[2013] | 1 | /// \ingroup newmat
|
---|
| 2 | ///@{
|
---|
| 3 |
|
---|
| 4 | /// \file svd.cpp
|
---|
| 5 | /// Singular value decomposition.
|
---|
| 6 |
|
---|
| 7 | // Copyright (C) 1991,2,3,4,5: R B Davies
|
---|
| 8 | // Updated 17 July, 1995
|
---|
| 9 |
|
---|
| 10 | #define WANT_MATH
|
---|
| 11 |
|
---|
| 12 | #include "include.h"
|
---|
| 13 | #include "newmatap.h"
|
---|
| 14 | #include "newmatrm.h"
|
---|
| 15 | #include "precisio.h"
|
---|
| 16 |
|
---|
| 17 | #ifdef use_namespace
|
---|
| 18 | namespace NEWMAT {
|
---|
| 19 | #endif
|
---|
| 20 |
|
---|
| 21 | #ifdef DO_REPORT
|
---|
| 22 | #define REPORT { static ExeCounter ExeCount(__LINE__,15); ++ExeCount; }
|
---|
| 23 | #else
|
---|
| 24 | #define REPORT {}
|
---|
| 25 | #endif
|
---|
| 26 |
|
---|
| 27 |
|
---|
| 28 |
|
---|
| 29 |
|
---|
| 30 | void SVD(const Matrix& A, DiagonalMatrix& Q, Matrix& U, Matrix& V,
|
---|
| 31 | bool withU, bool withV)
|
---|
| 32 | // from Wilkinson and Reinsch: "Handbook of Automatic Computation"
|
---|
| 33 | {
|
---|
| 34 | REPORT
|
---|
| 35 | Tracer trace("SVD");
|
---|
| 36 | Real eps = FloatingPointPrecision::Epsilon();
|
---|
| 37 | Real tol = FloatingPointPrecision::Minimum()/eps;
|
---|
| 38 |
|
---|
| 39 | int m = A.Nrows(); int n = A.Ncols();
|
---|
| 40 | if (m<n)
|
---|
| 41 | Throw(ProgramException("Want no. Rows >= no. Cols", A));
|
---|
| 42 | if (withV && &U == &V)
|
---|
| 43 | Throw(ProgramException("Need different matrices for U and V", U, V));
|
---|
| 44 | U = A; Real g = 0.0; Real f,h; Real x = 0.0; int i;
|
---|
| 45 | RowVector E(n); RectMatrixRow EI(E,0); Q.ReSize(n);
|
---|
| 46 | RectMatrixCol UCI(U,0); RectMatrixRow URI(U,0,1,n-1);
|
---|
| 47 |
|
---|
| 48 | if (n) for (i=0;;)
|
---|
| 49 | {
|
---|
| 50 | EI.First() = g; Real ei = g; EI.Right(); Real s = UCI.SumSquare();
|
---|
| 51 | if (s<tol) { REPORT Q.element(i) = 0.0; }
|
---|
| 52 | else
|
---|
| 53 | {
|
---|
| 54 | REPORT
|
---|
| 55 | f = UCI.First(); g = -sign(sqrt(s), f); h = f*g-s; UCI.First() = f-g;
|
---|
| 56 | Q.element(i) = g; RectMatrixCol UCJ = UCI; int j=n-i;
|
---|
| 57 | while (--j) { UCJ.Right(); UCJ.AddScaled(UCI, (UCI*UCJ)/h); }
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | s = URI.SumSquare();
|
---|
| 61 | if (s<tol) { REPORT g = 0.0; }
|
---|
| 62 | else
|
---|
| 63 | {
|
---|
| 64 | REPORT
|
---|
| 65 | f = URI.First(); g = -sign(sqrt(s), f); URI.First() = f-g;
|
---|
| 66 | EI.Divide(URI,f*g-s); RectMatrixRow URJ = URI; int j=m-i;
|
---|
| 67 | while (--j) { URJ.Down(); URJ.AddScaled(EI, URI*URJ); }
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | Real y = fabs(Q.element(i)) + fabs(ei); if (x<y) { REPORT x = y; }
|
---|
| 71 | if (++i == n) { REPORT break; }
|
---|
| 72 | UCI.DownDiag(); URI.DownDiag();
|
---|
| 73 | }
|
---|
| 74 |
|
---|
| 75 | if (withV)
|
---|
| 76 | {
|
---|
| 77 | REPORT
|
---|
| 78 | V.ReSize(n,n); V = 0.0; RectMatrixCol VCI(V,n-1,n-1,1);
|
---|
| 79 | if (n) { VCI.First() = 1.0; g=E.element(n-1); if (n!=1) URI.UpDiag(); }
|
---|
| 80 | for (i=n-2; i>=0; i--)
|
---|
| 81 | {
|
---|
| 82 | VCI.Left();
|
---|
| 83 | if (g!=0.0)
|
---|
| 84 | {
|
---|
| 85 | VCI.Divide(URI, URI.First()*g); int j = n-i;
|
---|
| 86 | RectMatrixCol VCJ = VCI;
|
---|
| 87 | while (--j) { VCJ.Right(); VCJ.AddScaled( VCI, (URI*VCJ) ); }
|
---|
| 88 | }
|
---|
| 89 | VCI.Zero(); VCI.Up(); VCI.First() = 1.0; g=E.element(i);
|
---|
| 90 | if (i==0) break;
|
---|
| 91 | URI.UpDiag();
|
---|
| 92 | }
|
---|
| 93 | }
|
---|
| 94 |
|
---|
| 95 | if (withU)
|
---|
| 96 | {
|
---|
| 97 | REPORT
|
---|
| 98 | for (i=n-1; i>=0; i--)
|
---|
| 99 | {
|
---|
| 100 | g = Q.element(i); URI.Reset(U,i,i+1,n-i-1); URI.Zero();
|
---|
| 101 | if (g!=0.0)
|
---|
| 102 | {
|
---|
| 103 | h=UCI.First()*g; int j=n-i; RectMatrixCol UCJ = UCI;
|
---|
| 104 | while (--j)
|
---|
| 105 | {
|
---|
| 106 | UCJ.Right(); UCI.Down(); UCJ.Down(); Real s = UCI*UCJ;
|
---|
| 107 | UCI.Up(); UCJ.Up(); UCJ.AddScaled(UCI,s/h);
|
---|
| 108 | }
|
---|
| 109 | UCI.Divide(g);
|
---|
| 110 | }
|
---|
| 111 | else UCI.Zero();
|
---|
| 112 | UCI.First() += 1.0;
|
---|
| 113 | if (i==0) break;
|
---|
| 114 | UCI.UpDiag();
|
---|
| 115 | }
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 | eps *= x;
|
---|
| 119 | for (int k=n-1; k>=0; k--)
|
---|
| 120 | {
|
---|
| 121 | Real z = -FloatingPointPrecision::Maximum(); // to keep Gnu happy
|
---|
| 122 | Real y; int limit = 50; int l = 0;
|
---|
| 123 | while (limit--)
|
---|
| 124 | {
|
---|
| 125 | Real c, s; int i; int l1=k; bool tfc=false;
|
---|
| 126 | for (l=k; l>=0; l--)
|
---|
| 127 | {
|
---|
| 128 | // if (fabs(E.element(l))<=eps) goto test_f_convergence;
|
---|
| 129 | if (fabs(E.element(l))<=eps) { REPORT tfc=true; break; }
|
---|
| 130 | if (fabs(Q.element(l-1))<=eps) { REPORT l1=l; break; }
|
---|
| 131 | REPORT
|
---|
| 132 | }
|
---|
| 133 | if (!tfc)
|
---|
| 134 | {
|
---|
| 135 | REPORT
|
---|
| 136 | l=l1; l1=l-1; s = -1.0; c = 0.0;
|
---|
| 137 | for (i=l; i<=k; i++)
|
---|
| 138 | {
|
---|
| 139 | f = - s * E.element(i); E.element(i) *= c;
|
---|
| 140 | // if (fabs(f)<=eps) goto test_f_convergence;
|
---|
| 141 | if (fabs(f)<=eps) { REPORT break; }
|
---|
| 142 | g = Q.element(i); h = pythag(g,f,c,s); Q.element(i) = h;
|
---|
| 143 | if (withU)
|
---|
| 144 | {
|
---|
| 145 | REPORT
|
---|
| 146 | RectMatrixCol UCI(U,i); RectMatrixCol UCJ(U,l1);
|
---|
| 147 | ComplexScale(UCJ, UCI, c, s);
|
---|
| 148 | }
|
---|
| 149 | }
|
---|
| 150 | }
|
---|
| 151 | // test_f_convergence: z = Q.element(k); if (l==k) goto convergence;
|
---|
| 152 | z = Q.element(k); if (l==k) { REPORT break; }
|
---|
| 153 |
|
---|
| 154 | x = Q.element(l); y = Q.element(k-1);
|
---|
| 155 | g = E.element(k-1); h = E.element(k);
|
---|
| 156 | f = ((y-z)*(y+z) + (g-h)*(g+h)) / (2*h*y);
|
---|
| 157 | if (f>1) { REPORT g = f * sqrt(1 + square(1/f)); }
|
---|
| 158 | else if (f<-1) { REPORT g = -f * sqrt(1 + square(1/f)); }
|
---|
| 159 | else { REPORT g = sqrt(f*f + 1); }
|
---|
| 160 | { REPORT f = ((x-z)*(x+z) + h*(y / ((f<0.0) ? f-g : f+g)-h)) / x; }
|
---|
| 161 |
|
---|
| 162 | c = 1.0; s = 1.0;
|
---|
| 163 | for (i=l+1; i<=k; i++)
|
---|
| 164 | {
|
---|
| 165 | g = E.element(i); y = Q.element(i); h = s*g; g *= c;
|
---|
| 166 | z = pythag(f,h,c,s); E.element(i-1) = z;
|
---|
| 167 | f = x*c + g*s; g = -x*s + g*c; h = y*s; y *= c;
|
---|
| 168 | if (withV)
|
---|
| 169 | {
|
---|
| 170 | REPORT
|
---|
| 171 | RectMatrixCol VCI(V,i); RectMatrixCol VCJ(V,i-1);
|
---|
| 172 | ComplexScale(VCI, VCJ, c, s);
|
---|
| 173 | }
|
---|
| 174 | z = pythag(f,h,c,s); Q.element(i-1) = z;
|
---|
| 175 | f = c*g + s*y; x = -s*g + c*y;
|
---|
| 176 | if (withU)
|
---|
| 177 | {
|
---|
| 178 | REPORT
|
---|
| 179 | RectMatrixCol UCI(U,i); RectMatrixCol UCJ(U,i-1);
|
---|
| 180 | ComplexScale(UCI, UCJ, c, s);
|
---|
| 181 | }
|
---|
| 182 | }
|
---|
| 183 | E.element(l) = 0.0; E.element(k) = f; Q.element(k) = x;
|
---|
| 184 | }
|
---|
| 185 | if (l!=k) { Throw(ConvergenceException(A)); }
|
---|
| 186 | // convergence:
|
---|
| 187 | if (z < 0.0)
|
---|
| 188 | {
|
---|
| 189 | REPORT
|
---|
| 190 | Q.element(k) = -z;
|
---|
| 191 | if (withV) { RectMatrixCol VCI(V,k); VCI.Negate(); }
|
---|
| 192 | }
|
---|
| 193 | }
|
---|
| 194 | if (withU & withV) SortSV(Q, U, V);
|
---|
| 195 | else if (withU) SortSV(Q, U);
|
---|
| 196 | else if (withV) SortSV(Q, V);
|
---|
| 197 | else sort_descending(Q);
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | void SVD(const Matrix& A, DiagonalMatrix& D)
|
---|
| 201 | { REPORT Matrix U; SVD(A, D, U, U, false, false); }
|
---|
| 202 |
|
---|
| 203 |
|
---|
| 204 |
|
---|
| 205 | #ifdef use_namespace
|
---|
| 206 | }
|
---|
| 207 | #endif
|
---|
| 208 |
|
---|
| 209 | ///@}
|
---|