source: ntrip/trunk/BNC/bncmodel.cpp@ 3941

Last change on this file since 3941 was 3759, checked in by mervart, 13 years ago
File size: 37.8 KB
Line 
1// Part of BNC, a utility for retrieving decoding and
2// converting GNSS data streams from NTRIP broadcasters.
3//
4// Copyright (C) 2007
5// German Federal Agency for Cartography and Geodesy (BKG)
6// http://www.bkg.bund.de
7// Czech Technical University Prague, Department of Geodesy
8// http://www.fsv.cvut.cz
9//
10// Email: euref-ip@bkg.bund.de
11//
12// This program is free software; you can redistribute it and/or
13// modify it under the terms of the GNU General Public License
14// as published by the Free Software Foundation, version 2.
15//
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25/* -------------------------------------------------------------------------
26 * BKG NTRIP Client
27 * -------------------------------------------------------------------------
28 *
29 * Class: bncParam, bncModel
30 *
31 * Purpose: Model for PPP
32 *
33 * Author: L. Mervart
34 *
35 * Created: 01-Dec-2009
36 *
37 * Changes:
38 *
39 * -----------------------------------------------------------------------*/
40
41#include <iomanip>
42#include <cmath>
43#include <newmatio.h>
44#include <sstream>
45
46#include "bncmodel.h"
47#include "bncpppclient.h"
48#include "bncapp.h"
49#include "bncpppclient.h"
50#include "bancroft.h"
51#include "bncutils.h"
52#include "bnctides.h"
53#include "bncantex.h"
54#include "pppopt.h"
55
56using namespace std;
57
58const unsigned MINOBS = 5;
59const double MINELE = 10.0 * M_PI / 180.0;
60const double MAXRES_CODE = 15.0;
61const double MAXRES_PHASE_GPS = 0.04;
62const double MAXRES_PHASE_GLONASS = 0.08;
63const double GLONASS_WEIGHT_FACTOR = 5.0;
64
65// Constructor
66////////////////////////////////////////////////////////////////////////////
67bncParam::bncParam(bncParam::parType typeIn, int indexIn,
68 const QString& prnIn) {
69 type = typeIn;
70 index = indexIn;
71 prn = prnIn;
72 index_old = 0;
73 xx = 0.0;
74 numEpo = 0;
75}
76
77// Destructor
78////////////////////////////////////////////////////////////////////////////
79bncParam::~bncParam() {
80}
81
82// Partial
83////////////////////////////////////////////////////////////////////////////
84double bncParam::partial(t_satData* satData, bool phase) {
85
86 Tracer tracer("bncParam::partial");
87
88 // Coordinates
89 // -----------
90 if (type == CRD_X) {
91 return (xx - satData->xx(1)) / satData->rho;
92 }
93 else if (type == CRD_Y) {
94 return (xx - satData->xx(2)) / satData->rho;
95 }
96 else if (type == CRD_Z) {
97 return (xx - satData->xx(3)) / satData->rho;
98 }
99
100 // Receiver Clocks
101 // ---------------
102 else if (type == RECCLK) {
103 return 1.0;
104 }
105
106 // Troposphere
107 // -----------
108 else if (type == TROPO) {
109 return 1.0 / sin(satData->eleSat);
110 }
111
112 // Galileo Offset
113 // --------------
114 else if (type == GALILEO_OFFSET) {
115 if (satData->prn[0] == 'E') {
116 return 1.0;
117 }
118 else {
119 return 0.0;
120 }
121 }
122
123 // Ambiguities
124 // -----------
125 else if (type == AMB_L3) {
126 if (phase && satData->prn == prn) {
127 return 1.0;
128 }
129 else {
130 return 0.0;
131 }
132 }
133
134 // Default return
135 // --------------
136 return 0.0;
137}
138
139// Constructor
140////////////////////////////////////////////////////////////////////////////
141bncModel::bncModel(bncPPPclient* pppClient) {
142
143 _pppClient = pppClient;
144 _staID = pppClient->staID();
145 _opt = pppClient->opt();
146
147 // NMEA Output
148 // -----------
149 if (_opt->nmeaFile.isEmpty()) {
150 _nmeaFile = 0;
151 _nmeaStream = 0;
152 }
153 else {
154 QString hlpName = _opt->nmeaFile; expandEnvVar(hlpName);
155 _nmeaFile = new QFile(hlpName);
156 if (_opt->rnxAppend) {
157 _nmeaFile->open(QIODevice::WriteOnly | QIODevice::Append);
158 }
159 else {
160 _nmeaFile->open(QIODevice::WriteOnly);
161 }
162 _nmeaStream = new QTextStream();
163 _nmeaStream->setDevice(_nmeaFile);
164 }
165
166 // Antenna Name, ANTEX File
167 // ------------------------
168 _antex = 0;
169 if (!_opt->antexFile.isEmpty()) {
170 _antex = new bncAntex();
171 if (_antex->readFile(_opt->antexFile) != success) {
172 _pppClient->emitNewMessage("wrong ANTEX file", true);
173 delete _antex;
174 _antex = 0;
175 }
176 }
177
178 // Bancroft Coordinates
179 // --------------------
180 _xcBanc.ReSize(4); _xcBanc = 0.0;
181 _ellBanc.ReSize(3); _ellBanc = 0.0;
182
183 // Save copy of data (used in outlier detection)
184 // ---------------------------------------------
185 _epoData_sav = new t_epoData();
186}
187
188// Destructor
189////////////////////////////////////////////////////////////////////////////
190bncModel::~bncModel() {
191 delete _nmeaStream;
192 delete _nmeaFile;
193 for (int ii = 0; ii < _posAverage.size(); ++ii) {
194 delete _posAverage[ii];
195 }
196 delete _antex;
197 for (int iPar = 1; iPar <= _params.size(); iPar++) {
198 delete _params[iPar-1];
199 }
200 for (int iPar = 1; iPar <= _params_sav.size(); iPar++) {
201 delete _params_sav[iPar-1];
202 }
203 delete _epoData_sav;
204}
205
206// Reset Parameters and Variance-Covariance Matrix
207////////////////////////////////////////////////////////////////////////////
208void bncModel::reset() {
209
210 Tracer tracer("bncModel::reset");
211
212 for (int iPar = 1; iPar <= _params.size(); iPar++) {
213 delete _params[iPar-1];
214 }
215 _params.clear();
216
217 int nextPar = 0;
218 _params.push_back(new bncParam(bncParam::CRD_X, ++nextPar, ""));
219 _params.push_back(new bncParam(bncParam::CRD_Y, ++nextPar, ""));
220 _params.push_back(new bncParam(bncParam::CRD_Z, ++nextPar, ""));
221 _params.push_back(new bncParam(bncParam::RECCLK, ++nextPar, ""));
222 if (_opt->estTropo) {
223 _params.push_back(new bncParam(bncParam::TROPO, ++nextPar, ""));
224 }
225 if (_opt->useGalileo) {
226 _params.push_back(new bncParam(bncParam::GALILEO_OFFSET, ++nextPar, ""));
227 }
228
229 _QQ.ReSize(_params.size());
230 _QQ = 0.0;
231 for (int iPar = 1; iPar <= _params.size(); iPar++) {
232 bncParam* pp = _params[iPar-1];
233 pp->xx = 0.0;
234 if (pp->isCrd()) {
235 _QQ(iPar,iPar) = _opt->sigCrd0 * _opt->sigCrd0;
236 }
237 else if (pp->type == bncParam::RECCLK) {
238 _QQ(iPar,iPar) = _opt->sigClk0 * _opt->sigClk0;
239 }
240 else if (pp->type == bncParam::TROPO) {
241 _QQ(iPar,iPar) = _opt->sigTrp0 * _opt->sigTrp0;
242 }
243 else if (pp->type == bncParam::GALILEO_OFFSET) {
244 _QQ(iPar,iPar) = _opt->sigGalileoOffset0 * _opt->sigGalileoOffset0;
245 }
246 }
247}
248
249// Bancroft Solution
250////////////////////////////////////////////////////////////////////////////
251t_irc bncModel::cmpBancroft(t_epoData* epoData) {
252
253 Tracer tracer("bncModel::cmpBancroft");
254
255 if (epoData->sizeSys('G') < MINOBS) {
256 _log += "bncModel::cmpBancroft: not enough data\n";
257 return failure;
258 }
259
260 Matrix BB(epoData->sizeSys('G'), 4);
261
262 QMapIterator<QString, t_satData*> it(epoData->satData);
263 int iObsBanc = 0;
264 while (it.hasNext()) {
265 it.next();
266 t_satData* satData = it.value();
267 if (satData->system() == 'G') {
268 ++iObsBanc;
269 QString prn = it.key();
270 BB(iObsBanc, 1) = satData->xx(1);
271 BB(iObsBanc, 2) = satData->xx(2);
272 BB(iObsBanc, 3) = satData->xx(3);
273 BB(iObsBanc, 4) = satData->P3 + satData->clk;
274 }
275 }
276
277 bancroft(BB, _xcBanc);
278
279 // Ellipsoidal Coordinates
280 // ------------------------
281 xyz2ell(_xcBanc.data(), _ellBanc.data());
282
283 // Compute Satellite Elevations
284 // ----------------------------
285 QMutableMapIterator<QString, t_satData*> im(epoData->satData);
286 while (im.hasNext()) {
287 im.next();
288 t_satData* satData = im.value();
289 cmpEle(satData);
290 if (satData->eleSat < MINELE) {
291 delete satData;
292 im.remove();
293 }
294 }
295
296 return success;
297}
298
299// Computed Value
300////////////////////////////////////////////////////////////////////////////
301double bncModel::cmpValue(t_satData* satData, bool phase) {
302
303 Tracer tracer("bncModel::cmpValue");
304
305 ColumnVector xRec(3);
306 xRec(1) = x();
307 xRec(2) = y();
308 xRec(3) = z();
309
310 double rho0 = (satData->xx - xRec).norm_Frobenius();
311 double dPhi = t_CST::omega * rho0 / t_CST::c;
312
313 xRec(1) = x() * cos(dPhi) - y() * sin(dPhi);
314 xRec(2) = y() * cos(dPhi) + x() * sin(dPhi);
315 xRec(3) = z();
316
317 tides(_time, xRec);
318
319 satData->rho = (satData->xx - xRec).norm_Frobenius();
320
321 double tropDelay = delay_saast(satData->eleSat) +
322 trp() / sin(satData->eleSat);
323
324 double wind = 0.0;
325 if (phase) {
326 wind = windUp(satData->prn, satData->xx, xRec) * satData->lambda3;
327 }
328
329 double offset = 0.0;
330 if (satData->prn[0] == 'E') {
331 offset = Galileo_offset();
332 }
333
334 double phaseCenter = 0.0;
335 if (_antex) {
336 bool found;
337 phaseCenter = _antex->pco(_opt->antennaName, satData->eleSat, found);
338 if (!found) {
339 _pppClient->emitNewMessage("ANTEX: antenna >"
340 + _opt->antennaName.toAscii() + "< not found", true);
341 }
342 }
343
344 double antennaOffset = 0.0;
345 if (_opt->antEccSet()) {
346 double cosa = cos(satData->azSat);
347 double sina = sin(satData->azSat);
348 double cose = cos(satData->eleSat);
349 double sine = sin(satData->eleSat);
350 antennaOffset = -_opt->antEccNEU[0] * cosa*cose
351 -_opt->antEccNEU[1] * sina*cose
352 -_opt->antEccNEU[2] * sine;
353 }
354
355 return satData->rho + phaseCenter + antennaOffset + clk()
356 + offset - satData->clk + tropDelay + wind;
357}
358
359// Tropospheric Model (Saastamoinen)
360////////////////////////////////////////////////////////////////////////////
361double bncModel::delay_saast(double Ele) {
362
363 Tracer tracer("bncModel::delay_saast");
364
365 double xyz[3];
366 xyz[0] = x();
367 xyz[1] = y();
368 xyz[2] = z();
369 double ell[3];
370 xyz2ell(xyz, ell);
371 double height = ell[2];
372
373 double pp = 1013.25 * pow(1.0 - 2.26e-5 * height, 5.225);
374 double TT = 18.0 - height * 0.0065 + 273.15;
375 double hh = 50.0 * exp(-6.396e-4 * height);
376 double ee = hh / 100.0 * exp(-37.2465 + 0.213166*TT - 0.000256908*TT*TT);
377
378 double h_km = height / 1000.0;
379
380 if (h_km < 0.0) h_km = 0.0;
381 if (h_km > 5.0) h_km = 5.0;
382 int ii = int(h_km + 1);
383 double href = ii - 1;
384
385 double bCor[6];
386 bCor[0] = 1.156;
387 bCor[1] = 1.006;
388 bCor[2] = 0.874;
389 bCor[3] = 0.757;
390 bCor[4] = 0.654;
391 bCor[5] = 0.563;
392
393 double BB = bCor[ii-1] + (bCor[ii]-bCor[ii-1]) * (h_km - href);
394
395 double zen = M_PI/2.0 - Ele;
396
397 return (0.002277/cos(zen)) * (pp + ((1255.0/TT)+0.05)*ee - BB*(tan(zen)*tan(zen)));
398}
399
400// Prediction Step of the Filter
401////////////////////////////////////////////////////////////////////////////
402void bncModel::predict(int iPhase, t_epoData* epoData) {
403
404 Tracer tracer("bncModel::predict");
405
406 if (iPhase == 0) {
407
408 bool firstCrd = false;
409 if (!_lastTimeOK.valid() || (_opt->maxSolGap > 0 && _time - _lastTimeOK > _opt->maxSolGap)) {
410 firstCrd = true;
411 _startTime = epoData->tt;
412 reset();
413 }
414
415 // Use different white noise for Quick-Start mode
416 // ----------------------------------------------
417 double sigCrdP_used = _opt->sigCrdP;
418 if ( _opt->quickStart > 0.0 && _opt->quickStart > (epoData->tt - _startTime) ) {
419 sigCrdP_used = 0.0;
420 }
421
422 // Predict Parameter values, add white noise
423 // -----------------------------------------
424 for (int iPar = 1; iPar <= _params.size(); iPar++) {
425 bncParam* pp = _params[iPar-1];
426
427 // Coordinates
428 // -----------
429 if (pp->type == bncParam::CRD_X) {
430 if (firstCrd) {
431 if (_opt->refCrdSet()) {
432 pp->xx = _opt->refCrd[0];
433 }
434 else {
435 pp->xx = _xcBanc(1);
436 }
437 }
438 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
439 }
440 else if (pp->type == bncParam::CRD_Y) {
441 if (firstCrd) {
442 if (_opt->refCrdSet()) {
443 pp->xx = _opt->refCrd[1];
444 }
445 else {
446 pp->xx = _xcBanc(2);
447 }
448 }
449 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
450 }
451 else if (pp->type == bncParam::CRD_Z) {
452 if (firstCrd) {
453 if (_opt->refCrdSet()) {
454 pp->xx = _opt->refCrd[2];
455 }
456 else {
457 pp->xx = _xcBanc(3);
458 }
459 }
460 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
461 }
462
463 // Receiver Clocks
464 // ---------------
465 else if (pp->type == bncParam::RECCLK) {
466 pp->xx = _xcBanc(4);
467 for (int jj = 1; jj <= _params.size(); jj++) {
468 _QQ(iPar, jj) = 0.0;
469 }
470 _QQ(iPar,iPar) = _opt->sigClk0 * _opt->sigClk0;
471 }
472
473 // Tropospheric Delay
474 // ------------------
475 else if (pp->type == bncParam::TROPO) {
476 _QQ(iPar,iPar) += _opt->sigTrpP * _opt->sigTrpP;
477 }
478
479 // Galileo Offset
480 // --------------
481 else if (pp->type == bncParam::GALILEO_OFFSET) {
482 _QQ(iPar,iPar) += _opt->sigGalileoOffsetP * _opt->sigGalileoOffsetP;
483 }
484 }
485 }
486
487 // Add New Ambiguities if necessary
488 // --------------------------------
489 if (_opt->usePhase) {
490
491 // Make a copy of QQ and xx, set parameter indices
492 // -----------------------------------------------
493 SymmetricMatrix QQ_old = _QQ;
494
495 for (int iPar = 1; iPar <= _params.size(); iPar++) {
496 _params[iPar-1]->index_old = _params[iPar-1]->index;
497 _params[iPar-1]->index = 0;
498 }
499
500 // Remove Ambiguity Parameters without observations
501 // ------------------------------------------------
502 int iPar = 0;
503 QMutableVectorIterator<bncParam*> im(_params);
504 while (im.hasNext()) {
505 bncParam* par = im.next();
506 bool removed = false;
507 if (par->type == bncParam::AMB_L3) {
508 if (epoData->satData.find(par->prn) == epoData->satData.end()) {
509 removed = true;
510 delete par;
511 im.remove();
512 }
513 }
514 if (! removed) {
515 ++iPar;
516 par->index = iPar;
517 }
518 }
519
520 // Add new ambiguity parameters
521 // ----------------------------
522 QMapIterator<QString, t_satData*> it(epoData->satData);
523 while (it.hasNext()) {
524 it.next();
525 t_satData* satData = it.value();
526 addAmb(satData);
527 }
528
529 int nPar = _params.size();
530 _QQ.ReSize(nPar); _QQ = 0.0;
531 for (int i1 = 1; i1 <= nPar; i1++) {
532 bncParam* p1 = _params[i1-1];
533 if (p1->index_old != 0) {
534 _QQ(p1->index, p1->index) = QQ_old(p1->index_old, p1->index_old);
535 for (int i2 = 1; i2 <= nPar; i2++) {
536 bncParam* p2 = _params[i2-1];
537 if (p2->index_old != 0) {
538 _QQ(p1->index, p2->index) = QQ_old(p1->index_old, p2->index_old);
539 }
540 }
541 }
542 }
543
544 for (int ii = 1; ii <= nPar; ii++) {
545 bncParam* par = _params[ii-1];
546 if (par->index_old == 0) {
547 _QQ(par->index, par->index) = _opt->sigAmb0 * _opt->sigAmb0;
548 }
549 par->index_old = par->index;
550 }
551 }
552}
553
554// Update Step of the Filter (currently just a single-epoch solution)
555////////////////////////////////////////////////////////////////////////////
556t_irc bncModel::update(t_epoData* epoData) {
557
558 Tracer tracer("bncModel::update");
559
560 _log.clear();
561
562 _time = epoData->tt; // current epoch time
563
564 if (_opt->pppMode) {
565 _log += "Precise Point Positioning of Epoch "
566 + QByteArray(_time.timestr(1).c_str()) +
567 "\n---------------------------------------------------------------\n";
568 }
569 else {
570 _log += "Single Point Positioning of Epoch "
571 + QByteArray(_time.timestr(1).c_str()) +
572 "\n--------------------------------------------------------------\n";
573 }
574
575 // Outlier Detection Loop
576 // ----------------------
577 if (update_p(epoData) != success) {
578 _pppClient->emitNewMessage(_log, false);
579 return failure;
580 }
581
582 // Remember the Epoch-specific Results for the computation of means
583 // ----------------------------------------------------------------
584 pppPos* newPos = new pppPos;
585 newPos->time = epoData->tt;
586
587 // Set Solution Vector
588 // -------------------
589 ostringstream strB;
590 strB.setf(ios::fixed);
591 QVectorIterator<bncParam*> itPar(_params);
592 while (itPar.hasNext()) {
593 bncParam* par = itPar.next();
594
595 if (par->type == bncParam::RECCLK) {
596 strB << "\n clk = " << setw(10) << setprecision(3) << par->xx
597 << " +- " << setw(6) << setprecision(3)
598 << sqrt(_QQ(par->index,par->index));
599 }
600 else if (par->type == bncParam::AMB_L3) {
601 ++par->numEpo;
602 strB << "\n amb " << par->prn.toAscii().data() << " = "
603 << setw(10) << setprecision(3) << par->xx
604 << " +- " << setw(6) << setprecision(3)
605 << sqrt(_QQ(par->index,par->index))
606 << " nEpo = " << par->numEpo;
607 }
608 else if (par->type == bncParam::TROPO) {
609 double aprTrp = delay_saast(M_PI/2.0);
610 strB << "\n trp = " << par->prn.toAscii().data()
611 << setw(7) << setprecision(3) << aprTrp << " "
612 << setw(6) << setprecision(3) << showpos << par->xx << noshowpos
613 << " +- " << setw(6) << setprecision(3)
614 << sqrt(_QQ(par->index,par->index));
615 newPos->xnt[6] = aprTrp + par->xx;
616 }
617 else if (par->type == bncParam::GALILEO_OFFSET) {
618 strB << "\n offset = " << setw(10) << setprecision(3) << par->xx
619 << " +- " << setw(6) << setprecision(3)
620 << sqrt(_QQ(par->index,par->index));
621 }
622 }
623 strB << '\n';
624 _log += strB.str().c_str();
625 _pppClient->emitNewMessage(_log, false);
626
627 // Final Message (both log file and screen)
628 // ----------------------------------------
629 ostringstream strC;
630 strC.setf(ios::fixed);
631 strC << _staID.data() << " PPP "
632 << epoData->tt.timestr(1) << " " << epoData->sizeAll() << " "
633 << setw(14) << setprecision(3) << x() << " +- "
634 << setw(6) << setprecision(3) << sqrt(_QQ(1,1)) << " "
635 << setw(14) << setprecision(3) << y() << " +- "
636 << setw(6) << setprecision(3) << sqrt(_QQ(2,2)) << " "
637 << setw(14) << setprecision(3) << z() << " +- "
638 << setw(6) << setprecision(3) << sqrt(_QQ(3,3));
639
640 // NEU Output
641 // ----------
642 if (_opt->refCrdSet()) {
643 newPos->xnt[0] = x() - _opt->refCrd[0];
644 newPos->xnt[1] = y() - _opt->refCrd[1];
645 newPos->xnt[2] = z() - _opt->refCrd[2];
646
647 double ellRef[3];
648 xyz2ell(_opt->refCrd, ellRef);
649 xyz2neu(ellRef, newPos->xnt, &newPos->xnt[3]);
650
651 strC << " NEU "
652 << setw(8) << setprecision(3) << newPos->xnt[3] << " "
653 << setw(8) << setprecision(3) << newPos->xnt[4] << " "
654 << setw(8) << setprecision(3) << newPos->xnt[5] << endl;
655
656 }
657
658 _pppClient->emitNewMessage(QByteArray(strC.str().c_str()), true);
659
660 if (_opt->pppAverage == 0.0) {
661 delete newPos;
662 }
663 else {
664
665 _posAverage.push_back(newPos);
666
667 // Compute the Mean
668 // ----------------
669 ColumnVector mean(7); mean = 0.0;
670
671 QMutableVectorIterator<pppPos*> it(_posAverage);
672 while (it.hasNext()) {
673 pppPos* pp = it.next();
674 if ( (epoData->tt - pp->time) >= _opt->pppAverage ) {
675 delete pp;
676 it.remove();
677 }
678 else {
679 for (int ii = 0; ii < 7; ++ii) {
680 mean[ii] += pp->xnt[ii];
681 }
682 }
683 }
684
685 int nn = _posAverage.size();
686
687 if (nn > 0) {
688
689 mean /= nn;
690
691 // Compute the Deviation
692 // ---------------------
693 ColumnVector std(7); std = 0.0;
694 QVectorIterator<pppPos*> it2(_posAverage);
695 while (it2.hasNext()) {
696 pppPos* pp = it2.next();
697 for (int ii = 0; ii < 7; ++ii) {
698 std[ii] += (pp->xnt[ii] - mean[ii]) * (pp->xnt[ii] - mean[ii]);
699 }
700 }
701 for (int ii = 0; ii < 7; ++ii) {
702 std[ii] = sqrt(std[ii] / nn);
703 }
704
705 if (_opt->refCrdSet()) {
706 ostringstream strD; strD.setf(ios::fixed);
707 strD << _staID.data() << " AVE-XYZ "
708 << epoData->tt.timestr(1) << " "
709 << setw(13) << setprecision(3) << mean[0] + _opt->refCrd[0] << " +- "
710 << setw(6) << setprecision(3) << std[0] << " "
711 << setw(14) << setprecision(3) << mean[1] + _opt->refCrd[1] << " +- "
712 << setw(6) << setprecision(3) << std[1] << " "
713 << setw(14) << setprecision(3) << mean[2] + _opt->refCrd[2] << " +- "
714 << setw(6) << setprecision(3) << std[2];
715 _pppClient->emitNewMessage(QByteArray(strD.str().c_str()), true);
716
717 ostringstream strE; strE.setf(ios::fixed);
718 strE << _staID.data() << " AVE-NEU "
719 << epoData->tt.timestr(1) << " "
720 << setw(13) << setprecision(3) << mean[3] << " +- "
721 << setw(6) << setprecision(3) << std[3] << " "
722 << setw(14) << setprecision(3) << mean[4] << " +- "
723 << setw(6) << setprecision(3) << std[4] << " "
724 << setw(14) << setprecision(3) << mean[5] << " +- "
725 << setw(6) << setprecision(3) << std[5];
726 _pppClient->emitNewMessage(QByteArray(strE.str().c_str()), true);
727
728 if (_opt->estTropo) {
729 ostringstream strF; strF.setf(ios::fixed);
730 strF << _staID.data() << " AVE-TRP "
731 << epoData->tt.timestr(1) << " "
732 << setw(13) << setprecision(3) << mean[6] << " +- "
733 << setw(6) << setprecision(3) << std[6] << endl;
734 _pppClient->emitNewMessage(QByteArray(strF.str().c_str()), true);
735 }
736 }
737 }
738 }
739
740 // NMEA Output
741 // -----------
742 double xyz[3];
743 xyz[0] = x();
744 xyz[1] = y();
745 xyz[2] = z();
746 double ell[3];
747 xyz2ell(xyz, ell);
748 double phiDeg = ell[0] * 180 / M_PI;
749 double lamDeg = ell[1] * 180 / M_PI;
750
751 char phiCh = 'N';
752 if (phiDeg < 0) {
753 phiDeg = -phiDeg;
754 phiCh = 'S';
755 }
756 char lamCh = 'E';
757 if (lamDeg < 0) {
758 lamDeg = -lamDeg;
759 lamCh = 'W';
760 }
761
762 string datestr = epoData->tt.datestr(0); // yyyymmdd
763 ostringstream strRMC;
764 strRMC.setf(ios::fixed);
765 strRMC << "GPRMC,"
766 << epoData->tt.timestr(0,0) << ",A,"
767 << setw(2) << setfill('0') << int(phiDeg)
768 << setw(6) << setprecision(3) << setfill('0')
769 << fmod(60*phiDeg,60) << ',' << phiCh << ','
770 << setw(3) << setfill('0') << int(lamDeg)
771 << setw(6) << setprecision(3) << setfill('0')
772 << fmod(60*lamDeg,60) << ',' << lamCh << ",,,"
773 << datestr[6] << datestr[7] << datestr[4] << datestr[5]
774 << datestr[2] << datestr[3] << ",,";
775
776 writeNMEAstr(QString(strRMC.str().c_str()));
777
778 double dop = 2.0; // TODO
779
780 ostringstream strGGA;
781 strGGA.setf(ios::fixed);
782 strGGA << "GPGGA,"
783 << epoData->tt.timestr(0,0) << ','
784 << setw(2) << setfill('0') << int(phiDeg)
785 << setw(10) << setprecision(7) << setfill('0')
786 << fmod(60*phiDeg,60) << ',' << phiCh << ','
787 << setw(3) << setfill('0') << int(lamDeg)
788 << setw(10) << setprecision(7) << setfill('0')
789 << fmod(60*lamDeg,60) << ',' << lamCh
790 << ",1," << setw(2) << setfill('0') << epoData->sizeAll() << ','
791 << setw(3) << setprecision(1) << dop << ','
792 << setprecision(3) << ell[2] << ",M,0.0,M,,";
793
794 writeNMEAstr(QString(strGGA.str().c_str()));
795
796 _lastTimeOK = _time; // remember time of last successful update
797 return success;
798}
799
800// Outlier Detection
801////////////////////////////////////////////////////////////////////////////
802QString bncModel::outlierDetection(int iPhase, const ColumnVector& vv,
803 QMap<QString, t_satData*>& satData) {
804
805 Tracer tracer("bncModel::outlierDetection");
806
807 QString prnGPS;
808 QString prnGlo;
809 double maxResGPS = 0.0;
810 double maxResGlo = 0.0;
811 findMaxRes(vv, satData, prnGPS, prnGlo, maxResGPS, maxResGlo);
812
813 if (iPhase == 1) {
814 if (maxResGlo > MAXRES_PHASE_GLONASS) {
815 _log += "Outlier Phase " + prnGlo + " "
816 + QByteArray::number(maxResGlo, 'f', 3) + "\n";
817 return prnGlo;
818 }
819 else if (maxResGPS > MAXRES_PHASE_GPS) {
820 _log += "Outlier Phase " + prnGPS + " "
821 + QByteArray::number(maxResGPS, 'f', 3) + "\n";
822 return prnGPS;
823 }
824 }
825 else if (iPhase == 0 && maxResGPS > MAXRES_CODE) {
826 _log += "Outlier Code " + prnGPS + " "
827 + QByteArray::number(maxResGPS, 'f', 3) + "\n";
828 return prnGPS;
829 }
830
831 return QString();
832}
833
834//
835////////////////////////////////////////////////////////////////////////////
836void bncModel::writeNMEAstr(const QString& nmStr) {
837
838 Tracer tracer("bncModel::writeNMEAstr");
839
840 unsigned char XOR = 0;
841 for (int ii = 0; ii < nmStr.length(); ii++) {
842 XOR ^= (unsigned char) nmStr[ii].toAscii();
843 }
844
845 QString outStr = '$' + nmStr
846 + QString("*%1\n").arg(int(XOR), 0, 16).toUpper();
847
848 if (_nmeaStream) {
849 *_nmeaStream << outStr;
850 _nmeaStream->flush();
851 }
852
853 _pppClient->emitNewNMEAstr(outStr.toAscii());
854}
855
856//
857//////////////////////////////////////////////////////////////////////////////
858void bncModel::kalman(const Matrix& AA, const ColumnVector& ll,
859 const DiagonalMatrix& PP,
860 SymmetricMatrix& QQ, ColumnVector& dx) {
861
862 Tracer tracer("bncModel::kalman");
863
864 int nObs = AA.Nrows();
865 int nPar = AA.Ncols();
866
867 UpperTriangularMatrix SS = Cholesky(QQ).t();
868
869 Matrix SA = SS*AA.t();
870 Matrix SRF(nObs+nPar, nObs+nPar); SRF = 0;
871 for (int ii = 1; ii <= nObs; ++ii) {
872 SRF(ii,ii) = 1.0 / sqrt(PP(ii,ii));
873 }
874
875 SRF.SubMatrix (nObs+1, nObs+nPar, 1, nObs) = SA;
876 SRF.SymSubMatrix(nObs+1, nObs+nPar) = SS;
877
878 UpperTriangularMatrix UU;
879 QRZ(SRF, UU);
880
881 SS = UU.SymSubMatrix(nObs+1, nObs+nPar);
882 UpperTriangularMatrix SH_rt = UU.SymSubMatrix(1, nObs);
883 Matrix YY = UU.SubMatrix(1, nObs, nObs+1, nObs+nPar);
884
885 UpperTriangularMatrix SHi = SH_rt.i();
886
887 Matrix KT = SHi * YY;
888 SymmetricMatrix Hi; Hi << SHi * SHi.t();
889
890 dx = KT.t() * ll;
891 QQ << (SS.t() * SS);
892}
893
894// Phase Wind-Up Correction
895///////////////////////////////////////////////////////////////////////////
896double bncModel::windUp(const QString& prn, const ColumnVector& rSat,
897 const ColumnVector& rRec) {
898
899 Tracer tracer("bncModel::windUp");
900
901 double Mjd = _time.mjd() + _time.daysec() / 86400.0;
902
903 // First time - initialize to zero
904 // -------------------------------
905 if (!_windUpTime.contains(prn)) {
906 _windUpSum[prn] = 0.0;
907 }
908
909 // Compute the correction for new time
910 // -----------------------------------
911 if (!_windUpTime.contains(prn) || _windUpTime[prn] != Mjd) {
912 _windUpTime[prn] = Mjd;
913
914 // Unit Vector GPS Satellite --> Receiver
915 // --------------------------------------
916 ColumnVector rho = rRec - rSat;
917 rho /= rho.norm_Frobenius();
918
919 // GPS Satellite unit Vectors sz, sy, sx
920 // -------------------------------------
921 ColumnVector sz = -rSat / rSat.norm_Frobenius();
922
923 ColumnVector xSun = Sun(Mjd);
924 xSun /= xSun.norm_Frobenius();
925
926 ColumnVector sy = crossproduct(sz, xSun);
927 ColumnVector sx = crossproduct(sy, sz);
928
929 // Effective Dipole of the GPS Satellite Antenna
930 // ---------------------------------------------
931 ColumnVector dipSat = sx - rho * DotProduct(rho,sx)
932 - crossproduct(rho, sy);
933
934 // Receiver unit Vectors rx, ry
935 // ----------------------------
936 ColumnVector rx(3);
937 ColumnVector ry(3);
938
939 double recEll[3]; xyz2ell(rRec.data(), recEll) ;
940 double neu[3];
941
942 neu[0] = 1.0;
943 neu[1] = 0.0;
944 neu[2] = 0.0;
945 neu2xyz(recEll, neu, rx.data());
946
947 neu[0] = 0.0;
948 neu[1] = -1.0;
949 neu[2] = 0.0;
950 neu2xyz(recEll, neu, ry.data());
951
952 // Effective Dipole of the Receiver Antenna
953 // ----------------------------------------
954 ColumnVector dipRec = rx - rho * DotProduct(rho,rx)
955 + crossproduct(rho, ry);
956
957 // Resulting Effect
958 // ----------------
959 double alpha = DotProduct(dipSat,dipRec) /
960 (dipSat.norm_Frobenius() * dipRec.norm_Frobenius());
961
962 if (alpha > 1.0) alpha = 1.0;
963 if (alpha < -1.0) alpha = -1.0;
964
965 double dphi = acos(alpha) / 2.0 / M_PI; // in cycles
966
967 if ( DotProduct(rho, crossproduct(dipSat, dipRec)) < 0.0 ) {
968 dphi = -dphi;
969 }
970
971 _windUpSum[prn] = floor(_windUpSum[prn] - dphi + 0.5) + dphi;
972 }
973
974 return _windUpSum[prn];
975}
976
977//
978///////////////////////////////////////////////////////////////////////////
979void bncModel::cmpEle(t_satData* satData) {
980 Tracer tracer("bncModel::cmpEle");
981 ColumnVector rr = satData->xx - _xcBanc.Rows(1,3);
982 double rho = rr.norm_Frobenius();
983
984 double neu[3];
985 xyz2neu(_ellBanc.data(), rr.data(), neu);
986
987 satData->eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho );
988 if (neu[2] < 0) {
989 satData->eleSat *= -1.0;
990 }
991 satData->azSat = atan2(neu[1], neu[0]);
992}
993
994//
995///////////////////////////////////////////////////////////////////////////
996void bncModel::addAmb(t_satData* satData) {
997 Tracer tracer("bncModel::addAmb");
998 bool found = false;
999 for (int iPar = 1; iPar <= _params.size(); iPar++) {
1000 if (_params[iPar-1]->type == bncParam::AMB_L3 &&
1001 _params[iPar-1]->prn == satData->prn) {
1002 found = true;
1003 break;
1004 }
1005 }
1006 if (!found) {
1007 bncParam* par = new bncParam(bncParam::AMB_L3,
1008 _params.size()+1, satData->prn);
1009 _params.push_back(par);
1010 par->xx = satData->L3 - cmpValue(satData, true);
1011 }
1012}
1013
1014//
1015///////////////////////////////////////////////////////////////////////////
1016void bncModel::addObs(int iPhase, unsigned& iObs, t_satData* satData,
1017 Matrix& AA, ColumnVector& ll, DiagonalMatrix& PP) {
1018
1019 Tracer tracer("bncModel::addObs");
1020
1021 const double ELEWGHT = 20.0;
1022 double ellWgtCoef = 1.0;
1023 double eleD = satData->eleSat * 180.0 / M_PI;
1024 if (eleD < ELEWGHT) {
1025 ellWgtCoef = 1.5 - 0.5 / (ELEWGHT - 10.0) * (eleD - 10.0);
1026 }
1027
1028 // Remember Observation Index
1029 // --------------------------
1030 ++iObs;
1031 satData->obsIndex = iObs;
1032
1033 // Phase Observations
1034 // ------------------
1035 if (iPhase == 1) {
1036 ll(iObs) = satData->L3 - cmpValue(satData, true);
1037 double sigL3 = _opt->sigL3;
1038 if (satData->system() == 'R') {
1039 sigL3 *= GLONASS_WEIGHT_FACTOR;
1040 }
1041 PP(iObs,iObs) = 1.0 / (sigL3 * sigL3) / (ellWgtCoef * ellWgtCoef);
1042 for (int iPar = 1; iPar <= _params.size(); iPar++) {
1043 if (_params[iPar-1]->type == bncParam::AMB_L3 &&
1044 _params[iPar-1]->prn == satData->prn) {
1045 ll(iObs) -= _params[iPar-1]->xx;
1046 }
1047 AA(iObs, iPar) = _params[iPar-1]->partial(satData, true);
1048 }
1049 }
1050
1051 // Code Observations
1052 // -----------------
1053 else {
1054 ll(iObs) = satData->P3 - cmpValue(satData, false);
1055 PP(iObs,iObs) = 1.0 / (_opt->sigP3 * _opt->sigP3) / (ellWgtCoef * ellWgtCoef);
1056 for (int iPar = 1; iPar <= _params.size(); iPar++) {
1057 AA(iObs, iPar) = _params[iPar-1]->partial(satData, false);
1058 }
1059 }
1060}
1061
1062//
1063///////////////////////////////////////////////////////////////////////////
1064QByteArray bncModel::printRes(int iPhase, const ColumnVector& vv,
1065 const QMap<QString, t_satData*>& satDataMap) {
1066
1067 Tracer tracer("bncModel::printRes");
1068
1069 ostringstream str;
1070 str.setf(ios::fixed);
1071
1072 QMapIterator<QString, t_satData*> it(satDataMap);
1073 while (it.hasNext()) {
1074 it.next();
1075 t_satData* satData = it.value();
1076 if (satData->obsIndex != 0) {
1077 str << _time.timestr(1)
1078 << " RES " << satData->prn.toAscii().data()
1079 << (iPhase ? " L3 " : " P3 ")
1080 << setw(9) << setprecision(4) << vv(satData->obsIndex) << endl;
1081 }
1082 }
1083
1084 return QByteArray(str.str().c_str());
1085}
1086
1087//
1088///////////////////////////////////////////////////////////////////////////
1089void bncModel::findMaxRes(const ColumnVector& vv,
1090 const QMap<QString, t_satData*>& satData,
1091 QString& prnGPS, QString& prnGlo,
1092 double& maxResGPS, double& maxResGlo) {
1093
1094 Tracer tracer("bncModel::findMaxRes");
1095
1096 maxResGPS = 0.0;
1097 maxResGlo = 0.0;
1098
1099 QMapIterator<QString, t_satData*> it(satData);
1100 while (it.hasNext()) {
1101 it.next();
1102 t_satData* satData = it.value();
1103 if (satData->obsIndex != 0) {
1104 QString prn = satData->prn;
1105 if (prn[0] == 'R') {
1106 if (fabs(vv(satData->obsIndex)) > maxResGlo) {
1107 maxResGlo = fabs(vv(satData->obsIndex));
1108 prnGlo = prn;
1109 }
1110 }
1111 else {
1112 if (fabs(vv(satData->obsIndex)) > maxResGPS) {
1113 maxResGPS = fabs(vv(satData->obsIndex));
1114 prnGPS = prn;
1115 }
1116 }
1117 }
1118 }
1119}
1120
1121// Update Step (private - loop over outliers)
1122////////////////////////////////////////////////////////////////////////////
1123t_irc bncModel::update_p(t_epoData* epoData) {
1124
1125 Tracer tracer("bncModel::update_p");
1126
1127 // Save Variance-Covariance Matrix, and Status Vector
1128 // --------------------------------------------------
1129 rememberState(epoData);
1130
1131 QString lastOutlierPrn;
1132
1133 // Try with all satellites, then with all minus one, etc.
1134 // ------------------------------------------------------
1135 while (selectSatellites(lastOutlierPrn, epoData->satData) == success) {
1136
1137 QByteArray strResCode;
1138 QByteArray strResPhase;
1139
1140 // Bancroft Solution
1141 // -----------------
1142 if (cmpBancroft(epoData) != success) {
1143 break;
1144 }
1145
1146 // First update using code observations, then phase observations
1147 // -------------------------------------------------------------
1148 for (int iPhase = 0; iPhase <= (_opt->usePhase ? 1 : 0); iPhase++) {
1149
1150 // Status Prediction
1151 // -----------------
1152 predict(iPhase, epoData);
1153
1154 // Create First-Design Matrix
1155 // --------------------------
1156 unsigned nPar = _params.size();
1157 unsigned nObs = 0;
1158 if (iPhase == 0) {
1159 nObs = epoData->sizeAll() - epoData->sizeSys('R'); // Glonass code not used
1160 }
1161 else {
1162 nObs = epoData->sizeAll();
1163 }
1164
1165 // Prepare first-design Matrix, vector observed-computed
1166 // -----------------------------------------------------
1167 Matrix AA(nObs, nPar); // first design matrix
1168 ColumnVector ll(nObs); // tems observed-computed
1169 DiagonalMatrix PP(nObs); PP = 0.0;
1170
1171 unsigned iObs = 0;
1172 QMapIterator<QString, t_satData*> it(epoData->satData);
1173 while (it.hasNext()) {
1174 it.next();
1175 t_satData* satData = it.value();
1176 if (iPhase == 1 || satData->system() != 'R') {
1177 QString prn = satData->prn;
1178 addObs(iPhase, iObs, satData, AA, ll, PP);
1179 }
1180 }
1181
1182 // Compute Filter Update
1183 // ---------------------
1184 ColumnVector dx;
1185 kalman(AA, ll, PP, _QQ, dx);
1186 ColumnVector vv = ll - AA * dx;
1187
1188 // Print Residuals
1189 // ---------------
1190 if (iPhase == 0) {
1191 strResCode = printRes(iPhase, vv, epoData->satData);
1192 }
1193 else {
1194 strResPhase = printRes(iPhase, vv, epoData->satData);
1195 }
1196
1197 // Check the residuals
1198 // -------------------
1199 lastOutlierPrn = outlierDetection(iPhase, vv, epoData->satData);
1200
1201 // No Outlier Detected
1202 // -------------------
1203 if (lastOutlierPrn.isEmpty()) {
1204
1205 QVectorIterator<bncParam*> itPar(_params);
1206 while (itPar.hasNext()) {
1207 bncParam* par = itPar.next();
1208 par->xx += dx(par->index);
1209 }
1210
1211 if (!_opt->usePhase || iPhase == 1) {
1212 if (_outlierGPS.size() > 0 || _outlierGlo.size() > 0) {
1213 _log += "Neglected PRNs: ";
1214 if (!_outlierGPS.isEmpty()) {
1215 _log += _outlierGPS.last() + ' ';
1216 }
1217 QStringListIterator itGlo(_outlierGlo);
1218 while (itGlo.hasNext()) {
1219 QString prn = itGlo.next();
1220 _log += prn + ' ';
1221 }
1222 }
1223 _log += '\n';
1224
1225 _log += strResCode + strResPhase;
1226
1227 return success;
1228 }
1229 }
1230
1231 // Outlier Found
1232 // -------------
1233 else {
1234 restoreState(epoData);
1235 break;
1236 }
1237
1238 } // for iPhase
1239
1240 } // while selectSatellites
1241
1242 restoreState(epoData);
1243 return failure;
1244}
1245
1246// Remeber Original State Vector and Variance-Covariance Matrix
1247////////////////////////////////////////////////////////////////////////////
1248void bncModel::rememberState(t_epoData* epoData) {
1249
1250 _QQ_sav = _QQ;
1251
1252 QVectorIterator<bncParam*> itSav(_params_sav);
1253 while (itSav.hasNext()) {
1254 bncParam* par = itSav.next();
1255 delete par;
1256 }
1257 _params_sav.clear();
1258
1259 QVectorIterator<bncParam*> it(_params);
1260 while (it.hasNext()) {
1261 bncParam* par = it.next();
1262 _params_sav.push_back(new bncParam(*par));
1263 }
1264
1265 _epoData_sav->deepCopy(epoData);
1266}
1267
1268// Restore Original State Vector and Variance-Covariance Matrix
1269////////////////////////////////////////////////////////////////////////////
1270void bncModel::restoreState(t_epoData* epoData) {
1271
1272 _QQ = _QQ_sav;
1273
1274 QVectorIterator<bncParam*> it(_params);
1275 while (it.hasNext()) {
1276 bncParam* par = it.next();
1277 delete par;
1278 }
1279 _params.clear();
1280
1281 QVectorIterator<bncParam*> itSav(_params_sav);
1282 while (itSav.hasNext()) {
1283 bncParam* par = itSav.next();
1284 _params.push_back(new bncParam(*par));
1285 }
1286
1287 epoData->deepCopy(_epoData_sav);
1288}
1289
1290//
1291////////////////////////////////////////////////////////////////////////////
1292t_irc bncModel::selectSatellites(const QString& lastOutlierPrn,
1293 QMap<QString, t_satData*>& satData) {
1294
1295 // First Call
1296 // ----------
1297 if (lastOutlierPrn.isEmpty()) {
1298 _outlierGPS.clear();
1299 _outlierGlo.clear();
1300 return success;
1301 }
1302
1303 // Second and next trials
1304 // ----------------------
1305 else {
1306
1307 if (lastOutlierPrn[0] == 'R') {
1308 _outlierGlo << lastOutlierPrn;
1309 }
1310
1311 // Remove all Glonass Outliers
1312 // ---------------------------
1313 QStringListIterator it(_outlierGlo);
1314 while (it.hasNext()) {
1315 QString prn = it.next();
1316 if (satData.contains(prn)) {
1317 delete satData.take(prn);
1318 }
1319 }
1320
1321 if (lastOutlierPrn[0] == 'R') {
1322 _outlierGPS.clear();
1323 return success;
1324 }
1325
1326 // GPS Outlier appeared for the first time - try to delete it
1327 // ----------------------------------------------------------
1328 if (_outlierGPS.indexOf(lastOutlierPrn) == -1) {
1329 _outlierGPS << lastOutlierPrn;
1330 if (satData.contains(lastOutlierPrn)) {
1331 delete satData.take(lastOutlierPrn);
1332 }
1333 return success;
1334 }
1335
1336 }
1337
1338 return failure;
1339}
Note: See TracBrowser for help on using the repository browser.