1 | /* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
|
---|
2 | * Qwt Widget Library
|
---|
3 | * Copyright (C) 1997 Josef Wilgen
|
---|
4 | * Copyright (C) 2002 Uwe Rathmann
|
---|
5 | *
|
---|
6 | * This library is free software; you can redistribute it and/or
|
---|
7 | * modify it under the terms of the Qwt License, Version 1.0
|
---|
8 | *****************************************************************************/
|
---|
9 |
|
---|
10 | #include "qwt_scale_engine.h"
|
---|
11 | #include "qwt_math.h"
|
---|
12 | #include "qwt_scale_map.h"
|
---|
13 | #include <qalgorithms.h>
|
---|
14 | #include <qmath.h>
|
---|
15 | #include <float.h>
|
---|
16 | #include <limits>
|
---|
17 |
|
---|
18 | #if QT_VERSION < 0x040601
|
---|
19 | #define qFabs(x) ::fabs(x)
|
---|
20 | #define qExp(x) ::exp(x)
|
---|
21 | #endif
|
---|
22 |
|
---|
23 | static inline double qwtLog( double base, double value )
|
---|
24 | {
|
---|
25 | return log( value ) / log( base );
|
---|
26 | }
|
---|
27 |
|
---|
28 | static inline QwtInterval qwtLogInterval( double base, const QwtInterval &interval )
|
---|
29 | {
|
---|
30 | return QwtInterval( qwtLog( base, interval.minValue() ),
|
---|
31 | qwtLog( base, interval.maxValue() ) );
|
---|
32 | }
|
---|
33 |
|
---|
34 | static inline QwtInterval qwtPowInterval( double base, const QwtInterval &interval )
|
---|
35 | {
|
---|
36 | return QwtInterval( qPow( base, interval.minValue() ),
|
---|
37 | qPow( base, interval.maxValue() ) );
|
---|
38 | }
|
---|
39 |
|
---|
40 | static inline long double qwtIntervalWidthL( const QwtInterval &interval )
|
---|
41 | {
|
---|
42 | if ( !interval.isValid() )
|
---|
43 | return 0.0;
|
---|
44 |
|
---|
45 | return static_cast<long double>( interval.maxValue() )
|
---|
46 | - static_cast<long double>( interval.minValue() );
|
---|
47 | }
|
---|
48 |
|
---|
49 | #if 1
|
---|
50 |
|
---|
51 | // this version often doesn't find the best ticks: f.e for 15: 5, 10
|
---|
52 | static double qwtStepSize( double intervalSize, int maxSteps, uint base )
|
---|
53 | {
|
---|
54 | const double minStep =
|
---|
55 | QwtScaleArithmetic::divideInterval( intervalSize, maxSteps, base );
|
---|
56 |
|
---|
57 | if ( minStep != 0.0 )
|
---|
58 | {
|
---|
59 | // # ticks per interval
|
---|
60 | const int numTicks = qCeil( qAbs( intervalSize / minStep ) ) - 1;
|
---|
61 |
|
---|
62 | // Do the minor steps fit into the interval?
|
---|
63 | if ( qwtFuzzyCompare( ( numTicks + 1 ) * qAbs( minStep ),
|
---|
64 | qAbs( intervalSize ), intervalSize ) > 0 )
|
---|
65 | {
|
---|
66 | // The minor steps doesn't fit into the interval
|
---|
67 | return 0.5 * intervalSize;
|
---|
68 | }
|
---|
69 | }
|
---|
70 |
|
---|
71 | return minStep;
|
---|
72 | }
|
---|
73 |
|
---|
74 | #else
|
---|
75 |
|
---|
76 | static double qwtStepSize( double intervalSize, int maxSteps, uint base )
|
---|
77 | {
|
---|
78 | if ( maxSteps <= 0 )
|
---|
79 | return 0.0;
|
---|
80 |
|
---|
81 | if ( maxSteps > 2 )
|
---|
82 | {
|
---|
83 | for ( int numSteps = maxSteps; numSteps > 1; numSteps-- )
|
---|
84 | {
|
---|
85 | const double stepSize = intervalSize / numSteps;
|
---|
86 |
|
---|
87 | const double p = ::floor( ::log( stepSize ) / ::log( base ) );
|
---|
88 | const double fraction = qPow( base, p );
|
---|
89 |
|
---|
90 | for ( uint n = base; n > 1; n /= 2 )
|
---|
91 | {
|
---|
92 | if ( qFuzzyCompare( stepSize, n * fraction ) )
|
---|
93 | return stepSize;
|
---|
94 |
|
---|
95 | if ( n == 3 && ( base % 2 ) == 0 )
|
---|
96 | {
|
---|
97 | if ( qFuzzyCompare( stepSize, 2 * fraction ) )
|
---|
98 | return stepSize;
|
---|
99 | }
|
---|
100 | }
|
---|
101 | }
|
---|
102 | }
|
---|
103 |
|
---|
104 | return intervalSize * 0.5;
|
---|
105 | }
|
---|
106 |
|
---|
107 | #endif
|
---|
108 |
|
---|
109 | static const double _eps = 1.0e-6;
|
---|
110 |
|
---|
111 | /*!
|
---|
112 | Ceil a value, relative to an interval
|
---|
113 |
|
---|
114 | \param value Value to be ceiled
|
---|
115 | \param intervalSize Interval size
|
---|
116 |
|
---|
117 | \return Rounded value
|
---|
118 |
|
---|
119 | \sa floorEps()
|
---|
120 | */
|
---|
121 | double QwtScaleArithmetic::ceilEps( double value,
|
---|
122 | double intervalSize )
|
---|
123 | {
|
---|
124 | const double eps = _eps * intervalSize;
|
---|
125 |
|
---|
126 | value = ( value - eps ) / intervalSize;
|
---|
127 | return ::ceil( value ) * intervalSize;
|
---|
128 | }
|
---|
129 |
|
---|
130 | /*!
|
---|
131 | Floor a value, relative to an interval
|
---|
132 |
|
---|
133 | \param value Value to be floored
|
---|
134 | \param intervalSize Interval size
|
---|
135 |
|
---|
136 | \return Rounded value
|
---|
137 | \sa floorEps()
|
---|
138 | */
|
---|
139 | double QwtScaleArithmetic::floorEps( double value, double intervalSize )
|
---|
140 | {
|
---|
141 | const double eps = _eps * intervalSize;
|
---|
142 |
|
---|
143 | value = ( value + eps ) / intervalSize;
|
---|
144 | return ::floor( value ) * intervalSize;
|
---|
145 | }
|
---|
146 |
|
---|
147 | /*!
|
---|
148 | \brief Divide an interval into steps
|
---|
149 |
|
---|
150 | \f$stepSize = (intervalSize - intervalSize * 10e^{-6}) / numSteps\f$
|
---|
151 |
|
---|
152 | \param intervalSize Interval size
|
---|
153 | \param numSteps Number of steps
|
---|
154 | \return Step size
|
---|
155 | */
|
---|
156 | double QwtScaleArithmetic::divideEps( double intervalSize, double numSteps )
|
---|
157 | {
|
---|
158 | if ( numSteps == 0.0 || intervalSize == 0.0 )
|
---|
159 | return 0.0;
|
---|
160 |
|
---|
161 | return ( intervalSize - ( _eps * intervalSize ) ) / numSteps;
|
---|
162 | }
|
---|
163 |
|
---|
164 | /*!
|
---|
165 | Calculate a step size for a given interval
|
---|
166 |
|
---|
167 | \param intervalSize Interval size
|
---|
168 | \param numSteps Number of steps
|
---|
169 | \param base Base for the division ( usually 10 )
|
---|
170 |
|
---|
171 | \return Calculated step size
|
---|
172 | */
|
---|
173 | double QwtScaleArithmetic::divideInterval(
|
---|
174 | double intervalSize, int numSteps, uint base )
|
---|
175 | {
|
---|
176 | if ( numSteps <= 0 )
|
---|
177 | return 0.0;
|
---|
178 |
|
---|
179 | const double v = QwtScaleArithmetic::divideEps( intervalSize, numSteps );
|
---|
180 | if ( v == 0.0 )
|
---|
181 | return 0.0;
|
---|
182 |
|
---|
183 | const double lx = qwtLog( base, qFabs( v ) );
|
---|
184 | const double p = ::floor( lx );
|
---|
185 |
|
---|
186 | const double fraction = qPow( base, lx - p );
|
---|
187 |
|
---|
188 | uint n = base;
|
---|
189 | while ( ( n > 1 ) && ( fraction <= n / 2 ) )
|
---|
190 | n /= 2;
|
---|
191 |
|
---|
192 | double stepSize = n * qPow( base, p );
|
---|
193 | if ( v < 0 )
|
---|
194 | stepSize = -stepSize;
|
---|
195 |
|
---|
196 | return stepSize;
|
---|
197 | }
|
---|
198 |
|
---|
199 | class QwtScaleEngine::PrivateData
|
---|
200 | {
|
---|
201 | public:
|
---|
202 | PrivateData():
|
---|
203 | attributes( QwtScaleEngine::NoAttribute ),
|
---|
204 | lowerMargin( 0.0 ),
|
---|
205 | upperMargin( 0.0 ),
|
---|
206 | referenceValue( 0.0 ),
|
---|
207 | base( 10 ),
|
---|
208 | transform( NULL )
|
---|
209 | {
|
---|
210 | }
|
---|
211 |
|
---|
212 | ~PrivateData()
|
---|
213 | {
|
---|
214 | delete transform;
|
---|
215 | }
|
---|
216 |
|
---|
217 | QwtScaleEngine::Attributes attributes;
|
---|
218 |
|
---|
219 | double lowerMargin;
|
---|
220 | double upperMargin;
|
---|
221 |
|
---|
222 | double referenceValue;
|
---|
223 |
|
---|
224 | uint base;
|
---|
225 |
|
---|
226 | QwtTransform* transform;
|
---|
227 | };
|
---|
228 |
|
---|
229 | /*!
|
---|
230 | Constructor
|
---|
231 |
|
---|
232 | \param base Base of the scale engine
|
---|
233 | \sa setBase()
|
---|
234 | */
|
---|
235 | QwtScaleEngine::QwtScaleEngine( uint base )
|
---|
236 | {
|
---|
237 | d_data = new PrivateData;
|
---|
238 | setBase( base );
|
---|
239 | }
|
---|
240 |
|
---|
241 |
|
---|
242 | //! Destructor
|
---|
243 | QwtScaleEngine::~QwtScaleEngine ()
|
---|
244 | {
|
---|
245 | delete d_data;
|
---|
246 | }
|
---|
247 |
|
---|
248 | /*!
|
---|
249 | Assign a transformation
|
---|
250 |
|
---|
251 | \param transform Transformation
|
---|
252 |
|
---|
253 | The transformation object is used as factory for clones
|
---|
254 | that are returned by transformation()
|
---|
255 |
|
---|
256 | The scale engine takes ownership of the transformation.
|
---|
257 |
|
---|
258 | \sa QwtTransform::copy(), transformation()
|
---|
259 |
|
---|
260 | */
|
---|
261 | void QwtScaleEngine::setTransformation( QwtTransform *transform )
|
---|
262 | {
|
---|
263 | if ( transform != d_data->transform )
|
---|
264 | {
|
---|
265 | delete d_data->transform;
|
---|
266 | d_data->transform = transform;
|
---|
267 | }
|
---|
268 | }
|
---|
269 |
|
---|
270 | /*!
|
---|
271 | Create and return a clone of the transformation
|
---|
272 | of the engine. When the engine has no special transformation
|
---|
273 | NULL is returned, indicating no transformation.
|
---|
274 |
|
---|
275 | \return A clone of the transfomation
|
---|
276 | \sa setTransformation()
|
---|
277 | */
|
---|
278 | QwtTransform *QwtScaleEngine::transformation() const
|
---|
279 | {
|
---|
280 | QwtTransform *transform = NULL;
|
---|
281 | if ( d_data->transform )
|
---|
282 | transform = d_data->transform->copy();
|
---|
283 |
|
---|
284 | return transform;
|
---|
285 | }
|
---|
286 |
|
---|
287 | /*!
|
---|
288 | \return the margin at the lower end of the scale
|
---|
289 | The default margin is 0.
|
---|
290 |
|
---|
291 | \sa setMargins()
|
---|
292 | */
|
---|
293 | double QwtScaleEngine::lowerMargin() const
|
---|
294 | {
|
---|
295 | return d_data->lowerMargin;
|
---|
296 | }
|
---|
297 |
|
---|
298 | /*!
|
---|
299 | \return the margin at the upper end of the scale
|
---|
300 | The default margin is 0.
|
---|
301 |
|
---|
302 | \sa setMargins()
|
---|
303 | */
|
---|
304 | double QwtScaleEngine::upperMargin() const
|
---|
305 | {
|
---|
306 | return d_data->upperMargin;
|
---|
307 | }
|
---|
308 |
|
---|
309 | /*!
|
---|
310 | \brief Specify margins at the scale's endpoints
|
---|
311 | \param lower minimum distance between the scale's lower boundary and the
|
---|
312 | smallest enclosed value
|
---|
313 | \param upper minimum distance between the scale's upper boundary and the
|
---|
314 | greatest enclosed value
|
---|
315 |
|
---|
316 | Margins can be used to leave a minimum amount of space between
|
---|
317 | the enclosed intervals and the boundaries of the scale.
|
---|
318 |
|
---|
319 | \warning
|
---|
320 | \li QwtLogScaleEngine measures the margins in decades.
|
---|
321 |
|
---|
322 | \sa upperMargin(), lowerMargin()
|
---|
323 | */
|
---|
324 |
|
---|
325 | void QwtScaleEngine::setMargins( double lower, double upper )
|
---|
326 | {
|
---|
327 | d_data->lowerMargin = qMax( lower, 0.0 );
|
---|
328 | d_data->upperMargin = qMax( upper, 0.0 );
|
---|
329 | }
|
---|
330 |
|
---|
331 | /*!
|
---|
332 | Calculate a step size for an interval size
|
---|
333 |
|
---|
334 | \param intervalSize Interval size
|
---|
335 | \param numSteps Number of steps
|
---|
336 |
|
---|
337 | \return Step size
|
---|
338 | */
|
---|
339 | double QwtScaleEngine::divideInterval(
|
---|
340 | double intervalSize, int numSteps ) const
|
---|
341 | {
|
---|
342 | return QwtScaleArithmetic::divideInterval(
|
---|
343 | intervalSize, numSteps, d_data->base );
|
---|
344 | }
|
---|
345 |
|
---|
346 | /*!
|
---|
347 | Check if an interval "contains" a value
|
---|
348 |
|
---|
349 | \param interval Interval
|
---|
350 | \param value Value
|
---|
351 |
|
---|
352 | \return True, when the value is inside the interval
|
---|
353 | */
|
---|
354 | bool QwtScaleEngine::contains(
|
---|
355 | const QwtInterval &interval, double value ) const
|
---|
356 | {
|
---|
357 | if ( !interval.isValid() )
|
---|
358 | return false;
|
---|
359 |
|
---|
360 | if ( qwtFuzzyCompare( value, interval.minValue(), interval.width() ) < 0 )
|
---|
361 | return false;
|
---|
362 |
|
---|
363 | if ( qwtFuzzyCompare( value, interval.maxValue(), interval.width() ) > 0 )
|
---|
364 | return false;
|
---|
365 |
|
---|
366 | return true;
|
---|
367 | }
|
---|
368 |
|
---|
369 | /*!
|
---|
370 | Remove ticks from a list, that are not inside an interval
|
---|
371 |
|
---|
372 | \param ticks Tick list
|
---|
373 | \param interval Interval
|
---|
374 |
|
---|
375 | \return Stripped tick list
|
---|
376 | */
|
---|
377 | QList<double> QwtScaleEngine::strip( const QList<double>& ticks,
|
---|
378 | const QwtInterval &interval ) const
|
---|
379 | {
|
---|
380 | if ( !interval.isValid() || ticks.count() == 0 )
|
---|
381 | return QList<double>();
|
---|
382 |
|
---|
383 | if ( contains( interval, ticks.first() )
|
---|
384 | && contains( interval, ticks.last() ) )
|
---|
385 | {
|
---|
386 | return ticks;
|
---|
387 | }
|
---|
388 |
|
---|
389 | QList<double> strippedTicks;
|
---|
390 | for ( int i = 0; i < ticks.count(); i++ )
|
---|
391 | {
|
---|
392 | if ( contains( interval, ticks[i] ) )
|
---|
393 | strippedTicks += ticks[i];
|
---|
394 | }
|
---|
395 | return strippedTicks;
|
---|
396 | }
|
---|
397 |
|
---|
398 | /*!
|
---|
399 | \brief Build an interval around a value
|
---|
400 |
|
---|
401 | In case of v == 0.0 the interval is [-0.5, 0.5],
|
---|
402 | otherwide it is [0.5 * v, 1.5 * v]
|
---|
403 |
|
---|
404 | \param value Initial value
|
---|
405 | \return Calculated interval
|
---|
406 | */
|
---|
407 |
|
---|
408 | QwtInterval QwtScaleEngine::buildInterval( double value ) const
|
---|
409 | {
|
---|
410 | const double delta = ( value == 0.0 ) ? 0.5 : qAbs( 0.5 * value );
|
---|
411 |
|
---|
412 | if ( DBL_MAX - delta < value )
|
---|
413 | return QwtInterval( DBL_MAX - delta, DBL_MAX );
|
---|
414 |
|
---|
415 | if ( -DBL_MAX + delta > value )
|
---|
416 | return QwtInterval( -DBL_MAX, -DBL_MAX + delta );
|
---|
417 |
|
---|
418 | return QwtInterval( value - delta, value + delta );
|
---|
419 | }
|
---|
420 |
|
---|
421 | /*!
|
---|
422 | Change a scale attribute
|
---|
423 |
|
---|
424 | \param attribute Attribute to change
|
---|
425 | \param on On/Off
|
---|
426 |
|
---|
427 | \sa Attribute, testAttribute()
|
---|
428 | */
|
---|
429 | void QwtScaleEngine::setAttribute( Attribute attribute, bool on )
|
---|
430 | {
|
---|
431 | if ( on )
|
---|
432 | d_data->attributes |= attribute;
|
---|
433 | else
|
---|
434 | d_data->attributes &= ~attribute;
|
---|
435 | }
|
---|
436 |
|
---|
437 | /*!
|
---|
438 | \return True, if attribute is enabled.
|
---|
439 |
|
---|
440 | \param attribute Attribute to be tested
|
---|
441 | \sa Attribute, setAttribute()
|
---|
442 | */
|
---|
443 | bool QwtScaleEngine::testAttribute( Attribute attribute ) const
|
---|
444 | {
|
---|
445 | return ( d_data->attributes & attribute );
|
---|
446 | }
|
---|
447 |
|
---|
448 | /*!
|
---|
449 | Change the scale attribute
|
---|
450 |
|
---|
451 | \param attributes Set scale attributes
|
---|
452 | \sa Attribute, attributes()
|
---|
453 | */
|
---|
454 | void QwtScaleEngine::setAttributes( Attributes attributes )
|
---|
455 | {
|
---|
456 | d_data->attributes = attributes;
|
---|
457 | }
|
---|
458 |
|
---|
459 | /*!
|
---|
460 | \return Scale attributes
|
---|
461 | \sa Attribute, setAttributes(), testAttribute()
|
---|
462 | */
|
---|
463 | QwtScaleEngine::Attributes QwtScaleEngine::attributes() const
|
---|
464 | {
|
---|
465 | return d_data->attributes;
|
---|
466 | }
|
---|
467 |
|
---|
468 | /*!
|
---|
469 | \brief Specify a reference point
|
---|
470 | \param r new reference value
|
---|
471 |
|
---|
472 | The reference point is needed if options IncludeReference or
|
---|
473 | Symmetric are active. Its default value is 0.0.
|
---|
474 |
|
---|
475 | \sa Attribute
|
---|
476 | */
|
---|
477 | void QwtScaleEngine::setReference( double r )
|
---|
478 | {
|
---|
479 | d_data->referenceValue = r;
|
---|
480 | }
|
---|
481 |
|
---|
482 | /*!
|
---|
483 | \return the reference value
|
---|
484 | \sa setReference(), setAttribute()
|
---|
485 | */
|
---|
486 | double QwtScaleEngine::reference() const
|
---|
487 | {
|
---|
488 | return d_data->referenceValue;
|
---|
489 | }
|
---|
490 |
|
---|
491 | /*!
|
---|
492 | Set the base of the scale engine
|
---|
493 |
|
---|
494 | While a base of 10 is what 99.9% of all applications need
|
---|
495 | certain scales might need a different base: f.e 2
|
---|
496 |
|
---|
497 | The default setting is 10
|
---|
498 |
|
---|
499 | \param base Base of the engine
|
---|
500 |
|
---|
501 | \sa base()
|
---|
502 | */
|
---|
503 | void QwtScaleEngine::setBase( uint base )
|
---|
504 | {
|
---|
505 | d_data->base = qMax( base, 2U );
|
---|
506 | }
|
---|
507 |
|
---|
508 | /*!
|
---|
509 | \return base Base of the scale engine
|
---|
510 | \sa setBase()
|
---|
511 | */
|
---|
512 | uint QwtScaleEngine::base() const
|
---|
513 | {
|
---|
514 | return d_data->base;
|
---|
515 | }
|
---|
516 |
|
---|
517 | /*!
|
---|
518 | Constructor
|
---|
519 |
|
---|
520 | \param base Base of the scale engine
|
---|
521 | \sa setBase()
|
---|
522 | */
|
---|
523 | QwtLinearScaleEngine::QwtLinearScaleEngine( uint base ):
|
---|
524 | QwtScaleEngine( base )
|
---|
525 | {
|
---|
526 | }
|
---|
527 |
|
---|
528 | //! Destructor
|
---|
529 | QwtLinearScaleEngine::~QwtLinearScaleEngine()
|
---|
530 | {
|
---|
531 | }
|
---|
532 |
|
---|
533 | /*!
|
---|
534 | Align and divide an interval
|
---|
535 |
|
---|
536 | \param maxNumSteps Max. number of steps
|
---|
537 | \param x1 First limit of the interval (In/Out)
|
---|
538 | \param x2 Second limit of the interval (In/Out)
|
---|
539 | \param stepSize Step size (Out)
|
---|
540 |
|
---|
541 | \sa setAttribute()
|
---|
542 | */
|
---|
543 | void QwtLinearScaleEngine::autoScale( int maxNumSteps,
|
---|
544 | double &x1, double &x2, double &stepSize ) const
|
---|
545 | {
|
---|
546 | QwtInterval interval( x1, x2 );
|
---|
547 | interval = interval.normalized();
|
---|
548 |
|
---|
549 | interval.setMinValue( interval.minValue() - lowerMargin() );
|
---|
550 | interval.setMaxValue( interval.maxValue() + upperMargin() );
|
---|
551 |
|
---|
552 | if ( testAttribute( QwtScaleEngine::Symmetric ) )
|
---|
553 | interval = interval.symmetrize( reference() );
|
---|
554 |
|
---|
555 | if ( testAttribute( QwtScaleEngine::IncludeReference ) )
|
---|
556 | interval = interval.extend( reference() );
|
---|
557 |
|
---|
558 | if ( interval.width() == 0.0 )
|
---|
559 | interval = buildInterval( interval.minValue() );
|
---|
560 |
|
---|
561 | stepSize = QwtScaleArithmetic::divideInterval(
|
---|
562 | interval.width(), qMax( maxNumSteps, 1 ), base() );
|
---|
563 |
|
---|
564 | if ( !testAttribute( QwtScaleEngine::Floating ) )
|
---|
565 | interval = align( interval, stepSize );
|
---|
566 |
|
---|
567 | x1 = interval.minValue();
|
---|
568 | x2 = interval.maxValue();
|
---|
569 |
|
---|
570 | if ( testAttribute( QwtScaleEngine::Inverted ) )
|
---|
571 | {
|
---|
572 | qSwap( x1, x2 );
|
---|
573 | stepSize = -stepSize;
|
---|
574 | }
|
---|
575 | }
|
---|
576 |
|
---|
577 | /*!
|
---|
578 | \brief Calculate a scale division for an interval
|
---|
579 |
|
---|
580 | \param x1 First interval limit
|
---|
581 | \param x2 Second interval limit
|
---|
582 | \param maxMajorSteps Maximum for the number of major steps
|
---|
583 | \param maxMinorSteps Maximum number of minor steps
|
---|
584 | \param stepSize Step size. If stepSize == 0, the engine
|
---|
585 | calculates one.
|
---|
586 |
|
---|
587 | \return Calculated scale division
|
---|
588 | */
|
---|
589 | QwtScaleDiv QwtLinearScaleEngine::divideScale( double x1, double x2,
|
---|
590 | int maxMajorSteps, int maxMinorSteps, double stepSize ) const
|
---|
591 | {
|
---|
592 | QwtInterval interval = QwtInterval( x1, x2 ).normalized();
|
---|
593 |
|
---|
594 | if ( qwtIntervalWidthL( interval ) > std::numeric_limits<double>::max() )
|
---|
595 | {
|
---|
596 | qWarning() << "QwtLinearScaleEngine::divideScale: overflow";
|
---|
597 | return QwtScaleDiv();
|
---|
598 | }
|
---|
599 |
|
---|
600 | if ( interval.width() <= 0 )
|
---|
601 | return QwtScaleDiv();
|
---|
602 |
|
---|
603 | stepSize = qAbs( stepSize );
|
---|
604 | if ( stepSize == 0.0 )
|
---|
605 | {
|
---|
606 | if ( maxMajorSteps < 1 )
|
---|
607 | maxMajorSteps = 1;
|
---|
608 |
|
---|
609 | stepSize = QwtScaleArithmetic::divideInterval(
|
---|
610 | interval.width(), maxMajorSteps, base() );
|
---|
611 | }
|
---|
612 |
|
---|
613 | QwtScaleDiv scaleDiv;
|
---|
614 |
|
---|
615 | if ( stepSize != 0.0 )
|
---|
616 | {
|
---|
617 | QList<double> ticks[QwtScaleDiv::NTickTypes];
|
---|
618 | buildTicks( interval, stepSize, maxMinorSteps, ticks );
|
---|
619 |
|
---|
620 | scaleDiv = QwtScaleDiv( interval, ticks );
|
---|
621 | }
|
---|
622 |
|
---|
623 | if ( x1 > x2 )
|
---|
624 | scaleDiv.invert();
|
---|
625 |
|
---|
626 | return scaleDiv;
|
---|
627 | }
|
---|
628 |
|
---|
629 | /*!
|
---|
630 | \brief Calculate ticks for an interval
|
---|
631 |
|
---|
632 | \param interval Interval
|
---|
633 | \param stepSize Step size
|
---|
634 | \param maxMinorSteps Maximum number of minor steps
|
---|
635 | \param ticks Arrays to be filled with the calculated ticks
|
---|
636 |
|
---|
637 | \sa buildMajorTicks(), buildMinorTicks
|
---|
638 | */
|
---|
639 | void QwtLinearScaleEngine::buildTicks(
|
---|
640 | const QwtInterval& interval, double stepSize, int maxMinorSteps,
|
---|
641 | QList<double> ticks[QwtScaleDiv::NTickTypes] ) const
|
---|
642 | {
|
---|
643 | const QwtInterval boundingInterval = align( interval, stepSize );
|
---|
644 |
|
---|
645 | ticks[QwtScaleDiv::MajorTick] =
|
---|
646 | buildMajorTicks( boundingInterval, stepSize );
|
---|
647 |
|
---|
648 | if ( maxMinorSteps > 0 )
|
---|
649 | {
|
---|
650 | buildMinorTicks( ticks[QwtScaleDiv::MajorTick], maxMinorSteps, stepSize,
|
---|
651 | ticks[QwtScaleDiv::MinorTick], ticks[QwtScaleDiv::MediumTick] );
|
---|
652 | }
|
---|
653 |
|
---|
654 | for ( int i = 0; i < QwtScaleDiv::NTickTypes; i++ )
|
---|
655 | {
|
---|
656 | ticks[i] = strip( ticks[i], interval );
|
---|
657 |
|
---|
658 | // ticks very close to 0.0 are
|
---|
659 | // explicitely set to 0.0
|
---|
660 |
|
---|
661 | for ( int j = 0; j < ticks[i].count(); j++ )
|
---|
662 | {
|
---|
663 | if ( qwtFuzzyCompare( ticks[i][j], 0.0, stepSize ) == 0 )
|
---|
664 | ticks[i][j] = 0.0;
|
---|
665 | }
|
---|
666 | }
|
---|
667 | }
|
---|
668 |
|
---|
669 | /*!
|
---|
670 | \brief Calculate major ticks for an interval
|
---|
671 |
|
---|
672 | \param interval Interval
|
---|
673 | \param stepSize Step size
|
---|
674 |
|
---|
675 | \return Calculated ticks
|
---|
676 | */
|
---|
677 | QList<double> QwtLinearScaleEngine::buildMajorTicks(
|
---|
678 | const QwtInterval &interval, double stepSize ) const
|
---|
679 | {
|
---|
680 | int numTicks = qRound( interval.width() / stepSize ) + 1;
|
---|
681 | if ( numTicks > 10000 )
|
---|
682 | numTicks = 10000;
|
---|
683 |
|
---|
684 | QList<double> ticks;
|
---|
685 |
|
---|
686 | ticks += interval.minValue();
|
---|
687 | for ( int i = 1; i < numTicks - 1; i++ )
|
---|
688 | ticks += interval.minValue() + i * stepSize;
|
---|
689 | ticks += interval.maxValue();
|
---|
690 |
|
---|
691 | return ticks;
|
---|
692 | }
|
---|
693 |
|
---|
694 | /*!
|
---|
695 | \brief Calculate minor/medium ticks for major ticks
|
---|
696 |
|
---|
697 | \param majorTicks Major ticks
|
---|
698 | \param maxMinorSteps Maximum number of minor steps
|
---|
699 | \param stepSize Step size
|
---|
700 | \param minorTicks Array to be filled with the calculated minor ticks
|
---|
701 | \param mediumTicks Array to be filled with the calculated medium ticks
|
---|
702 |
|
---|
703 | */
|
---|
704 | void QwtLinearScaleEngine::buildMinorTicks(
|
---|
705 | const QList<double>& majorTicks,
|
---|
706 | int maxMinorSteps, double stepSize,
|
---|
707 | QList<double> &minorTicks,
|
---|
708 | QList<double> &mediumTicks ) const
|
---|
709 | {
|
---|
710 | double minStep = qwtStepSize( stepSize, maxMinorSteps, base() );
|
---|
711 | if ( minStep == 0.0 )
|
---|
712 | return;
|
---|
713 |
|
---|
714 | // # ticks per interval
|
---|
715 | const int numTicks = qCeil( qAbs( stepSize / minStep ) ) - 1;
|
---|
716 |
|
---|
717 | int medIndex = -1;
|
---|
718 | if ( numTicks % 2 )
|
---|
719 | medIndex = numTicks / 2;
|
---|
720 |
|
---|
721 | // calculate minor ticks
|
---|
722 |
|
---|
723 | for ( int i = 0; i < majorTicks.count(); i++ )
|
---|
724 | {
|
---|
725 | double val = majorTicks[i];
|
---|
726 | for ( int k = 0; k < numTicks; k++ )
|
---|
727 | {
|
---|
728 | val += minStep;
|
---|
729 |
|
---|
730 | double alignedValue = val;
|
---|
731 | if ( qwtFuzzyCompare( val, 0.0, stepSize ) == 0 )
|
---|
732 | alignedValue = 0.0;
|
---|
733 |
|
---|
734 | if ( k == medIndex )
|
---|
735 | mediumTicks += alignedValue;
|
---|
736 | else
|
---|
737 | minorTicks += alignedValue;
|
---|
738 | }
|
---|
739 | }
|
---|
740 | }
|
---|
741 |
|
---|
742 | /*!
|
---|
743 | \brief Align an interval to a step size
|
---|
744 |
|
---|
745 | The limits of an interval are aligned that both are integer
|
---|
746 | multiples of the step size.
|
---|
747 |
|
---|
748 | \param interval Interval
|
---|
749 | \param stepSize Step size
|
---|
750 |
|
---|
751 | \return Aligned interval
|
---|
752 | */
|
---|
753 | QwtInterval QwtLinearScaleEngine::align(
|
---|
754 | const QwtInterval &interval, double stepSize ) const
|
---|
755 | {
|
---|
756 | double x1 = interval.minValue();
|
---|
757 | double x2 = interval.maxValue();
|
---|
758 |
|
---|
759 | // when there is no rounding beside some effect, when
|
---|
760 | // calculating with doubles, we keep the original value
|
---|
761 |
|
---|
762 | const double eps = 0.000000000001; // since Qt 4.8: qFuzzyIsNull
|
---|
763 | if ( -DBL_MAX + stepSize <= x1 )
|
---|
764 | {
|
---|
765 | const double x = QwtScaleArithmetic::floorEps( x1, stepSize );
|
---|
766 | if ( qAbs(x) <= eps || !qFuzzyCompare( x1, x ) )
|
---|
767 | x1 = x;
|
---|
768 | }
|
---|
769 |
|
---|
770 | if ( DBL_MAX - stepSize >= x2 )
|
---|
771 | {
|
---|
772 | const double x = QwtScaleArithmetic::ceilEps( x2, stepSize );
|
---|
773 | if ( qAbs(x) <= eps || !qFuzzyCompare( x2, x ) )
|
---|
774 | x2 = x;
|
---|
775 | }
|
---|
776 |
|
---|
777 | return QwtInterval( x1, x2 );
|
---|
778 | }
|
---|
779 |
|
---|
780 | /*!
|
---|
781 | Constructor
|
---|
782 |
|
---|
783 | \param base Base of the scale engine
|
---|
784 | \sa setBase()
|
---|
785 | */
|
---|
786 | QwtLogScaleEngine::QwtLogScaleEngine( uint base ):
|
---|
787 | QwtScaleEngine( base )
|
---|
788 | {
|
---|
789 | setTransformation( new QwtLogTransform() );
|
---|
790 | }
|
---|
791 |
|
---|
792 | //! Destructor
|
---|
793 | QwtLogScaleEngine::~QwtLogScaleEngine()
|
---|
794 | {
|
---|
795 | }
|
---|
796 |
|
---|
797 | /*!
|
---|
798 | Align and divide an interval
|
---|
799 |
|
---|
800 | \param maxNumSteps Max. number of steps
|
---|
801 | \param x1 First limit of the interval (In/Out)
|
---|
802 | \param x2 Second limit of the interval (In/Out)
|
---|
803 | \param stepSize Step size (Out)
|
---|
804 |
|
---|
805 | \sa QwtScaleEngine::setAttribute()
|
---|
806 | */
|
---|
807 | void QwtLogScaleEngine::autoScale( int maxNumSteps,
|
---|
808 | double &x1, double &x2, double &stepSize ) const
|
---|
809 | {
|
---|
810 | if ( x1 > x2 )
|
---|
811 | qSwap( x1, x2 );
|
---|
812 |
|
---|
813 | const double logBase = base();
|
---|
814 |
|
---|
815 | QwtInterval interval( x1 / qPow( logBase, lowerMargin() ),
|
---|
816 | x2 * qPow( logBase, upperMargin() ) );
|
---|
817 |
|
---|
818 | if ( interval.maxValue() / interval.minValue() < logBase )
|
---|
819 | {
|
---|
820 | // scale width is less than one step -> try to build a linear scale
|
---|
821 |
|
---|
822 | QwtLinearScaleEngine linearScaler;
|
---|
823 | linearScaler.setAttributes( attributes() );
|
---|
824 | linearScaler.setReference( reference() );
|
---|
825 | linearScaler.setMargins( lowerMargin(), upperMargin() );
|
---|
826 |
|
---|
827 | linearScaler.autoScale( maxNumSteps, x1, x2, stepSize );
|
---|
828 |
|
---|
829 | QwtInterval linearInterval = QwtInterval( x1, x2 ).normalized();
|
---|
830 | linearInterval = linearInterval.limited( LOG_MIN, LOG_MAX );
|
---|
831 |
|
---|
832 | if ( linearInterval.maxValue() / linearInterval.minValue() < logBase )
|
---|
833 | {
|
---|
834 | // the aligned scale is still less than one step
|
---|
835 |
|
---|
836 | #if 1
|
---|
837 | // this code doesn't make any sense, but for compatibility
|
---|
838 | // reasons we keep it until 6.2. But it will be ignored
|
---|
839 | // in divideScale
|
---|
840 |
|
---|
841 | if ( stepSize < 0.0 )
|
---|
842 | stepSize = -qwtLog( logBase, qAbs( stepSize ) );
|
---|
843 | else
|
---|
844 | stepSize = qwtLog( logBase, stepSize );
|
---|
845 | #endif
|
---|
846 |
|
---|
847 | return;
|
---|
848 | }
|
---|
849 | }
|
---|
850 |
|
---|
851 | double logRef = 1.0;
|
---|
852 | if ( reference() > LOG_MIN / 2 )
|
---|
853 | logRef = qMin( reference(), LOG_MAX / 2 );
|
---|
854 |
|
---|
855 | if ( testAttribute( QwtScaleEngine::Symmetric ) )
|
---|
856 | {
|
---|
857 | const double delta = qMax( interval.maxValue() / logRef,
|
---|
858 | logRef / interval.minValue() );
|
---|
859 | interval.setInterval( logRef / delta, logRef * delta );
|
---|
860 | }
|
---|
861 |
|
---|
862 | if ( testAttribute( QwtScaleEngine::IncludeReference ) )
|
---|
863 | interval = interval.extend( logRef );
|
---|
864 |
|
---|
865 | interval = interval.limited( LOG_MIN, LOG_MAX );
|
---|
866 |
|
---|
867 | if ( interval.width() == 0.0 )
|
---|
868 | interval = buildInterval( interval.minValue() );
|
---|
869 |
|
---|
870 | stepSize = divideInterval( qwtLogInterval( logBase, interval ).width(),
|
---|
871 | qMax( maxNumSteps, 1 ) );
|
---|
872 | if ( stepSize < 1.0 )
|
---|
873 | stepSize = 1.0;
|
---|
874 |
|
---|
875 | if ( !testAttribute( QwtScaleEngine::Floating ) )
|
---|
876 | interval = align( interval, stepSize );
|
---|
877 |
|
---|
878 | x1 = interval.minValue();
|
---|
879 | x2 = interval.maxValue();
|
---|
880 |
|
---|
881 | if ( testAttribute( QwtScaleEngine::Inverted ) )
|
---|
882 | {
|
---|
883 | qSwap( x1, x2 );
|
---|
884 | stepSize = -stepSize;
|
---|
885 | }
|
---|
886 | }
|
---|
887 |
|
---|
888 | /*!
|
---|
889 | \brief Calculate a scale division for an interval
|
---|
890 |
|
---|
891 | \param x1 First interval limit
|
---|
892 | \param x2 Second interval limit
|
---|
893 | \param maxMajorSteps Maximum for the number of major steps
|
---|
894 | \param maxMinorSteps Maximum number of minor steps
|
---|
895 | \param stepSize Step size. If stepSize == 0, the engine
|
---|
896 | calculates one.
|
---|
897 |
|
---|
898 | \return Calculated scale division
|
---|
899 | */
|
---|
900 | QwtScaleDiv QwtLogScaleEngine::divideScale( double x1, double x2,
|
---|
901 | int maxMajorSteps, int maxMinorSteps, double stepSize ) const
|
---|
902 | {
|
---|
903 | QwtInterval interval = QwtInterval( x1, x2 ).normalized();
|
---|
904 | interval = interval.limited( LOG_MIN, LOG_MAX );
|
---|
905 |
|
---|
906 | if ( interval.width() <= 0 )
|
---|
907 | return QwtScaleDiv();
|
---|
908 |
|
---|
909 | const double logBase = base();
|
---|
910 |
|
---|
911 | if ( interval.maxValue() / interval.minValue() < logBase )
|
---|
912 | {
|
---|
913 | // scale width is less than one decade -> build linear scale
|
---|
914 |
|
---|
915 | QwtLinearScaleEngine linearScaler;
|
---|
916 | linearScaler.setAttributes( attributes() );
|
---|
917 | linearScaler.setReference( reference() );
|
---|
918 | linearScaler.setMargins( lowerMargin(), upperMargin() );
|
---|
919 |
|
---|
920 | return linearScaler.divideScale( x1, x2,
|
---|
921 | maxMajorSteps, maxMinorSteps, 0.0 );
|
---|
922 | }
|
---|
923 |
|
---|
924 | stepSize = qAbs( stepSize );
|
---|
925 | if ( stepSize == 0.0 )
|
---|
926 | {
|
---|
927 | if ( maxMajorSteps < 1 )
|
---|
928 | maxMajorSteps = 1;
|
---|
929 |
|
---|
930 | stepSize = divideInterval(
|
---|
931 | qwtLogInterval( logBase, interval ).width(), maxMajorSteps );
|
---|
932 | if ( stepSize < 1.0 )
|
---|
933 | stepSize = 1.0; // major step must be >= 1 decade
|
---|
934 | }
|
---|
935 |
|
---|
936 | QwtScaleDiv scaleDiv;
|
---|
937 | if ( stepSize != 0.0 )
|
---|
938 | {
|
---|
939 | QList<double> ticks[QwtScaleDiv::NTickTypes];
|
---|
940 | buildTicks( interval, stepSize, maxMinorSteps, ticks );
|
---|
941 |
|
---|
942 | scaleDiv = QwtScaleDiv( interval, ticks );
|
---|
943 | }
|
---|
944 |
|
---|
945 | if ( x1 > x2 )
|
---|
946 | scaleDiv.invert();
|
---|
947 |
|
---|
948 | return scaleDiv;
|
---|
949 | }
|
---|
950 |
|
---|
951 | /*!
|
---|
952 | \brief Calculate ticks for an interval
|
---|
953 |
|
---|
954 | \param interval Interval
|
---|
955 | \param maxMinorSteps Maximum number of minor steps
|
---|
956 | \param stepSize Step size
|
---|
957 | \param ticks Arrays to be filled with the calculated ticks
|
---|
958 |
|
---|
959 | \sa buildMajorTicks(), buildMinorTicks
|
---|
960 | */
|
---|
961 | void QwtLogScaleEngine::buildTicks(
|
---|
962 | const QwtInterval& interval, double stepSize, int maxMinorSteps,
|
---|
963 | QList<double> ticks[QwtScaleDiv::NTickTypes] ) const
|
---|
964 | {
|
---|
965 | const QwtInterval boundingInterval = align( interval, stepSize );
|
---|
966 |
|
---|
967 | ticks[QwtScaleDiv::MajorTick] =
|
---|
968 | buildMajorTicks( boundingInterval, stepSize );
|
---|
969 |
|
---|
970 | if ( maxMinorSteps > 0 )
|
---|
971 | {
|
---|
972 | buildMinorTicks( ticks[QwtScaleDiv::MajorTick], maxMinorSteps, stepSize,
|
---|
973 | ticks[QwtScaleDiv::MinorTick], ticks[QwtScaleDiv::MediumTick] );
|
---|
974 | }
|
---|
975 |
|
---|
976 | for ( int i = 0; i < QwtScaleDiv::NTickTypes; i++ )
|
---|
977 | ticks[i] = strip( ticks[i], interval );
|
---|
978 | }
|
---|
979 |
|
---|
980 | /*!
|
---|
981 | \brief Calculate major ticks for an interval
|
---|
982 |
|
---|
983 | \param interval Interval
|
---|
984 | \param stepSize Step size
|
---|
985 |
|
---|
986 | \return Calculated ticks
|
---|
987 | */
|
---|
988 | QList<double> QwtLogScaleEngine::buildMajorTicks(
|
---|
989 | const QwtInterval &interval, double stepSize ) const
|
---|
990 | {
|
---|
991 | double width = qwtLogInterval( base(), interval ).width();
|
---|
992 |
|
---|
993 | int numTicks = qRound( width / stepSize ) + 1;
|
---|
994 | if ( numTicks > 10000 )
|
---|
995 | numTicks = 10000;
|
---|
996 |
|
---|
997 | const double lxmin = ::log( interval.minValue() );
|
---|
998 | const double lxmax = ::log( interval.maxValue() );
|
---|
999 | const double lstep = ( lxmax - lxmin ) / double( numTicks - 1 );
|
---|
1000 |
|
---|
1001 | QList<double> ticks;
|
---|
1002 |
|
---|
1003 | ticks += interval.minValue();
|
---|
1004 |
|
---|
1005 | for ( int i = 1; i < numTicks - 1; i++ )
|
---|
1006 | ticks += qExp( lxmin + double( i ) * lstep );
|
---|
1007 |
|
---|
1008 | ticks += interval.maxValue();
|
---|
1009 |
|
---|
1010 | return ticks;
|
---|
1011 | }
|
---|
1012 |
|
---|
1013 | /*!
|
---|
1014 | \brief Calculate minor/medium ticks for major ticks
|
---|
1015 |
|
---|
1016 | \param majorTicks Major ticks
|
---|
1017 | \param maxMinorSteps Maximum number of minor steps
|
---|
1018 | \param stepSize Step size
|
---|
1019 | \param minorTicks Array to be filled with the calculated minor ticks
|
---|
1020 | \param mediumTicks Array to be filled with the calculated medium ticks
|
---|
1021 | */
|
---|
1022 | void QwtLogScaleEngine::buildMinorTicks(
|
---|
1023 | const QList<double> &majorTicks,
|
---|
1024 | int maxMinorSteps, double stepSize,
|
---|
1025 | QList<double> &minorTicks,
|
---|
1026 | QList<double> &mediumTicks ) const
|
---|
1027 | {
|
---|
1028 | const double logBase = base();
|
---|
1029 |
|
---|
1030 | if ( stepSize < 1.1 ) // major step width is one base
|
---|
1031 | {
|
---|
1032 | double minStep = divideInterval( stepSize, maxMinorSteps + 1 );
|
---|
1033 | if ( minStep == 0.0 )
|
---|
1034 | return;
|
---|
1035 |
|
---|
1036 | const int numSteps = qRound( stepSize / minStep );
|
---|
1037 |
|
---|
1038 | int mediumTickIndex = -1;
|
---|
1039 | if ( ( numSteps > 2 ) && ( numSteps % 2 == 0 ) )
|
---|
1040 | mediumTickIndex = numSteps / 2;
|
---|
1041 |
|
---|
1042 | for ( int i = 0; i < majorTicks.count() - 1; i++ )
|
---|
1043 | {
|
---|
1044 | const double v = majorTicks[i];
|
---|
1045 | const double s = logBase / numSteps;
|
---|
1046 |
|
---|
1047 | if ( s >= 1.0 )
|
---|
1048 | {
|
---|
1049 | if ( !qFuzzyCompare( s, 1.0 ) )
|
---|
1050 | minorTicks += v * s;
|
---|
1051 |
|
---|
1052 | for ( int j = 2; j < numSteps; j++ )
|
---|
1053 | {
|
---|
1054 | minorTicks += v * j * s;
|
---|
1055 | }
|
---|
1056 | }
|
---|
1057 | else
|
---|
1058 | {
|
---|
1059 | for ( int j = 1; j < numSteps; j++ )
|
---|
1060 | {
|
---|
1061 | const double tick = v + j * v * ( logBase - 1 ) / numSteps;
|
---|
1062 | if ( j == mediumTickIndex )
|
---|
1063 | mediumTicks += tick;
|
---|
1064 | else
|
---|
1065 | minorTicks += tick;
|
---|
1066 | }
|
---|
1067 | }
|
---|
1068 | }
|
---|
1069 | }
|
---|
1070 | else
|
---|
1071 | {
|
---|
1072 | double minStep = divideInterval( stepSize, maxMinorSteps );
|
---|
1073 | if ( minStep == 0.0 )
|
---|
1074 | return;
|
---|
1075 |
|
---|
1076 | if ( minStep < 1.0 )
|
---|
1077 | minStep = 1.0;
|
---|
1078 |
|
---|
1079 | // # subticks per interval
|
---|
1080 | int numTicks = qRound( stepSize / minStep ) - 1;
|
---|
1081 |
|
---|
1082 | // Do the minor steps fit into the interval?
|
---|
1083 | if ( qwtFuzzyCompare( ( numTicks + 1 ) * minStep,
|
---|
1084 | stepSize, stepSize ) > 0 )
|
---|
1085 | {
|
---|
1086 | numTicks = 0;
|
---|
1087 | }
|
---|
1088 |
|
---|
1089 | if ( numTicks < 1 )
|
---|
1090 | return;
|
---|
1091 |
|
---|
1092 | int mediumTickIndex = -1;
|
---|
1093 | if ( ( numTicks > 2 ) && ( numTicks % 2 ) )
|
---|
1094 | mediumTickIndex = numTicks / 2;
|
---|
1095 |
|
---|
1096 | // substep factor = base^substeps
|
---|
1097 | const qreal minFactor = qMax( qPow( logBase, minStep ), qreal( logBase ) );
|
---|
1098 |
|
---|
1099 | for ( int i = 0; i < majorTicks.count(); i++ )
|
---|
1100 | {
|
---|
1101 | double tick = majorTicks[i];
|
---|
1102 | for ( int j = 0; j < numTicks; j++ )
|
---|
1103 | {
|
---|
1104 | tick *= minFactor;
|
---|
1105 |
|
---|
1106 | if ( j == mediumTickIndex )
|
---|
1107 | mediumTicks += tick;
|
---|
1108 | else
|
---|
1109 | minorTicks += tick;
|
---|
1110 | }
|
---|
1111 | }
|
---|
1112 | }
|
---|
1113 | }
|
---|
1114 |
|
---|
1115 | /*!
|
---|
1116 | \brief Align an interval to a step size
|
---|
1117 |
|
---|
1118 | The limits of an interval are aligned that both are integer
|
---|
1119 | multiples of the step size.
|
---|
1120 |
|
---|
1121 | \param interval Interval
|
---|
1122 | \param stepSize Step size
|
---|
1123 |
|
---|
1124 | \return Aligned interval
|
---|
1125 | */
|
---|
1126 | QwtInterval QwtLogScaleEngine::align(
|
---|
1127 | const QwtInterval &interval, double stepSize ) const
|
---|
1128 | {
|
---|
1129 | const QwtInterval intv = qwtLogInterval( base(), interval );
|
---|
1130 |
|
---|
1131 | double x1 = QwtScaleArithmetic::floorEps( intv.minValue(), stepSize );
|
---|
1132 | if ( qwtFuzzyCompare( interval.minValue(), x1, stepSize ) == 0 )
|
---|
1133 | x1 = interval.minValue();
|
---|
1134 |
|
---|
1135 | double x2 = QwtScaleArithmetic::ceilEps( intv.maxValue(), stepSize );
|
---|
1136 | if ( qwtFuzzyCompare( interval.maxValue(), x2, stepSize ) == 0 )
|
---|
1137 | x2 = interval.maxValue();
|
---|
1138 |
|
---|
1139 | return qwtPowInterval( base(), QwtInterval( x1, x2 ) );
|
---|
1140 | }
|
---|