source: ntrip/trunk/BNC/bncmodel.cpp@ 2827

Last change on this file since 2827 was 2827, checked in by mervart, 13 years ago
File size: 36.5 KB
Line 
1// Part of BNC, a utility for retrieving decoding and
2// converting GNSS data streams from NTRIP broadcasters.
3//
4// Copyright (C) 2007
5// German Federal Agency for Cartography and Geodesy (BKG)
6// http://www.bkg.bund.de
7// Czech Technical University Prague, Department of Geodesy
8// http://www.fsv.cvut.cz
9//
10// Email: euref-ip@bkg.bund.de
11//
12// This program is free software; you can redistribute it and/or
13// modify it under the terms of the GNU General Public License
14// as published by the Free Software Foundation, version 2.
15//
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25/* -------------------------------------------------------------------------
26 * BKG NTRIP Client
27 * -------------------------------------------------------------------------
28 *
29 * Class: bncParam, bncModel
30 *
31 * Purpose: Model for PPP
32 *
33 * Author: L. Mervart
34 *
35 * Created: 01-Dec-2009
36 *
37 * Changes:
38 *
39 * -----------------------------------------------------------------------*/
40
41#include <iomanip>
42#include <cmath>
43#include <newmatio.h>
44#include <sstream>
45
46#include "bncmodel.h"
47#include "bncapp.h"
48#include "bncpppclient.h"
49#include "bancroft.h"
50#include "bncutils.h"
51#include "bncsettings.h"
52#include "bnctides.h"
53
54using namespace std;
55
56const unsigned MINOBS = 4;
57const double MINELE_GPS = 10.0 * M_PI / 180.0;
58const double MINELE_GLO = 10.0 * M_PI / 180.0;
59const double MINELE_GAL = 10.0 * M_PI / 180.0;
60const double MAXRES_CODE_GPS = 10.0;
61const double MAXRES_PHASE_GPS = 0.10;
62const double MAXRES_PHASE_GLO = 0.05;
63const double MAXRES_CODE_GAL = 10.0;
64const double MAXRES_PHASE_GAL = 0.10;
65
66// Constructor
67////////////////////////////////////////////////////////////////////////////
68bncParam::bncParam(bncParam::parType typeIn, int indexIn,
69 const QString& prnIn) {
70 type = typeIn;
71 index = indexIn;
72 prn = prnIn;
73 index_old = 0;
74 xx = 0.0;
75
76}
77
78// Destructor
79////////////////////////////////////////////////////////////////////////////
80bncParam::~bncParam() {
81}
82
83// Partial
84////////////////////////////////////////////////////////////////////////////
85double bncParam::partial(t_satData* satData, bool phase) {
86
87 // Coordinates
88 // -----------
89 if (type == CRD_X) {
90 return (xx - satData->xx(1)) / satData->rho;
91 }
92 else if (type == CRD_Y) {
93 return (xx - satData->xx(2)) / satData->rho;
94 }
95 else if (type == CRD_Z) {
96 return (xx - satData->xx(3)) / satData->rho;
97 }
98
99 // Receiver Clocks
100 // ---------------
101 else if (type == RECCLK) {
102 return 1.0;
103 }
104
105 // Troposphere
106 // -----------
107 else if (type == TROPO) {
108 return 1.0 / sin(satData->eleSat);
109 }
110
111 // Galileo Offset
112 // --------------
113 else if (type == GALILEO_OFFSET) {
114 if (satData->prn[0] == 'E') {
115 return 1.0;
116 }
117 else {
118 return 0.0;
119 }
120 }
121
122 // Ambiguities
123 // -----------
124 else if (type == AMB_L3) {
125 if (phase && satData->prn == prn) {
126 return 1.0;
127 }
128 else {
129 return 0.0;
130 }
131 }
132
133 // Default return
134 // --------------
135 return 0.0;
136}
137
138// Constructor
139////////////////////////////////////////////////////////////////////////////
140bncModel::bncModel(QByteArray staID) {
141
142 _staID = staID;
143
144 bncSettings settings;
145
146 // Observation Sigmas
147 // ------------------
148 _sigP3 = 5.0;
149 if (!settings.value("pppSigmaCode").toString().isEmpty()) {
150 _sigP3 = settings.value("pppSigmaCode").toDouble();
151 }
152 _sigL3 = 0.02;
153 if (!settings.value("pppSigmaPhase").toString().isEmpty()) {
154 _sigL3 = settings.value("pppSigmaPhase").toDouble();
155 }
156
157 // Parameter Sigmas
158 // ----------------
159 _sigCrd0 = 100.0;
160 if (!settings.value("pppSigCrd0").toString().isEmpty()) {
161 _sigCrd0 = settings.value("pppSigCrd0").toDouble();
162 }
163 _sigCrdP = 100.0;
164 if (!settings.value("pppSigCrdP").toString().isEmpty()) {
165 _sigCrdP = settings.value("pppSigCrdP").toDouble();
166 }
167 _sigTrp0 = 0.1;
168 if (!settings.value("pppSigTrp0").toString().isEmpty()) {
169 _sigTrp0 = settings.value("pppSigTrp0").toDouble();
170 }
171 _sigTrpP = 1e-6;
172 if (!settings.value("pppSigTrpP").toString().isEmpty()) {
173 _sigTrpP = settings.value("pppSigTrpP").toDouble();
174 }
175 _sigClk0 = 1000.0;
176 _sigAmb0 = 1000.0;
177 _sigGalileoOffset0 = 1000.0;
178 _sigGalileoOffsetP = 0.0;
179
180 // Quick-Start Mode
181 // ----------------
182 _quickStart = 0;
183 if (settings.value("pppRefCrdX").toString() != "" &&
184 settings.value("pppRefCrdY").toString() != "" &&
185 settings.value("pppRefCrdZ").toString() != "" &&
186 !settings.value("pppQuickStart").toString().isEmpty()) {
187 _quickStart = settings.value("pppQuickStart").toDouble();
188 }
189
190 connect(this, SIGNAL(newMessage(QByteArray,bool)),
191 ((bncApp*)qApp), SLOT(slotMessage(const QByteArray,bool)));
192
193 _usePhase = false;
194 if ( Qt::CheckState(settings.value("pppUsePhase").toInt()) == Qt::Checked) {
195 _usePhase = true;
196 }
197
198 _estTropo = false;
199 if ( Qt::CheckState(settings.value("pppEstTropo").toInt()) == Qt::Checked) {
200 _estTropo = true;
201 }
202
203 _xcBanc.ReSize(4); _xcBanc = 0.0;
204 _ellBanc.ReSize(3); _ellBanc = 0.0;
205
206 int nextPar = 0;
207 _params.push_back(new bncParam(bncParam::CRD_X, ++nextPar, ""));
208 _params.push_back(new bncParam(bncParam::CRD_Y, ++nextPar, ""));
209 _params.push_back(new bncParam(bncParam::CRD_Z, ++nextPar, ""));
210 _params.push_back(new bncParam(bncParam::RECCLK, ++nextPar, ""));
211 if (_estTropo) {
212 _params.push_back(new bncParam(bncParam::TROPO, ++nextPar, ""));
213 }
214 if ( Qt::CheckState(settings.value("pppGalileo").toInt()) == Qt::Checked) {
215 _params.push_back(new bncParam(bncParam::GALILEO_OFFSET, ++nextPar, ""));
216 }
217
218 unsigned nPar = _params.size();
219
220 _QQ.ReSize(nPar);
221
222 _QQ = 0.0;
223
224 for (int iPar = 1; iPar <= _params.size(); iPar++) {
225 bncParam* pp = _params[iPar-1];
226 if (pp->isCrd()) {
227 _QQ(iPar,iPar) = _sigCrd0 * _sigCrd0;
228 }
229 else if (pp->type == bncParam::RECCLK) {
230 _QQ(iPar,iPar) = _sigClk0 * _sigClk0;
231 }
232 else if (pp->type == bncParam::TROPO) {
233 _QQ(iPar,iPar) = _sigTrp0 * _sigTrp0;
234 }
235 else if (pp->type == bncParam::GALILEO_OFFSET) {
236 _QQ(iPar,iPar) = _sigGalileoOffset0 * _sigGalileoOffset0;
237 }
238 }
239
240 // NMEA Output
241 // -----------
242 QString nmeaFileName = settings.value("nmeaFile").toString();
243 if (nmeaFileName.isEmpty()) {
244 _nmeaFile = 0;
245 _nmeaStream = 0;
246 }
247 else {
248 expandEnvVar(nmeaFileName);
249 _nmeaFile = new QFile(nmeaFileName);
250 if ( Qt::CheckState(settings.value("rnxAppend").toInt()) == Qt::Checked) {
251 _nmeaFile->open(QIODevice::WriteOnly | QIODevice::Append);
252 }
253 else {
254 _nmeaFile->open(QIODevice::WriteOnly);
255 }
256 _nmeaStream = new QTextStream();
257 _nmeaStream->setDevice(_nmeaFile);
258 }
259}
260
261// Destructor
262////////////////////////////////////////////////////////////////////////////
263bncModel::~bncModel() {
264 delete _nmeaStream;
265 delete _nmeaFile;
266 for (int ii = 0; ii < _posAverage.size(); ++ii) {
267 delete _posAverage[ii];
268 }
269}
270
271// Bancroft Solution
272////////////////////////////////////////////////////////////////////////////
273t_irc bncModel::cmpBancroft(t_epoData* epoData) {
274
275 if (epoData->sizeGPS() < MINOBS) {
276 _log += "bncModel::cmpBancroft: not enough data\n";
277 return failure;
278 }
279
280 Matrix BB(epoData->sizeGPS(), 4);
281
282 QMapIterator<QString, t_satData*> it(epoData->satDataGPS);
283 int iObsBanc = 0;
284 while (it.hasNext()) {
285 ++iObsBanc;
286 it.next();
287 QString prn = it.key();
288 t_satData* satData = it.value();
289 BB(iObsBanc, 1) = satData->xx(1);
290 BB(iObsBanc, 2) = satData->xx(2);
291 BB(iObsBanc, 3) = satData->xx(3);
292 BB(iObsBanc, 4) = satData->P3 + satData->clk;
293 }
294
295 bancroft(BB, _xcBanc);
296
297 // Ellipsoidal Coordinates
298 // ------------------------
299 xyz2ell(_xcBanc.data(), _ellBanc.data());
300
301 // Compute Satellite Elevations
302 // ----------------------------
303 QMutableMapIterator<QString, t_satData*> iGPS(epoData->satDataGPS);
304 while (iGPS.hasNext()) {
305 iGPS.next();
306 t_satData* satData = iGPS.value();
307 cmpEle(satData);
308 if (satData->eleSat < MINELE_GPS) {
309 delete satData;
310 iGPS.remove();
311 }
312 }
313
314 QMutableMapIterator<QString, t_satData*> iGlo(epoData->satDataGlo);
315 while (iGlo.hasNext()) {
316 iGlo.next();
317 t_satData* satData = iGlo.value();
318 cmpEle(satData);
319 if (satData->eleSat < MINELE_GLO) {
320 delete satData;
321 iGlo.remove();
322 }
323 }
324
325 QMutableMapIterator<QString, t_satData*> iGal(epoData->satDataGal);
326 while (iGal.hasNext()) {
327 iGal.next();
328 t_satData* satData = iGal.value();
329 cmpEle(satData);
330 if (satData->eleSat < MINELE_GAL) {
331 delete satData;
332 iGal.remove();
333 }
334 }
335
336 return success;
337}
338
339// Computed Value
340////////////////////////////////////////////////////////////////////////////
341double bncModel::cmpValue(t_satData* satData, bool phase) {
342
343 ColumnVector xRec(3);
344 xRec(1) = x();
345 xRec(2) = y();
346 xRec(3) = z();
347
348 double rho0 = (satData->xx - xRec).norm_Frobenius();
349 double dPhi = t_CST::omega * rho0 / t_CST::c;
350
351 xRec(1) = x() * cos(dPhi) - y() * sin(dPhi);
352 xRec(2) = y() * cos(dPhi) + x() * sin(dPhi);
353 xRec(3) = z();
354
355 tides(_time, xRec);
356
357 satData->rho = (satData->xx - xRec).norm_Frobenius();
358
359 double tropDelay = delay_saast(satData->eleSat) +
360 trp() / sin(satData->eleSat);
361
362 double wind = 0.0;
363 if (phase) {
364 wind = windUp(satData->prn, satData->xx, xRec) * satData->lambda3;
365 }
366
367 double offset = 0.0;
368 if (satData->prn[0] == 'E') {
369 offset = Galileo_offset();
370 }
371
372 return satData->rho + clk() + offset - satData->clk + tropDelay + wind;
373}
374
375// Tropospheric Model (Saastamoinen)
376////////////////////////////////////////////////////////////////////////////
377double bncModel::delay_saast(double Ele) {
378
379 double xyz[3];
380 xyz[0] = x();
381 xyz[1] = y();
382 xyz[2] = z();
383 double ell[3];
384 xyz2ell(xyz, ell);
385 double height = ell[2];
386
387 double pp = 1013.25 * pow(1.0 - 2.26e-5 * height, 5.225);
388 double TT = 18.0 - height * 0.0065 + 273.15;
389 double hh = 50.0 * exp(-6.396e-4 * height);
390 double ee = hh / 100.0 * exp(-37.2465 + 0.213166*TT - 0.000256908*TT*TT);
391
392 double h_km = height / 1000.0;
393
394 if (h_km < 0.0) h_km = 0.0;
395 if (h_km > 5.0) h_km = 5.0;
396 int ii = int(h_km + 1);
397 double href = ii - 1;
398
399 double bCor[6];
400 bCor[0] = 1.156;
401 bCor[1] = 1.006;
402 bCor[2] = 0.874;
403 bCor[3] = 0.757;
404 bCor[4] = 0.654;
405 bCor[5] = 0.563;
406
407 double BB = bCor[ii-1] + (bCor[ii]-bCor[ii-1]) * (h_km - href);
408
409 double zen = M_PI/2.0 - Ele;
410
411 return (0.002277/cos(zen)) * (pp + ((1255.0/TT)+0.05)*ee - BB*(tan(zen)*tan(zen)));
412}
413
414// Prediction Step of the Filter
415////////////////////////////////////////////////////////////////////////////
416void bncModel::predict(t_epoData* epoData) {
417
418 bncSettings settings;
419
420 bool firstCrd = false;
421 if (x() == 0.0 && y() == 0.0 && z() == 0.0) {
422 firstCrd = true;
423 _startTime = QDateTime::currentDateTime();
424 }
425
426 // Use different white noise for Quick-Start mode
427 // ----------------------------------------------
428 double sigCrdP_used = _sigCrdP;
429 if ( _quickStart > 0.0 &&
430 _quickStart > _startTime.secsTo(QDateTime::currentDateTime()) ) {
431 sigCrdP_used = 0.0;
432 }
433
434 // Predict Parameter values, add white noise
435 // -----------------------------------------
436 for (int iPar = 1; iPar <= _params.size(); iPar++) {
437 bncParam* pp = _params[iPar-1];
438
439 // Coordinates
440 // -----------
441 if (pp->type == bncParam::CRD_X) {
442 if (firstCrd) {
443 if (settings.value("pppRefCrdX").toString() != "" &&
444 settings.value("pppRefCrdY").toString() != "" &&
445 settings.value("pppRefCrdZ").toString() != "") {
446 pp->xx = settings.value("pppRefCrdX").toDouble();
447 }
448 else {
449 pp->xx = _xcBanc(1);
450 }
451 }
452 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
453 }
454 else if (pp->type == bncParam::CRD_Y) {
455 if (firstCrd) {
456 if (settings.value("pppRefCrdX").toString() != "" &&
457 settings.value("pppRefCrdY").toString() != "" &&
458 settings.value("pppRefCrdZ").toString() != "") {
459 pp->xx = settings.value("pppRefCrdY").toDouble();
460 }
461 else {
462 pp->xx = _xcBanc(2);
463 }
464 }
465 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
466 }
467 else if (pp->type == bncParam::CRD_Z) {
468 if (firstCrd) {
469 if (settings.value("pppRefCrdX").toString() != "" &&
470 settings.value("pppRefCrdY").toString() != "" &&
471 settings.value("pppRefCrdZ").toString() != "") {
472 pp->xx = settings.value("pppRefCrdZ").toDouble();
473 }
474 else {
475 pp->xx = _xcBanc(3);
476 }
477 }
478 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
479 }
480
481 // Receiver Clocks
482 // ---------------
483 else if (pp->type == bncParam::RECCLK) {
484 pp->xx = _xcBanc(4);
485 for (int jj = 1; jj <= _params.size(); jj++) {
486 _QQ(iPar, jj) = 0.0;
487 }
488 _QQ(iPar,iPar) = _sigClk0 * _sigClk0;
489 }
490
491 // Tropospheric Delay
492 // ------------------
493 else if (pp->type == bncParam::TROPO) {
494 _QQ(iPar,iPar) += _sigTrpP * _sigTrpP;
495 }
496
497 // Galileo Offset
498 // --------------
499 else if (pp->type == bncParam::GALILEO_OFFSET) {
500 _QQ(iPar,iPar) += _sigGalileoOffsetP * _sigGalileoOffsetP;
501 }
502 }
503
504 // Add New Ambiguities if necessary
505 // --------------------------------
506 if (_usePhase) {
507
508 // Make a copy of QQ and xx, set parameter indices
509 // -----------------------------------------------
510 SymmetricMatrix QQ_old = _QQ;
511
512 for (int iPar = 1; iPar <= _params.size(); iPar++) {
513 _params[iPar-1]->index_old = _params[iPar-1]->index;
514 _params[iPar-1]->index = 0;
515 }
516
517 // Remove Ambiguity Parameters without observations
518 // ------------------------------------------------
519 int iPar = 0;
520 QMutableVectorIterator<bncParam*> it(_params);
521 while (it.hasNext()) {
522 bncParam* par = it.next();
523 bool removed = false;
524 if (par->type == bncParam::AMB_L3) {
525 if (epoData->satDataGPS.find(par->prn) == epoData->satDataGPS.end() &&
526 epoData->satDataGlo.find(par->prn) == epoData->satDataGlo.end() &&
527 epoData->satDataGal.find(par->prn) == epoData->satDataGal.end() ) {
528 removed = true;
529 delete par;
530 it.remove();
531 }
532 }
533 if (! removed) {
534 ++iPar;
535 par->index = iPar;
536 }
537 }
538
539 // Add new ambiguity parameters
540 // ----------------------------
541 QMapIterator<QString, t_satData*> iGPS(epoData->satDataGPS);
542 while (iGPS.hasNext()) {
543 iGPS.next();
544 t_satData* satData = iGPS.value();
545 addAmb(satData);
546 }
547
548 QMapIterator<QString, t_satData*> iGlo(epoData->satDataGlo);
549 while (iGlo.hasNext()) {
550 iGlo.next();
551 t_satData* satData = iGlo.value();
552 addAmb(satData);
553 }
554
555 QMapIterator<QString, t_satData*> iGal(epoData->satDataGal);
556 while (iGal.hasNext()) {
557 iGal.next();
558 t_satData* satData = iGal.value();
559 addAmb(satData);
560 }
561
562 int nPar = _params.size();
563 _QQ.ReSize(nPar); _QQ = 0.0;
564 for (int i1 = 1; i1 <= nPar; i1++) {
565 bncParam* p1 = _params[i1-1];
566 if (p1->index_old != 0) {
567 _QQ(p1->index, p1->index) = QQ_old(p1->index_old, p1->index_old);
568 for (int i2 = 1; i2 <= nPar; i2++) {
569 bncParam* p2 = _params[i2-1];
570 if (p2->index_old != 0) {
571 _QQ(p1->index, p2->index) = QQ_old(p1->index_old, p2->index_old);
572 }
573 }
574 }
575 }
576
577 for (int ii = 1; ii <= nPar; ii++) {
578 bncParam* par = _params[ii-1];
579 if (par->index_old == 0) {
580 _QQ(par->index, par->index) = _sigAmb0 * _sigAmb0;
581 }
582 par->index_old = par->index;
583 }
584 }
585}
586
587// Update Step of the Filter (currently just a single-epoch solution)
588////////////////////////////////////////////////////////////////////////////
589t_irc bncModel::update(t_epoData* epoData) {
590
591 bncSettings settings;
592
593 _log.clear();
594
595 _time = epoData->tt;
596
597 if (settings.value("pppSPP").toString() == "PPP") {
598 _log += "Precise Point Positioning of Epoch "
599 + QByteArray(_time.timestr(1).c_str()) +
600 "\n---------------------------------------------------------------\n";
601 }
602 else {
603 _log += "Single Point Positioning of Epoch "
604 + QByteArray(_time.timestr(1).c_str()) +
605 "\n--------------------------------------------------------------\n";
606 }
607
608 SymmetricMatrix QQsav;
609 ColumnVector dx;
610 ColumnVector vv;
611
612 // Loop over all outliers
613 // ----------------------
614 do {
615
616 // Bancroft Solution
617 // -----------------
618 if (cmpBancroft(epoData) != success) {
619 emit newMessage(_log, false);
620 return failure;
621 }
622
623 // Status Prediction
624 // -----------------
625 predict(epoData);
626
627 // Create First-Design Matrix
628 // --------------------------
629 unsigned nPar = _params.size();
630 unsigned nObs = 0;
631 if (_usePhase) {
632 nObs = 2 * (epoData->sizeGPS() + epoData->sizeGal()) + epoData->sizeGlo();
633 }
634 else {
635 nObs = epoData->sizeGPS() + epoData->sizeGal(); // Glonass code not used
636 }
637
638 if (nObs < nPar) {
639 _log += "bncModel::update: nObs < nPar\n";
640 emit newMessage(_log, false);
641 return failure;
642 }
643
644 Matrix AA(nObs, nPar); // first design matrix
645 ColumnVector ll(nObs); // tems observed-computed
646 DiagonalMatrix PP(nObs); PP = 0.0;
647
648 unsigned iObs = 0;
649
650 // GPS code and (optionally) phase observations
651 // --------------------------------------------
652 QMapIterator<QString, t_satData*> itGPS(epoData->satDataGPS);
653 while (itGPS.hasNext()) {
654 itGPS.next();
655 t_satData* satData = itGPS.value();
656 addObs(iObs, satData, AA, ll, PP);
657 }
658
659 // Glonass phase observations
660 // --------------------------
661 QMapIterator<QString, t_satData*> itGlo(epoData->satDataGlo);
662 while (itGlo.hasNext()) {
663 itGlo.next();
664 t_satData* satData = itGlo.value();
665 addObs(iObs, satData, AA, ll, PP);
666 }
667
668 // Galileo code and (optionally) phase observations
669 // ------------------------------------------------
670 QMapIterator<QString, t_satData*> itGal(epoData->satDataGal);
671 while (itGal.hasNext()) {
672 itGal.next();
673 t_satData* satData = itGal.value();
674 addObs(iObs, satData, AA, ll, PP);
675 }
676
677 // Compute Filter Update
678 // ---------------------
679 QQsav = _QQ;
680
681 kalman(AA, ll, PP, _QQ, dx);
682
683 vv = ll - AA * dx;
684
685 // Print Residuals
686 // ---------------
687 if (true) {
688 ostringstream str;
689 str.setf(ios::fixed);
690
691 QMapIterator<QString, t_satData*> itGPS(epoData->satDataGPS);
692 while (itGPS.hasNext()) {
693 itGPS.next();
694 t_satData* satData = itGPS.value();
695 printRes(vv, str, satData);
696 }
697 QMapIterator<QString, t_satData*> itGlo(epoData->satDataGlo);
698 while (itGlo.hasNext()) {
699 itGlo.next();
700 t_satData* satData = itGlo.value();
701 printRes(vv, str, satData);
702 }
703 QMapIterator<QString, t_satData*> itGal(epoData->satDataGal);
704 while (itGal.hasNext()) {
705 itGal.next();
706 t_satData* satData = itGal.value();
707 printRes(vv, str, satData);
708 }
709 _log += str.str().c_str();
710 }
711
712 } while (outlierDetection(QQsav, vv, epoData->satDataGPS,
713 epoData->satDataGlo, epoData->satDataGal) != 0);
714
715 // Remember the Epoch-specific Results for the computation of means
716 // ----------------------------------------------------------------
717 pppPos* newPos = new pppPos;
718 newPos->time = epoData->tt;
719
720 // Set Solution Vector
721 // -------------------
722 ostringstream strB;
723 strB.setf(ios::fixed);
724 QVectorIterator<bncParam*> itPar(_params);
725 while (itPar.hasNext()) {
726 bncParam* par = itPar.next();
727 par->xx += dx(par->index);
728
729 if (par->type == bncParam::RECCLK) {
730 strB << "\n clk = " << setw(10) << setprecision(3) << par->xx
731 << " +- " << setw(6) << setprecision(3)
732 << sqrt(_QQ(par->index,par->index));
733 }
734 else if (par->type == bncParam::AMB_L3) {
735 strB << "\n amb " << par->prn.toAscii().data() << " = "
736 << setw(10) << setprecision(3) << par->xx
737 << " +- " << setw(6) << setprecision(3)
738 << sqrt(_QQ(par->index,par->index));
739 }
740 else if (par->type == bncParam::TROPO) {
741 double aprTrp = delay_saast(M_PI/2.0);
742 strB << "\n trp = " << par->prn.toAscii().data()
743 << setw(7) << setprecision(3) << aprTrp << " "
744 << setw(6) << setprecision(3) << showpos << par->xx << noshowpos
745 << " +- " << setw(6) << setprecision(3)
746 << sqrt(_QQ(par->index,par->index));
747 newPos->xnt[6] = aprTrp + par->xx;
748 }
749 else if (par->type == bncParam::GALILEO_OFFSET) {
750 strB << "\n offset = " << setw(10) << setprecision(3) << par->xx
751 << " +- " << setw(6) << setprecision(3)
752 << sqrt(_QQ(par->index,par->index));
753 }
754 }
755 strB << '\n';
756 _log += strB.str().c_str();
757 emit newMessage(_log, false);
758
759 // Final Message (both log file and screen)
760 // ----------------------------------------
761 ostringstream strC;
762 strC.setf(ios::fixed);
763 strC << _staID.data() << " PPP "
764 << epoData->tt.timestr(1) << " " << epoData->sizeAll() << " "
765 << setw(14) << setprecision(3) << x() << " +- "
766 << setw(6) << setprecision(3) << sqrt(_QQ(1,1)) << " "
767 << setw(14) << setprecision(3) << y() << " +- "
768 << setw(6) << setprecision(3) << sqrt(_QQ(2,2)) << " "
769 << setw(14) << setprecision(3) << z() << " +- "
770 << setw(6) << setprecision(3) << sqrt(_QQ(3,3));
771
772 // NEU Output
773 // ----------
774 if (settings.value("pppRefCrdX").toString() != "" &&
775 settings.value("pppRefCrdY").toString() != "" &&
776 settings.value("pppRefCrdZ").toString() != "") {
777
778 double xyzRef[3];
779 xyzRef[0] = settings.value("pppRefCrdX").toDouble();
780 xyzRef[1] = settings.value("pppRefCrdY").toDouble();
781 xyzRef[2] = settings.value("pppRefCrdZ").toDouble();
782
783 newPos->xnt[0] = x() - xyzRef[0];
784 newPos->xnt[1] = y() - xyzRef[1];
785 newPos->xnt[2] = z() - xyzRef[2];
786
787 double ellRef[3];
788 xyz2ell(xyzRef, ellRef);
789 xyz2neu(ellRef, newPos->xnt, &newPos->xnt[3]);
790
791 strC << " NEU "
792 << setw(8) << setprecision(3) << newPos->xnt[3] << " "
793 << setw(8) << setprecision(3) << newPos->xnt[4] << " "
794 << setw(8) << setprecision(3) << newPos->xnt[5] << endl;
795
796 }
797
798 emit newMessage(QByteArray(strC.str().c_str()), true);
799
800 if (settings.value("pppAverage").toString() == "") {
801 delete newPos;
802 }
803 else {
804
805 _posAverage.push_back(newPos);
806
807 // Time Span for Average Computation
808 // ---------------------------------
809 double tRangeAverage = settings.value("pppAverage").toDouble() * 60.;
810 if (tRangeAverage < 0) {
811 tRangeAverage = 0;
812 }
813 if (tRangeAverage > 86400) {
814 tRangeAverage = 86400;
815 }
816
817 // Compute the Mean
818 // ----------------
819 ColumnVector mean(7); mean = 0.0;
820
821 QMutableVectorIterator<pppPos*> it(_posAverage);
822 while (it.hasNext()) {
823 pppPos* pp = it.next();
824 if ( (epoData->tt - pp->time) >= tRangeAverage ) {
825 delete pp;
826 it.remove();
827 }
828 else {
829 for (int ii = 0; ii < 7; ++ii) {
830 mean[ii] += pp->xnt[ii];
831 }
832 }
833 }
834
835 int nn = _posAverage.size();
836
837 if (nn > 0) {
838
839 mean /= nn;
840
841 // Compute the Deviation
842 // ---------------------
843 ColumnVector std(7); std = 0.0;
844 QVectorIterator<pppPos*> it2(_posAverage);
845 while (it2.hasNext()) {
846 pppPos* pp = it2.next();
847 for (int ii = 0; ii < 7; ++ii) {
848 std[ii] += (pp->xnt[ii] - mean[ii]) * (pp->xnt[ii] - mean[ii]);
849 }
850 }
851 for (int ii = 0; ii < 7; ++ii) {
852 std[ii] = sqrt(std[ii] / nn);
853 }
854
855 ostringstream strD; strD.setf(ios::fixed);
856 strD << _staID.data() << " AVE-XYZ "
857 << epoData->tt.timestr(1) << " "
858 << setw(13) << setprecision(3) << mean[0] << " +- "
859 << setw(6) << setprecision(3) << std[0] << " "
860 << setw(14) << setprecision(3) << mean[1] << " +- "
861 << setw(6) << setprecision(3) << std[1] << " "
862 << setw(14) << setprecision(3) << mean[2] << " +- "
863 << setw(6) << setprecision(3) << std[2];
864 emit newMessage(QByteArray(strD.str().c_str()), true);
865
866 ostringstream strE; strE.setf(ios::fixed);
867 strE << _staID.data() << " AVE-NEU "
868 << epoData->tt.timestr(1) << " "
869 << setw(13) << setprecision(3) << mean[3] << " +- "
870 << setw(6) << setprecision(3) << std[3] << " "
871 << setw(14) << setprecision(3) << mean[4] << " +- "
872 << setw(6) << setprecision(3) << std[4] << " "
873 << setw(14) << setprecision(3) << mean[5] << " +- "
874 << setw(6) << setprecision(3) << std[5];
875
876 emit newMessage(QByteArray(strE.str().c_str()), true);
877
878 if ( Qt::CheckState(settings.value("pppEstTropo").toInt()) == Qt::Checked) {
879 ostringstream strF; strF.setf(ios::fixed);
880 strF << _staID.data() << " AVE-TRP "
881 << epoData->tt.timestr(1) << " "
882 << setw(13) << setprecision(3) << mean[6] << " +- "
883 << setw(6) << setprecision(3) << std[6] << endl;
884 emit newMessage(QByteArray(strF.str().c_str()), true);
885 }
886 }
887 }
888
889 // NMEA Output
890 // -----------
891 double xyz[3];
892 xyz[0] = x();
893 xyz[1] = y();
894 xyz[2] = z();
895 double ell[3];
896 xyz2ell(xyz, ell);
897 double phiDeg = ell[0] * 180 / M_PI;
898 double lamDeg = ell[1] * 180 / M_PI;
899
900 char phiCh = 'N';
901 if (phiDeg < 0) {
902 phiDeg = -phiDeg;
903 phiCh = 'S';
904 }
905 char lamCh = 'E';
906 if (lamDeg < 0) {
907 lamDeg = -lamDeg;
908 lamCh = 'W';
909 }
910
911 string datestr = epoData->tt.datestr(0); // yyyymmdd
912 ostringstream strRMC;
913 strRMC.setf(ios::fixed);
914 strRMC << "GPRMC,"
915 << epoData->tt.timestr(0,0) << ",A,"
916 << setw(2) << setfill('0') << int(phiDeg)
917 << setw(6) << setprecision(3) << setfill('0')
918 << fmod(60*phiDeg,60) << ',' << phiCh << ','
919 << setw(3) << setfill('0') << int(lamDeg)
920 << setw(6) << setprecision(3) << setfill('0')
921 << fmod(60*lamDeg,60) << ',' << lamCh << ",,,"
922 << datestr[6] << datestr[7] << datestr[4] << datestr[5]
923 << datestr[2] << datestr[3] << ",,";
924
925 writeNMEAstr(QString(strRMC.str().c_str()));
926
927 double dop = 2.0; // TODO
928
929 ostringstream strGGA;
930 strGGA.setf(ios::fixed);
931 strGGA << "GPGGA,"
932 << epoData->tt.timestr(0,0) << ','
933 << setw(2) << setfill('0') << int(phiDeg)
934 << setw(10) << setprecision(7) << setfill('0')
935 << fmod(60*phiDeg,60) << ',' << phiCh << ','
936 << setw(3) << setfill('0') << int(lamDeg)
937 << setw(10) << setprecision(7) << setfill('0')
938 << fmod(60*lamDeg,60) << ',' << lamCh
939 << ",1," << setw(2) << setfill('0') << epoData->sizeAll() << ','
940 << setw(3) << setprecision(1) << dop << ','
941 << setprecision(3) << ell[2] << ",M,0.0,M,,";
942
943 writeNMEAstr(QString(strGGA.str().c_str()));
944
945 return success;
946}
947
948// Outlier Detection
949////////////////////////////////////////////////////////////////////////////
950int bncModel::outlierDetection(const SymmetricMatrix& QQsav,
951 const ColumnVector& vv,
952 QMap<QString, t_satData*>& satDataGPS,
953 QMap<QString, t_satData*>& satDataGlo,
954 QMap<QString, t_satData*>& satDataGal) {
955
956 QString prnCode;
957 QString prnPhase;
958 double maxResCode = 0.0;
959 double maxResPhase = 0.0;
960
961 QString prnRemoved;
962 double maxRes;
963
964 int irc = 0;
965
966 // Check Glonass
967 // -------------
968 if (irc == 0) {
969 findMaxRes(vv,satDataGlo, prnCode, maxResCode, prnPhase, maxResPhase);
970 if (maxResPhase > MAXRES_PHASE_GLO) {
971 satDataGlo.remove(prnPhase);
972 prnRemoved = prnPhase;
973 maxRes = maxResPhase;
974 irc = 1;
975 }
976 }
977
978 // Check Galileo
979 // -------------
980 if (irc == 0) {
981 findMaxRes(vv,satDataGal, prnCode, maxResCode, prnPhase, maxResPhase);
982 if (maxResPhase > MAXRES_PHASE_GAL) {
983 satDataGal.remove(prnPhase);
984 prnRemoved = prnPhase;
985 maxRes = maxResPhase;
986 irc = 1;
987 }
988 else if (maxResCode > MAXRES_CODE_GAL) {
989 satDataGal.remove(prnCode);
990 prnRemoved = prnCode;
991 maxRes = maxResCode;
992 irc = 1;
993 }
994 }
995
996 // Check GPS
997 // ---------
998 if (irc == 0) {
999 findMaxRes(vv,satDataGPS, prnCode, maxResCode, prnPhase, maxResPhase);
1000 if (maxResPhase > MAXRES_PHASE_GPS) {
1001 satDataGPS.remove(prnPhase);
1002 prnRemoved = prnPhase;
1003 maxRes = maxResPhase;
1004 irc = 1;
1005 }
1006 else if (maxResCode > MAXRES_CODE_GPS) {
1007 satDataGPS.remove(prnCode);
1008 prnRemoved = prnCode;
1009 maxRes = maxResCode;
1010 irc = 1;
1011 }
1012 }
1013
1014 if (irc != 0) {
1015 _log += "Outlier " + prnRemoved.toAscii() + " "
1016 + QByteArray::number(maxRes, 'f', 3) + "\n";
1017 _QQ = QQsav;
1018 }
1019
1020 return irc;
1021}
1022
1023//
1024////////////////////////////////////////////////////////////////////////////
1025void bncModel::writeNMEAstr(const QString& nmStr) {
1026
1027 unsigned char XOR = 0;
1028 for (int ii = 0; ii < nmStr.length(); ii++) {
1029 XOR ^= (unsigned char) nmStr[ii].toAscii();
1030 }
1031
1032 QString outStr = '$' + nmStr
1033 + QString("*%1\n").arg(int(XOR), 0, 16).toUpper();
1034
1035 if (_nmeaStream) {
1036 *_nmeaStream << outStr;
1037 _nmeaStream->flush();
1038 }
1039
1040 emit newNMEAstr(outStr.toAscii());
1041}
1042
1043////
1044//////////////////////////////////////////////////////////////////////////////
1045void bncModel::kalman(const Matrix& AA, const ColumnVector& ll,
1046 const DiagonalMatrix& PP,
1047 SymmetricMatrix& QQ, ColumnVector& dx) {
1048
1049 int nObs = AA.Nrows();
1050 int nPar = AA.Ncols();
1051
1052 UpperTriangularMatrix SS = Cholesky(QQ).t();
1053
1054 Matrix SA = SS*AA.t();
1055 Matrix SRF(nObs+nPar, nObs+nPar); SRF = 0;
1056 for (int ii = 1; ii <= nObs; ++ii) {
1057 SRF(ii,ii) = 1.0 / sqrt(PP(ii,ii));
1058 }
1059
1060 SRF.SubMatrix (nObs+1, nObs+nPar, 1, nObs) = SA;
1061 SRF.SymSubMatrix(nObs+1, nObs+nPar) = SS;
1062
1063 UpperTriangularMatrix UU;
1064 QRZ(SRF, UU);
1065
1066 SS = UU.SymSubMatrix(nObs+1, nObs+nPar);
1067 UpperTriangularMatrix SH_rt = UU.SymSubMatrix(1, nObs);
1068 Matrix YY = UU.SubMatrix(1, nObs, nObs+1, nObs+nPar);
1069
1070 UpperTriangularMatrix SHi = SH_rt.i();
1071
1072 Matrix KT = SHi * YY;
1073 SymmetricMatrix Hi; Hi << SHi * SHi.t();
1074
1075 dx = KT.t() * ll;
1076 QQ << (SS.t() * SS);
1077}
1078
1079// Phase Wind-Up Correction
1080///////////////////////////////////////////////////////////////////////////
1081double bncModel::windUp(const QString& prn, const ColumnVector& rSat,
1082 const ColumnVector& rRec) {
1083
1084 double Mjd = _time.mjd() + _time.daysec() / 86400.0;
1085
1086 // First time - initialize to zero
1087 // -------------------------------
1088 if (!_windUpTime.contains(prn)) {
1089 _windUpTime[prn] = Mjd;
1090 _windUpSum[prn] = 0.0;
1091 }
1092
1093 // Compute the correction for new time
1094 // -----------------------------------
1095 else if (_windUpTime[prn] != Mjd) {
1096 _windUpTime[prn] = Mjd;
1097
1098 // Unit Vector GPS Satellite --> Receiver
1099 // --------------------------------------
1100 ColumnVector rho = rRec - rSat;
1101 rho /= rho.norm_Frobenius();
1102
1103 // GPS Satellite unit Vectors sz, sy, sx
1104 // -------------------------------------
1105 ColumnVector sz = -rSat / rSat.norm_Frobenius();
1106
1107 ColumnVector xSun = Sun(Mjd);
1108 xSun /= xSun.norm_Frobenius();
1109
1110 ColumnVector sy = crossproduct(sz, xSun);
1111 ColumnVector sx = crossproduct(sy, sz);
1112
1113 // Effective Dipole of the GPS Satellite Antenna
1114 // ---------------------------------------------
1115 ColumnVector dipSat = sx - rho * DotProduct(rho,sx)
1116 - crossproduct(rho, sy);
1117
1118 // Receiver unit Vectors rx, ry
1119 // ----------------------------
1120 ColumnVector rx(3);
1121 ColumnVector ry(3);
1122
1123 double recEll[3]; xyz2ell(rRec.data(), recEll) ;
1124 double neu[3];
1125
1126 neu[0] = 1.0;
1127 neu[1] = 0.0;
1128 neu[2] = 0.0;
1129 neu2xyz(recEll, neu, rx.data());
1130
1131 neu[0] = 0.0;
1132 neu[1] = -1.0;
1133 neu[2] = 0.0;
1134 neu2xyz(recEll, neu, ry.data());
1135
1136 // Effective Dipole of the Receiver Antenna
1137 // ----------------------------------------
1138 ColumnVector dipRec = rx - rho * DotProduct(rho,rx)
1139 + crossproduct(rho, ry);
1140
1141 // Resulting Effect
1142 // ----------------
1143 double alpha = DotProduct(dipSat,dipRec) /
1144 (dipSat.norm_Frobenius() * dipRec.norm_Frobenius());
1145
1146 if (alpha > 1.0) alpha = 1.0;
1147 if (alpha < -1.0) alpha = -1.0;
1148
1149 double dphi = acos(alpha) / 2.0 / M_PI; // in cycles
1150
1151 if ( DotProduct(rho, crossproduct(dipSat, dipRec)) < 0.0 ) {
1152 dphi = -dphi;
1153 }
1154
1155 _windUpSum[prn] = floor(_windUpSum[prn] - dphi + 0.5) + dphi;
1156 }
1157
1158 return _windUpSum[prn];
1159}
1160
1161//
1162///////////////////////////////////////////////////////////////////////////
1163void bncModel::cmpEle(t_satData* satData) {
1164 ColumnVector rr = satData->xx - _xcBanc.Rows(1,3);
1165 double rho = rr.norm_Frobenius();
1166
1167 double neu[3];
1168 xyz2neu(_ellBanc.data(), rr.data(), neu);
1169
1170 satData->eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho );
1171 if (neu[2] < 0) {
1172 satData->eleSat *= -1.0;
1173 }
1174 satData->azSat = atan2(neu[1], neu[0]);
1175}
1176
1177//
1178///////////////////////////////////////////////////////////////////////////
1179void bncModel::addAmb(t_satData* satData) {
1180 bool found = false;
1181 for (int iPar = 1; iPar <= _params.size(); iPar++) {
1182 if (_params[iPar-1]->type == bncParam::AMB_L3 &&
1183 _params[iPar-1]->prn == satData->prn) {
1184 found = true;
1185 break;
1186 }
1187 }
1188 if (!found) {
1189 bncParam* par = new bncParam(bncParam::AMB_L3,
1190 _params.size()+1, satData->prn);
1191 _params.push_back(par);
1192 par->xx = satData->L3 - cmpValue(satData, true);
1193 }
1194}
1195
1196//
1197///////////////////////////////////////////////////////////////////////////
1198void bncModel::addObs(unsigned& iObs, t_satData* satData,
1199 Matrix& AA, ColumnVector& ll, DiagonalMatrix& PP) {
1200
1201 // Code Observations
1202 // -----------------
1203 if (satData->system() != 'R') {
1204 ++iObs;
1205 ll(iObs) = satData->P3 - cmpValue(satData, false);
1206 PP(iObs,iObs) = 1.0 / (_sigP3 * _sigP3);
1207 for (int iPar = 1; iPar <= _params.size(); iPar++) {
1208 AA(iObs, iPar) = _params[iPar-1]->partial(satData, false);
1209 }
1210 satData->indexCode = iObs;
1211 }
1212
1213 // Phase Observations
1214 // ------------------
1215 if (_usePhase) {
1216 ++iObs;
1217 ll(iObs) = satData->L3 - cmpValue(satData, true);
1218 PP(iObs,iObs) = 1.0 / (_sigL3 * _sigL3);
1219 for (int iPar = 1; iPar <= _params.size(); iPar++) {
1220 if (_params[iPar-1]->type == bncParam::AMB_L3 &&
1221 _params[iPar-1]->prn == satData->prn) {
1222 ll(iObs) -= _params[iPar-1]->xx;
1223 }
1224 AA(iObs, iPar) = _params[iPar-1]->partial(satData, true);
1225 }
1226 satData->indexPhase = iObs;
1227 }
1228}
1229
1230//
1231///////////////////////////////////////////////////////////////////////////
1232void bncModel::printRes(const ColumnVector& vv,
1233 ostringstream& str, t_satData* satData) {
1234 if (satData->indexPhase) {
1235 str << _time.timestr(1)
1236 << " RES " << satData->prn.toAscii().data() << " L3 "
1237 << setw(9) << setprecision(4) << vv(satData->indexPhase);
1238 if (satData->indexCode) {
1239 str << " P3 " << setw(9) << setprecision(4) << vv(satData->indexCode);
1240 }
1241 str << endl;
1242 }
1243}
1244
1245//
1246///////////////////////////////////////////////////////////////////////////
1247void bncModel::findMaxRes(const ColumnVector& vv,
1248 const QMap<QString, t_satData*>& satData,
1249 QString& prnCode, double& maxResCode,
1250 QString& prnPhase, double& maxResPhase) {
1251 maxResCode = 0.0;
1252 maxResPhase = 0.0;
1253
1254 QMapIterator<QString, t_satData*> it(satData);
1255 while (it.hasNext()) {
1256 it.next();
1257 t_satData* satData = it.value();
1258 if (satData->indexCode) {
1259 if (fabs(vv(satData->indexCode)) > maxResCode) {
1260 maxResCode = fabs(vv(satData->indexCode));
1261 prnCode = satData->prn;
1262 }
1263 }
1264 if (satData->indexPhase) {
1265 if (fabs(vv(satData->indexPhase)) > maxResPhase) {
1266 maxResPhase = fabs(vv(satData->indexPhase));
1267 prnPhase = satData->prn;
1268 }
1269 }
1270 }
1271}
1272
Note: See TracBrowser for help on using the repository browser.