source: ntrip/trunk/BNC/bncmodel.cpp@ 2776

Last change on this file since 2776 was 2769, checked in by mervart, 13 years ago
File size: 34.4 KB
Line 
1// Part of BNC, a utility for retrieving decoding and
2// converting GNSS data streams from NTRIP broadcasters.
3//
4// Copyright (C) 2007
5// German Federal Agency for Cartography and Geodesy (BKG)
6// http://www.bkg.bund.de
7// Czech Technical University Prague, Department of Geodesy
8// http://www.fsv.cvut.cz
9//
10// Email: euref-ip@bkg.bund.de
11//
12// This program is free software; you can redistribute it and/or
13// modify it under the terms of the GNU General Public License
14// as published by the Free Software Foundation, version 2.
15//
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25/* -------------------------------------------------------------------------
26 * BKG NTRIP Client
27 * -------------------------------------------------------------------------
28 *
29 * Class: bncParam, bncModel
30 *
31 * Purpose: Model for PPP
32 *
33 * Author: L. Mervart
34 *
35 * Created: 01-Dec-2009
36 *
37 * Changes:
38 *
39 * -----------------------------------------------------------------------*/
40
41#include <iomanip>
42#include <cmath>
43#include <newmatio.h>
44#include <sstream>
45
46#include "bncmodel.h"
47#include "bncapp.h"
48#include "bncpppclient.h"
49#include "bancroft.h"
50#include "bncutils.h"
51#include "bncsettings.h"
52#include "bnctides.h"
53
54using namespace std;
55
56const unsigned MINOBS = 4;
57const double MINELE_GPS = 10.0 * M_PI / 180.0;
58const double MINELE_GLO = 10.0 * M_PI / 180.0;
59const double MAXRES_CODE_GPS = 10.0;
60const double MAXRES_PHASE_GPS = 0.10;
61const double MAXRES_PHASE_GLO = 0.05;
62
63// Constructor
64////////////////////////////////////////////////////////////////////////////
65bncParam::bncParam(bncParam::parType typeIn, int indexIn,
66 const QString& prnIn) {
67 type = typeIn;
68 index = indexIn;
69 prn = prnIn;
70 index_old = 0;
71 xx = 0.0;
72
73}
74
75// Destructor
76////////////////////////////////////////////////////////////////////////////
77bncParam::~bncParam() {
78}
79
80// Partial
81////////////////////////////////////////////////////////////////////////////
82double bncParam::partial(t_satData* satData, bool phase) {
83
84 // Coordinates
85 // -----------
86 if (type == CRD_X) {
87 return (xx - satData->xx(1)) / satData->rho;
88 }
89 else if (type == CRD_Y) {
90 return (xx - satData->xx(2)) / satData->rho;
91 }
92 else if (type == CRD_Z) {
93 return (xx - satData->xx(3)) / satData->rho;
94 }
95
96 // Receiver Clocks
97 // ---------------
98 else if (type == RECCLK) {
99 return 1.0;
100 }
101
102 // Troposphere
103 // -----------
104 else if (type == TROPO) {
105 return 1.0 / sin(satData->eleSat);
106 }
107
108 // Ambiguities
109 // -----------
110 else if (type == AMB_L3) {
111 if (phase && satData->prn == prn) {
112 return 1.0;
113 }
114 else {
115 return 0.0;
116 }
117 }
118
119 // Default return
120 // --------------
121 return 0.0;
122}
123
124// Constructor
125////////////////////////////////////////////////////////////////////////////
126bncModel::bncModel(QByteArray staID) {
127
128 _staID = staID;
129
130 bncSettings settings;
131
132 // Observation Sigmas
133 // ------------------
134 _sigP3 = 5.0;
135 if (!settings.value("pppSigmaCode").toString().isEmpty()) {
136 _sigP3 = settings.value("pppSigmaCode").toDouble();
137 }
138 _sigL3 = 0.02;
139 if (!settings.value("pppSigmaPhase").toString().isEmpty()) {
140 _sigL3 = settings.value("pppSigmaPhase").toDouble();
141 }
142
143 // Parameter Sigmas
144 // ----------------
145 _sigCrd0 = 100.0;
146 if (!settings.value("pppSigCrd0").toString().isEmpty()) {
147 _sigCrd0 = settings.value("pppSigCrd0").toDouble();
148 }
149 _sigCrdP = 100.0;
150 if (!settings.value("pppSigCrdP").toString().isEmpty()) {
151 _sigCrdP = settings.value("pppSigCrdP").toDouble();
152 }
153 _sigTrp0 = 0.1;
154 if (!settings.value("pppSigTrp0").toString().isEmpty()) {
155 _sigTrp0 = settings.value("pppSigTrp0").toDouble();
156 }
157 _sigTrpP = 1e-6;
158 if (!settings.value("pppSigTrpP").toString().isEmpty()) {
159 _sigTrpP = settings.value("pppSigTrpP").toDouble();
160 }
161 _sigClk0 = 1000.0;
162 _sigAmb0 = 1000.0;
163
164 // Quick-Start Mode
165 // ----------------
166 _quickStart = 0;
167 if (settings.value("pppRefCrdX").toString() != "" &&
168 settings.value("pppRefCrdY").toString() != "" &&
169 settings.value("pppRefCrdZ").toString() != "" &&
170 !settings.value("pppQuickStart").toString().isEmpty()) {
171 _quickStart = settings.value("pppQuickStart").toDouble();
172 }
173
174 connect(this, SIGNAL(newMessage(QByteArray,bool)),
175 ((bncApp*)qApp), SLOT(slotMessage(const QByteArray,bool)));
176
177 _usePhase = false;
178 if ( Qt::CheckState(settings.value("pppUsePhase").toInt()) == Qt::Checked) {
179 _usePhase = true;
180 }
181
182 _estTropo = false;
183 if ( Qt::CheckState(settings.value("pppEstTropo").toInt()) == Qt::Checked) {
184 _estTropo = true;
185 }
186
187 _xcBanc.ReSize(4); _xcBanc = 0.0;
188 _ellBanc.ReSize(3); _ellBanc = 0.0;
189
190 if (_usePhase &&
191 Qt::CheckState(settings.value("pppGLONASS").toInt()) == Qt::Checked) {
192 _useGlonass = true;
193 }
194 else {
195 _useGlonass = false;
196 }
197
198 int nextPar = 0;
199 _params.push_back(new bncParam(bncParam::CRD_X, ++nextPar, ""));
200 _params.push_back(new bncParam(bncParam::CRD_Y, ++nextPar, ""));
201 _params.push_back(new bncParam(bncParam::CRD_Z, ++nextPar, ""));
202 _params.push_back(new bncParam(bncParam::RECCLK, ++nextPar, ""));
203 if (_estTropo) {
204 _params.push_back(new bncParam(bncParam::TROPO, ++nextPar, ""));
205 }
206
207 unsigned nPar = _params.size();
208
209 _QQ.ReSize(nPar);
210
211 _QQ = 0.0;
212
213 for (int iPar = 1; iPar <= _params.size(); iPar++) {
214 bncParam* pp = _params[iPar-1];
215 if (pp->isCrd()) {
216 _QQ(iPar,iPar) = _sigCrd0 * _sigCrd0;
217 }
218 else if (pp->type == bncParam::RECCLK) {
219 _QQ(iPar,iPar) = _sigClk0 * _sigClk0;
220 }
221 else if (pp->type == bncParam::TROPO) {
222 _QQ(iPar,iPar) = _sigTrp0 * _sigTrp0;
223 }
224 }
225
226 // NMEA Output
227 // -----------
228 QString nmeaFileName = settings.value("nmeaFile").toString();
229 if (nmeaFileName.isEmpty()) {
230 _nmeaFile = 0;
231 _nmeaStream = 0;
232 }
233 else {
234 expandEnvVar(nmeaFileName);
235 _nmeaFile = new QFile(nmeaFileName);
236 if ( Qt::CheckState(settings.value("rnxAppend").toInt()) == Qt::Checked) {
237 _nmeaFile->open(QIODevice::WriteOnly | QIODevice::Append);
238 }
239 else {
240 _nmeaFile->open(QIODevice::WriteOnly);
241 }
242 _nmeaStream = new QTextStream();
243 _nmeaStream->setDevice(_nmeaFile);
244 }
245}
246
247// Destructor
248////////////////////////////////////////////////////////////////////////////
249bncModel::~bncModel() {
250 delete _nmeaStream;
251 delete _nmeaFile;
252 for (int ii = 0; ii < _posAverage.size(); ++ii) {
253 delete _posAverage[ii];
254 }
255}
256
257// Bancroft Solution
258////////////////////////////////////////////////////////////////////////////
259t_irc bncModel::cmpBancroft(t_epoData* epoData) {
260
261 if (epoData->sizeGPS() < MINOBS) {
262 _log += "bncModel::cmpBancroft: not enough data\n";
263 return failure;
264 }
265
266 Matrix BB(epoData->sizeGPS(), 4);
267
268 QMapIterator<QString, t_satData*> it(epoData->satDataGPS);
269 int iObs = 0;
270 while (it.hasNext()) {
271 ++iObs;
272 it.next();
273 QString prn = it.key();
274 t_satData* satData = it.value();
275 BB(iObs, 1) = satData->xx(1);
276 BB(iObs, 2) = satData->xx(2);
277 BB(iObs, 3) = satData->xx(3);
278 BB(iObs, 4) = satData->P3 + satData->clk;
279 }
280
281 bancroft(BB, _xcBanc);
282
283 // Ellipsoidal Coordinates
284 // ------------------------
285 xyz2ell(_xcBanc.data(), _ellBanc.data());
286
287 // Compute Satellite Elevations
288 // ----------------------------
289 QMutableMapIterator<QString, t_satData*> iGPS(epoData->satDataGPS);
290 while (iGPS.hasNext()) {
291 iGPS.next();
292 QString prn = iGPS.key();
293 t_satData* satData = iGPS.value();
294
295 ColumnVector rr = satData->xx - _xcBanc.Rows(1,3);
296 double rho = rr.norm_Frobenius();
297
298 double neu[3];
299 xyz2neu(_ellBanc.data(), rr.data(), neu);
300
301 satData->eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho );
302 if (neu[2] < 0) {
303 satData->eleSat *= -1.0;
304 }
305 satData->azSat = atan2(neu[1], neu[0]);
306
307 if (satData->eleSat < MINELE_GPS) {
308 delete satData;
309 iGPS.remove();
310 }
311 }
312
313 QMutableMapIterator<QString, t_satData*> iGlo(epoData->satDataGlo);
314 while (iGlo.hasNext()) {
315 iGlo.next();
316 QString prn = iGlo.key();
317 t_satData* satData = iGlo.value();
318
319 ColumnVector rr = satData->xx - _xcBanc.Rows(1,3);
320 double rho = rr.norm_Frobenius();
321
322 double neu[3];
323 xyz2neu(_ellBanc.data(), rr.data(), neu);
324
325 satData->eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho );
326 if (neu[2] < 0) {
327 satData->eleSat *= -1.0;
328 }
329 satData->azSat = atan2(neu[1], neu[0]);
330
331 if (satData->eleSat < MINELE_GLO) {
332 delete satData;
333 iGlo.remove();
334 }
335 }
336
337 return success;
338}
339
340// Computed Value
341////////////////////////////////////////////////////////////////////////////
342double bncModel::cmpValue(t_satData* satData, bool phase) {
343
344 ColumnVector xRec(3);
345 xRec(1) = x();
346 xRec(2) = y();
347 xRec(3) = z();
348
349 double rho0 = (satData->xx - xRec).norm_Frobenius();
350 double dPhi = t_CST::omega * rho0 / t_CST::c;
351
352 xRec(1) = x() * cos(dPhi) - y() * sin(dPhi);
353 xRec(2) = y() * cos(dPhi) + x() * sin(dPhi);
354 xRec(3) = z();
355
356 tides(_time, xRec);
357
358 satData->rho = (satData->xx - xRec).norm_Frobenius();
359
360 double tropDelay = delay_saast(satData->eleSat) +
361 trp() / sin(satData->eleSat);
362
363 double wind = 0.0;
364 if (phase) {
365 wind = windUp(satData->prn, satData->xx, xRec) * satData->lambda3;
366 }
367
368 return satData->rho + clk() - satData->clk + tropDelay + wind;
369}
370
371// Tropospheric Model (Saastamoinen)
372////////////////////////////////////////////////////////////////////////////
373double bncModel::delay_saast(double Ele) {
374
375 double xyz[3];
376 xyz[0] = x();
377 xyz[1] = y();
378 xyz[2] = z();
379 double ell[3];
380 xyz2ell(xyz, ell);
381 double height = ell[2];
382
383 double pp = 1013.25 * pow(1.0 - 2.26e-5 * height, 5.225);
384 double TT = 18.0 - height * 0.0065 + 273.15;
385 double hh = 50.0 * exp(-6.396e-4 * height);
386 double ee = hh / 100.0 * exp(-37.2465 + 0.213166*TT - 0.000256908*TT*TT);
387
388 double h_km = height / 1000.0;
389
390 if (h_km < 0.0) h_km = 0.0;
391 if (h_km > 5.0) h_km = 5.0;
392 int ii = int(h_km + 1);
393 double href = ii - 1;
394
395 double bCor[6];
396 bCor[0] = 1.156;
397 bCor[1] = 1.006;
398 bCor[2] = 0.874;
399 bCor[3] = 0.757;
400 bCor[4] = 0.654;
401 bCor[5] = 0.563;
402
403 double BB = bCor[ii-1] + (bCor[ii]-bCor[ii-1]) * (h_km - href);
404
405 double zen = M_PI/2.0 - Ele;
406
407 return (0.002277/cos(zen)) * (pp + ((1255.0/TT)+0.05)*ee - BB*(tan(zen)*tan(zen)));
408}
409
410// Prediction Step of the Filter
411////////////////////////////////////////////////////////////////////////////
412void bncModel::predict(t_epoData* epoData) {
413
414 bncSettings settings;
415
416 bool firstCrd = false;
417 if (x() == 0.0 && y() == 0.0 && z() == 0.0) {
418 firstCrd = true;
419 _startTime = QDateTime::currentDateTime();
420 }
421
422 // Use different white noise for Quick-Start mode
423 // ----------------------------------------------
424 double sigCrdP_used = _sigCrdP;
425 if ( _quickStart > 0.0 &&
426 _quickStart > _startTime.secsTo(QDateTime::currentDateTime()) ) {
427 sigCrdP_used = 0.0;
428 }
429
430 // Predict Parameter values, add white noise
431 // -----------------------------------------
432 for (int iPar = 1; iPar <= _params.size(); iPar++) {
433 bncParam* pp = _params[iPar-1];
434
435 // Coordinates
436 // -----------
437 if (pp->type == bncParam::CRD_X) {
438 if (firstCrd) {
439 if (settings.value("pppRefCrdX").toString() != "" &&
440 settings.value("pppRefCrdY").toString() != "" &&
441 settings.value("pppRefCrdZ").toString() != "") {
442 pp->xx = settings.value("pppRefCrdX").toDouble();
443 }
444 else {
445 pp->xx = _xcBanc(1);
446 }
447 }
448 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
449 }
450 else if (pp->type == bncParam::CRD_Y) {
451 if (firstCrd) {
452 if (settings.value("pppRefCrdX").toString() != "" &&
453 settings.value("pppRefCrdY").toString() != "" &&
454 settings.value("pppRefCrdZ").toString() != "") {
455 pp->xx = settings.value("pppRefCrdY").toDouble();
456 }
457 else {
458 pp->xx = _xcBanc(2);
459 }
460 }
461 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
462 }
463 else if (pp->type == bncParam::CRD_Z) {
464 if (firstCrd) {
465 if (settings.value("pppRefCrdX").toString() != "" &&
466 settings.value("pppRefCrdY").toString() != "" &&
467 settings.value("pppRefCrdZ").toString() != "") {
468 pp->xx = settings.value("pppRefCrdZ").toDouble();
469 }
470 else {
471 pp->xx = _xcBanc(3);
472 }
473 }
474 _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used;
475 }
476
477 // Receiver Clocks
478 // ---------------
479 else if (pp->type == bncParam::RECCLK) {
480 pp->xx = _xcBanc(4);
481 for (int jj = 1; jj <= _params.size(); jj++) {
482 _QQ(iPar, jj) = 0.0;
483 }
484 _QQ(iPar,iPar) = _sigClk0 * _sigClk0;
485 }
486
487 // Tropospheric Delay
488 // ------------------
489 else if (pp->type == bncParam::TROPO) {
490 _QQ(iPar,iPar) += _sigTrpP * _sigTrpP;
491 }
492 }
493
494 // Add New Ambiguities if necessary
495 // --------------------------------
496 if (_usePhase) {
497
498 // Make a copy of QQ and xx, set parameter indices
499 // -----------------------------------------------
500 SymmetricMatrix QQ_old = _QQ;
501
502 for (int iPar = 1; iPar <= _params.size(); iPar++) {
503 _params[iPar-1]->index_old = _params[iPar-1]->index;
504 _params[iPar-1]->index = 0;
505 }
506
507 // Remove Ambiguity Parameters without observations
508 // ------------------------------------------------
509 int iPar = 0;
510 QMutableVectorIterator<bncParam*> it(_params);
511 while (it.hasNext()) {
512 bncParam* par = it.next();
513 bool removed = false;
514 if (par->type == bncParam::AMB_L3) {
515 if (epoData->satDataGPS.find(par->prn) == epoData->satDataGPS.end() &&
516 epoData->satDataGlo.find(par->prn) == epoData->satDataGlo.end() ) {
517 removed = true;
518 delete par;
519 it.remove();
520 }
521 }
522 if (! removed) {
523 ++iPar;
524 par->index = iPar;
525 }
526 }
527
528 // Add new ambiguity parameters
529 // ----------------------------
530 QMapIterator<QString, t_satData*> iGPS(epoData->satDataGPS);
531 while (iGPS.hasNext()) {
532 iGPS.next();
533 QString prn = iGPS.key();
534 t_satData* satData = iGPS.value();
535 bool found = false;
536 for (int iPar = 1; iPar <= _params.size(); iPar++) {
537 if (_params[iPar-1]->type == bncParam::AMB_L3 &&
538 _params[iPar-1]->prn == prn) {
539 found = true;
540 break;
541 }
542 }
543 if (!found) {
544 bncParam* par = new bncParam(bncParam::AMB_L3, _params.size()+1, prn);
545 _params.push_back(par);
546 par->xx = satData->L3 - cmpValue(satData, true);
547 }
548 }
549
550 QMapIterator<QString, t_satData*> iGlo(epoData->satDataGlo);
551 while (iGlo.hasNext()) {
552 iGlo.next();
553 QString prn = iGlo.key();
554 t_satData* satData = iGlo.value();
555 bool found = false;
556 for (int iPar = 1; iPar <= _params.size(); iPar++) {
557 if (_params[iPar-1]->type == bncParam::AMB_L3 &&
558 _params[iPar-1]->prn == prn) {
559 found = true;
560 break;
561 }
562 }
563 if (!found) {
564 bncParam* par = new bncParam(bncParam::AMB_L3, _params.size()+1, prn);
565 _params.push_back(par);
566 par->xx = satData->L3 - cmpValue(satData, true);
567 }
568 }
569
570 int nPar = _params.size();
571 _QQ.ReSize(nPar); _QQ = 0.0;
572 for (int i1 = 1; i1 <= nPar; i1++) {
573 bncParam* p1 = _params[i1-1];
574 if (p1->index_old != 0) {
575 _QQ(p1->index, p1->index) = QQ_old(p1->index_old, p1->index_old);
576 for (int i2 = 1; i2 <= nPar; i2++) {
577 bncParam* p2 = _params[i2-1];
578 if (p2->index_old != 0) {
579 _QQ(p1->index, p2->index) = QQ_old(p1->index_old, p2->index_old);
580 }
581 }
582 }
583 }
584
585 for (int ii = 1; ii <= nPar; ii++) {
586 bncParam* par = _params[ii-1];
587 if (par->index_old == 0) {
588 _QQ(par->index, par->index) = _sigAmb0 * _sigAmb0;
589 }
590 par->index_old = par->index;
591 }
592 }
593}
594
595// Update Step of the Filter (currently just a single-epoch solution)
596////////////////////////////////////////////////////////////////////////////
597t_irc bncModel::update(t_epoData* epoData) {
598
599 bncSettings settings;
600
601 _log.clear();
602
603 _time = epoData->tt;
604
605 _log += "Single Point Positioning of Epoch "
606 + QByteArray(_time.timestr(1).c_str()) +
607 "\n--------------------------------------------------------------\n";
608
609 SymmetricMatrix QQsav;
610 ColumnVector dx;
611 ColumnVector vv;
612
613 // Loop over all outliers
614 // ----------------------
615 do {
616
617 // Bancroft Solution
618 // -----------------
619 if (cmpBancroft(epoData) != success) {
620 emit newMessage(_log, false);
621 return failure;
622 }
623
624 // Status Prediction
625 // -----------------
626 predict(epoData);
627
628 // Create First-Design Matrix
629 // --------------------------
630 unsigned nPar = _params.size();
631 unsigned nObs = 0;
632 if (_usePhase) {
633 nObs = 2 * epoData->sizeGPS() + epoData->sizeGlo();
634 }
635 else {
636 nObs = epoData->sizeGPS(); // Glonass pseudoranges are not used
637 }
638
639 if (nObs < nPar) {
640 _log += "bncModel::update: nObs < nPar\n";
641 emit newMessage(_log, false);
642 return failure;
643 }
644
645 Matrix AA(nObs, nPar); // first design matrix
646 ColumnVector ll(nObs); // tems observed-computed
647 DiagonalMatrix PP(nObs); PP = 0.0;
648
649 unsigned iObs = 0;
650
651 // GPS code and (optionally) phase observations
652 // --------------------------------------------
653 QMapIterator<QString, t_satData*> itGPS(epoData->satDataGPS);
654 while (itGPS.hasNext()) {
655 ++iObs;
656 itGPS.next();
657 QString prn = itGPS.key();
658 t_satData* satData = itGPS.value();
659
660 ll(iObs) = satData->P3 - cmpValue(satData, false);
661 PP(iObs,iObs) = 1.0 / (_sigP3 * _sigP3);
662 for (int iPar = 1; iPar <= _params.size(); iPar++) {
663 AA(iObs, iPar) = _params[iPar-1]->partial(satData, false);
664 }
665
666 if (_usePhase) {
667 ++iObs;
668 ll(iObs) = satData->L3 - cmpValue(satData, true);
669 PP(iObs,iObs) = 1.0 / (_sigL3 * _sigL3);
670 for (int iPar = 1; iPar <= _params.size(); iPar++) {
671 if (_params[iPar-1]->type == bncParam::AMB_L3 &&
672 _params[iPar-1]->prn == prn) {
673 ll(iObs) -= _params[iPar-1]->xx;
674 }
675 AA(iObs, iPar) = _params[iPar-1]->partial(satData, true);
676 }
677 }
678 }
679
680 // Glonass phase observations
681 // --------------------------
682 if (_usePhase) {
683 QMapIterator<QString, t_satData*> itGlo(epoData->satDataGlo);
684 while (itGlo.hasNext()) {
685 ++iObs;
686 itGlo.next();
687 QString prn = itGlo.key();
688 t_satData* satData = itGlo.value();
689
690 ll(iObs) = satData->L3 - cmpValue(satData, true);
691 PP(iObs,iObs) = 1.0 / (_sigL3 * _sigL3);
692 for (int iPar = 1; iPar <= _params.size(); iPar++) {
693 if (_params[iPar-1]->type == bncParam::AMB_L3 &&
694 _params[iPar-1]->prn == prn) {
695 ll(iObs) -= _params[iPar-1]->xx;
696 }
697 AA(iObs, iPar) = _params[iPar-1]->partial(satData, true);
698 }
699 }
700 }
701
702 // Compute Filter Update
703 // ---------------------
704 QQsav = _QQ;
705
706 kalman(AA, ll, PP, _QQ, dx);
707
708 vv = ll - AA * dx;
709
710 ostringstream strA;
711 strA.setf(ios::fixed);
712 ColumnVector vv_code(epoData->sizeGPS());
713 ColumnVector vv_phase(epoData->sizeGPS());
714 ColumnVector vv_glo(epoData->sizeGlo());
715
716 for (unsigned iobs = 1; iobs <= epoData->sizeGPS(); ++iobs) {
717 if (_usePhase) {
718 vv_code(iobs) = vv(2*iobs-1);
719 vv_phase(iobs) = vv(2*iobs);
720 }
721 else {
722 vv_code(iobs) = vv(iobs);
723 }
724 }
725 if (_useGlonass) {
726 for (unsigned iobs = 1; iobs <= epoData->sizeGlo(); ++iobs) {
727 vv_glo(iobs) = vv(2*epoData->sizeGPS()+iobs);
728 }
729 }
730
731 strA << "residuals code " << setw(8) << setprecision(3) << vv_code.t();
732 if (_usePhase) {
733 strA << "residuals phase " << setw(8) << setprecision(3) << vv_phase.t();
734 }
735 if (_useGlonass) {
736 strA << "residuals glo " << setw(8) << setprecision(3) << vv_glo.t();
737 }
738 _log += strA.str().c_str();
739
740 } while (outlierDetection(QQsav, vv, epoData->satDataGPS,
741 epoData->satDataGlo) != 0);
742
743 // Remember the Epoch-specific Results for the computation of means
744 // ----------------------------------------------------------------
745 pppPos* newPos = new pppPos;
746 newPos->time = epoData->tt;
747
748 // Set Solution Vector
749 // -------------------
750 ostringstream strB;
751 strB.setf(ios::fixed);
752 QVectorIterator<bncParam*> itPar(_params);
753 while (itPar.hasNext()) {
754 bncParam* par = itPar.next();
755 par->xx += dx(par->index);
756
757 if (par->type == bncParam::RECCLK) {
758 strB << "\n clk = " << setw(6) << setprecision(3) << par->xx
759 << " +- " << setw(6) << setprecision(3)
760 << sqrt(_QQ(par->index,par->index));
761 }
762 else if (par->type == bncParam::AMB_L3) {
763 strB << "\n amb " << par->prn.toAscii().data() << " = "
764 << setw(6) << setprecision(3) << par->xx
765 << " +- " << setw(6) << setprecision(3)
766 << sqrt(_QQ(par->index,par->index));
767 }
768 else if (par->type == bncParam::TROPO) {
769 double aprTrp = delay_saast(M_PI/2.0);
770 strB << "\n trp = " << par->prn.toAscii().data()
771 << setw(7) << setprecision(3) << aprTrp << " "
772 << setw(6) << setprecision(3) << showpos << par->xx << noshowpos
773 << " +- " << setw(6) << setprecision(3)
774 << sqrt(_QQ(par->index,par->index));
775 newPos->xnt[6] = aprTrp + par->xx;
776 }
777 }
778 strB << '\n';
779 _log += strB.str().c_str();
780 emit newMessage(_log, false);
781
782 // Final Message (both log file and screen)
783 // ----------------------------------------
784 ostringstream strC;
785 strC.setf(ios::fixed);
786 strC << _staID.data() << " PPP "
787 << epoData->tt.timestr(1) << " " << epoData->sizeAll() << " "
788 << setw(14) << setprecision(3) << x() << " +- "
789 << setw(6) << setprecision(3) << sqrt(_QQ(1,1)) << " "
790 << setw(14) << setprecision(3) << y() << " +- "
791 << setw(6) << setprecision(3) << sqrt(_QQ(2,2)) << " "
792 << setw(14) << setprecision(3) << z() << " +- "
793 << setw(6) << setprecision(3) << sqrt(_QQ(3,3));
794
795 // NEU Output
796 // ----------
797 if (settings.value("pppRefCrdX").toString() != "" &&
798 settings.value("pppRefCrdY").toString() != "" &&
799 settings.value("pppRefCrdZ").toString() != "") {
800
801 double xyzRef[3];
802 xyzRef[0] = settings.value("pppRefCrdX").toDouble();
803 xyzRef[1] = settings.value("pppRefCrdY").toDouble();
804 xyzRef[2] = settings.value("pppRefCrdZ").toDouble();
805
806 newPos->xnt[0] = x() - xyzRef[0];
807 newPos->xnt[1] = y() - xyzRef[1];
808 newPos->xnt[2] = z() - xyzRef[2];
809
810 double ellRef[3];
811 xyz2ell(xyzRef, ellRef);
812 xyz2neu(ellRef, newPos->xnt, &newPos->xnt[3]);
813
814 strC << " NEU "
815 << setw(8) << setprecision(3) << newPos->xnt[3] << " "
816 << setw(8) << setprecision(3) << newPos->xnt[4] << " "
817 << setw(8) << setprecision(3) << newPos->xnt[5];
818
819 }
820
821 emit newMessage(QByteArray(strC.str().c_str()), true);
822
823 if (settings.value("pppAverage").toString() == "") {
824 delete newPos;
825 }
826 else {
827
828 _posAverage.push_back(newPos);
829
830 // Time Span for Average Computation
831 // ---------------------------------
832 double tRangeAverage = settings.value("pppAverage").toDouble() * 60.;
833 if (tRangeAverage < 0) {
834 tRangeAverage = 0;
835 }
836 if (tRangeAverage > 86400) {
837 tRangeAverage = 86400;
838 }
839
840 // Compute the Mean
841 // ----------------
842 ColumnVector mean(7); mean = 0.0;
843
844 QMutableVectorIterator<pppPos*> it(_posAverage);
845 while (it.hasNext()) {
846 pppPos* pp = it.next();
847 if ( (epoData->tt - pp->time) >= tRangeAverage ) {
848 delete pp;
849 it.remove();
850 }
851 else {
852 for (int ii = 0; ii < 7; ++ii) {
853 mean[ii] += pp->xnt[ii];
854 }
855 }
856 }
857
858 int nn = _posAverage.size();
859
860 if (nn > 0) {
861
862 mean /= nn;
863
864 // Compute the Deviation
865 // ---------------------
866 ColumnVector std(7); std = 0.0;
867 QVectorIterator<pppPos*> it2(_posAverage);
868 while (it2.hasNext()) {
869 pppPos* pp = it2.next();
870 for (int ii = 0; ii < 7; ++ii) {
871 std[ii] += (pp->xnt[ii] - mean[ii]) * (pp->xnt[ii] - mean[ii]);
872 }
873 }
874 for (int ii = 0; ii < 7; ++ii) {
875 std[ii] = sqrt(std[ii] / nn);
876 }
877
878 ostringstream strD; strD.setf(ios::fixed);
879 strD << _staID.data() << " AVE-XYZ "
880 << epoData->tt.timestr(1) << " "
881 << setw(13) << setprecision(3) << mean[0] << " +- "
882 << setw(6) << setprecision(3) << std[0] << " "
883 << setw(14) << setprecision(3) << mean[1] << " +- "
884 << setw(6) << setprecision(3) << std[1] << " "
885 << setw(14) << setprecision(3) << mean[2] << " +- "
886 << setw(6) << setprecision(3) << std[2];
887 emit newMessage(QByteArray(strD.str().c_str()), true);
888
889 ostringstream strE; strE.setf(ios::fixed);
890 strE << _staID.data() << " AVE-NEU "
891 << epoData->tt.timestr(1) << " "
892 << setw(13) << setprecision(3) << mean[3] << " +- "
893 << setw(6) << setprecision(3) << std[3] << " "
894 << setw(14) << setprecision(3) << mean[4] << " +- "
895 << setw(6) << setprecision(3) << std[4] << " "
896 << setw(14) << setprecision(3) << mean[5] << " +- "
897 << setw(6) << setprecision(3) << std[5];
898
899 emit newMessage(QByteArray(strE.str().c_str()), true);
900
901 if ( Qt::CheckState(settings.value("pppEstTropo").toInt()) == Qt::Checked) {
902 ostringstream strF; strF.setf(ios::fixed);
903 strF << _staID.data() << " AVE-TRP "
904 << epoData->tt.timestr(1) << " "
905 << setw(13) << setprecision(3) << mean[6] << " +- "
906 << setw(6) << setprecision(3) << std[6] << endl;
907 emit newMessage(QByteArray(strF.str().c_str()), true);
908 }
909 }
910 }
911
912 // NMEA Output
913 // -----------
914 double xyz[3];
915 xyz[0] = x();
916 xyz[1] = y();
917 xyz[2] = z();
918 double ell[3];
919 xyz2ell(xyz, ell);
920 double phiDeg = ell[0] * 180 / M_PI;
921 double lamDeg = ell[1] * 180 / M_PI;
922
923 char phiCh = 'N';
924 if (phiDeg < 0) {
925 phiDeg = -phiDeg;
926 phiCh = 'S';
927 }
928 char lamCh = 'E';
929 if (lamDeg < 0) {
930 lamDeg = -lamDeg;
931 lamCh = 'W';
932 }
933
934 string datestr = epoData->tt.datestr(0); // yyyymmdd
935 ostringstream strRMC;
936 strRMC.setf(ios::fixed);
937 strRMC << "GPRMC,"
938 << epoData->tt.timestr(0,0) << ",A,"
939 << setw(2) << setfill('0') << int(phiDeg)
940 << setw(6) << setprecision(3) << setfill('0')
941 << fmod(60*phiDeg,60) << ',' << phiCh << ','
942 << setw(3) << setfill('0') << int(lamDeg)
943 << setw(6) << setprecision(3) << setfill('0')
944 << fmod(60*lamDeg,60) << ',' << lamCh << ",,,"
945 << datestr[6] << datestr[7] << datestr[4] << datestr[5]
946 << datestr[2] << datestr[3] << ",,";
947
948 writeNMEAstr(QString(strRMC.str().c_str()));
949
950 double dop = 2.0; // TODO
951
952 ostringstream strGGA;
953 strGGA.setf(ios::fixed);
954 strGGA << "GPGGA,"
955 << epoData->tt.timestr(0,0) << ','
956 << setw(2) << setfill('0') << int(phiDeg)
957 << setw(10) << setprecision(7) << setfill('0')
958 << fmod(60*phiDeg,60) << ',' << phiCh << ','
959 << setw(3) << setfill('0') << int(lamDeg)
960 << setw(10) << setprecision(7) << setfill('0')
961 << fmod(60*lamDeg,60) << ',' << lamCh
962 << ",1," << setw(2) << setfill('0') << epoData->sizeAll() << ','
963 << setw(3) << setprecision(1) << dop << ','
964 << setprecision(3) << ell[2] << ",M,0.0,M,,";
965
966 writeNMEAstr(QString(strGGA.str().c_str()));
967
968 return success;
969}
970
971// Outlier Detection
972////////////////////////////////////////////////////////////////////////////
973int bncModel::outlierDetection(const SymmetricMatrix& QQsav,
974 const ColumnVector& vv,
975 QMap<QString, t_satData*>& satDataGPS,
976 QMap<QString, t_satData*>& satDataGlo) {
977
978 double vvMaxCodeGPS = 0.0;
979 double vvMaxPhaseGPS = 0.0;
980 double vvMaxPhaseGlo = 0.0;
981 QMutableMapIterator<QString, t_satData*> itMaxCodeGPS(satDataGPS);
982 QMutableMapIterator<QString, t_satData*> itMaxPhaseGPS(satDataGPS);
983 QMutableMapIterator<QString, t_satData*> itMaxPhaseGlo(satDataGlo);
984
985 int ii = 0;
986
987 // GPS code and (optionally) phase residuals
988 // -----------------------------------------
989 QMutableMapIterator<QString, t_satData*> itGPS(satDataGPS);
990 while (itGPS.hasNext()) {
991 itGPS.next();
992 ++ii;
993
994 if (vvMaxCodeGPS == 0.0 || fabs(vv(ii)) > vvMaxCodeGPS) {
995 vvMaxCodeGPS = fabs(vv(ii));
996 itMaxCodeGPS = itGPS;
997 }
998
999 if (_usePhase) {
1000 ++ii;
1001 if (vvMaxPhaseGPS == 0.0 || fabs(vv(ii)) > vvMaxPhaseGPS) {
1002 vvMaxPhaseGPS = fabs(vv(ii));
1003 itMaxPhaseGPS = itGPS;
1004 }
1005 }
1006 }
1007
1008 // Glonass phase residuals
1009 // -----------------------
1010 if (_usePhase) {
1011 QMutableMapIterator<QString, t_satData*> itGlo(satDataGlo);
1012 while (itGlo.hasNext()) {
1013 itGlo.next();
1014 ++ii;
1015 if (vvMaxPhaseGlo == 0.0 || fabs(vv(ii)) > vvMaxPhaseGlo) {
1016 vvMaxPhaseGlo = fabs(vv(ii));
1017 itMaxPhaseGlo = itGlo;
1018 }
1019 }
1020 }
1021
1022 if (vvMaxPhaseGlo > MAXRES_PHASE_GLO) {
1023 QString prn = itMaxPhaseGlo.key();
1024 t_satData* satData = itMaxPhaseGlo.value();
1025 delete satData;
1026 itMaxPhaseGlo.remove();
1027 _QQ = QQsav;
1028
1029 _log += "Outlier Phase " + prn.toAscii() + " "
1030 + QByteArray::number(vvMaxPhaseGlo, 'f', 3) + "\n";
1031
1032 return 1;
1033 }
1034
1035 else if (vvMaxCodeGPS > MAXRES_CODE_GPS) {
1036 QString prn = itMaxCodeGPS.key();
1037 t_satData* satData = itMaxCodeGPS.value();
1038 delete satData;
1039 itMaxCodeGPS.remove();
1040 _QQ = QQsav;
1041
1042 _log += "Outlier Code " + prn.toAscii() + " "
1043 + QByteArray::number(vvMaxCodeGPS, 'f', 3) + "\n";
1044
1045 return 1;
1046 }
1047 else if (vvMaxPhaseGPS > MAXRES_PHASE_GPS) {
1048 QString prn = itMaxPhaseGPS.key();
1049 t_satData* satData = itMaxPhaseGPS.value();
1050 delete satData;
1051 itMaxPhaseGPS.remove();
1052 _QQ = QQsav;
1053
1054 _log += "Outlier Phase " + prn.toAscii() + " "
1055 + QByteArray::number(vvMaxPhaseGPS, 'f', 3) + "\n";
1056
1057 return 1;
1058 }
1059
1060 return 0;
1061}
1062
1063//
1064////////////////////////////////////////////////////////////////////////////
1065void bncModel::writeNMEAstr(const QString& nmStr) {
1066
1067 unsigned char XOR = 0;
1068 for (int ii = 0; ii < nmStr.length(); ii++) {
1069 XOR ^= (unsigned char) nmStr[ii].toAscii();
1070 }
1071
1072 QString outStr = '$' + nmStr
1073 + QString("*%1\n").arg(int(XOR), 0, 16).toUpper();
1074
1075 if (_nmeaStream) {
1076 *_nmeaStream << outStr;
1077 _nmeaStream->flush();
1078 }
1079
1080 emit newNMEAstr(outStr.toAscii());
1081}
1082
1083////
1084//////////////////////////////////////////////////////////////////////////////
1085void bncModel::kalman(const Matrix& AA, const ColumnVector& ll,
1086 const DiagonalMatrix& PP,
1087 SymmetricMatrix& QQ, ColumnVector& dx) {
1088
1089 int nObs = AA.Nrows();
1090 int nPar = AA.Ncols();
1091
1092 UpperTriangularMatrix SS = Cholesky(QQ).t();
1093
1094 Matrix SA = SS*AA.t();
1095 Matrix SRF(nObs+nPar, nObs+nPar); SRF = 0;
1096 for (int ii = 1; ii <= nObs; ++ii) {
1097 SRF(ii,ii) = 1.0 / sqrt(PP(ii,ii));
1098 }
1099
1100 SRF.SubMatrix (nObs+1, nObs+nPar, 1, nObs) = SA;
1101 SRF.SymSubMatrix(nObs+1, nObs+nPar) = SS;
1102
1103 UpperTriangularMatrix UU;
1104 QRZ(SRF, UU);
1105
1106 SS = UU.SymSubMatrix(nObs+1, nObs+nPar);
1107 UpperTriangularMatrix SH_rt = UU.SymSubMatrix(1, nObs);
1108 Matrix YY = UU.SubMatrix(1, nObs, nObs+1, nObs+nPar);
1109
1110 UpperTriangularMatrix SHi = SH_rt.i();
1111
1112 Matrix KT = SHi * YY;
1113 SymmetricMatrix Hi; Hi << SHi * SHi.t();
1114
1115 dx = KT.t() * ll;
1116 QQ << (SS.t() * SS);
1117}
1118
1119// Phase Wind-Up Correction
1120///////////////////////////////////////////////////////////////////////////
1121double bncModel::windUp(const QString& prn, const ColumnVector& rSat,
1122 const ColumnVector& rRec) {
1123
1124 double Mjd = _time.mjd() + _time.daysec() / 86400.0;
1125
1126 // First time - initialize to zero
1127 // -------------------------------
1128 if (!_windUpTime.contains(prn)) {
1129 _windUpTime[prn] = Mjd;
1130 _windUpSum[prn] = 0.0;
1131 }
1132
1133 // Compute the correction for new time
1134 // -----------------------------------
1135 else if (_windUpTime[prn] != Mjd) {
1136 _windUpTime[prn] = Mjd;
1137
1138 // Unit Vector GPS Satellite --> Receiver
1139 // --------------------------------------
1140 ColumnVector rho = rRec - rSat;
1141 rho /= rho.norm_Frobenius();
1142
1143 // GPS Satellite unit Vectors sz, sy, sx
1144 // -------------------------------------
1145 ColumnVector sz = -rSat / rSat.norm_Frobenius();
1146
1147 ColumnVector xSun = Sun(Mjd);
1148 xSun /= xSun.norm_Frobenius();
1149
1150 ColumnVector sy = crossproduct(sz, xSun);
1151 ColumnVector sx = crossproduct(sy, sz);
1152
1153 // Effective Dipole of the GPS Satellite Antenna
1154 // ---------------------------------------------
1155 ColumnVector dipSat = sx - rho * DotProduct(rho,sx)
1156 - crossproduct(rho, sy);
1157
1158 // Receiver unit Vectors rx, ry
1159 // ----------------------------
1160 ColumnVector rx(3);
1161 ColumnVector ry(3);
1162
1163 double recEll[3]; xyz2ell(rRec.data(), recEll) ;
1164 double neu[3];
1165
1166 neu[0] = 1.0;
1167 neu[1] = 0.0;
1168 neu[2] = 0.0;
1169 neu2xyz(recEll, neu, rx.data());
1170
1171 neu[0] = 0.0;
1172 neu[1] = -1.0;
1173 neu[2] = 0.0;
1174 neu2xyz(recEll, neu, ry.data());
1175
1176 // Effective Dipole of the Receiver Antenna
1177 // ----------------------------------------
1178 ColumnVector dipRec = rx - rho * DotProduct(rho,rx)
1179 + crossproduct(rho, ry);
1180
1181 // Resulting Effect
1182 // ----------------
1183 double alpha = DotProduct(dipSat,dipRec) /
1184 (dipSat.norm_Frobenius() * dipRec.norm_Frobenius());
1185
1186 if (alpha > 1.0) alpha = 1.0;
1187 if (alpha < -1.0) alpha = -1.0;
1188
1189 double dphi = acos(alpha) / 2.0 / M_PI; // in cycles
1190
1191 if ( DotProduct(rho, crossproduct(dipSat, dipRec)) < 0.0 ) {
1192 dphi = -dphi;
1193 }
1194
1195 _windUpSum[prn] = floor(_windUpSum[prn] - dphi + 0.5) + dphi;
1196 }
1197
1198 return _windUpSum[prn];
1199}
Note: See TracBrowser for help on using the repository browser.