| 1 |  | 
|---|
| 2 | #include <cmath> | 
|---|
| 3 |  | 
|---|
| 4 | #include "bnctides.h" | 
|---|
| 5 | #include "bncutils.h" | 
|---|
| 6 |  | 
|---|
| 7 | using namespace std; | 
|---|
| 8 |  | 
|---|
| 9 | // Auxiliary Functions | 
|---|
| 10 | /////////////////////////////////////////////////////////////////////////// | 
|---|
| 11 | namespace { | 
|---|
| 12 |  | 
|---|
| 13 | static const double RHO_DEG   = 180.0 / M_PI; | 
|---|
| 14 | static const double RHO_SEC   = 3600.0 * RHO_DEG; | 
|---|
| 15 | static const double MJD_J2000 = 51544.5; | 
|---|
| 16 |  | 
|---|
| 17 | double Frac (double x) { return x-floor(x); }; | 
|---|
| 18 | double Modulo (double x, double y) { return y*Frac(x/y); } | 
|---|
| 19 |  | 
|---|
| 20 | Matrix rotX(double Angle) { | 
|---|
| 21 | const double C = cos(Angle); | 
|---|
| 22 | const double S = sin(Angle); | 
|---|
| 23 | Matrix UU(3,3); | 
|---|
| 24 | UU[0][0] = 1.0;  UU[0][1] = 0.0;  UU[0][2] = 0.0; | 
|---|
| 25 | UU[1][0] = 0.0;  UU[1][1] =  +C;  UU[1][2] =  +S; | 
|---|
| 26 | UU[2][0] = 0.0;  UU[2][1] =  -S;  UU[2][2] =  +C; | 
|---|
| 27 | return UU; | 
|---|
| 28 | } | 
|---|
| 29 |  | 
|---|
| 30 | Matrix rotY(double Angle) { | 
|---|
| 31 | const double C = cos(Angle); | 
|---|
| 32 | const double S = sin(Angle); | 
|---|
| 33 | Matrix UU(3,3); | 
|---|
| 34 | UU[0][0] =  +C;  UU[0][1] = 0.0;  UU[0][2] =  -S; | 
|---|
| 35 | UU[1][0] = 0.0;  UU[1][1] = 1.0;  UU[1][2] = 0.0; | 
|---|
| 36 | UU[2][0] =  +S;  UU[2][1] = 0.0;  UU[2][2] =  +C; | 
|---|
| 37 | return UU; | 
|---|
| 38 | } | 
|---|
| 39 |  | 
|---|
| 40 | Matrix rotZ(double Angle) { | 
|---|
| 41 | const double C = cos(Angle); | 
|---|
| 42 | const double S = sin(Angle); | 
|---|
| 43 | Matrix UU(3,3); | 
|---|
| 44 | UU[0][0] =  +C;  UU[0][1] =  +S;  UU[0][2] = 0.0; | 
|---|
| 45 | UU[1][0] =  -S;  UU[1][1] =  +C;  UU[1][2] = 0.0; | 
|---|
| 46 | UU[2][0] = 0.0;  UU[2][1] = 0.0;  UU[2][2] = 1.0; | 
|---|
| 47 | return UU; | 
|---|
| 48 | } | 
|---|
| 49 | } | 
|---|
| 50 |  | 
|---|
| 51 | // Greenwich Mean Sidereal Time | 
|---|
| 52 | /////////////////////////////////////////////////////////////////////////// | 
|---|
| 53 | double GMST(double Mjd_UT1) { | 
|---|
| 54 |  | 
|---|
| 55 | const double Secs = 86400.0; | 
|---|
| 56 |  | 
|---|
| 57 | double Mjd_0 = floor(Mjd_UT1); | 
|---|
| 58 | double UT1   = Secs*(Mjd_UT1-Mjd_0); | 
|---|
| 59 | double T_0   = (Mjd_0  -MJD_J2000)/36525.0; | 
|---|
| 60 | double T     = (Mjd_UT1-MJD_J2000)/36525.0; | 
|---|
| 61 |  | 
|---|
| 62 | double gmst  = 24110.54841 + 8640184.812866*T_0 + 1.002737909350795*UT1 | 
|---|
| 63 | + (0.093104-6.2e-6*T)*T*T; | 
|---|
| 64 |  | 
|---|
| 65 | return  2.0*M_PI*Frac(gmst/Secs); | 
|---|
| 66 | } | 
|---|
| 67 |  | 
|---|
| 68 | // Nutation Matrix | 
|---|
| 69 | /////////////////////////////////////////////////////////////////////////// | 
|---|
| 70 | Matrix NutMatrix(double Mjd_TT) { | 
|---|
| 71 |  | 
|---|
| 72 | const double T  = (Mjd_TT-MJD_J2000)/36525.0; | 
|---|
| 73 |  | 
|---|
| 74 | double ls = 2.0*M_PI*Frac(0.993133+  99.997306*T); | 
|---|
| 75 | double D  = 2.0*M_PI*Frac(0.827362+1236.853087*T); | 
|---|
| 76 | double F  = 2.0*M_PI*Frac(0.259089+1342.227826*T); | 
|---|
| 77 | double N  = 2.0*M_PI*Frac(0.347346-   5.372447*T); | 
|---|
| 78 |  | 
|---|
| 79 | double dpsi = ( -17.200*sin(N)   - 1.319*sin(2*(F-D+N)) - 0.227*sin(2*(F+N)) | 
|---|
| 80 | + 0.206*sin(2*N) + 0.143*sin(ls) ) / RHO_SEC; | 
|---|
| 81 | double deps = ( + 9.203*cos(N)   + 0.574*cos(2*(F-D+N)) + 0.098*cos(2*(F+N)) | 
|---|
| 82 | - 0.090*cos(2*N)                 ) / RHO_SEC; | 
|---|
| 83 |  | 
|---|
| 84 | double eps  = 0.4090928-2.2696E-4*T; | 
|---|
| 85 |  | 
|---|
| 86 | return  rotX(-eps-deps)*rotZ(-dpsi)*rotX(+eps); | 
|---|
| 87 | } | 
|---|
| 88 |  | 
|---|
| 89 | // Precession Matrix | 
|---|
| 90 | /////////////////////////////////////////////////////////////////////////// | 
|---|
| 91 | Matrix PrecMatrix (double Mjd_1, double Mjd_2) { | 
|---|
| 92 |  | 
|---|
| 93 | const double T  = (Mjd_1-MJD_J2000)/36525.0; | 
|---|
| 94 | const double dT = (Mjd_2-Mjd_1)/36525.0; | 
|---|
| 95 |  | 
|---|
| 96 | double zeta  =  ( (2306.2181+(1.39656-0.000139*T)*T)+ | 
|---|
| 97 | ((0.30188-0.000344*T)+0.017998*dT)*dT )*dT/RHO_SEC; | 
|---|
| 98 | double z     =  zeta + ( (0.79280+0.000411*T)+0.000205*dT)*dT*dT/RHO_SEC; | 
|---|
| 99 | double theta =  ( (2004.3109-(0.85330+0.000217*T)*T)- | 
|---|
| 100 | ((0.42665+0.000217*T)+0.041833*dT)*dT )*dT/RHO_SEC; | 
|---|
| 101 |  | 
|---|
| 102 | return rotZ(-z) * rotY(theta) * rotZ(-zeta); | 
|---|
| 103 | } | 
|---|
| 104 |  | 
|---|
| 105 | // Sun's position | 
|---|
| 106 | /////////////////////////////////////////////////////////////////////////// | 
|---|
| 107 | ColumnVector Sun(double Mjd_TT) { | 
|---|
| 108 |  | 
|---|
| 109 | const double eps = 23.43929111/RHO_DEG; | 
|---|
| 110 | const double T   = (Mjd_TT-MJD_J2000)/36525.0; | 
|---|
| 111 |  | 
|---|
| 112 | double M = 2.0*M_PI * Frac ( 0.9931267 + 99.9973583*T); | 
|---|
| 113 | double L = 2.0*M_PI * Frac ( 0.7859444 + M/2.0/M_PI + | 
|---|
| 114 | (6892.0*sin(M)+72.0*sin(2.0*M)) / 1296.0e3); | 
|---|
| 115 | double r = 149.619e9 - 2.499e9*cos(M) - 0.021e9*cos(2*M); | 
|---|
| 116 |  | 
|---|
| 117 | ColumnVector r_Sun(3); | 
|---|
| 118 | r_Sun << r*cos(L) << r*sin(L) << 0.0; r_Sun = rotX(-eps) * r_Sun; | 
|---|
| 119 |  | 
|---|
| 120 | return    rotZ(GMST(Mjd_TT)) | 
|---|
| 121 | * NutMatrix(Mjd_TT) | 
|---|
| 122 | * PrecMatrix(MJD_J2000, Mjd_TT) | 
|---|
| 123 | * r_Sun; | 
|---|
| 124 | } | 
|---|
| 125 |  | 
|---|
| 126 | // Moon's position | 
|---|
| 127 | /////////////////////////////////////////////////////////////////////////// | 
|---|
| 128 | ColumnVector Moon(double Mjd_TT) { | 
|---|
| 129 |  | 
|---|
| 130 | const double eps = 23.43929111/RHO_DEG; | 
|---|
| 131 | const double T   = (Mjd_TT-MJD_J2000)/36525.0; | 
|---|
| 132 |  | 
|---|
| 133 | double L_0 = Frac ( 0.606433 + 1336.851344*T ); | 
|---|
| 134 | double l   = 2.0*M_PI*Frac ( 0.374897 + 1325.552410*T ); | 
|---|
| 135 | double lp  = 2.0*M_PI*Frac ( 0.993133 +   99.997361*T ); | 
|---|
| 136 | double D   = 2.0*M_PI*Frac ( 0.827361 + 1236.853086*T ); | 
|---|
| 137 | double F   = 2.0*M_PI*Frac ( 0.259086 + 1342.227825*T ); | 
|---|
| 138 |  | 
|---|
| 139 | double dL = +22640*sin(l) - 4586*sin(l-2*D) + 2370*sin(2*D) +  769*sin(2*l) | 
|---|
| 140 | -668*sin(lp) - 412*sin(2*F) - 212*sin(2*l-2*D)- 206*sin(l+lp-2*D) | 
|---|
| 141 | +192*sin(l+2*D) - 165*sin(lp-2*D) - 125*sin(D) - 110*sin(l+lp) | 
|---|
| 142 | +148*sin(l-lp) - 55*sin(2*F-2*D); | 
|---|
| 143 |  | 
|---|
| 144 | double L = 2.0*M_PI * Frac( L_0 + dL/1296.0e3 ); | 
|---|
| 145 |  | 
|---|
| 146 | double S  = F + (dL+412*sin(2*F)+541*sin(lp)) / RHO_SEC; | 
|---|
| 147 | double h  = F-2*D; | 
|---|
| 148 | double N  = -526*sin(h) + 44*sin(l+h) - 31*sin(-l+h) - 23*sin(lp+h) | 
|---|
| 149 | +11*sin(-lp+h) - 25*sin(-2*l+F) + 21*sin(-l+F); | 
|---|
| 150 |  | 
|---|
| 151 | double B = ( 18520.0*sin(S) + N ) / RHO_SEC; | 
|---|
| 152 |  | 
|---|
| 153 | double cosB = cos(B); | 
|---|
| 154 |  | 
|---|
| 155 | double R = 385000e3 - 20905e3*cos(l) - 3699e3*cos(2*D-l) - 2956e3*cos(2*D) | 
|---|
| 156 | -570e3*cos(2*l) + 246e3*cos(2*l-2*D) - 205e3*cos(lp-2*D) | 
|---|
| 157 | -171e3*cos(l+2*D) - 152e3*cos(l+lp-2*D); | 
|---|
| 158 |  | 
|---|
| 159 | ColumnVector r_Moon(3); | 
|---|
| 160 | r_Moon << R*cos(L)*cosB << R*sin(L)*cosB << R*sin(B); | 
|---|
| 161 | r_Moon = rotX(-eps) * r_Moon; | 
|---|
| 162 |  | 
|---|
| 163 | return    rotZ(GMST(Mjd_TT)) | 
|---|
| 164 | * NutMatrix(Mjd_TT) | 
|---|
| 165 | * PrecMatrix(MJD_J2000, Mjd_TT) | 
|---|
| 166 | * r_Moon; | 
|---|
| 167 | } | 
|---|
| 168 |  | 
|---|
| 169 | // Tidal Correction | 
|---|
| 170 | //////////////////////////////////////////////////////////////////////////// | 
|---|
| 171 | void tides(const bncTime& time, ColumnVector& xyz) { | 
|---|
| 172 |  | 
|---|
| 173 | static double       lastMjd = 0.0; | 
|---|
| 174 | static ColumnVector xSun; | 
|---|
| 175 | static ColumnVector xMoon; | 
|---|
| 176 | static double       rSun; | 
|---|
| 177 | static double       rMoon; | 
|---|
| 178 |  | 
|---|
| 179 | double Mjd = time.mjd() + time.daysec() / 86400.0; | 
|---|
| 180 |  | 
|---|
| 181 | if (Mjd != lastMjd) { | 
|---|
| 182 | lastMjd = Mjd; | 
|---|
| 183 | xSun = Sun(Mjd); | 
|---|
| 184 | rSun = sqrt(DotProduct(xSun,xSun)); | 
|---|
| 185 | xSun /= rSun; | 
|---|
| 186 | xMoon = Moon(Mjd); | 
|---|
| 187 | rMoon = sqrt(DotProduct(xMoon,xMoon)); | 
|---|
| 188 | xMoon /= rMoon; | 
|---|
| 189 | } | 
|---|
| 190 |  | 
|---|
| 191 | double       rRec    = sqrt(DotProduct(xyz, xyz)); | 
|---|
| 192 | ColumnVector xyzUnit = xyz / rRec; | 
|---|
| 193 |  | 
|---|
| 194 | // Love's Numbers | 
|---|
| 195 | // -------------- | 
|---|
| 196 | const double H2 = 0.6090; | 
|---|
| 197 | const double L2 = 0.0852; | 
|---|
| 198 |  | 
|---|
| 199 | // Tidal Displacement | 
|---|
| 200 | // ------------------ | 
|---|
| 201 | double scSun  = DotProduct(xyzUnit, xSun); | 
|---|
| 202 | double scMoon = DotProduct(xyzUnit, xMoon); | 
|---|
| 203 |  | 
|---|
| 204 | double p2Sun  = 3.0 * (H2/2.0-L2) * scSun  * scSun  - H2/2.0; | 
|---|
| 205 | double p2Moon = 3.0 * (H2/2.0-L2) * scMoon * scMoon - H2/2.0; | 
|---|
| 206 |  | 
|---|
| 207 | double x2Sun  = 3.0 * L2 * scSun; | 
|---|
| 208 | double x2Moon = 3.0 * L2 * scMoon; | 
|---|
| 209 |  | 
|---|
| 210 | const double gmWGS = 398.6005e12; | 
|---|
| 211 | const double gms   = 1.3271250e20; | 
|---|
| 212 | const double gmm   = 4.9027890e12; | 
|---|
| 213 |  | 
|---|
| 214 | double facSun  = gms / gmWGS * | 
|---|
| 215 | (rRec * rRec * rRec * rRec) / (rSun * rSun * rSun); | 
|---|
| 216 |  | 
|---|
| 217 | double facMoon = gmm / gmWGS * | 
|---|
| 218 | (rRec * rRec * rRec * rRec) / (rMoon * rMoon * rMoon); | 
|---|
| 219 |  | 
|---|
| 220 | ColumnVector dX = facSun  * (x2Sun  * xSun  + p2Sun  * xyzUnit) + | 
|---|
| 221 | facMoon * (x2Moon * xMoon + p2Moon * xyzUnit); | 
|---|
| 222 |  | 
|---|
| 223 | xyz += dX; | 
|---|
| 224 | } | 
|---|