[8901] | 1 | /// \ingroup newmat
|
---|
| 2 | ///@{
|
---|
| 3 |
|
---|
| 4 | /// \file newmatnl.cpp
|
---|
| 5 | /// Non-linear optimisation.
|
---|
| 6 |
|
---|
| 7 | // Copyright (C) 1993,4,5,6: R B Davies
|
---|
| 8 |
|
---|
| 9 |
|
---|
| 10 | #define WANT_MATH
|
---|
| 11 | #define WANT_STREAM
|
---|
| 12 |
|
---|
| 13 | #include "newmatap.h"
|
---|
| 14 | #include "newmatnl.h"
|
---|
| 15 |
|
---|
| 16 | #ifdef use_namespace
|
---|
| 17 | namespace NEWMAT {
|
---|
| 18 | #endif
|
---|
| 19 |
|
---|
| 20 |
|
---|
| 21 |
|
---|
| 22 | void FindMaximum2::Fit(ColumnVector& Theta, int n_it)
|
---|
| 23 | {
|
---|
| 24 | Tracer tr("FindMaximum2::Fit");
|
---|
| 25 | enum State {Start, Restart, Continue, Interpolate, Extrapolate,
|
---|
| 26 | Fail, Convergence};
|
---|
| 27 | State TheState = Start;
|
---|
| 28 | Real z,w,x,x2,g,l1,l2,l3,d1,d2=0,d3;
|
---|
| 29 | ColumnVector Theta1, Theta2, Theta3;
|
---|
| 30 | int np = Theta.Nrows();
|
---|
| 31 | ColumnVector H1(np), H3, HP(np), K, K1(np);
|
---|
| 32 | bool oorg, conv;
|
---|
| 33 | int counter = 0;
|
---|
| 34 | Theta1 = Theta; HP = 0.0; g = 0.0;
|
---|
| 35 |
|
---|
| 36 | // This is really a set of gotos and labels, but they do not work
|
---|
| 37 | // correctly in AT&T C++ and Sun 4.01 C++.
|
---|
| 38 |
|
---|
| 39 | for(;;)
|
---|
| 40 | {
|
---|
| 41 | switch (TheState)
|
---|
| 42 | {
|
---|
| 43 | case Start:
|
---|
| 44 | tr.ReName("FindMaximum2::Fit/Start");
|
---|
| 45 | Value(Theta1, true, l1, oorg);
|
---|
| 46 | if (oorg) Throw(ProgramException("invalid starting value\n"));
|
---|
| 47 |
|
---|
| 48 | case Restart:
|
---|
| 49 | tr.ReName("FindMaximum2::Fit/ReStart");
|
---|
| 50 | conv = NextPoint(H1, d1);
|
---|
| 51 | if (conv) { TheState = Convergence; break; }
|
---|
| 52 | if (counter++ > n_it) { TheState = Fail; break; }
|
---|
| 53 |
|
---|
| 54 | z = 1.0 / sqrt(d1);
|
---|
| 55 | H3 = H1 * z; K = (H3 - HP) * g; HP = H3;
|
---|
| 56 | g = 0.0; // de-activate to use curved projection
|
---|
| 57 | if ( g == 0.0 ) K1 = 0.0; else K1 = K * 0.2 + K1 * 0.6;
|
---|
| 58 | // (K - K1) * alpha + K1 * (1 - alpha)
|
---|
| 59 | // = K * alpha + K1 * (1 - 2 * alpha)
|
---|
| 60 | K = K1 * d1; g = z;
|
---|
| 61 |
|
---|
| 62 | case Continue:
|
---|
| 63 | tr.ReName("FindMaximum2::Fit/Continue");
|
---|
| 64 | Theta2 = Theta1 + H1 + K;
|
---|
| 65 | Value(Theta2, false, l2, oorg);
|
---|
| 66 | if (counter++ > n_it) { TheState = Fail; break; }
|
---|
| 67 | if (oorg)
|
---|
| 68 | {
|
---|
| 69 | H1 *= 0.5; K *= 0.25; d1 *= 0.5; g *= 2.0;
|
---|
| 70 | TheState = Continue; break;
|
---|
| 71 | }
|
---|
| 72 | d2 = LastDerivative(H1 + K * 2.0);
|
---|
| 73 |
|
---|
| 74 | case Interpolate:
|
---|
| 75 | tr.ReName("FindMaximum2::Fit/Interpolate");
|
---|
| 76 | z = d1 + d2 - 3.0 * (l2 - l1);
|
---|
| 77 | w = z * z - d1 * d2;
|
---|
| 78 | if (w < 0.0) { TheState = Extrapolate; break; }
|
---|
| 79 | w = z + sqrt(w);
|
---|
| 80 | if (1.5 * w + d1 < 0.0)
|
---|
| 81 | { TheState = Extrapolate; break; }
|
---|
| 82 | if (d2 > 0.0 && l2 > l1 && w > 0.0)
|
---|
| 83 | { TheState = Extrapolate; break; }
|
---|
| 84 | x = d1 / (w + d1); x2 = x * x; g /= x;
|
---|
| 85 | Theta3 = Theta1 + H1 * x + K * x2;
|
---|
| 86 | Value(Theta3, true, l3, oorg);
|
---|
| 87 | if (counter++ > n_it) { TheState = Fail; break; }
|
---|
| 88 | if (oorg)
|
---|
| 89 | {
|
---|
| 90 | if (x <= 1.0)
|
---|
| 91 | { x *= 0.5; x2 = x*x; g *= 2.0; d1 *= x; H1 *= x; K *= x2; }
|
---|
| 92 | else
|
---|
| 93 | {
|
---|
| 94 | x = 0.5 * (x-1.0); x2 = x*x; Theta1 = Theta2;
|
---|
| 95 | H1 = (H1 + K * 2.0) * x;
|
---|
| 96 | K *= x2; g = 0.0; d1 = x * d2; l1 = l2;
|
---|
| 97 | }
|
---|
| 98 | TheState = Continue; break;
|
---|
| 99 | }
|
---|
| 100 |
|
---|
| 101 | if (l3 >= l1 && l3 >= l2)
|
---|
| 102 | { Theta1 = Theta3; l1 = l3; TheState = Restart; break; }
|
---|
| 103 |
|
---|
| 104 | d3 = LastDerivative(H1 + K * 2.0);
|
---|
| 105 | if (l1 > l2)
|
---|
| 106 | { H1 *= x; K *= x2; Theta2 = Theta3; d1 *= x; d2 = d3*x; }
|
---|
| 107 | else
|
---|
| 108 | {
|
---|
| 109 | Theta1 = Theta2; Theta2 = Theta3;
|
---|
| 110 | x -= 1.0; x2 = x*x; g = 0.0; H1 = (H1 + K * 2.0) * x;
|
---|
| 111 | K *= x2; l1 = l2; l2 = l3; d1 = x*d2; d2 = x*d3;
|
---|
| 112 | if (d1 <= 0.0) { TheState = Start; break; }
|
---|
| 113 | }
|
---|
| 114 | TheState = Interpolate; break;
|
---|
| 115 |
|
---|
| 116 | case Extrapolate:
|
---|
| 117 | tr.ReName("FindMaximum2::Fit/Extrapolate");
|
---|
| 118 | Theta1 = Theta2; g = 0.0; K *= 4.0; H1 = (H1 * 2.0 + K);
|
---|
| 119 | d1 = 2.0 * d2; l1 = l2;
|
---|
| 120 | TheState = Continue; break;
|
---|
| 121 |
|
---|
| 122 | case Fail:
|
---|
| 123 | Throw(ConvergenceException(Theta));
|
---|
| 124 |
|
---|
| 125 | case Convergence:
|
---|
| 126 | Theta = Theta1; return;
|
---|
| 127 | }
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 |
|
---|
| 132 |
|
---|
| 133 | void NonLinearLeastSquares::Value
|
---|
| 134 | (const ColumnVector& Parameters, bool, Real& v, bool& oorg)
|
---|
| 135 | {
|
---|
| 136 | Tracer tr("NonLinearLeastSquares::Value");
|
---|
| 137 | Y.resize(n_obs); X.resize(n_obs,n_param);
|
---|
| 138 | // put the fitted values in Y, the derivatives in X.
|
---|
| 139 | Pred.Set(Parameters);
|
---|
| 140 | if (!Pred.IsValid()) { oorg=true; return; }
|
---|
| 141 | for (int i=1; i<=n_obs; i++)
|
---|
| 142 | {
|
---|
| 143 | Y(i) = Pred(i);
|
---|
| 144 | X.Row(i) = Pred.Derivatives();
|
---|
| 145 | }
|
---|
| 146 | if (!Pred.IsValid()) { oorg=true; return; } // check afterwards as well
|
---|
| 147 | Y = *DataPointer - Y; Real ssq = Y.SumSquare();
|
---|
| 148 | errorvar = ssq / (n_obs - n_param);
|
---|
| 149 | cout << endl;
|
---|
| 150 | cout << setw(15) << setprecision(10) << " " << errorvar;
|
---|
| 151 | Derivs = Y.t() * X; // get the derivative and stash it
|
---|
| 152 | oorg = false; v = -0.5 * ssq;
|
---|
| 153 | }
|
---|
| 154 |
|
---|
| 155 | bool NonLinearLeastSquares::NextPoint(ColumnVector& Adj, Real& test)
|
---|
| 156 | {
|
---|
| 157 | Tracer tr("NonLinearLeastSquares::NextPoint");
|
---|
| 158 | QRZ(X, U); QRZ(X, Y, M); // do the QR decomposition
|
---|
| 159 | test = M.SumSquare();
|
---|
| 160 | cout << " " << setw(15) << setprecision(10)
|
---|
| 161 | << test << " " << Y.SumSquare() / (n_obs - n_param);
|
---|
| 162 | Adj = U.i() * M;
|
---|
| 163 | if (test < errorvar * criterion) return true;
|
---|
| 164 | else return false;
|
---|
| 165 | }
|
---|
| 166 |
|
---|
| 167 | Real NonLinearLeastSquares::LastDerivative(const ColumnVector& H)
|
---|
| 168 | { return (Derivs * H).AsScalar(); }
|
---|
| 169 |
|
---|
| 170 | void NonLinearLeastSquares::Fit(const ColumnVector& Data,
|
---|
| 171 | ColumnVector& Parameters)
|
---|
| 172 | {
|
---|
| 173 | Tracer tr("NonLinearLeastSquares::Fit");
|
---|
| 174 | n_param = Parameters.Nrows(); n_obs = Data.Nrows();
|
---|
| 175 | DataPointer = &Data;
|
---|
| 176 | FindMaximum2::Fit(Parameters, Lim);
|
---|
| 177 | cout << "\nConverged" << endl;
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 | void NonLinearLeastSquares::MakeCovariance()
|
---|
| 181 | {
|
---|
| 182 | if (Covariance.Nrows()==0)
|
---|
| 183 | {
|
---|
| 184 | UpperTriangularMatrix UI = U.i();
|
---|
| 185 | Covariance << UI * UI.t() * errorvar;
|
---|
| 186 | SE << Covariance; // get diagonals
|
---|
| 187 | for (int i = 1; i<=n_param; i++) SE(i) = sqrt(SE(i));
|
---|
| 188 | }
|
---|
| 189 | }
|
---|
| 190 |
|
---|
| 191 | void NonLinearLeastSquares::GetStandardErrors(ColumnVector& SEX)
|
---|
| 192 | { MakeCovariance(); SEX = SE.AsColumn(); }
|
---|
| 193 |
|
---|
| 194 | void NonLinearLeastSquares::GetCorrelations(SymmetricMatrix& Corr)
|
---|
| 195 | { MakeCovariance(); Corr << SE.i() * Covariance * SE.i(); }
|
---|
| 196 |
|
---|
| 197 | void NonLinearLeastSquares::GetHatDiagonal(DiagonalMatrix& Hat) const
|
---|
| 198 | {
|
---|
| 199 | Hat.resize(n_obs);
|
---|
| 200 | for (int i = 1; i<=n_obs; i++) Hat(i) = X.Row(i).SumSquare();
|
---|
| 201 | }
|
---|
| 202 |
|
---|
| 203 |
|
---|
| 204 | // the MLE_D_FI routines
|
---|
| 205 |
|
---|
| 206 | void MLE_D_FI::Value
|
---|
| 207 | (const ColumnVector& Parameters, bool wg, Real& v, bool& oorg)
|
---|
| 208 | {
|
---|
| 209 | Tracer tr("MLE_D_FI::Value");
|
---|
| 210 | if (!LL.IsValid(Parameters,wg)) { oorg=true; return; }
|
---|
| 211 | v = LL.LogLikelihood();
|
---|
| 212 | if (!LL.IsValid()) { oorg=true; return; } // check validity again
|
---|
| 213 | cout << endl;
|
---|
| 214 | cout << setw(20) << setprecision(10) << v;
|
---|
| 215 | oorg = false;
|
---|
| 216 | Derivs = LL.Derivatives(); // Get derivatives
|
---|
| 217 | }
|
---|
| 218 |
|
---|
| 219 | bool MLE_D_FI::NextPoint(ColumnVector& Adj, Real& test)
|
---|
| 220 | {
|
---|
| 221 | Tracer tr("MLE_D_FI::NextPoint");
|
---|
| 222 | SymmetricMatrix FI = LL.FI();
|
---|
| 223 | LT = Cholesky(FI);
|
---|
| 224 | ColumnVector Adj1 = LT.i() * Derivs;
|
---|
| 225 | Adj = LT.t().i() * Adj1;
|
---|
| 226 | test = SumSquare(Adj1);
|
---|
| 227 | cout << " " << setw(20) << setprecision(10) << test;
|
---|
| 228 | return (test < Criterion);
|
---|
| 229 | }
|
---|
| 230 |
|
---|
| 231 | Real MLE_D_FI::LastDerivative(const ColumnVector& H)
|
---|
| 232 | { return (Derivs.t() * H).AsScalar(); }
|
---|
| 233 |
|
---|
| 234 | void MLE_D_FI::Fit(ColumnVector& Parameters)
|
---|
| 235 | {
|
---|
| 236 | Tracer tr("MLE_D_FI::Fit");
|
---|
| 237 | FindMaximum2::Fit(Parameters,Lim);
|
---|
| 238 | cout << "\nConverged" << endl;
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 | void MLE_D_FI::MakeCovariance()
|
---|
| 242 | {
|
---|
| 243 | if (Covariance.Nrows()==0)
|
---|
| 244 | {
|
---|
| 245 | LowerTriangularMatrix LTI = LT.i();
|
---|
| 246 | Covariance << LTI.t() * LTI;
|
---|
| 247 | SE << Covariance; // get diagonal
|
---|
| 248 | int n = Covariance.Nrows();
|
---|
| 249 | for (int i=1; i <= n; i++) SE(i) = sqrt(SE(i));
|
---|
| 250 | }
|
---|
| 251 | }
|
---|
| 252 |
|
---|
| 253 | void MLE_D_FI::GetStandardErrors(ColumnVector& SEX)
|
---|
| 254 | { MakeCovariance(); SEX = SE.AsColumn(); }
|
---|
| 255 |
|
---|
| 256 | void MLE_D_FI::GetCorrelations(SymmetricMatrix& Corr)
|
---|
| 257 | { MakeCovariance(); Corr << SE.i() * Covariance * SE.i(); }
|
---|
| 258 |
|
---|
| 259 |
|
---|
| 260 |
|
---|
| 261 | #ifdef use_namespace
|
---|
| 262 | }
|
---|
| 263 | #endif
|
---|
| 264 |
|
---|
| 265 |
|
---|
| 266 | ///@}
|
---|