[4271] | 1 | /* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
|
---|
| 2 | * Qwt Widget Library
|
---|
| 3 | * Copyright (C) 1997 Josef Wilgen
|
---|
| 4 | * Copyright (C) 2002 Uwe Rathmann
|
---|
| 5 | *
|
---|
| 6 | * This library is free software; you can redistribute it and/or
|
---|
| 7 | * modify it under the terms of the Qwt License, Version 1.0
|
---|
| 8 | *****************************************************************************/
|
---|
| 9 |
|
---|
| 10 | #include "qwt_spline.h"
|
---|
| 11 | #include "qwt_math.h"
|
---|
| 12 |
|
---|
| 13 | class QwtSpline::PrivateData
|
---|
| 14 | {
|
---|
| 15 | public:
|
---|
| 16 | PrivateData():
|
---|
| 17 | splineType( QwtSpline::Natural )
|
---|
| 18 | {
|
---|
| 19 | }
|
---|
| 20 |
|
---|
| 21 | QwtSpline::SplineType splineType;
|
---|
| 22 |
|
---|
| 23 | // coefficient vectors
|
---|
| 24 | QVector<double> a;
|
---|
| 25 | QVector<double> b;
|
---|
| 26 | QVector<double> c;
|
---|
| 27 |
|
---|
| 28 | // control points
|
---|
| 29 | QPolygonF points;
|
---|
| 30 | };
|
---|
| 31 |
|
---|
| 32 | static int lookup( double x, const QPolygonF &values )
|
---|
| 33 | {
|
---|
| 34 | #if 0
|
---|
| 35 | //qLowerBound/qHigherBound ???
|
---|
| 36 | #endif
|
---|
| 37 | int i1;
|
---|
| 38 | const int size = values.size();
|
---|
| 39 |
|
---|
| 40 | if ( x <= values[0].x() )
|
---|
| 41 | i1 = 0;
|
---|
| 42 | else if ( x >= values[size - 2].x() )
|
---|
| 43 | i1 = size - 2;
|
---|
| 44 | else
|
---|
| 45 | {
|
---|
| 46 | i1 = 0;
|
---|
| 47 | int i2 = size - 2;
|
---|
| 48 | int i3 = 0;
|
---|
| 49 |
|
---|
| 50 | while ( i2 - i1 > 1 )
|
---|
| 51 | {
|
---|
| 52 | i3 = i1 + ( ( i2 - i1 ) >> 1 );
|
---|
| 53 |
|
---|
| 54 | if ( values[i3].x() > x )
|
---|
| 55 | i2 = i3;
|
---|
| 56 | else
|
---|
| 57 | i1 = i3;
|
---|
| 58 | }
|
---|
| 59 | }
|
---|
| 60 | return i1;
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | //! Constructor
|
---|
| 64 | QwtSpline::QwtSpline()
|
---|
| 65 | {
|
---|
| 66 | d_data = new PrivateData;
|
---|
| 67 | }
|
---|
| 68 |
|
---|
| 69 | /*!
|
---|
| 70 | Copy constructor
|
---|
| 71 | \param other Spline used for initilization
|
---|
| 72 | */
|
---|
| 73 | QwtSpline::QwtSpline( const QwtSpline& other )
|
---|
| 74 | {
|
---|
| 75 | d_data = new PrivateData( *other.d_data );
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | /*!
|
---|
| 79 | Assignment operator
|
---|
| 80 | \param other Spline used for initilization
|
---|
| 81 | */
|
---|
| 82 | QwtSpline &QwtSpline::operator=( const QwtSpline & other )
|
---|
| 83 | {
|
---|
| 84 | *d_data = *other.d_data;
|
---|
| 85 | return *this;
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | //! Destructor
|
---|
| 89 | QwtSpline::~QwtSpline()
|
---|
| 90 | {
|
---|
| 91 | delete d_data;
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | /*!
|
---|
| 95 | Select the algorithm used for calculating the spline
|
---|
| 96 |
|
---|
| 97 | \param splineType Spline type
|
---|
| 98 | \sa splineType()
|
---|
| 99 | */
|
---|
| 100 | void QwtSpline::setSplineType( SplineType splineType )
|
---|
| 101 | {
|
---|
| 102 | d_data->splineType = splineType;
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | /*!
|
---|
| 106 | \return the spline type
|
---|
| 107 | \sa setSplineType()
|
---|
| 108 | */
|
---|
| 109 | QwtSpline::SplineType QwtSpline::splineType() const
|
---|
| 110 | {
|
---|
| 111 | return d_data->splineType;
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 | /*!
|
---|
| 115 | \brief Calculate the spline coefficients
|
---|
| 116 |
|
---|
| 117 | Depending on the value of \a periodic, this function
|
---|
| 118 | will determine the coefficients for a natural or a periodic
|
---|
| 119 | spline and store them internally.
|
---|
| 120 |
|
---|
| 121 | \param points Points
|
---|
| 122 | \return true if successful
|
---|
| 123 | \warning The sequence of x (but not y) values has to be strictly monotone
|
---|
| 124 | increasing, which means <code>points[i].x() < points[i+1].x()</code>.
|
---|
| 125 | If this is not the case, the function will return false
|
---|
| 126 | */
|
---|
| 127 | bool QwtSpline::setPoints( const QPolygonF& points )
|
---|
| 128 | {
|
---|
| 129 | const int size = points.size();
|
---|
| 130 | if ( size <= 2 )
|
---|
| 131 | {
|
---|
| 132 | reset();
|
---|
| 133 | return false;
|
---|
| 134 | }
|
---|
| 135 |
|
---|
| 136 | d_data->points = points;
|
---|
| 137 |
|
---|
| 138 | d_data->a.resize( size - 1 );
|
---|
| 139 | d_data->b.resize( size - 1 );
|
---|
| 140 | d_data->c.resize( size - 1 );
|
---|
| 141 |
|
---|
| 142 | bool ok;
|
---|
| 143 | if ( d_data->splineType == Periodic )
|
---|
| 144 | ok = buildPeriodicSpline( points );
|
---|
| 145 | else
|
---|
| 146 | ok = buildNaturalSpline( points );
|
---|
| 147 |
|
---|
| 148 | if ( !ok )
|
---|
| 149 | reset();
|
---|
| 150 |
|
---|
| 151 | return ok;
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | /*!
|
---|
| 155 | Return points passed by setPoints
|
---|
| 156 | */
|
---|
| 157 | QPolygonF QwtSpline::points() const
|
---|
| 158 | {
|
---|
| 159 | return d_data->points;
|
---|
| 160 | }
|
---|
| 161 |
|
---|
| 162 | //! \return A coefficients
|
---|
| 163 | const QVector<double> &QwtSpline::coefficientsA() const
|
---|
| 164 | {
|
---|
| 165 | return d_data->a;
|
---|
| 166 | }
|
---|
| 167 |
|
---|
| 168 | //! \return B coefficients
|
---|
| 169 | const QVector<double> &QwtSpline::coefficientsB() const
|
---|
| 170 | {
|
---|
| 171 | return d_data->b;
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 | //! \return C coefficients
|
---|
| 175 | const QVector<double> &QwtSpline::coefficientsC() const
|
---|
| 176 | {
|
---|
| 177 | return d_data->c;
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 |
|
---|
| 181 | //! Free allocated memory and set size to 0
|
---|
| 182 | void QwtSpline::reset()
|
---|
| 183 | {
|
---|
| 184 | d_data->a.resize( 0 );
|
---|
| 185 | d_data->b.resize( 0 );
|
---|
| 186 | d_data->c.resize( 0 );
|
---|
| 187 | d_data->points.resize( 0 );
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | //! True if valid
|
---|
| 191 | bool QwtSpline::isValid() const
|
---|
| 192 | {
|
---|
| 193 | return d_data->a.size() > 0;
|
---|
| 194 | }
|
---|
| 195 |
|
---|
| 196 | /*!
|
---|
| 197 | Calculate the interpolated function value corresponding
|
---|
| 198 | to a given argument x.
|
---|
| 199 | */
|
---|
| 200 | double QwtSpline::value( double x ) const
|
---|
| 201 | {
|
---|
| 202 | if ( d_data->a.size() == 0 )
|
---|
| 203 | return 0.0;
|
---|
| 204 |
|
---|
| 205 | const int i = lookup( x, d_data->points );
|
---|
| 206 |
|
---|
| 207 | const double delta = x - d_data->points[i].x();
|
---|
| 208 | return( ( ( ( d_data->a[i] * delta ) + d_data->b[i] )
|
---|
| 209 | * delta + d_data->c[i] ) * delta + d_data->points[i].y() );
|
---|
| 210 | }
|
---|
| 211 |
|
---|
| 212 | /*!
|
---|
| 213 | \brief Determines the coefficients for a natural spline
|
---|
| 214 | \return true if successful
|
---|
| 215 | */
|
---|
| 216 | bool QwtSpline::buildNaturalSpline( const QPolygonF &points )
|
---|
| 217 | {
|
---|
| 218 | int i;
|
---|
| 219 |
|
---|
| 220 | const QPointF *p = points.data();
|
---|
| 221 | const int size = points.size();
|
---|
| 222 |
|
---|
| 223 | double *a = d_data->a.data();
|
---|
| 224 | double *b = d_data->b.data();
|
---|
| 225 | double *c = d_data->c.data();
|
---|
| 226 |
|
---|
| 227 | // set up tridiagonal equation system; use coefficient
|
---|
| 228 | // vectors as temporary buffers
|
---|
| 229 | QVector<double> h( size - 1 );
|
---|
| 230 | for ( i = 0; i < size - 1; i++ )
|
---|
| 231 | {
|
---|
| 232 | h[i] = p[i+1].x() - p[i].x();
|
---|
| 233 | if ( h[i] <= 0 )
|
---|
| 234 | return false;
|
---|
| 235 | }
|
---|
| 236 |
|
---|
| 237 | QVector<double> d( size - 1 );
|
---|
| 238 | double dy1 = ( p[1].y() - p[0].y() ) / h[0];
|
---|
| 239 | for ( i = 1; i < size - 1; i++ )
|
---|
| 240 | {
|
---|
| 241 | b[i] = c[i] = h[i];
|
---|
| 242 | a[i] = 2.0 * ( h[i-1] + h[i] );
|
---|
| 243 |
|
---|
| 244 | const double dy2 = ( p[i+1].y() - p[i].y() ) / h[i];
|
---|
| 245 | d[i] = 6.0 * ( dy1 - dy2 );
|
---|
| 246 | dy1 = dy2;
|
---|
| 247 | }
|
---|
| 248 |
|
---|
| 249 | //
|
---|
| 250 | // solve it
|
---|
| 251 | //
|
---|
| 252 |
|
---|
| 253 | // L-U Factorization
|
---|
| 254 | for ( i = 1; i < size - 2; i++ )
|
---|
| 255 | {
|
---|
| 256 | c[i] /= a[i];
|
---|
| 257 | a[i+1] -= b[i] * c[i];
|
---|
| 258 | }
|
---|
| 259 |
|
---|
| 260 | // forward elimination
|
---|
| 261 | QVector<double> s( size );
|
---|
| 262 | s[1] = d[1];
|
---|
| 263 | for ( i = 2; i < size - 1; i++ )
|
---|
| 264 | s[i] = d[i] - c[i-1] * s[i-1];
|
---|
| 265 |
|
---|
| 266 | // backward elimination
|
---|
| 267 | s[size - 2] = - s[size - 2] / a[size - 2];
|
---|
| 268 | for ( i = size - 3; i > 0; i-- )
|
---|
| 269 | s[i] = - ( s[i] + b[i] * s[i+1] ) / a[i];
|
---|
| 270 | s[size - 1] = s[0] = 0.0;
|
---|
| 271 |
|
---|
| 272 | //
|
---|
| 273 | // Finally, determine the spline coefficients
|
---|
| 274 | //
|
---|
| 275 | for ( i = 0; i < size - 1; i++ )
|
---|
| 276 | {
|
---|
| 277 | a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i] );
|
---|
| 278 | b[i] = 0.5 * s[i];
|
---|
| 279 | c[i] = ( p[i+1].y() - p[i].y() ) / h[i]
|
---|
| 280 | - ( s[i+1] + 2.0 * s[i] ) * h[i] / 6.0;
|
---|
| 281 | }
|
---|
| 282 |
|
---|
| 283 | return true;
|
---|
| 284 | }
|
---|
| 285 |
|
---|
| 286 | /*!
|
---|
| 287 | \brief Determines the coefficients for a periodic spline
|
---|
| 288 | \return true if successful
|
---|
| 289 | */
|
---|
| 290 | bool QwtSpline::buildPeriodicSpline( const QPolygonF &points )
|
---|
| 291 | {
|
---|
| 292 | int i;
|
---|
| 293 |
|
---|
| 294 | const QPointF *p = points.data();
|
---|
| 295 | const int size = points.size();
|
---|
| 296 |
|
---|
| 297 | double *a = d_data->a.data();
|
---|
| 298 | double *b = d_data->b.data();
|
---|
| 299 | double *c = d_data->c.data();
|
---|
| 300 |
|
---|
| 301 | QVector<double> d( size - 1 );
|
---|
| 302 | QVector<double> h( size - 1 );
|
---|
| 303 | QVector<double> s( size );
|
---|
| 304 |
|
---|
| 305 | //
|
---|
| 306 | // setup equation system; use coefficient
|
---|
| 307 | // vectors as temporary buffers
|
---|
| 308 | //
|
---|
| 309 | for ( i = 0; i < size - 1; i++ )
|
---|
| 310 | {
|
---|
| 311 | h[i] = p[i+1].x() - p[i].x();
|
---|
| 312 | if ( h[i] <= 0.0 )
|
---|
| 313 | return false;
|
---|
| 314 | }
|
---|
| 315 |
|
---|
| 316 | const int imax = size - 2;
|
---|
| 317 | double htmp = h[imax];
|
---|
| 318 | double dy1 = ( p[0].y() - p[imax].y() ) / htmp;
|
---|
| 319 | for ( i = 0; i <= imax; i++ )
|
---|
| 320 | {
|
---|
| 321 | b[i] = c[i] = h[i];
|
---|
| 322 | a[i] = 2.0 * ( htmp + h[i] );
|
---|
| 323 | const double dy2 = ( p[i+1].y() - p[i].y() ) / h[i];
|
---|
| 324 | d[i] = 6.0 * ( dy1 - dy2 );
|
---|
| 325 | dy1 = dy2;
|
---|
| 326 | htmp = h[i];
|
---|
| 327 | }
|
---|
| 328 |
|
---|
| 329 | //
|
---|
| 330 | // solve it
|
---|
| 331 | //
|
---|
| 332 |
|
---|
| 333 | // L-U Factorization
|
---|
| 334 | a[0] = qSqrt( a[0] );
|
---|
| 335 | c[0] = h[imax] / a[0];
|
---|
| 336 | double sum = 0;
|
---|
| 337 |
|
---|
| 338 | for ( i = 0; i < imax - 1; i++ )
|
---|
| 339 | {
|
---|
| 340 | b[i] /= a[i];
|
---|
| 341 | if ( i > 0 )
|
---|
| 342 | c[i] = - c[i-1] * b[i-1] / a[i];
|
---|
| 343 | a[i+1] = qSqrt( a[i+1] - qwtSqr( b[i] ) );
|
---|
| 344 | sum += qwtSqr( c[i] );
|
---|
| 345 | }
|
---|
| 346 | b[imax-1] = ( b[imax-1] - c[imax-2] * b[imax-2] ) / a[imax-1];
|
---|
| 347 | a[imax] = qSqrt( a[imax] - qwtSqr( b[imax-1] ) - sum );
|
---|
| 348 |
|
---|
| 349 |
|
---|
| 350 | // forward elimination
|
---|
| 351 | s[0] = d[0] / a[0];
|
---|
| 352 | sum = 0;
|
---|
| 353 | for ( i = 1; i < imax; i++ )
|
---|
| 354 | {
|
---|
| 355 | s[i] = ( d[i] - b[i-1] * s[i-1] ) / a[i];
|
---|
| 356 | sum += c[i-1] * s[i-1];
|
---|
| 357 | }
|
---|
| 358 | s[imax] = ( d[imax] - b[imax-1] * s[imax-1] - sum ) / a[imax];
|
---|
| 359 |
|
---|
| 360 |
|
---|
| 361 | // backward elimination
|
---|
| 362 | s[imax] = - s[imax] / a[imax];
|
---|
| 363 | s[imax-1] = -( s[imax-1] + b[imax-1] * s[imax] ) / a[imax-1];
|
---|
| 364 | for ( i = imax - 2; i >= 0; i-- )
|
---|
| 365 | s[i] = - ( s[i] + b[i] * s[i+1] + c[i] * s[imax] ) / a[i];
|
---|
| 366 |
|
---|
| 367 | //
|
---|
| 368 | // Finally, determine the spline coefficients
|
---|
| 369 | //
|
---|
| 370 | s[size-1] = s[0];
|
---|
| 371 | for ( i = 0; i < size - 1; i++ )
|
---|
| 372 | {
|
---|
| 373 | a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i] );
|
---|
| 374 | b[i] = 0.5 * s[i];
|
---|
| 375 | c[i] = ( p[i+1].y() - p[i].y() )
|
---|
| 376 | / h[i] - ( s[i+1] + 2.0 * s[i] ) * h[i] / 6.0;
|
---|
| 377 | }
|
---|
| 378 |
|
---|
| 379 | return true;
|
---|
| 380 | }
|
---|