.mjddec() != lastEtime[prn.toInt()]) { // Unit Vector GPS Satellite --> Receiver // -------------------------------------- ColumnVector rho = rRec - rSat; rho /= rho.norm_Frobenius(); // GPS Satellite unit Vectors sz, sy, sx // ------------------------------------- ColumnVector sz = -rSat / rSat.norm_Frobenius(); ColumnVector xSun = t_astro::Sun(etime.mjddec()); xSun /= xSun.norm_Frobenius(); ColumnVector sy = crossproduct(sz, xSun); ColumnVector sx = crossproduct(sy, sz); // Effective Dipole of the GPS Satellite Antenna // --------------------------------------------- ColumnVector dipSat = sx - rho * DotProduct(rho,sx) - crossproduct(rho, sy); // Receiver unit Vectors rx, ry // ---------------------------- ColumnVector rx(3); ColumnVector ry(3); double recEll[3]; xyz2ell(rRec.data(), recEll) ; double neu[3]; neu[0] = 1.0; neu[1] = 0.0; neu[2] = 0.0; neu2xyz(recEll, neu, rx.data()); neu[0] = 0.0; neu[1] = -1.0; neu[2] = 0.0; neu2xyz(recEll, neu, ry.data()); // Effective Dipole of the Receiver Antenna // ---------------------------------------- ColumnVector dipRec = rx - rho * DotProduct(rho,rx) + crossproduct(rho, ry); // Resulting Effect // ---------------- double alpha = DotProduct(dipSat,dipRec) / (dipSat.norm_Frobenius() * dipRec.norm_Frobenius()); if (alpha > 1.0) alpha = 1.0; if (alpha < -1.0) alpha = -1.0; double dphi = acos(alpha) / 2.0 / M_PI; // in cycles if ( DotProduct(rho, crossproduct(dipSat, dipRec)) < 0.0 ) { dphi = -dphi; } if (lastEtime[prn.toInt()] == 0.0) { sumWind[prn.toInt()] = dphi; } else { sumWind[prn.toInt()] = nint(sumWind[prn.toInt()] - dphi) + dphi; } lastEtime[prn.toInt()] = etime.mjddec(); } return sumWind[prn.toInt()]; }