| 1 | /* -*- mode: C++ ; c-file-style: "stroustrup" -*- ***************************** | 
|---|
| 2 | * Qwt Widget Library | 
|---|
| 3 | * Copyright (C) 1997   Josef Wilgen | 
|---|
| 4 | * Copyright (C) 2002   Uwe Rathmann | 
|---|
| 5 | * | 
|---|
| 6 | * This library is free software; you can redistribute it and/or | 
|---|
| 7 | * modify it under the terms of the Qwt License, Version 1.0 | 
|---|
| 8 | *****************************************************************************/ | 
|---|
| 9 |  | 
|---|
| 10 | #ifndef QWT_CURVE_FITTER_H | 
|---|
| 11 | #define QWT_CURVE_FITTER_H | 
|---|
| 12 |  | 
|---|
| 13 | #include "qwt_global.h" | 
|---|
| 14 | #include <qpolygon.h> | 
|---|
| 15 | #include <qrect.h> | 
|---|
| 16 |  | 
|---|
| 17 | class QwtSpline; | 
|---|
| 18 |  | 
|---|
| 19 | /*! | 
|---|
| 20 | \brief Abstract base class for a curve fitter | 
|---|
| 21 | */ | 
|---|
| 22 | class QWT_EXPORT QwtCurveFitter | 
|---|
| 23 | { | 
|---|
| 24 | public: | 
|---|
| 25 | virtual ~QwtCurveFitter(); | 
|---|
| 26 |  | 
|---|
| 27 | /*! | 
|---|
| 28 | Find a curve which has the best fit to a series of data points | 
|---|
| 29 |  | 
|---|
| 30 | \param polygon Series of data points | 
|---|
| 31 | \return Curve points | 
|---|
| 32 | */ | 
|---|
| 33 | virtual QPolygonF fitCurve( const QPolygonF &polygon ) const = 0; | 
|---|
| 34 |  | 
|---|
| 35 | protected: | 
|---|
| 36 | QwtCurveFitter(); | 
|---|
| 37 |  | 
|---|
| 38 | private: | 
|---|
| 39 | QwtCurveFitter( const QwtCurveFitter & ); | 
|---|
| 40 | QwtCurveFitter &operator=( const QwtCurveFitter & ); | 
|---|
| 41 | }; | 
|---|
| 42 |  | 
|---|
| 43 | /*! | 
|---|
| 44 | \brief A curve fitter using cubic splines | 
|---|
| 45 | */ | 
|---|
| 46 | class QWT_EXPORT QwtSplineCurveFitter: public QwtCurveFitter | 
|---|
| 47 | { | 
|---|
| 48 | public: | 
|---|
| 49 | /*! | 
|---|
| 50 | Spline type | 
|---|
| 51 | The default setting is Auto | 
|---|
| 52 | \sa setFitMode(), FitMode() | 
|---|
| 53 | */ | 
|---|
| 54 | enum FitMode | 
|---|
| 55 | { | 
|---|
| 56 | /*! | 
|---|
| 57 | Use the default spline algorithm for polygons with | 
|---|
| 58 | increasing x values ( p[i-1] < p[i] ), otherwise use | 
|---|
| 59 | a parametric spline algorithm. | 
|---|
| 60 | */ | 
|---|
| 61 | Auto, | 
|---|
| 62 |  | 
|---|
| 63 | //! Use a default spline algorithm | 
|---|
| 64 | Spline, | 
|---|
| 65 |  | 
|---|
| 66 | //! Use a parametric spline algorithm | 
|---|
| 67 | ParametricSpline | 
|---|
| 68 | }; | 
|---|
| 69 |  | 
|---|
| 70 | QwtSplineCurveFitter(); | 
|---|
| 71 | virtual ~QwtSplineCurveFitter(); | 
|---|
| 72 |  | 
|---|
| 73 | void setFitMode( FitMode ); | 
|---|
| 74 | FitMode fitMode() const; | 
|---|
| 75 |  | 
|---|
| 76 | void setSpline( const QwtSpline& ); | 
|---|
| 77 | const QwtSpline &spline() const; | 
|---|
| 78 | QwtSpline &spline(); | 
|---|
| 79 |  | 
|---|
| 80 | void setSplineSize( int ); | 
|---|
| 81 | int splineSize() const; | 
|---|
| 82 |  | 
|---|
| 83 | virtual QPolygonF fitCurve( const QPolygonF & ) const; | 
|---|
| 84 |  | 
|---|
| 85 | private: | 
|---|
| 86 | QPolygonF fitSpline( const QPolygonF & ) const; | 
|---|
| 87 | QPolygonF fitParametric( const QPolygonF & ) const; | 
|---|
| 88 |  | 
|---|
| 89 | class PrivateData; | 
|---|
| 90 | PrivateData *d_data; | 
|---|
| 91 | }; | 
|---|
| 92 |  | 
|---|
| 93 | /*! | 
|---|
| 94 | \brief A curve fitter implementing Douglas and Peucker algorithm | 
|---|
| 95 |  | 
|---|
| 96 | The purpose of the Douglas and Peucker algorithm is that given a 'curve' | 
|---|
| 97 | composed of line segments to find a curve not too dissimilar but that | 
|---|
| 98 | has fewer points. The algorithm defines 'too dissimilar' based on the | 
|---|
| 99 | maximum distance (tolerance) between the original curve and the | 
|---|
| 100 | smoothed curve. | 
|---|
| 101 |  | 
|---|
| 102 | The runtime of the algorithm increases non linear ( worst case O( n*n ) ) | 
|---|
| 103 | and might be very slow for huge polygons. To avoid performance issues | 
|---|
| 104 | it might be useful to split the polygon ( setChunkSize() ) and to run the algorithm | 
|---|
| 105 | for these smaller parts. The disadvantage of having no interpolation | 
|---|
| 106 | at the borders is for most use cases irrelevant. | 
|---|
| 107 |  | 
|---|
| 108 | The smoothed curve consists of a subset of the points that defined the | 
|---|
| 109 | original curve. | 
|---|
| 110 |  | 
|---|
| 111 | In opposite to QwtSplineCurveFitter the Douglas and Peucker algorithm reduces | 
|---|
| 112 | the number of points. By adjusting the tolerance parameter according to the | 
|---|
| 113 | axis scales QwtSplineCurveFitter can be used to implement different | 
|---|
| 114 | level of details to speed up painting of curves of many points. | 
|---|
| 115 | */ | 
|---|
| 116 | class QWT_EXPORT QwtWeedingCurveFitter: public QwtCurveFitter | 
|---|
| 117 | { | 
|---|
| 118 | public: | 
|---|
| 119 | QwtWeedingCurveFitter( double tolerance = 1.0 ); | 
|---|
| 120 | virtual ~QwtWeedingCurveFitter(); | 
|---|
| 121 |  | 
|---|
| 122 | void setTolerance( double ); | 
|---|
| 123 | double tolerance() const; | 
|---|
| 124 |  | 
|---|
| 125 | void setChunkSize( uint ); | 
|---|
| 126 | uint chunkSize() const; | 
|---|
| 127 |  | 
|---|
| 128 | virtual QPolygonF fitCurve( const QPolygonF & ) const; | 
|---|
| 129 |  | 
|---|
| 130 | private: | 
|---|
| 131 | virtual QPolygonF simplify( const QPolygonF & ) const; | 
|---|
| 132 |  | 
|---|
| 133 | class Line; | 
|---|
| 134 |  | 
|---|
| 135 | class PrivateData; | 
|---|
| 136 | PrivateData *d_data; | 
|---|
| 137 | }; | 
|---|
| 138 |  | 
|---|
| 139 | #endif | 
|---|