1 | /* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
|
---|
2 | * Qwt Widget Library
|
---|
3 | * Copyright (C) 1997 Josef Wilgen
|
---|
4 | * Copyright (C) 2002 Uwe Rathmann
|
---|
5 | *
|
---|
6 | * This library is free software; you can redistribute it and/or
|
---|
7 | * modify it under the terms of the Qwt License, Version 1.0
|
---|
8 | *****************************************************************************/
|
---|
9 |
|
---|
10 | #ifndef QWT_CURVE_FITTER_H
|
---|
11 | #define QWT_CURVE_FITTER_H
|
---|
12 |
|
---|
13 | #include "qwt_global.h"
|
---|
14 | #include <qpolygon.h>
|
---|
15 | #include <qrect.h>
|
---|
16 |
|
---|
17 | class QwtSpline;
|
---|
18 |
|
---|
19 | /*!
|
---|
20 | \brief Abstract base class for a curve fitter
|
---|
21 | */
|
---|
22 | class QWT_EXPORT QwtCurveFitter
|
---|
23 | {
|
---|
24 | public:
|
---|
25 | virtual ~QwtCurveFitter();
|
---|
26 |
|
---|
27 | /*!
|
---|
28 | Find a curve which has the best fit to a series of data points
|
---|
29 |
|
---|
30 | \param polygon Series of data points
|
---|
31 | \return Curve points
|
---|
32 | */
|
---|
33 | virtual QPolygonF fitCurve( const QPolygonF &polygon ) const = 0;
|
---|
34 |
|
---|
35 | protected:
|
---|
36 | QwtCurveFitter();
|
---|
37 |
|
---|
38 | private:
|
---|
39 | QwtCurveFitter( const QwtCurveFitter & );
|
---|
40 | QwtCurveFitter &operator=( const QwtCurveFitter & );
|
---|
41 | };
|
---|
42 |
|
---|
43 | /*!
|
---|
44 | \brief A curve fitter using cubic splines
|
---|
45 | */
|
---|
46 | class QWT_EXPORT QwtSplineCurveFitter: public QwtCurveFitter
|
---|
47 | {
|
---|
48 | public:
|
---|
49 | /*!
|
---|
50 | Spline type
|
---|
51 | The default setting is Auto
|
---|
52 | \sa setFitMode(), FitMode()
|
---|
53 | */
|
---|
54 | enum FitMode
|
---|
55 | {
|
---|
56 | /*!
|
---|
57 | Use the default spline algorithm for polygons with
|
---|
58 | increasing x values ( p[i-1] < p[i] ), otherwise use
|
---|
59 | a parametric spline algorithm.
|
---|
60 | */
|
---|
61 | Auto,
|
---|
62 |
|
---|
63 | //! Use a default spline algorithm
|
---|
64 | Spline,
|
---|
65 |
|
---|
66 | //! Use a parametric spline algorithm
|
---|
67 | ParametricSpline
|
---|
68 | };
|
---|
69 |
|
---|
70 | QwtSplineCurveFitter();
|
---|
71 | virtual ~QwtSplineCurveFitter();
|
---|
72 |
|
---|
73 | void setFitMode( FitMode );
|
---|
74 | FitMode fitMode() const;
|
---|
75 |
|
---|
76 | void setSpline( const QwtSpline& );
|
---|
77 | const QwtSpline &spline() const;
|
---|
78 | QwtSpline &spline();
|
---|
79 |
|
---|
80 | void setSplineSize( int size );
|
---|
81 | int splineSize() const;
|
---|
82 |
|
---|
83 | virtual QPolygonF fitCurve( const QPolygonF & ) const;
|
---|
84 |
|
---|
85 | private:
|
---|
86 | QPolygonF fitSpline( const QPolygonF & ) const;
|
---|
87 | QPolygonF fitParametric( const QPolygonF & ) const;
|
---|
88 |
|
---|
89 | class PrivateData;
|
---|
90 | PrivateData *d_data;
|
---|
91 | };
|
---|
92 |
|
---|
93 | /*!
|
---|
94 | \brief A curve fitter implementing Douglas and Peucker algorithm
|
---|
95 |
|
---|
96 | The purpose of the Douglas and Peucker algorithm is that given a 'curve'
|
---|
97 | composed of line segments to find a curve not too dissimilar but that
|
---|
98 | has fewer points. The algorithm defines 'too dissimilar' based on the
|
---|
99 | maximum distance (tolerance) between the original curve and the
|
---|
100 | smoothed curve.
|
---|
101 |
|
---|
102 | The runtime of the algorithm increases non linear ( worst case O( n*n ) )
|
---|
103 | and might be very slow for huge polygons. To avoid performance issues
|
---|
104 | it might be useful to split the polygon ( setChunkSize() ) and to run the algorithm
|
---|
105 | for these smaller parts. The disadvantage of having no interpolation
|
---|
106 | at the borders is for most use cases irrelevant.
|
---|
107 |
|
---|
108 | The smoothed curve consists of a subset of the points that defined the
|
---|
109 | original curve.
|
---|
110 |
|
---|
111 | In opposite to QwtSplineCurveFitter the Douglas and Peucker algorithm reduces
|
---|
112 | the number of points. By adjusting the tolerance parameter according to the
|
---|
113 | axis scales QwtSplineCurveFitter can be used to implement different
|
---|
114 | level of details to speed up painting of curves of many points.
|
---|
115 | */
|
---|
116 | class QWT_EXPORT QwtWeedingCurveFitter: public QwtCurveFitter
|
---|
117 | {
|
---|
118 | public:
|
---|
119 | QwtWeedingCurveFitter( double tolerance = 1.0 );
|
---|
120 | virtual ~QwtWeedingCurveFitter();
|
---|
121 |
|
---|
122 | void setTolerance( double );
|
---|
123 | double tolerance() const;
|
---|
124 |
|
---|
125 | void setChunkSize( uint );
|
---|
126 | uint chunkSize() const;
|
---|
127 |
|
---|
128 | virtual QPolygonF fitCurve( const QPolygonF & ) const;
|
---|
129 |
|
---|
130 | private:
|
---|
131 | virtual QPolygonF simplify( const QPolygonF & ) const;
|
---|
132 |
|
---|
133 | class Line;
|
---|
134 |
|
---|
135 | class PrivateData;
|
---|
136 | PrivateData *d_data;
|
---|
137 | };
|
---|
138 |
|
---|
139 | #endif
|
---|