source: ntrip/trunk/BNC/bncmodel.cpp@ 2117

Last change on this file since 2117 was 2117, checked in by mervart, 14 years ago

* empty log message *

File size: 15.5 KB
Line 
1// Part of BNC, a utility for retrieving decoding and
2// converting GNSS data streams from NTRIP broadcasters.
3//
4// Copyright (C) 2007
5// German Federal Agency for Cartography and Geodesy (BKG)
6// http://www.bkg.bund.de
7// Czech Technical University Prague, Department of Geodesy
8// http://www.fsv.cvut.cz
9//
10// Email: euref-ip@bkg.bund.de
11//
12// This program is free software; you can redistribute it and/or
13// modify it under the terms of the GNU General Public License
14// as published by the Free Software Foundation, version 2.
15//
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25/* -------------------------------------------------------------------------
26 * BKG NTRIP Client
27 * -------------------------------------------------------------------------
28 *
29 * Class: bncParam, bncModel
30 *
31 * Purpose: Model for PPP
32 *
33 * Author: L. Mervart
34 *
35 * Created: 01-Dec-2009
36 *
37 * Changes:
38 *
39 * -----------------------------------------------------------------------*/
40
41#include <iomanip>
42#include <cmath>
43#include <newmatio.h>
44#include <sstream>
45
46#include "bncmodel.h"
47#include "bncapp.h"
48#include "bncpppclient.h"
49#include "bancroft.h"
50#include "bncutils.h"
51#include "bncsettings.h"
52
53using namespace std;
54
55const unsigned MINOBS = 4;
56const double MINELE = 10.0 * M_PI / 180.0;
57const double MAXRES_CODE = 10.0;
58const double MAXRES_PHASE = 0.10;
59const double sig_crd_0 = 100.0;
60const double sig_crd_p = 100.0;
61const double sig_clk_0 = 1000.0;
62const double sig_trp_0 = 0.01;
63const double sig_trp_p = 1e-6;
64const double sig_amb_0 = 100.0;
65const double sig_P3 = 1.0;
66const double sig_L3 = 0.01;
67
68// Constructor
69////////////////////////////////////////////////////////////////////////////
70bncParam::bncParam(bncParam::parType typeIn, int indexIn,
71 const QString& prnIn) {
72 type = typeIn;
73 index = indexIn;
74 prn = prnIn;
75 index_old = 0;
76 xx = 0.0;
77}
78
79// Destructor
80////////////////////////////////////////////////////////////////////////////
81bncParam::~bncParam() {
82}
83
84// Partial
85////////////////////////////////////////////////////////////////////////////
86double bncParam::partial(t_satData* satData, const QString& prnIn) {
87 if (type == CRD_X) {
88 return (xx - satData->xx(1)) / satData->rho;
89 }
90 else if (type == CRD_Y) {
91 return (xx - satData->xx(2)) / satData->rho;
92 }
93 else if (type == CRD_Z) {
94 return (xx - satData->xx(3)) / satData->rho;
95 }
96 else if (type == RECCLK) {
97 return 1.0;
98 }
99 else if (type == TROPO) {
100 return 1.0 / sin(satData->eleSat);
101 }
102 else if (type == AMB_L3) {
103 if (prnIn == prn) {
104 return 1.0;
105 }
106 else {
107 return 0.0;
108 }
109 }
110 return 0.0;
111}
112
113// Constructor
114////////////////////////////////////////////////////////////////////////////
115bncModel::bncModel(QByteArray staID) {
116
117 _staID = staID;
118
119 connect(this, SIGNAL(newMessage(QByteArray,bool)),
120 ((bncApp*)qApp), SLOT(slotMessage(const QByteArray,bool)));
121
122 bncSettings settings;
123
124 _static = false;
125 if ( Qt::CheckState(settings.value("pppStatic").toInt()) == Qt::Checked) {
126 _static = true;
127 }
128
129 _usePhase = false;
130 if ( Qt::CheckState(settings.value("pppUsePhase").toInt()) == Qt::Checked) {
131 _usePhase = true;
132 }
133
134 _estTropo = false;
135 if ( Qt::CheckState(settings.value("pppEstTropo").toInt()) == Qt::Checked) {
136 _estTropo = true;
137 }
138
139 _xcBanc.ReSize(4); _xcBanc = 0.0;
140 _ellBanc.ReSize(3); _ellBanc = 0.0;
141
142 _params.push_back(new bncParam(bncParam::CRD_X, 1, ""));
143 _params.push_back(new bncParam(bncParam::CRD_Y, 2, ""));
144 _params.push_back(new bncParam(bncParam::CRD_Z, 3, ""));
145 _params.push_back(new bncParam(bncParam::RECCLK, 4, ""));
146 if (_estTropo) {
147 _params.push_back(new bncParam(bncParam::TROPO, 5, ""));
148 }
149
150 unsigned nPar = _params.size();
151
152 _QQ.ReSize(nPar);
153 _QQ = 0.0;
154
155 _QQ(1,1) = sig_crd_0 * sig_crd_0;
156 _QQ(2,2) = sig_crd_0 * sig_crd_0;
157 _QQ(3,3) = sig_crd_0 * sig_crd_0;
158 _QQ(4,4) = sig_clk_0 * sig_clk_0;
159 if (_estTropo) {
160 _QQ(5,5) = sig_trp_0 * sig_trp_0;
161 }
162}
163
164// Destructor
165////////////////////////////////////////////////////////////////////////////
166bncModel::~bncModel() {
167}
168
169// Bancroft Solution
170////////////////////////////////////////////////////////////////////////////
171t_irc bncModel::cmpBancroft(t_epoData* epoData) {
172
173 if (epoData->size() < MINOBS) {
174 return failure;
175 }
176
177 Matrix BB(epoData->size(), 4);
178
179 QMapIterator<QString, t_satData*> it(epoData->satData);
180 int iObs = 0;
181 while (it.hasNext()) {
182 ++iObs;
183 it.next();
184 QString prn = it.key();
185 t_satData* satData = it.value();
186 BB(iObs, 1) = satData->xx(1);
187 BB(iObs, 2) = satData->xx(2);
188 BB(iObs, 3) = satData->xx(3);
189 BB(iObs, 4) = satData->P3 + satData->clk;
190 }
191
192 bancroft(BB, _xcBanc);
193
194 // Ellipsoidal Coordinates
195 // ------------------------
196 xyz2ell(_xcBanc.data(), _ellBanc.data());
197
198 // Compute Satellite Elevations
199 // ----------------------------
200 QMutableMapIterator<QString, t_satData*> it2(epoData->satData);
201 while (it2.hasNext()) {
202 it2.next();
203 QString prn = it2.key();
204 t_satData* satData = it2.value();
205
206 ColumnVector rr = satData->xx - _xcBanc.Rows(1,3);
207 double rho = rr.norm_Frobenius();
208
209 double neu[3];
210 xyz2neu(_ellBanc.data(), rr.data(), neu);
211
212 satData->eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho );
213 if (neu[2] < 0) {
214 satData->eleSat *= -1.0;
215 }
216 satData->azSat = atan2(neu[1], neu[0]);
217
218 if (satData->eleSat < MINELE) {
219 delete satData;
220 it2.remove();
221 }
222 }
223
224 return success;
225}
226
227// Computed Value
228////////////////////////////////////////////////////////////////////////////
229double bncModel::cmpValue(t_satData* satData) {
230
231 ColumnVector xRec(3);
232 xRec(1) = x();
233 xRec(2) = y();
234 xRec(3) = z();
235
236 double rho0 = (satData->xx - xRec).norm_Frobenius();
237 double dPhi = t_CST::omega * rho0 / t_CST::c;
238
239 xRec(1) = x() * cos(dPhi) - y() * sin(dPhi);
240 xRec(2) = y() * cos(dPhi) + x() * sin(dPhi);
241 xRec(3) = z();
242
243 satData->rho = (satData->xx - xRec).norm_Frobenius();
244
245 double tropDelay = delay_saast(satData->eleSat) +
246 trp() / sin(satData->eleSat);
247
248 return satData->rho + clk() - satData->clk + tropDelay;
249}
250
251// Tropospheric Model (Saastamoinen)
252////////////////////////////////////////////////////////////////////////////
253double bncModel::delay_saast(double Ele) {
254
255 double height = _ellBanc(3);
256
257 double pp = 1013.25 * pow(1.0 - 2.26e-5 * height, 5.225);
258 double TT = 18.0 - height * 0.0065 + 273.15;
259 double hh = 50.0 * exp(-6.396e-4 * height);
260 double ee = hh / 100.0 * exp(-37.2465 + 0.213166*TT - 0.000256908*TT*TT);
261
262 double h_km = height / 1000.0;
263
264 if (h_km < 0.0) h_km = 0.0;
265 if (h_km > 5.0) h_km = 5.0;
266 int ii = int(h_km + 1);
267 double href = ii - 1;
268
269 double bCor[6];
270 bCor[0] = 1.156;
271 bCor[1] = 1.006;
272 bCor[2] = 0.874;
273 bCor[3] = 0.757;
274 bCor[4] = 0.654;
275 bCor[5] = 0.563;
276
277 double BB = bCor[ii-1] + (bCor[ii]-bCor[ii-1]) * (h_km - href);
278
279 double zen = M_PI/2.0 - Ele;
280
281 return (0.002277/cos(zen)) * (pp + ((1255.0/TT)+0.05)*ee - BB*(tan(zen)*tan(zen)));
282}
283
284// Prediction Step of the Filter
285////////////////////////////////////////////////////////////////////////////
286void bncModel::predict(t_epoData* epoData) {
287
288 if (_usePhase) {
289
290 // Make a copy of QQ and xx, set parameter indices
291 // -----------------------------------------------
292 SymmetricMatrix QQ_old = _QQ;
293
294 for (int iPar = 1; iPar <= _params.size(); iPar++) {
295 _params[iPar-1]->index_old = _params[iPar-1]->index;
296 _params[iPar-1]->index = 0;
297 }
298
299 // Remove Ambiguity Parameters without observations
300 // ------------------------------------------------
301 int iPar = 0;
302 QMutableVectorIterator<bncParam*> it(_params);
303 while (it.hasNext()) {
304 bncParam* par = it.next();
305 bool removed = false;
306 if (par->type == bncParam::AMB_L3) {
307 if (epoData->satData.find(par->prn) == epoData->satData.end()) {
308 removed = true;
309 delete par;
310 it.remove();
311 }
312 }
313 if (! removed) {
314 ++iPar;
315 par->index = iPar;
316 }
317 }
318
319 // Add new ambiguity parameters
320 // ----------------------------
321 QMapIterator<QString, t_satData*> itObs(epoData->satData);
322 while (itObs.hasNext()) {
323 itObs.next();
324 QString prn = itObs.key();
325 bool found = false;
326 for (int iPar = 1; iPar <= _params.size(); iPar++) {
327 if (_params[iPar-1]->type == bncParam::AMB_L3 &&
328 _params[iPar-1]->prn == prn) {
329 found = true;
330 break;
331 }
332 }
333 if (!found) {
334 bncParam* par = new bncParam(bncParam::AMB_L3, _params.size()+1, prn);
335 _params.push_back(par);
336 }
337 }
338
339 int nPar = _params.size();
340 _QQ.ReSize(nPar); _QQ = 0.0;
341 for (int i1 = 1; i1 <= nPar; i1++) {
342 bncParam* p1 = _params[i1-1];
343 if (p1->index_old != 0) {
344 _QQ(p1->index, p1->index) = QQ_old(p1->index_old, p1->index_old);
345 for (int i2 = 1; i2 <= nPar; i2++) {
346 bncParam* p2 = _params[i2-1];
347 if (p2->index_old != 0) {
348 _QQ(p1->index, p2->index) = QQ_old(p1->index_old, p2->index_old);
349 }
350 }
351 }
352 }
353
354 for (int ii = 1; ii <= nPar; ii++) {
355 bncParam* par = _params[ii-1];
356 if (par->index_old == 0) {
357 _QQ(par->index, par->index) = sig_amb_0 * sig_amb_0;
358 }
359 par->index_old = par->index;
360 }
361 }
362
363 // Coordinates
364 // -----------
365 if (_static) {
366 if (x() == 0.0 && y() == 0.0 && z() == 0.0) {
367 _params[0]->xx = _xcBanc(1);
368 _params[1]->xx = _xcBanc(2);
369 _params[2]->xx = _xcBanc(3);
370 }
371 }
372 else {
373 _params[0]->xx = _xcBanc(1);
374 _params[1]->xx = _xcBanc(2);
375 _params[2]->xx = _xcBanc(3);
376
377 _QQ(1,1) += sig_crd_p * sig_crd_p;
378 _QQ(2,2) += sig_crd_p * sig_crd_p;
379 _QQ(3,3) += sig_crd_p * sig_crd_p;
380 }
381
382 // Receiver Clocks
383 // ---------------
384 _params[3]->xx = _xcBanc(4);
385 for (int iPar = 1; iPar <= _params.size(); iPar++) {
386 _QQ(iPar, 4) = 0.0;
387 }
388 _QQ(4,4) = sig_clk_0 * sig_clk_0;
389
390 // Tropospheric Delay
391 // ------------------
392 if (_estTropo) {
393 _QQ(5,5) += sig_trp_p * sig_trp_p;
394 }
395}
396
397// Update Step of the Filter (currently just a single-epoch solution)
398////////////////////////////////////////////////////////////////////////////
399t_irc bncModel::update(t_epoData* epoData) {
400
401 SymmetricMatrix QQsav;
402 ColumnVector dx;
403 ColumnVector vv;
404
405 // Loop over all outliers
406 // ----------------------
407 do {
408
409 // Bancroft Solution
410 // -----------------
411 if (cmpBancroft(epoData) != success) {
412 return failure;
413 }
414
415 if (epoData->size() < MINOBS) {
416 return failure;
417 }
418
419 // Status Prediction
420 // -----------------
421 predict(epoData);
422
423 // Create First-Design Matrix
424 // --------------------------
425 unsigned nPar = _params.size();
426 unsigned nObs = _usePhase ? 2 * epoData->size() : epoData->size();
427
428 Matrix AA(nObs, nPar); // first design matrix
429 ColumnVector ll(nObs); // tems observed-computed
430 SymmetricMatrix PP(nObs); PP = 0.0;
431
432 unsigned iObs = 0;
433 QMapIterator<QString, t_satData*> itObs(epoData->satData);
434 while (itObs.hasNext()) {
435 ++iObs;
436 itObs.next();
437 QString prn = itObs.key();
438 t_satData* satData = itObs.value();
439
440 double rhoCmp = cmpValue(satData);
441
442 double ellWgtCoeff = 1.0;
443 double eleD = satData->eleSat * 180.0 / M_PI;
444 if (eleD < 25.0) {
445 ellWgtCoeff = 2.5 - (eleD - 10.0) * 0.1;
446 ellWgtCoeff *= ellWgtCoeff;
447 }
448
449 ll(iObs) = satData->P3 - rhoCmp;
450 PP(iObs,iObs) = 1.0 / (sig_P3 * sig_P3) / ellWgtCoeff;
451 for (int iPar = 1; iPar <= _params.size(); iPar++) {
452 AA(iObs, iPar) = _params[iPar-1]->partial(satData, "");
453 }
454
455 if (_usePhase) {
456 ++iObs;
457 ll(iObs) = satData->L3 - rhoCmp;
458 PP(iObs,iObs) = 1.0 / (sig_L3 * sig_L3) / ellWgtCoeff;
459 for (int iPar = 1; iPar <= _params.size(); iPar++) {
460 if (_params[iPar-1]->type == bncParam::AMB_L3 &&
461 _params[iPar-1]->prn == prn) {
462 ll(iObs) -= _params[iPar-1]->xx;
463 }
464 AA(iObs, iPar) = _params[iPar-1]->partial(satData, prn);
465 }
466 }
467 }
468
469 // Compute Filter Update
470 // ---------------------
471 QQsav = _QQ;
472
473 Matrix ATP = AA.t() * PP;
474 SymmetricMatrix NN = _QQ.i();
475 NN << NN + ATP * AA;
476 _QQ = NN.i();
477 dx = _QQ * ATP * ll;
478 vv = ll - AA * dx;
479
480 } while (outlierDetection(QQsav, vv, epoData->satData) != 0);
481
482 // Set Solution Vector
483 // -------------------
484 QVectorIterator<bncParam*> itPar(_params);
485 while (itPar.hasNext()) {
486 bncParam* par = itPar.next();
487 par->xx += dx(par->index);
488 }
489
490 // Message (both log file and screen)
491 // ----------------------------------
492 ostringstream str;
493 str.setf(ios::fixed);
494 str << " PPP " << _staID.data() << " "
495 << epoData->tt.timestr(1) << " " << epoData->size() << " "
496 << setw(14) << setprecision(3) << x() << " +- "
497 << setw(6) << setprecision(3) << sqrt(_QQ(1,1)) << " "
498 << setw(14) << setprecision(3) << y() << " +- "
499 << setw(6) << setprecision(3) << sqrt(_QQ(2,2)) << " "
500 << setw(14) << setprecision(3) << z() << " +- "
501 << setw(6) << setprecision(3) << sqrt(_QQ(3,3));
502 if (_estTropo) {
503 str << " " << setw(6) << setprecision(3) << trp() << " +- "
504 << setw(6) << setprecision(3) << sqrt(_QQ(5,5));
505 }
506
507 emit newMessage(QString(str.str().c_str()).toAscii(), true);
508
509 return success;
510}
511
512// Outlier Detection
513////////////////////////////////////////////////////////////////////////////
514int bncModel::outlierDetection(const SymmetricMatrix& QQsav,
515 const ColumnVector& vv,
516 QMap<QString, t_satData*>& satData) {
517
518 double vvMaxCode = 0.0;
519 double vvMaxPhase = 0.0;
520 QMutableMapIterator<QString, t_satData*> itMaxCode(satData);
521 QMutableMapIterator<QString, t_satData*> itMaxPhase(satData);
522
523 int ii = 0;
524 QMutableMapIterator<QString, t_satData*> it(satData);
525 while (it.hasNext()) {
526 it.next();
527 ++ii;
528
529 if (vvMaxCode == 0.0 || fabs(vv(ii)) > vvMaxCode) {
530 vvMaxCode = fabs(vv(ii));
531 itMaxCode = it;
532 }
533
534 if (_usePhase) {
535 ++ii;
536 if (vvMaxPhase == 0.0 || fabs(vv(ii)) > vvMaxPhase) {
537 vvMaxPhase = fabs(vv(ii));
538 itMaxPhase = it;
539 }
540 }
541 }
542
543 if (vvMaxCode > MAXRES_CODE) {
544 QString prn = itMaxCode.key();
545 t_satData* satData = itMaxCode.value();
546 delete satData;
547 itMaxCode.remove();
548 _QQ = QQsav;
549
550 QByteArray msg = "Outlier Code " + prn.toAscii() + " "
551 + QByteArray::number(vvMaxCode, 'f', 3);
552 emit newMessage(msg, true);
553
554 return 1;
555 }
556 else if (vvMaxPhase > MAXRES_PHASE) {
557 QString prn = itMaxPhase.key();
558 t_satData* satData = itMaxPhase.value();
559 delete satData;
560 itMaxPhase.remove();
561 _QQ = QQsav;
562
563 QByteArray msg = "Outlier Phase " + prn.toAscii() + " "
564 + QByteArray::number(vvMaxPhase, 'f', 3);
565 emit newMessage(msg, true);
566
567 return 1;
568 }
569
570 return 0;
571}
Note: See TracBrowser for help on using the repository browser.