[2578] | 1 |
|
---|
| 2 | #include <cmath>
|
---|
| 3 |
|
---|
| 4 | #include "bnctides.h"
|
---|
[2579] | 5 | #include "bncutils.h"
|
---|
[2578] | 6 |
|
---|
| 7 | using namespace std;
|
---|
| 8 |
|
---|
| 9 | // Auxiliary Functions
|
---|
| 10 | ///////////////////////////////////////////////////////////////////////////
|
---|
| 11 | namespace {
|
---|
| 12 |
|
---|
| 13 | static const double RHO_DEG = 180.0 / M_PI;
|
---|
| 14 | static const double RHO_SEC = 3600.0 * RHO_DEG;
|
---|
| 15 | static const double MJD_J2000 = 51544.5;
|
---|
| 16 |
|
---|
| 17 | double Frac (double x) { return x-floor(x); };
|
---|
| 18 | double Modulo (double x, double y) { return y*Frac(x/y); }
|
---|
| 19 |
|
---|
| 20 | Matrix rotX(double Angle) {
|
---|
| 21 | const double C = cos(Angle);
|
---|
| 22 | const double S = sin(Angle);
|
---|
| 23 | Matrix UU(3,3);
|
---|
| 24 | UU[0][0] = 1.0; UU[0][1] = 0.0; UU[0][2] = 0.0;
|
---|
| 25 | UU[1][0] = 0.0; UU[1][1] = +C; UU[1][2] = +S;
|
---|
| 26 | UU[2][0] = 0.0; UU[2][1] = -S; UU[2][2] = +C;
|
---|
| 27 | return UU;
|
---|
| 28 | }
|
---|
| 29 |
|
---|
| 30 | Matrix rotY(double Angle) {
|
---|
| 31 | const double C = cos(Angle);
|
---|
| 32 | const double S = sin(Angle);
|
---|
| 33 | Matrix UU(3,3);
|
---|
| 34 | UU[0][0] = +C; UU[0][1] = 0.0; UU[0][2] = -S;
|
---|
| 35 | UU[1][0] = 0.0; UU[1][1] = 1.0; UU[1][2] = 0.0;
|
---|
| 36 | UU[2][0] = +S; UU[2][1] = 0.0; UU[2][2] = +C;
|
---|
| 37 | return UU;
|
---|
| 38 | }
|
---|
| 39 |
|
---|
| 40 | Matrix rotZ(double Angle) {
|
---|
| 41 | const double C = cos(Angle);
|
---|
| 42 | const double S = sin(Angle);
|
---|
| 43 | Matrix UU(3,3);
|
---|
| 44 | UU[0][0] = +C; UU[0][1] = +S; UU[0][2] = 0.0;
|
---|
| 45 | UU[1][0] = -S; UU[1][1] = +C; UU[1][2] = 0.0;
|
---|
| 46 | UU[2][0] = 0.0; UU[2][1] = 0.0; UU[2][2] = 1.0;
|
---|
| 47 | return UU;
|
---|
| 48 | }
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | // Greenwich Mean Sidereal Time
|
---|
| 52 | ///////////////////////////////////////////////////////////////////////////
|
---|
| 53 | double GMST(double Mjd_UT1) {
|
---|
| 54 |
|
---|
| 55 | const double Secs = 86400.0;
|
---|
| 56 |
|
---|
| 57 | double Mjd_0 = floor(Mjd_UT1);
|
---|
| 58 | double UT1 = Secs*(Mjd_UT1-Mjd_0);
|
---|
| 59 | double T_0 = (Mjd_0 -MJD_J2000)/36525.0;
|
---|
| 60 | double T = (Mjd_UT1-MJD_J2000)/36525.0;
|
---|
| 61 |
|
---|
| 62 | double gmst = 24110.54841 + 8640184.812866*T_0 + 1.002737909350795*UT1
|
---|
| 63 | + (0.093104-6.2e-6*T)*T*T;
|
---|
| 64 |
|
---|
| 65 | return 2.0*M_PI*Frac(gmst/Secs);
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | // Nutation Matrix
|
---|
| 69 | ///////////////////////////////////////////////////////////////////////////
|
---|
| 70 | Matrix NutMatrix(double Mjd_TT) {
|
---|
| 71 |
|
---|
| 72 | const double T = (Mjd_TT-MJD_J2000)/36525.0;
|
---|
| 73 |
|
---|
| 74 | double ls = 2.0*M_PI*Frac(0.993133+ 99.997306*T);
|
---|
| 75 | double D = 2.0*M_PI*Frac(0.827362+1236.853087*T);
|
---|
| 76 | double F = 2.0*M_PI*Frac(0.259089+1342.227826*T);
|
---|
| 77 | double N = 2.0*M_PI*Frac(0.347346- 5.372447*T);
|
---|
| 78 |
|
---|
| 79 | double dpsi = ( -17.200*sin(N) - 1.319*sin(2*(F-D+N)) - 0.227*sin(2*(F+N))
|
---|
| 80 | + 0.206*sin(2*N) + 0.143*sin(ls) ) / RHO_SEC;
|
---|
| 81 | double deps = ( + 9.203*cos(N) + 0.574*cos(2*(F-D+N)) + 0.098*cos(2*(F+N))
|
---|
| 82 | - 0.090*cos(2*N) ) / RHO_SEC;
|
---|
| 83 |
|
---|
| 84 | double eps = 0.4090928-2.2696E-4*T;
|
---|
| 85 |
|
---|
| 86 | return rotX(-eps-deps)*rotZ(-dpsi)*rotX(+eps);
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | // Precession Matrix
|
---|
| 90 | ///////////////////////////////////////////////////////////////////////////
|
---|
| 91 | Matrix PrecMatrix (double Mjd_1, double Mjd_2) {
|
---|
| 92 |
|
---|
| 93 | const double T = (Mjd_1-MJD_J2000)/36525.0;
|
---|
| 94 | const double dT = (Mjd_2-Mjd_1)/36525.0;
|
---|
| 95 |
|
---|
| 96 | double zeta = ( (2306.2181+(1.39656-0.000139*T)*T)+
|
---|
| 97 | ((0.30188-0.000344*T)+0.017998*dT)*dT )*dT/RHO_SEC;
|
---|
| 98 | double z = zeta + ( (0.79280+0.000411*T)+0.000205*dT)*dT*dT/RHO_SEC;
|
---|
| 99 | double theta = ( (2004.3109-(0.85330+0.000217*T)*T)-
|
---|
| 100 | ((0.42665+0.000217*T)+0.041833*dT)*dT )*dT/RHO_SEC;
|
---|
| 101 |
|
---|
| 102 | return rotZ(-z) * rotY(theta) * rotZ(-zeta);
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | // Sun's position
|
---|
| 106 | ///////////////////////////////////////////////////////////////////////////
|
---|
| 107 | ColumnVector Sun(double Mjd_TT) {
|
---|
| 108 |
|
---|
| 109 | const double eps = 23.43929111/RHO_DEG;
|
---|
| 110 | const double T = (Mjd_TT-MJD_J2000)/36525.0;
|
---|
| 111 |
|
---|
| 112 | double M = 2.0*M_PI * Frac ( 0.9931267 + 99.9973583*T);
|
---|
[2586] | 113 | double L = 2.0*M_PI * Frac ( 0.7859444 + M/2.0/M_PI +
|
---|
[2578] | 114 | (6892.0*sin(M)+72.0*sin(2.0*M)) / 1296.0e3);
|
---|
| 115 | double r = 149.619e9 - 2.499e9*cos(M) - 0.021e9*cos(2*M);
|
---|
| 116 |
|
---|
| 117 | ColumnVector r_Sun(3);
|
---|
| 118 | r_Sun << r*cos(L) << r*sin(L) << 0.0; r_Sun = rotX(-eps) * r_Sun;
|
---|
| 119 |
|
---|
| 120 | return rotZ(GMST(Mjd_TT))
|
---|
| 121 | * NutMatrix(Mjd_TT)
|
---|
| 122 | * PrecMatrix(MJD_J2000, Mjd_TT)
|
---|
| 123 | * r_Sun;
|
---|
| 124 | }
|
---|
| 125 |
|
---|
| 126 | // Moon's position
|
---|
| 127 | ///////////////////////////////////////////////////////////////////////////
|
---|
| 128 | ColumnVector Moon(double Mjd_TT) {
|
---|
| 129 |
|
---|
| 130 | const double eps = 23.43929111/RHO_DEG;
|
---|
| 131 | const double T = (Mjd_TT-MJD_J2000)/36525.0;
|
---|
| 132 |
|
---|
| 133 | double L_0 = Frac ( 0.606433 + 1336.851344*T );
|
---|
| 134 | double l = 2.0*M_PI*Frac ( 0.374897 + 1325.552410*T );
|
---|
| 135 | double lp = 2.0*M_PI*Frac ( 0.993133 + 99.997361*T );
|
---|
| 136 | double D = 2.0*M_PI*Frac ( 0.827361 + 1236.853086*T );
|
---|
| 137 | double F = 2.0*M_PI*Frac ( 0.259086 + 1342.227825*T );
|
---|
| 138 |
|
---|
| 139 | double dL = +22640*sin(l) - 4586*sin(l-2*D) + 2370*sin(2*D) + 769*sin(2*l)
|
---|
| 140 | -668*sin(lp) - 412*sin(2*F) - 212*sin(2*l-2*D)- 206*sin(l+lp-2*D)
|
---|
| 141 | +192*sin(l+2*D) - 165*sin(lp-2*D) - 125*sin(D) - 110*sin(l+lp)
|
---|
| 142 | +148*sin(l-lp) - 55*sin(2*F-2*D);
|
---|
| 143 |
|
---|
| 144 | double L = 2.0*M_PI * Frac( L_0 + dL/1296.0e3 );
|
---|
| 145 |
|
---|
| 146 | double S = F + (dL+412*sin(2*F)+541*sin(lp)) / RHO_SEC;
|
---|
| 147 | double h = F-2*D;
|
---|
| 148 | double N = -526*sin(h) + 44*sin(l+h) - 31*sin(-l+h) - 23*sin(lp+h)
|
---|
| 149 | +11*sin(-lp+h) - 25*sin(-2*l+F) + 21*sin(-l+F);
|
---|
| 150 |
|
---|
| 151 | double B = ( 18520.0*sin(S) + N ) / RHO_SEC;
|
---|
| 152 |
|
---|
| 153 | double cosB = cos(B);
|
---|
| 154 |
|
---|
| 155 | double R = 385000e3 - 20905e3*cos(l) - 3699e3*cos(2*D-l) - 2956e3*cos(2*D)
|
---|
| 156 | -570e3*cos(2*l) + 246e3*cos(2*l-2*D) - 205e3*cos(lp-2*D)
|
---|
| 157 | -171e3*cos(l+2*D) - 152e3*cos(l+lp-2*D);
|
---|
| 158 |
|
---|
| 159 | ColumnVector r_Moon(3);
|
---|
| 160 | r_Moon << R*cos(L)*cosB << R*sin(L)*cosB << R*sin(B);
|
---|
| 161 | r_Moon = rotX(-eps) * r_Moon;
|
---|
| 162 |
|
---|
| 163 | return rotZ(GMST(Mjd_TT))
|
---|
| 164 | * NutMatrix(Mjd_TT)
|
---|
| 165 | * PrecMatrix(MJD_J2000, Mjd_TT)
|
---|
| 166 | * r_Moon;
|
---|
| 167 | }
|
---|
[2579] | 168 |
|
---|
| 169 | // Tidal Correction
|
---|
| 170 | ////////////////////////////////////////////////////////////////////////////
|
---|
| 171 | void tides(const bncTime& time, ColumnVector& xyz) {
|
---|
| 172 |
|
---|
| 173 | static double lastMjd = 0.0;
|
---|
[2581] | 174 | static ColumnVector xSun;
|
---|
| 175 | static ColumnVector xMoon;
|
---|
[2579] | 176 | static double rSun;
|
---|
| 177 | static double rMoon;
|
---|
| 178 |
|
---|
| 179 | double Mjd = time.mjd() + time.daysec() / 86400.0;
|
---|
| 180 |
|
---|
| 181 | if (Mjd != lastMjd) {
|
---|
| 182 | lastMjd = Mjd;
|
---|
| 183 | xSun = Sun(Mjd);
|
---|
| 184 | rSun = sqrt(DotProduct(xSun,xSun));
|
---|
| 185 | xSun /= rSun;
|
---|
| 186 | xMoon = Moon(Mjd);
|
---|
| 187 | rMoon = sqrt(DotProduct(xMoon,xMoon));
|
---|
| 188 | xMoon /= rMoon;
|
---|
| 189 | }
|
---|
| 190 |
|
---|
| 191 | double rRec = sqrt(DotProduct(xyz, xyz));
|
---|
| 192 | ColumnVector xyzUnit = xyz / rRec;
|
---|
| 193 |
|
---|
| 194 | // Love's Numbers
|
---|
| 195 | // --------------
|
---|
| 196 | const double H2 = 0.6090;
|
---|
| 197 | const double L2 = 0.0852;
|
---|
| 198 |
|
---|
| 199 | // Tidal Displacement
|
---|
| 200 | // ------------------
|
---|
| 201 | double scSun = DotProduct(xyzUnit, xSun);
|
---|
| 202 | double scMoon = DotProduct(xyzUnit, xMoon);
|
---|
| 203 |
|
---|
| 204 | double p2Sun = 3.0 * (H2/2.0-L2) * scSun * scSun - H2/2.0;
|
---|
| 205 | double p2Moon = 3.0 * (H2/2.0-L2) * scMoon * scMoon - H2/2.0;
|
---|
| 206 |
|
---|
| 207 | double x2Sun = 3.0 * L2 * scSun;
|
---|
| 208 | double x2Moon = 3.0 * L2 * scMoon;
|
---|
| 209 |
|
---|
| 210 | const double gmWGS = 398.6005e12;
|
---|
| 211 | const double gms = 1.3271250e20;
|
---|
| 212 | const double gmm = 4.9027890e12;
|
---|
| 213 |
|
---|
| 214 | double facSun = gms / gmWGS *
|
---|
| 215 | (rRec * rRec * rRec * rRec) / (rSun * rSun * rSun);
|
---|
[2581] | 216 |
|
---|
[2579] | 217 | double facMoon = gmm / gmWGS *
|
---|
| 218 | (rRec * rRec * rRec * rRec) / (rMoon * rMoon * rMoon);
|
---|
| 219 |
|
---|
| 220 | ColumnVector dX = facSun * (x2Sun * xSun + p2Sun * xyzUnit) +
|
---|
[2581] | 221 | facMoon * (x2Moon * xMoon + p2Moon * xyzUnit);
|
---|
[2579] | 222 |
|
---|
| 223 | xyz += dX;
|
---|
| 224 | }
|
---|