1 | /// \ingroup newmat
|
---|
2 | ///@{
|
---|
3 |
|
---|
4 | /// \file solution.cpp
|
---|
5 | /// One dimensional solve routine.
|
---|
6 |
|
---|
7 | // Copyright (C) 1994: R B Davies
|
---|
8 |
|
---|
9 |
|
---|
10 | #define WANT_STREAM // include.h will get stream fns
|
---|
11 | #define WANT_MATH // include.h will get math fns
|
---|
12 |
|
---|
13 | #include "include.h"
|
---|
14 | #include "myexcept.h"
|
---|
15 |
|
---|
16 | #include "solution.h"
|
---|
17 |
|
---|
18 | #ifdef use_namespace
|
---|
19 | namespace RBD_COMMON {
|
---|
20 | #endif
|
---|
21 |
|
---|
22 |
|
---|
23 | void R1_R1::Set(Real X)
|
---|
24 | {
|
---|
25 | if ((!minXinf && X <= minX) || (!maxXinf && X >= maxX))
|
---|
26 | Throw(SolutionException("X value out of range"));
|
---|
27 | x = X; xSet = true;
|
---|
28 | }
|
---|
29 |
|
---|
30 | R1_R1::operator Real()
|
---|
31 | {
|
---|
32 | if (!xSet) Throw(SolutionException("Value of X not set"));
|
---|
33 | Real y = operator()();
|
---|
34 | return y;
|
---|
35 | }
|
---|
36 |
|
---|
37 | unsigned long SolutionException::Select;
|
---|
38 |
|
---|
39 | SolutionException::SolutionException(const char* a_what) : BaseException()
|
---|
40 | {
|
---|
41 | Select = BaseException::Select;
|
---|
42 | AddMessage("Error detected by solution package\n");
|
---|
43 | AddMessage(a_what); AddMessage("\n");
|
---|
44 | if (a_what) Tracer::AddTrace();
|
---|
45 | }
|
---|
46 |
|
---|
47 | inline Real square(Real x) { return x*x; }
|
---|
48 |
|
---|
49 | void OneDimSolve::LookAt(int V)
|
---|
50 | {
|
---|
51 | lim--;
|
---|
52 | if (!lim) Throw(SolutionException("Does not converge"));
|
---|
53 | Last = V;
|
---|
54 | Real yy = function(x[V]) - YY;
|
---|
55 | Finish = (fabs(yy) <= accY) || (Captured && fabs(x[L]-x[U]) <= accX );
|
---|
56 | y[V] = vpol*yy;
|
---|
57 | }
|
---|
58 |
|
---|
59 | void OneDimSolve::HFlip() { hpol=-hpol; State(U,C,L); }
|
---|
60 |
|
---|
61 | void OneDimSolve::VFlip()
|
---|
62 | { vpol = -vpol; y[0] = -y[0]; y[1] = -y[1]; y[2] = -y[2]; }
|
---|
63 |
|
---|
64 | void OneDimSolve::Flip()
|
---|
65 | {
|
---|
66 | hpol=-hpol; vpol=-vpol; State(U,C,L);
|
---|
67 | y[0] = -y[0]; y[1] = -y[1]; y[2] = -y[2];
|
---|
68 | }
|
---|
69 |
|
---|
70 | void OneDimSolve::State(int I, int J, int K) { L=I; C=J; U=K; }
|
---|
71 |
|
---|
72 | void OneDimSolve::Linear(int I, int J, int K)
|
---|
73 | {
|
---|
74 | x[J] = (x[I]*y[K] - x[K]*y[I])/(y[K] - y[I]);
|
---|
75 | // cout << "Linear\n";
|
---|
76 | }
|
---|
77 |
|
---|
78 | void OneDimSolve::Quadratic(int I, int J, int K)
|
---|
79 | {
|
---|
80 | // result to overwrite I
|
---|
81 | Real YJK, YIK, YIJ, XKI, XKJ;
|
---|
82 | YJK = y[J] - y[K]; YIK = y[I] - y[K]; YIJ = y[I] - y[J];
|
---|
83 | XKI = (x[K] - x[I]);
|
---|
84 | XKJ = (x[K]*y[J] - x[J]*y[K])/YJK;
|
---|
85 | if ( square(YJK/YIK)>(x[K] - x[J])/XKI ||
|
---|
86 | square(YIJ/YIK)>(x[J] - x[I])/XKI )
|
---|
87 | {
|
---|
88 | x[I] = XKJ;
|
---|
89 | // cout << "Quadratic - exceptional\n";
|
---|
90 | }
|
---|
91 | else
|
---|
92 | {
|
---|
93 | XKI = (x[K]*y[I] - x[I]*y[K])/YIK;
|
---|
94 | x[I] = (XKJ*y[I] - XKI*y[J])/YIJ;
|
---|
95 | // cout << "Quadratic - normal\n";
|
---|
96 | }
|
---|
97 | }
|
---|
98 |
|
---|
99 | Real OneDimSolve::Solve(Real Y, Real X, Real Dev, int Lim)
|
---|
100 | {
|
---|
101 | enum Loop { start, captured1, captured2, binary, finish };
|
---|
102 | Tracer et("OneDimSolve::Solve");
|
---|
103 | lim=Lim; Captured = false;
|
---|
104 | if ( Dev == 0.0 ) Throw(SolutionException("Dev is zero"));
|
---|
105 | L=0; C=1; U=2; vpol=1; hpol=1; y[C]=0.0; y[U]=0.0;
|
---|
106 | if (Dev<0.0) { hpol=-1; Dev = -Dev; }
|
---|
107 | YY=Y; // target value
|
---|
108 | x[L] = X; // initial trial value
|
---|
109 | if (!function.IsValid(X))
|
---|
110 | Throw(SolutionException("Starting value is invalid"));
|
---|
111 | Loop TheLoop = start;
|
---|
112 | for (;;)
|
---|
113 | {
|
---|
114 | switch (TheLoop)
|
---|
115 | {
|
---|
116 | case start:
|
---|
117 | LookAt(L); if (Finish) { TheLoop = finish; break; }
|
---|
118 | if (y[L]>0.0) VFlip(); // so Y[L] < 0
|
---|
119 |
|
---|
120 | x[U] = X + Dev * hpol;
|
---|
121 | if (!function.maxXinf && x[U] > function.maxX)
|
---|
122 | x[U] = (function.maxX + X) / 2.0;
|
---|
123 | if (!function.minXinf && x[U] < function.minX)
|
---|
124 | x[U] = (function.minX + X) / 2.0;
|
---|
125 |
|
---|
126 | LookAt(U); if (Finish) { TheLoop = finish; break; }
|
---|
127 | if (y[U] > 0.0) { TheLoop = captured1; Captured = true; break; }
|
---|
128 | if (y[U] == y[L])
|
---|
129 | Throw(SolutionException("Function is flat"));
|
---|
130 | if (y[U] < y[L]) HFlip(); // Change direction
|
---|
131 | State(L,U,C);
|
---|
132 | for (i=0; i<20; i++)
|
---|
133 | {
|
---|
134 | // cout << "Searching for crossing point\n";
|
---|
135 | // Have L C then crossing point, Y[L]<Y[C]<0
|
---|
136 | x[U] = x[C] + Dev * hpol;
|
---|
137 | if (!function.maxXinf && x[U] > function.maxX)
|
---|
138 | x[U] = (function.maxX + x[C]) / 2.0;
|
---|
139 | if (!function.minXinf && x[U] < function.minX)
|
---|
140 | x[U] = (function.minX + x[C]) / 2.0;
|
---|
141 |
|
---|
142 | LookAt(U); if (Finish) { TheLoop = finish; break; }
|
---|
143 | if (y[U] > 0) { TheLoop = captured2; Captured = true; break; }
|
---|
144 | if (y[U] < y[C])
|
---|
145 | Throw(SolutionException("Function is not monotone"));
|
---|
146 | Dev *= 2.0;
|
---|
147 | State(C,U,L);
|
---|
148 | }
|
---|
149 | if (TheLoop != start ) break;
|
---|
150 | Throw(SolutionException("Cannot locate a crossing point"));
|
---|
151 |
|
---|
152 | case captured1:
|
---|
153 | // cout << "Captured - 1\n";
|
---|
154 | // We have 2 points L and U with crossing between them
|
---|
155 | Linear(L,C,U); // linear interpolation
|
---|
156 | // - result to C
|
---|
157 | LookAt(C); if (Finish) { TheLoop = finish; break; }
|
---|
158 | if (y[C] > 0.0) Flip(); // Want y[C] < 0
|
---|
159 | if (y[C] < 0.5*y[L]) { State(C,L,U); TheLoop = binary; break; }
|
---|
160 |
|
---|
161 | case captured2:
|
---|
162 | // cout << "Captured - 2\n";
|
---|
163 | // We have L,C before crossing, U after crossing
|
---|
164 | Quadratic(L,C,U); // quad interpolation
|
---|
165 | // - result to L
|
---|
166 | State(C,L,U);
|
---|
167 | if ((x[C] - x[L])*hpol <= 0.0 || (x[C] - x[U])*hpol >= 0.0)
|
---|
168 | { TheLoop = captured1; break; }
|
---|
169 | LookAt(C); if (Finish) { TheLoop = finish; break; }
|
---|
170 | // cout << "Through first stage\n";
|
---|
171 | if (y[C] > 0.0) Flip();
|
---|
172 | if (y[C] > 0.5*y[L]) { TheLoop = captured2; break; }
|
---|
173 | else { State(C,L,U); TheLoop = captured1; break; }
|
---|
174 |
|
---|
175 | case binary:
|
---|
176 | // We have L, U around crossing - do binary search
|
---|
177 | // cout << "Binary\n";
|
---|
178 | for (i=3; i; i--)
|
---|
179 | {
|
---|
180 | x[C] = 0.5*(x[L]+x[U]);
|
---|
181 | LookAt(C); if (Finish) { TheLoop = finish; break; }
|
---|
182 | if (y[C]>0.0) State(L,U,C); else State(C,L,U);
|
---|
183 | }
|
---|
184 | if (TheLoop != binary) break;
|
---|
185 | TheLoop = captured1; break;
|
---|
186 |
|
---|
187 | case finish:
|
---|
188 | return x[Last];
|
---|
189 |
|
---|
190 | }
|
---|
191 | }
|
---|
192 | }
|
---|
193 |
|
---|
194 | bool R1_R1::IsValid(Real X)
|
---|
195 | {
|
---|
196 | Set(X);
|
---|
197 | return (minXinf || x > minX) && (maxXinf || x < maxX);
|
---|
198 | }
|
---|
199 |
|
---|
200 | #ifdef use_namespace
|
---|
201 | }
|
---|
202 | #endif
|
---|
203 |
|
---|
204 |
|
---|
205 | ///@}
|
---|