source: ntrip/trunk/BNC/qwt/qwt_spline.cpp@ 10449

Last change on this file since 10449 was 8127, checked in by stoecker, 7 years ago

update qwt and qwtpolar, many QT5 fixes (unfinished)

File size: 8.3 KB
RevLine 
[4271]1/* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
2 * Qwt Widget Library
3 * Copyright (C) 1997 Josef Wilgen
4 * Copyright (C) 2002 Uwe Rathmann
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the Qwt License, Version 1.0
8 *****************************************************************************/
9
10#include "qwt_spline.h"
11#include "qwt_math.h"
12
13class QwtSpline::PrivateData
14{
15public:
16 PrivateData():
17 splineType( QwtSpline::Natural )
18 {
19 }
20
21 QwtSpline::SplineType splineType;
22
23 // coefficient vectors
24 QVector<double> a;
25 QVector<double> b;
26 QVector<double> c;
27
28 // control points
29 QPolygonF points;
30};
31
32static int lookup( double x, const QPolygonF &values )
33{
34#if 0
35//qLowerBound/qHigherBound ???
36#endif
37 int i1;
38 const int size = values.size();
39
40 if ( x <= values[0].x() )
41 i1 = 0;
42 else if ( x >= values[size - 2].x() )
43 i1 = size - 2;
44 else
45 {
46 i1 = 0;
47 int i2 = size - 2;
48 int i3 = 0;
49
50 while ( i2 - i1 > 1 )
51 {
52 i3 = i1 + ( ( i2 - i1 ) >> 1 );
53
54 if ( values[i3].x() > x )
55 i2 = i3;
56 else
57 i1 = i3;
58 }
59 }
60 return i1;
61}
62
63//! Constructor
64QwtSpline::QwtSpline()
65{
66 d_data = new PrivateData;
67}
68
69/*!
70 Copy constructor
[8127]71 \param other Spline used for initialization
[4271]72*/
73QwtSpline::QwtSpline( const QwtSpline& other )
74{
75 d_data = new PrivateData( *other.d_data );
76}
77
78/*!
79 Assignment operator
[8127]80 \param other Spline used for initialization
81 \return *this
[4271]82*/
83QwtSpline &QwtSpline::operator=( const QwtSpline & other )
84{
85 *d_data = *other.d_data;
86 return *this;
87}
88
89//! Destructor
90QwtSpline::~QwtSpline()
91{
92 delete d_data;
93}
94
95/*!
96 Select the algorithm used for calculating the spline
97
98 \param splineType Spline type
99 \sa splineType()
100*/
101void QwtSpline::setSplineType( SplineType splineType )
102{
103 d_data->splineType = splineType;
104}
105
106/*!
107 \return the spline type
108 \sa setSplineType()
109*/
110QwtSpline::SplineType QwtSpline::splineType() const
111{
112 return d_data->splineType;
113}
114
115/*!
116 \brief Calculate the spline coefficients
117
118 Depending on the value of \a periodic, this function
119 will determine the coefficients for a natural or a periodic
120 spline and store them internally.
121
122 \param points Points
123 \return true if successful
124 \warning The sequence of x (but not y) values has to be strictly monotone
125 increasing, which means <code>points[i].x() < points[i+1].x()</code>.
126 If this is not the case, the function will return false
127*/
128bool QwtSpline::setPoints( const QPolygonF& points )
129{
130 const int size = points.size();
131 if ( size <= 2 )
132 {
133 reset();
134 return false;
135 }
136
137 d_data->points = points;
138
139 d_data->a.resize( size - 1 );
140 d_data->b.resize( size - 1 );
141 d_data->c.resize( size - 1 );
142
143 bool ok;
144 if ( d_data->splineType == Periodic )
145 ok = buildPeriodicSpline( points );
146 else
147 ok = buildNaturalSpline( points );
148
149 if ( !ok )
150 reset();
151
152 return ok;
153}
154
155/*!
[8127]156 \return Points, that have been by setPoints()
[4271]157*/
158QPolygonF QwtSpline::points() const
159{
160 return d_data->points;
161}
162
163//! \return A coefficients
164const QVector<double> &QwtSpline::coefficientsA() const
165{
166 return d_data->a;
167}
168
169//! \return B coefficients
170const QVector<double> &QwtSpline::coefficientsB() const
171{
172 return d_data->b;
173}
174
175//! \return C coefficients
176const QVector<double> &QwtSpline::coefficientsC() const
177{
178 return d_data->c;
179}
180
181
182//! Free allocated memory and set size to 0
183void QwtSpline::reset()
184{
185 d_data->a.resize( 0 );
186 d_data->b.resize( 0 );
187 d_data->c.resize( 0 );
188 d_data->points.resize( 0 );
189}
190
191//! True if valid
192bool QwtSpline::isValid() const
193{
194 return d_data->a.size() > 0;
195}
196
197/*!
198 Calculate the interpolated function value corresponding
199 to a given argument x.
[8127]200
201 \param x Coordinate
202 \return Interpolated coordinate
[4271]203*/
204double QwtSpline::value( double x ) const
205{
206 if ( d_data->a.size() == 0 )
207 return 0.0;
208
209 const int i = lookup( x, d_data->points );
210
211 const double delta = x - d_data->points[i].x();
212 return( ( ( ( d_data->a[i] * delta ) + d_data->b[i] )
213 * delta + d_data->c[i] ) * delta + d_data->points[i].y() );
214}
215
216/*!
217 \brief Determines the coefficients for a natural spline
218 \return true if successful
219*/
220bool QwtSpline::buildNaturalSpline( const QPolygonF &points )
221{
222 int i;
223
224 const QPointF *p = points.data();
225 const int size = points.size();
226
227 double *a = d_data->a.data();
228 double *b = d_data->b.data();
229 double *c = d_data->c.data();
230
231 // set up tridiagonal equation system; use coefficient
232 // vectors as temporary buffers
233 QVector<double> h( size - 1 );
234 for ( i = 0; i < size - 1; i++ )
235 {
236 h[i] = p[i+1].x() - p[i].x();
237 if ( h[i] <= 0 )
238 return false;
239 }
240
241 QVector<double> d( size - 1 );
242 double dy1 = ( p[1].y() - p[0].y() ) / h[0];
243 for ( i = 1; i < size - 1; i++ )
244 {
245 b[i] = c[i] = h[i];
246 a[i] = 2.0 * ( h[i-1] + h[i] );
247
248 const double dy2 = ( p[i+1].y() - p[i].y() ) / h[i];
249 d[i] = 6.0 * ( dy1 - dy2 );
250 dy1 = dy2;
251 }
252
253 //
254 // solve it
255 //
256
257 // L-U Factorization
258 for ( i = 1; i < size - 2; i++ )
259 {
260 c[i] /= a[i];
261 a[i+1] -= b[i] * c[i];
262 }
263
264 // forward elimination
265 QVector<double> s( size );
266 s[1] = d[1];
267 for ( i = 2; i < size - 1; i++ )
268 s[i] = d[i] - c[i-1] * s[i-1];
269
270 // backward elimination
271 s[size - 2] = - s[size - 2] / a[size - 2];
272 for ( i = size - 3; i > 0; i-- )
273 s[i] = - ( s[i] + b[i] * s[i+1] ) / a[i];
274 s[size - 1] = s[0] = 0.0;
275
276 //
277 // Finally, determine the spline coefficients
278 //
279 for ( i = 0; i < size - 1; i++ )
280 {
281 a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i] );
282 b[i] = 0.5 * s[i];
283 c[i] = ( p[i+1].y() - p[i].y() ) / h[i]
284 - ( s[i+1] + 2.0 * s[i] ) * h[i] / 6.0;
285 }
286
287 return true;
288}
289
290/*!
291 \brief Determines the coefficients for a periodic spline
292 \return true if successful
293*/
294bool QwtSpline::buildPeriodicSpline( const QPolygonF &points )
295{
296 int i;
297
298 const QPointF *p = points.data();
299 const int size = points.size();
300
301 double *a = d_data->a.data();
302 double *b = d_data->b.data();
303 double *c = d_data->c.data();
304
305 QVector<double> d( size - 1 );
306 QVector<double> h( size - 1 );
307 QVector<double> s( size );
308
309 //
310 // setup equation system; use coefficient
311 // vectors as temporary buffers
312 //
313 for ( i = 0; i < size - 1; i++ )
314 {
315 h[i] = p[i+1].x() - p[i].x();
316 if ( h[i] <= 0.0 )
317 return false;
318 }
319
320 const int imax = size - 2;
321 double htmp = h[imax];
322 double dy1 = ( p[0].y() - p[imax].y() ) / htmp;
323 for ( i = 0; i <= imax; i++ )
324 {
325 b[i] = c[i] = h[i];
326 a[i] = 2.0 * ( htmp + h[i] );
327 const double dy2 = ( p[i+1].y() - p[i].y() ) / h[i];
328 d[i] = 6.0 * ( dy1 - dy2 );
329 dy1 = dy2;
330 htmp = h[i];
331 }
332
333 //
334 // solve it
335 //
336
337 // L-U Factorization
338 a[0] = qSqrt( a[0] );
339 c[0] = h[imax] / a[0];
340 double sum = 0;
341
342 for ( i = 0; i < imax - 1; i++ )
343 {
344 b[i] /= a[i];
345 if ( i > 0 )
346 c[i] = - c[i-1] * b[i-1] / a[i];
347 a[i+1] = qSqrt( a[i+1] - qwtSqr( b[i] ) );
348 sum += qwtSqr( c[i] );
349 }
350 b[imax-1] = ( b[imax-1] - c[imax-2] * b[imax-2] ) / a[imax-1];
351 a[imax] = qSqrt( a[imax] - qwtSqr( b[imax-1] ) - sum );
352
353
354 // forward elimination
355 s[0] = d[0] / a[0];
356 sum = 0;
357 for ( i = 1; i < imax; i++ )
358 {
359 s[i] = ( d[i] - b[i-1] * s[i-1] ) / a[i];
360 sum += c[i-1] * s[i-1];
361 }
362 s[imax] = ( d[imax] - b[imax-1] * s[imax-1] - sum ) / a[imax];
363
364
365 // backward elimination
366 s[imax] = - s[imax] / a[imax];
367 s[imax-1] = -( s[imax-1] + b[imax-1] * s[imax] ) / a[imax-1];
368 for ( i = imax - 2; i >= 0; i-- )
369 s[i] = - ( s[i] + b[i] * s[i+1] + c[i] * s[imax] ) / a[i];
370
371 //
372 // Finally, determine the spline coefficients
373 //
374 s[size-1] = s[0];
375 for ( i = 0; i < size - 1; i++ )
376 {
377 a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i] );
378 b[i] = 0.5 * s[i];
379 c[i] = ( p[i+1].y() - p[i].y() )
380 / h[i] - ( s[i+1] + 2.0 * s[i] ) * h[i] / 6.0;
381 }
382
383 return true;
384}
Note: See TracBrowser for help on using the repository browser.