[4271] | 1 | /* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
|
---|
| 2 | * Qwt Widget Library
|
---|
| 3 | * Copyright (C) 1997 Josef Wilgen
|
---|
| 4 | * Copyright (C) 2002 Uwe Rathmann
|
---|
| 5 | *
|
---|
| 6 | * This library is free software; you can redistribute it and/or
|
---|
| 7 | * modify it under the terms of the Qwt License, Version 1.0
|
---|
| 8 | *****************************************************************************/
|
---|
| 9 |
|
---|
| 10 | #ifndef QWT_CURVE_FITTER_H
|
---|
| 11 | #define QWT_CURVE_FITTER_H
|
---|
| 12 |
|
---|
| 13 | #include "qwt_global.h"
|
---|
| 14 | #include <qpolygon.h>
|
---|
| 15 | #include <qrect.h>
|
---|
| 16 |
|
---|
| 17 | class QwtSpline;
|
---|
| 18 |
|
---|
| 19 | /*!
|
---|
| 20 | \brief Abstract base class for a curve fitter
|
---|
| 21 | */
|
---|
| 22 | class QWT_EXPORT QwtCurveFitter
|
---|
| 23 | {
|
---|
| 24 | public:
|
---|
| 25 | virtual ~QwtCurveFitter();
|
---|
| 26 |
|
---|
| 27 | /*!
|
---|
| 28 | Find a curve which has the best fit to a series of data points
|
---|
| 29 |
|
---|
| 30 | \param polygon Series of data points
|
---|
| 31 | \return Curve points
|
---|
| 32 | */
|
---|
| 33 | virtual QPolygonF fitCurve( const QPolygonF &polygon ) const = 0;
|
---|
| 34 |
|
---|
| 35 | protected:
|
---|
| 36 | QwtCurveFitter();
|
---|
| 37 |
|
---|
| 38 | private:
|
---|
| 39 | QwtCurveFitter( const QwtCurveFitter & );
|
---|
| 40 | QwtCurveFitter &operator=( const QwtCurveFitter & );
|
---|
| 41 | };
|
---|
| 42 |
|
---|
| 43 | /*!
|
---|
| 44 | \brief A curve fitter using cubic splines
|
---|
| 45 | */
|
---|
| 46 | class QWT_EXPORT QwtSplineCurveFitter: public QwtCurveFitter
|
---|
| 47 | {
|
---|
| 48 | public:
|
---|
| 49 | /*!
|
---|
| 50 | Spline type
|
---|
| 51 | The default setting is Auto
|
---|
| 52 | \sa setFitMode(), FitMode()
|
---|
| 53 | */
|
---|
| 54 | enum FitMode
|
---|
| 55 | {
|
---|
| 56 | /*!
|
---|
| 57 | Use the default spline algorithm for polygons with
|
---|
| 58 | increasing x values ( p[i-1] < p[i] ), otherwise use
|
---|
| 59 | a parametric spline algorithm.
|
---|
| 60 | */
|
---|
| 61 | Auto,
|
---|
| 62 |
|
---|
| 63 | //! Use a default spline algorithm
|
---|
| 64 | Spline,
|
---|
| 65 |
|
---|
| 66 | //! Use a parametric spline algorithm
|
---|
| 67 | ParametricSpline
|
---|
| 68 | };
|
---|
| 69 |
|
---|
| 70 | QwtSplineCurveFitter();
|
---|
| 71 | virtual ~QwtSplineCurveFitter();
|
---|
| 72 |
|
---|
| 73 | void setFitMode( FitMode );
|
---|
| 74 | FitMode fitMode() const;
|
---|
| 75 |
|
---|
| 76 | void setSpline( const QwtSpline& );
|
---|
| 77 | const QwtSpline &spline() const;
|
---|
| 78 | QwtSpline &spline();
|
---|
| 79 |
|
---|
| 80 | void setSplineSize( int size );
|
---|
| 81 | int splineSize() const;
|
---|
| 82 |
|
---|
| 83 | virtual QPolygonF fitCurve( const QPolygonF & ) const;
|
---|
| 84 |
|
---|
| 85 | private:
|
---|
| 86 | QPolygonF fitSpline( const QPolygonF & ) const;
|
---|
| 87 | QPolygonF fitParametric( const QPolygonF & ) const;
|
---|
| 88 |
|
---|
| 89 | class PrivateData;
|
---|
| 90 | PrivateData *d_data;
|
---|
| 91 | };
|
---|
| 92 |
|
---|
| 93 | /*!
|
---|
| 94 | \brief A curve fitter implementing Douglas and Peucker algorithm
|
---|
| 95 |
|
---|
| 96 | The purpose of the Douglas and Peucker algorithm is that given a 'curve'
|
---|
| 97 | composed of line segments to find a curve not too dissimilar but that
|
---|
| 98 | has fewer points. The algorithm defines 'too dissimilar' based on the
|
---|
| 99 | maximum distance (tolerance) between the original curve and the
|
---|
| 100 | smoothed curve.
|
---|
| 101 |
|
---|
[8127] | 102 | The runtime of the algorithm increases non linear ( worst case O( n*n ) )
|
---|
| 103 | and might be very slow for huge polygons. To avoid performance issues
|
---|
| 104 | it might be useful to split the polygon ( setChunkSize() ) and to run the algorithm
|
---|
| 105 | for these smaller parts. The disadvantage of having no interpolation
|
---|
| 106 | at the borders is for most use cases irrelevant.
|
---|
| 107 |
|
---|
[4271] | 108 | The smoothed curve consists of a subset of the points that defined the
|
---|
| 109 | original curve.
|
---|
| 110 |
|
---|
| 111 | In opposite to QwtSplineCurveFitter the Douglas and Peucker algorithm reduces
|
---|
| 112 | the number of points. By adjusting the tolerance parameter according to the
|
---|
| 113 | axis scales QwtSplineCurveFitter can be used to implement different
|
---|
| 114 | level of details to speed up painting of curves of many points.
|
---|
| 115 | */
|
---|
| 116 | class QWT_EXPORT QwtWeedingCurveFitter: public QwtCurveFitter
|
---|
| 117 | {
|
---|
| 118 | public:
|
---|
| 119 | QwtWeedingCurveFitter( double tolerance = 1.0 );
|
---|
| 120 | virtual ~QwtWeedingCurveFitter();
|
---|
| 121 |
|
---|
| 122 | void setTolerance( double );
|
---|
| 123 | double tolerance() const;
|
---|
| 124 |
|
---|
[8127] | 125 | void setChunkSize( uint );
|
---|
| 126 | uint chunkSize() const;
|
---|
| 127 |
|
---|
[4271] | 128 | virtual QPolygonF fitCurve( const QPolygonF & ) const;
|
---|
| 129 |
|
---|
| 130 | private:
|
---|
[8127] | 131 | virtual QPolygonF simplify( const QPolygonF & ) const;
|
---|
| 132 |
|
---|
[4271] | 133 | class Line;
|
---|
| 134 |
|
---|
| 135 | class PrivateData;
|
---|
| 136 | PrivateData *d_data;
|
---|
| 137 | };
|
---|
| 138 |
|
---|
| 139 | #endif
|
---|