// Part of BNC, a utility for retrieving decoding and // converting GNSS data streams from NTRIP broadcasters. // // Copyright (C) 2007 // German Federal Agency for Cartography and Geodesy (BKG) // http://www.bkg.bund.de // Czech Technical University Prague, Department of Geodesy // http://www.fsv.cvut.cz // // Email: euref-ip@bkg.bund.de // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation, version 2. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. /* ------------------------------------------------------------------------- * BKG NTRIP Client * ------------------------------------------------------------------------- * * Class: bncParam, bncModel * * Purpose: Model for PPP * * Author: L. Mervart * * Created: 01-Dec-2009 * * Changes: * * -----------------------------------------------------------------------*/ #include #include #include #include #include "bncmodel.h" #include "bncapp.h" #include "bncpppclient.h" #include "bancroft.h" #include "bncutils.h" #include "bncsettings.h" #include "bnctides.h" using namespace std; const unsigned MINOBS = 4; const double MINELE_GPS = 10.0 * M_PI / 180.0; const double MINELE_GLO = 10.0 * M_PI / 180.0; const double MAXRES_CODE_GPS = 10.0; const double MAXRES_PHASE_GPS = 0.10; const double MAXRES_PHASE_GLO = 0.05; // Constructor //////////////////////////////////////////////////////////////////////////// bncParam::bncParam(bncParam::parType typeIn, int indexIn, const QString& prnIn) { type = typeIn; index = indexIn; prn = prnIn; index_old = 0; xx = 0.0; } // Destructor //////////////////////////////////////////////////////////////////////////// bncParam::~bncParam() { } // Partial //////////////////////////////////////////////////////////////////////////// double bncParam::partial(t_satData* satData, bool phase) { // Coordinates // ----------- if (type == CRD_X) { return (xx - satData->xx(1)) / satData->rho; } else if (type == CRD_Y) { return (xx - satData->xx(2)) / satData->rho; } else if (type == CRD_Z) { return (xx - satData->xx(3)) / satData->rho; } // Receiver Clocks // --------------- else if (type == RECCLK) { return 1.0; } // Troposphere // ----------- else if (type == TROPO) { return 1.0 / sin(satData->eleSat); } // Ambiguities // ----------- else if (type == AMB_L3) { if (phase && satData->prn == prn) { return 1.0; } else { return 0.0; } } // Default return // -------------- return 0.0; } // Constructor //////////////////////////////////////////////////////////////////////////// bncModel::bncModel(QByteArray staID) { _staID = staID; bncSettings settings; // Observation Sigmas // ------------------ _sigP3 = 5.0; if (!settings.value("pppSigmaCode").toString().isEmpty()) { _sigP3 = settings.value("pppSigmaCode").toDouble(); } _sigL3 = 0.02; if (!settings.value("pppSigmaPhase").toString().isEmpty()) { _sigL3 = settings.value("pppSigmaPhase").toDouble(); } // Parameter Sigmas // ---------------- _sigCrd0 = 100.0; if (!settings.value("pppSigCrd0").toString().isEmpty()) { _sigCrd0 = settings.value("pppSigCrd0").toDouble(); } _sigCrdP = 100.0; if (!settings.value("pppSigCrdP").toString().isEmpty()) { _sigCrdP = settings.value("pppSigCrdP").toDouble(); } _sigTrp0 = 0.1; if (!settings.value("pppSigTrp0").toString().isEmpty()) { _sigTrp0 = settings.value("pppSigTrp0").toDouble(); } _sigTrpP = 1e-6; if (!settings.value("pppSigTrpP").toString().isEmpty()) { _sigTrpP = settings.value("pppSigTrpP").toDouble(); } _sigClk0 = 1000.0; _sigAmb0 = 1000.0; // Quick-Start Mode // ---------------- _quickStart = 0; if (settings.value("pppRefCrdX").toString() != "" && settings.value("pppRefCrdY").toString() != "" && settings.value("pppRefCrdZ").toString() != "" && !settings.value("pppQuickStart").toString().isEmpty()) { _quickStart = settings.value("pppQuickStart").toDouble(); } connect(this, SIGNAL(newMessage(QByteArray,bool)), ((bncApp*)qApp), SLOT(slotMessage(const QByteArray,bool))); _usePhase = false; if ( Qt::CheckState(settings.value("pppUsePhase").toInt()) == Qt::Checked) { _usePhase = true; } _estTropo = false; if ( Qt::CheckState(settings.value("pppEstTropo").toInt()) == Qt::Checked) { _estTropo = true; } _xcBanc.ReSize(4); _xcBanc = 0.0; _ellBanc.ReSize(3); _ellBanc = 0.0; if (_usePhase && Qt::CheckState(settings.value("pppGLONASS").toInt()) == Qt::Checked) { _useGlonass = true; } else { _useGlonass = false; } int nextPar = 0; _params.push_back(new bncParam(bncParam::CRD_X, ++nextPar, "")); _params.push_back(new bncParam(bncParam::CRD_Y, ++nextPar, "")); _params.push_back(new bncParam(bncParam::CRD_Z, ++nextPar, "")); _params.push_back(new bncParam(bncParam::RECCLK, ++nextPar, "")); if (_estTropo) { _params.push_back(new bncParam(bncParam::TROPO, ++nextPar, "")); } unsigned nPar = _params.size(); _QQ.ReSize(nPar); _QQ = 0.0; for (int iPar = 1; iPar <= _params.size(); iPar++) { bncParam* pp = _params[iPar-1]; if (pp->isCrd()) { _QQ(iPar,iPar) = _sigCrd0 * _sigCrd0; } else if (pp->type == bncParam::RECCLK) { _QQ(iPar,iPar) = _sigClk0 * _sigClk0; } else if (pp->type == bncParam::TROPO) { _QQ(iPar,iPar) = _sigTrp0 * _sigTrp0; } } // NMEA Output // ----------- QString nmeaFileName = settings.value("nmeaFile").toString(); if (nmeaFileName.isEmpty()) { _nmeaFile = 0; _nmeaStream = 0; } else { expandEnvVar(nmeaFileName); _nmeaFile = new QFile(nmeaFileName); if ( Qt::CheckState(settings.value("rnxAppend").toInt()) == Qt::Checked) { _nmeaFile->open(QIODevice::WriteOnly | QIODevice::Append); } else { _nmeaFile->open(QIODevice::WriteOnly); } _nmeaStream = new QTextStream(); _nmeaStream->setDevice(_nmeaFile); } } // Destructor //////////////////////////////////////////////////////////////////////////// bncModel::~bncModel() { delete _nmeaStream; delete _nmeaFile; for (int ii = 0; ii < _posAverage.size(); ++ii) { delete _posAverage[ii]; } } // Bancroft Solution //////////////////////////////////////////////////////////////////////////// t_irc bncModel::cmpBancroft(t_epoData* epoData) { if (epoData->sizeGPS() < MINOBS) { _log += "bncModel::cmpBancroft: not enough data\n"; return failure; } Matrix BB(epoData->sizeGPS(), 4); QMapIterator it(epoData->satDataGPS); int iObs = 0; while (it.hasNext()) { ++iObs; it.next(); QString prn = it.key(); t_satData* satData = it.value(); BB(iObs, 1) = satData->xx(1); BB(iObs, 2) = satData->xx(2); BB(iObs, 3) = satData->xx(3); BB(iObs, 4) = satData->P3 + satData->clk; } bancroft(BB, _xcBanc); // Ellipsoidal Coordinates // ------------------------ xyz2ell(_xcBanc.data(), _ellBanc.data()); // Compute Satellite Elevations // ---------------------------- QMutableMapIterator iGPS(epoData->satDataGPS); while (iGPS.hasNext()) { iGPS.next(); QString prn = iGPS.key(); t_satData* satData = iGPS.value(); ColumnVector rr = satData->xx - _xcBanc.Rows(1,3); double rho = rr.norm_Frobenius(); double neu[3]; xyz2neu(_ellBanc.data(), rr.data(), neu); satData->eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho ); if (neu[2] < 0) { satData->eleSat *= -1.0; } satData->azSat = atan2(neu[1], neu[0]); if (satData->eleSat < MINELE_GPS) { delete satData; iGPS.remove(); } } QMutableMapIterator iGlo(epoData->satDataGlo); while (iGlo.hasNext()) { iGlo.next(); QString prn = iGlo.key(); t_satData* satData = iGlo.value(); ColumnVector rr = satData->xx - _xcBanc.Rows(1,3); double rho = rr.norm_Frobenius(); double neu[3]; xyz2neu(_ellBanc.data(), rr.data(), neu); satData->eleSat = acos( sqrt(neu[0]*neu[0] + neu[1]*neu[1]) / rho ); if (neu[2] < 0) { satData->eleSat *= -1.0; } satData->azSat = atan2(neu[1], neu[0]); if (satData->eleSat < MINELE_GLO) { delete satData; iGlo.remove(); } } return success; } // Computed Value //////////////////////////////////////////////////////////////////////////// double bncModel::cmpValue(t_satData* satData, bool phase) { ColumnVector xRec(3); xRec(1) = x(); xRec(2) = y(); xRec(3) = z(); double rho0 = (satData->xx - xRec).norm_Frobenius(); double dPhi = t_CST::omega * rho0 / t_CST::c; xRec(1) = x() * cos(dPhi) - y() * sin(dPhi); xRec(2) = y() * cos(dPhi) + x() * sin(dPhi); xRec(3) = z(); tides(_time, xRec); satData->rho = (satData->xx - xRec).norm_Frobenius(); double tropDelay = delay_saast(satData->eleSat) + trp() / sin(satData->eleSat); double wind = 0.0; if (phase) { wind = windUp(satData->prn, satData->xx, xRec) * satData->lambda3; } return satData->rho + clk() - satData->clk + tropDelay + wind; } // Tropospheric Model (Saastamoinen) //////////////////////////////////////////////////////////////////////////// double bncModel::delay_saast(double Ele) { double xyz[3]; xyz[0] = x(); xyz[1] = y(); xyz[2] = z(); double ell[3]; xyz2ell(xyz, ell); double height = ell[2]; double pp = 1013.25 * pow(1.0 - 2.26e-5 * height, 5.225); double TT = 18.0 - height * 0.0065 + 273.15; double hh = 50.0 * exp(-6.396e-4 * height); double ee = hh / 100.0 * exp(-37.2465 + 0.213166*TT - 0.000256908*TT*TT); double h_km = height / 1000.0; if (h_km < 0.0) h_km = 0.0; if (h_km > 5.0) h_km = 5.0; int ii = int(h_km + 1); double href = ii - 1; double bCor[6]; bCor[0] = 1.156; bCor[1] = 1.006; bCor[2] = 0.874; bCor[3] = 0.757; bCor[4] = 0.654; bCor[5] = 0.563; double BB = bCor[ii-1] + (bCor[ii]-bCor[ii-1]) * (h_km - href); double zen = M_PI/2.0 - Ele; return (0.002277/cos(zen)) * (pp + ((1255.0/TT)+0.05)*ee - BB*(tan(zen)*tan(zen))); } // Prediction Step of the Filter //////////////////////////////////////////////////////////////////////////// void bncModel::predict(t_epoData* epoData) { bncSettings settings; bool firstCrd = false; if (x() == 0.0 && y() == 0.0 && z() == 0.0) { firstCrd = true; _startTime = QDateTime::currentDateTime(); } // Use different white noise for Quick-Start mode // ---------------------------------------------- double sigCrdP_used = _sigCrdP; if ( _quickStart > 0.0 && _quickStart > _startTime.secsTo(QDateTime::currentDateTime()) ) { sigCrdP_used = 0.0; } // Predict Parameter values, add white noise // ----------------------------------------- for (int iPar = 1; iPar <= _params.size(); iPar++) { bncParam* pp = _params[iPar-1]; // Coordinates // ----------- if (pp->type == bncParam::CRD_X) { if (firstCrd) { if (settings.value("pppRefCrdX").toString() != "" && settings.value("pppRefCrdY").toString() != "" && settings.value("pppRefCrdZ").toString() != "") { pp->xx = settings.value("pppRefCrdX").toDouble(); } else { pp->xx = _xcBanc(1); } } _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used; } else if (pp->type == bncParam::CRD_Y) { if (firstCrd) { if (settings.value("pppRefCrdX").toString() != "" && settings.value("pppRefCrdY").toString() != "" && settings.value("pppRefCrdZ").toString() != "") { pp->xx = settings.value("pppRefCrdY").toDouble(); } else { pp->xx = _xcBanc(2); } } _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used; } else if (pp->type == bncParam::CRD_Z) { if (firstCrd) { if (settings.value("pppRefCrdX").toString() != "" && settings.value("pppRefCrdY").toString() != "" && settings.value("pppRefCrdZ").toString() != "") { pp->xx = settings.value("pppRefCrdZ").toDouble(); } else { pp->xx = _xcBanc(3); } } _QQ(iPar,iPar) += sigCrdP_used * sigCrdP_used; } // Receiver Clocks // --------------- else if (pp->type == bncParam::RECCLK) { pp->xx = _xcBanc(4); for (int jj = 1; jj <= _params.size(); jj++) { _QQ(iPar, jj) = 0.0; } _QQ(iPar,iPar) = _sigClk0 * _sigClk0; } // Tropospheric Delay // ------------------ else if (pp->type == bncParam::TROPO) { _QQ(iPar,iPar) += _sigTrpP * _sigTrpP; } } // Add New Ambiguities if necessary // -------------------------------- if (_usePhase) { // Make a copy of QQ and xx, set parameter indices // ----------------------------------------------- SymmetricMatrix QQ_old = _QQ; for (int iPar = 1; iPar <= _params.size(); iPar++) { _params[iPar-1]->index_old = _params[iPar-1]->index; _params[iPar-1]->index = 0; } // Remove Ambiguity Parameters without observations // ------------------------------------------------ int iPar = 0; QMutableVectorIterator it(_params); while (it.hasNext()) { bncParam* par = it.next(); bool removed = false; if (par->type == bncParam::AMB_L3) { if (epoData->satDataGPS.find(par->prn) == epoData->satDataGPS.end() && epoData->satDataGlo.find(par->prn) == epoData->satDataGlo.end() ) { removed = true; delete par; it.remove(); } } if (! removed) { ++iPar; par->index = iPar; } } // Add new ambiguity parameters // ---------------------------- QMapIterator iGPS(epoData->satDataGPS); while (iGPS.hasNext()) { iGPS.next(); QString prn = iGPS.key(); t_satData* satData = iGPS.value(); bool found = false; for (int iPar = 1; iPar <= _params.size(); iPar++) { if (_params[iPar-1]->type == bncParam::AMB_L3 && _params[iPar-1]->prn == prn) { found = true; break; } } if (!found) { bncParam* par = new bncParam(bncParam::AMB_L3, _params.size()+1, prn); _params.push_back(par); par->xx = satData->L3 - cmpValue(satData, true); } } QMapIterator iGlo(epoData->satDataGlo); while (iGlo.hasNext()) { iGlo.next(); QString prn = iGlo.key(); t_satData* satData = iGlo.value(); bool found = false; for (int iPar = 1; iPar <= _params.size(); iPar++) { if (_params[iPar-1]->type == bncParam::AMB_L3 && _params[iPar-1]->prn == prn) { found = true; break; } } if (!found) { bncParam* par = new bncParam(bncParam::AMB_L3, _params.size()+1, prn); _params.push_back(par); par->xx = satData->L3 - cmpValue(satData, true); } } int nPar = _params.size(); _QQ.ReSize(nPar); _QQ = 0.0; for (int i1 = 1; i1 <= nPar; i1++) { bncParam* p1 = _params[i1-1]; if (p1->index_old != 0) { _QQ(p1->index, p1->index) = QQ_old(p1->index_old, p1->index_old); for (int i2 = 1; i2 <= nPar; i2++) { bncParam* p2 = _params[i2-1]; if (p2->index_old != 0) { _QQ(p1->index, p2->index) = QQ_old(p1->index_old, p2->index_old); } } } } for (int ii = 1; ii <= nPar; ii++) { bncParam* par = _params[ii-1]; if (par->index_old == 0) { _QQ(par->index, par->index) = _sigAmb0 * _sigAmb0; } par->index_old = par->index; } } } // Update Step of the Filter (currently just a single-epoch solution) //////////////////////////////////////////////////////////////////////////// t_irc bncModel::update(t_epoData* epoData) { bncSettings settings; _log.clear(); _time = epoData->tt; _log += "Single Point Positioning of Epoch " + QByteArray(_time.timestr(1).c_str()) + "\n--------------------------------------------------------------\n"; SymmetricMatrix QQsav; ColumnVector dx; ColumnVector vv; // Loop over all outliers // ---------------------- do { // Bancroft Solution // ----------------- if (cmpBancroft(epoData) != success) { emit newMessage(_log, false); return failure; } // Status Prediction // ----------------- predict(epoData); // Create First-Design Matrix // -------------------------- unsigned nPar = _params.size(); unsigned nObs = 0; if (_usePhase) { nObs = 2 * epoData->sizeGPS() + epoData->sizeGlo(); } else { nObs = epoData->sizeGPS(); // Glonass pseudoranges are not used } if (nObs < nPar) { _log += "bncModel::update: nObs < nPar\n"; emit newMessage(_log, false); return failure; } Matrix AA(nObs, nPar); // first design matrix ColumnVector ll(nObs); // tems observed-computed DiagonalMatrix PP(nObs); PP = 0.0; unsigned iObs = 0; // GPS code and (optionally) phase observations // -------------------------------------------- QMapIterator itGPS(epoData->satDataGPS); while (itGPS.hasNext()) { ++iObs; itGPS.next(); QString prn = itGPS.key(); t_satData* satData = itGPS.value(); ll(iObs) = satData->P3 - cmpValue(satData, false); PP(iObs,iObs) = 1.0 / (_sigP3 * _sigP3); for (int iPar = 1; iPar <= _params.size(); iPar++) { AA(iObs, iPar) = _params[iPar-1]->partial(satData, false); } if (_usePhase) { ++iObs; ll(iObs) = satData->L3 - cmpValue(satData, true); PP(iObs,iObs) = 1.0 / (_sigL3 * _sigL3); for (int iPar = 1; iPar <= _params.size(); iPar++) { if (_params[iPar-1]->type == bncParam::AMB_L3 && _params[iPar-1]->prn == prn) { ll(iObs) -= _params[iPar-1]->xx; } AA(iObs, iPar) = _params[iPar-1]->partial(satData, true); } } } // Glonass phase observations // -------------------------- if (_usePhase) { QMapIterator itGlo(epoData->satDataGlo); while (itGlo.hasNext()) { ++iObs; itGlo.next(); QString prn = itGlo.key(); t_satData* satData = itGlo.value(); ll(iObs) = satData->L3 - cmpValue(satData, true); PP(iObs,iObs) = 1.0 / (_sigL3 * _sigL3); for (int iPar = 1; iPar <= _params.size(); iPar++) { if (_params[iPar-1]->type == bncParam::AMB_L3 && _params[iPar-1]->prn == prn) { ll(iObs) -= _params[iPar-1]->xx; } AA(iObs, iPar) = _params[iPar-1]->partial(satData, true); } } } // Compute Filter Update // --------------------- QQsav = _QQ; kalman(AA, ll, PP, _QQ, dx); vv = ll - AA * dx; ostringstream strA; strA.setf(ios::fixed); ColumnVector vv_code(epoData->sizeGPS()); ColumnVector vv_phase(epoData->sizeGPS()); ColumnVector vv_glo(epoData->sizeGlo()); for (unsigned iobs = 1; iobs <= epoData->sizeGPS(); ++iobs) { if (_usePhase) { vv_code(iobs) = vv(2*iobs-1); vv_phase(iobs) = vv(2*iobs); } else { vv_code(iobs) = vv(iobs); } } if (_useGlonass) { for (unsigned iobs = 1; iobs <= epoData->sizeGlo(); ++iobs) { vv_glo(iobs) = vv(2*epoData->sizeGPS()+iobs); } } strA << "residuals code " << setw(8) << setprecision(3) << vv_code.t(); if (_usePhase) { strA << "residuals phase " << setw(8) << setprecision(3) << vv_phase.t(); } if (_useGlonass) { strA << "residuals glo " << setw(8) << setprecision(3) << vv_glo.t(); } _log += strA.str().c_str(); } while (outlierDetection(QQsav, vv, epoData->satDataGPS, epoData->satDataGlo) != 0); // Remember the Epoch-specific Results for the computation of means // ---------------------------------------------------------------- pppPos* newPos = new pppPos; newPos->time = epoData->tt; // Set Solution Vector // ------------------- ostringstream strB; strB.setf(ios::fixed); QVectorIterator itPar(_params); while (itPar.hasNext()) { bncParam* par = itPar.next(); par->xx += dx(par->index); if (par->type == bncParam::RECCLK) { strB << "\n clk = " << setw(6) << setprecision(3) << par->xx << " +- " << setw(6) << setprecision(3) << sqrt(_QQ(par->index,par->index)); } else if (par->type == bncParam::AMB_L3) { strB << "\n amb " << par->prn.toAscii().data() << " = " << setw(6) << setprecision(3) << par->xx << " +- " << setw(6) << setprecision(3) << sqrt(_QQ(par->index,par->index)); } else if (par->type == bncParam::TROPO) { double aprTrp = delay_saast(M_PI/2.0); strB << "\n trp = " << par->prn.toAscii().data() << setw(7) << setprecision(3) << aprTrp << " " << setw(6) << setprecision(3) << showpos << par->xx << noshowpos << " +- " << setw(6) << setprecision(3) << sqrt(_QQ(par->index,par->index)); newPos->xnt[6] = aprTrp + par->xx; } } strB << '\n'; _log += strB.str().c_str(); emit newMessage(_log, false); // Final Message (both log file and screen) // ---------------------------------------- ostringstream strC; strC.setf(ios::fixed); strC << _staID.data() << " PPP " << epoData->tt.timestr(1) << " " << epoData->sizeAll() << " " << setw(14) << setprecision(3) << x() << " +- " << setw(6) << setprecision(3) << sqrt(_QQ(1,1)) << " " << setw(14) << setprecision(3) << y() << " +- " << setw(6) << setprecision(3) << sqrt(_QQ(2,2)) << " " << setw(14) << setprecision(3) << z() << " +- " << setw(6) << setprecision(3) << sqrt(_QQ(3,3)); // NEU Output // ---------- if (settings.value("pppRefCrdX").toString() != "" && settings.value("pppRefCrdY").toString() != "" && settings.value("pppRefCrdZ").toString() != "") { double xyzRef[3]; xyzRef[0] = settings.value("pppRefCrdX").toDouble(); xyzRef[1] = settings.value("pppRefCrdY").toDouble(); xyzRef[2] = settings.value("pppRefCrdZ").toDouble(); newPos->xnt[0] = x() - xyzRef[0]; newPos->xnt[1] = y() - xyzRef[1]; newPos->xnt[2] = z() - xyzRef[2]; double ellRef[3]; xyz2ell(xyzRef, ellRef); xyz2neu(ellRef, newPos->xnt, &newPos->xnt[3]); strC << " NEU " << setw(8) << setprecision(3) << newPos->xnt[3] << " " << setw(8) << setprecision(3) << newPos->xnt[4] << " " << setw(8) << setprecision(3) << newPos->xnt[5]; } emit newMessage(QByteArray(strC.str().c_str()), true); if (settings.value("pppAverage").toString() == "") { delete newPos; } else { _posAverage.push_back(newPos); // Time Span for Average Computation // --------------------------------- double tRangeAverage = settings.value("pppAverage").toDouble() * 60.; if (tRangeAverage < 0) { tRangeAverage = 0; } if (tRangeAverage > 86400) { tRangeAverage = 86400; } // Compute the Mean // ---------------- ColumnVector mean(7); mean = 0.0; QMutableVectorIterator it(_posAverage); while (it.hasNext()) { pppPos* pp = it.next(); if ( (epoData->tt - pp->time) >= tRangeAverage ) { delete pp; it.remove(); } else { for (int ii = 0; ii < 7; ++ii) { mean[ii] += pp->xnt[ii]; } } } int nn = _posAverage.size(); if (nn > 0) { mean /= nn; // Compute the Deviation // --------------------- ColumnVector std(7); std = 0.0; QVectorIterator it2(_posAverage); while (it2.hasNext()) { pppPos* pp = it2.next(); for (int ii = 0; ii < 7; ++ii) { std[ii] += (pp->xnt[ii] - mean[ii]) * (pp->xnt[ii] - mean[ii]); } } for (int ii = 0; ii < 7; ++ii) { std[ii] = sqrt(std[ii] / nn); } ostringstream strD; strD.setf(ios::fixed); strD << _staID.data() << " AVE-XYZ " << epoData->tt.timestr(1) << " " << setw(13) << setprecision(3) << mean[0] << " +- " << setw(6) << setprecision(3) << std[0] << " " << setw(14) << setprecision(3) << mean[1] << " +- " << setw(6) << setprecision(3) << std[1] << " " << setw(14) << setprecision(3) << mean[2] << " +- " << setw(6) << setprecision(3) << std[2]; emit newMessage(QByteArray(strD.str().c_str()), true); ostringstream strE; strE.setf(ios::fixed); strE << _staID.data() << " AVE-NEU " << epoData->tt.timestr(1) << " " << setw(13) << setprecision(3) << mean[3] << " +- " << setw(6) << setprecision(3) << std[3] << " " << setw(14) << setprecision(3) << mean[4] << " +- " << setw(6) << setprecision(3) << std[4] << " " << setw(14) << setprecision(3) << mean[5] << " +- " << setw(6) << setprecision(3) << std[5]; emit newMessage(QByteArray(strE.str().c_str()), true); if ( Qt::CheckState(settings.value("pppEstTropo").toInt()) == Qt::Checked) { ostringstream strF; strF.setf(ios::fixed); strF << _staID.data() << " AVE-TRP " << epoData->tt.timestr(1) << " " << setw(13) << setprecision(3) << mean[6] << " +- " << setw(6) << setprecision(3) << std[6] << endl; emit newMessage(QByteArray(strF.str().c_str()), true); } } } // NMEA Output // ----------- double xyz[3]; xyz[0] = x(); xyz[1] = y(); xyz[2] = z(); double ell[3]; xyz2ell(xyz, ell); double phiDeg = ell[0] * 180 / M_PI; double lamDeg = ell[1] * 180 / M_PI; char phiCh = 'N'; if (phiDeg < 0) { phiDeg = -phiDeg; phiCh = 'S'; } char lamCh = 'E'; if (lamDeg < 0) { lamDeg = -lamDeg; lamCh = 'W'; } string datestr = epoData->tt.datestr(0); // yyyymmdd ostringstream strRMC; strRMC.setf(ios::fixed); strRMC << "GPRMC," << epoData->tt.timestr(0,0) << ",A," << setw(2) << setfill('0') << int(phiDeg) << setw(6) << setprecision(3) << setfill('0') << fmod(60*phiDeg,60) << ',' << phiCh << ',' << setw(3) << setfill('0') << int(lamDeg) << setw(6) << setprecision(3) << setfill('0') << fmod(60*lamDeg,60) << ',' << lamCh << ",,," << datestr[6] << datestr[7] << datestr[4] << datestr[5] << datestr[2] << datestr[3] << ",,"; writeNMEAstr(QString(strRMC.str().c_str())); double dop = 2.0; // TODO ostringstream strGGA; strGGA.setf(ios::fixed); strGGA << "GPGGA," << epoData->tt.timestr(0,0) << ',' << setw(2) << setfill('0') << int(phiDeg) << setw(10) << setprecision(7) << setfill('0') << fmod(60*phiDeg,60) << ',' << phiCh << ',' << setw(3) << setfill('0') << int(lamDeg) << setw(10) << setprecision(7) << setfill('0') << fmod(60*lamDeg,60) << ',' << lamCh << ",1," << setw(2) << setfill('0') << epoData->sizeAll() << ',' << setw(3) << setprecision(1) << dop << ',' << setprecision(3) << ell[2] << ",M,0.0,M,,"; writeNMEAstr(QString(strGGA.str().c_str())); return success; } // Outlier Detection //////////////////////////////////////////////////////////////////////////// int bncModel::outlierDetection(const SymmetricMatrix& QQsav, const ColumnVector& vv, QMap& satDataGPS, QMap& satDataGlo) { double vvMaxCodeGPS = 0.0; double vvMaxPhaseGPS = 0.0; double vvMaxPhaseGlo = 0.0; QMutableMapIterator itMaxCodeGPS(satDataGPS); QMutableMapIterator itMaxPhaseGPS(satDataGPS); QMutableMapIterator itMaxPhaseGlo(satDataGlo); int ii = 0; // GPS code and (optionally) phase residuals // ----------------------------------------- QMutableMapIterator itGPS(satDataGPS); while (itGPS.hasNext()) { itGPS.next(); ++ii; if (vvMaxCodeGPS == 0.0 || fabs(vv(ii)) > vvMaxCodeGPS) { vvMaxCodeGPS = fabs(vv(ii)); itMaxCodeGPS = itGPS; } if (_usePhase) { ++ii; if (vvMaxPhaseGPS == 0.0 || fabs(vv(ii)) > vvMaxPhaseGPS) { vvMaxPhaseGPS = fabs(vv(ii)); itMaxPhaseGPS = itGPS; } } } // Glonass phase residuals // ----------------------- if (_usePhase) { QMutableMapIterator itGlo(satDataGlo); while (itGlo.hasNext()) { itGlo.next(); ++ii; if (vvMaxPhaseGlo == 0.0 || fabs(vv(ii)) > vvMaxPhaseGlo) { vvMaxPhaseGlo = fabs(vv(ii)); itMaxPhaseGlo = itGlo; } } } if (vvMaxPhaseGlo > MAXRES_PHASE_GLO) { QString prn = itMaxPhaseGlo.key(); t_satData* satData = itMaxPhaseGlo.value(); delete satData; itMaxPhaseGlo.remove(); _QQ = QQsav; _log += "Outlier Phase " + prn.toAscii() + " " + QByteArray::number(vvMaxPhaseGlo, 'f', 3) + "\n"; return 1; } else if (vvMaxCodeGPS > MAXRES_CODE_GPS) { QString prn = itMaxCodeGPS.key(); t_satData* satData = itMaxCodeGPS.value(); delete satData; itMaxCodeGPS.remove(); _QQ = QQsav; _log += "Outlier Code " + prn.toAscii() + " " + QByteArray::number(vvMaxCodeGPS, 'f', 3) + "\n"; return 1; } else if (vvMaxPhaseGPS > MAXRES_PHASE_GPS) { QString prn = itMaxPhaseGPS.key(); t_satData* satData = itMaxPhaseGPS.value(); delete satData; itMaxPhaseGPS.remove(); _QQ = QQsav; _log += "Outlier Phase " + prn.toAscii() + " " + QByteArray::number(vvMaxPhaseGPS, 'f', 3) + "\n"; return 1; } return 0; } // //////////////////////////////////////////////////////////////////////////// void bncModel::writeNMEAstr(const QString& nmStr) { unsigned char XOR = 0; for (int ii = 0; ii < nmStr.length(); ii++) { XOR ^= (unsigned char) nmStr[ii].toAscii(); } QString outStr = '$' + nmStr + QString("*%1\n").arg(int(XOR), 0, 16).toUpper(); if (_nmeaStream) { *_nmeaStream << outStr; _nmeaStream->flush(); } emit newNMEAstr(outStr.toAscii()); } //// ////////////////////////////////////////////////////////////////////////////// void bncModel::kalman(const Matrix& AA, const ColumnVector& ll, const DiagonalMatrix& PP, SymmetricMatrix& QQ, ColumnVector& dx) { int nObs = AA.Nrows(); int nPar = AA.Ncols(); UpperTriangularMatrix SS = Cholesky(QQ).t(); Matrix SA = SS*AA.t(); Matrix SRF(nObs+nPar, nObs+nPar); SRF = 0; for (int ii = 1; ii <= nObs; ++ii) { SRF(ii,ii) = 1.0 / sqrt(PP(ii,ii)); } SRF.SubMatrix (nObs+1, nObs+nPar, 1, nObs) = SA; SRF.SymSubMatrix(nObs+1, nObs+nPar) = SS; UpperTriangularMatrix UU; QRZ(SRF, UU); SS = UU.SymSubMatrix(nObs+1, nObs+nPar); UpperTriangularMatrix SH_rt = UU.SymSubMatrix(1, nObs); Matrix YY = UU.SubMatrix(1, nObs, nObs+1, nObs+nPar); UpperTriangularMatrix SHi = SH_rt.i(); Matrix KT = SHi * YY; SymmetricMatrix Hi; Hi << SHi * SHi.t(); dx = KT.t() * ll; QQ << (SS.t() * SS); } // Phase Wind-Up Correction /////////////////////////////////////////////////////////////////////////// double bncModel::windUp(const QString& prn, const ColumnVector& rSat, const ColumnVector& rRec) { double Mjd = _time.mjd() + _time.daysec() / 86400.0; // First time - initialize to zero // ------------------------------- if (!_windUpTime.contains(prn)) { _windUpTime[prn] = Mjd; _windUpSum[prn] = 0.0; } // Compute the correction for new time // ----------------------------------- else if (_windUpTime[prn] != Mjd) { _windUpTime[prn] = Mjd; // Unit Vector GPS Satellite --> Receiver // -------------------------------------- ColumnVector rho = rRec - rSat; rho /= rho.norm_Frobenius(); // GPS Satellite unit Vectors sz, sy, sx // ------------------------------------- ColumnVector sz = -rSat / rSat.norm_Frobenius(); ColumnVector xSun = Sun(Mjd); xSun /= xSun.norm_Frobenius(); ColumnVector sy = crossproduct(sz, xSun); ColumnVector sx = crossproduct(sy, sz); // Effective Dipole of the GPS Satellite Antenna // --------------------------------------------- ColumnVector dipSat = sx - rho * DotProduct(rho,sx) - crossproduct(rho, sy); // Receiver unit Vectors rx, ry // ---------------------------- ColumnVector rx(3); ColumnVector ry(3); double recEll[3]; xyz2ell(rRec.data(), recEll) ; double neu[3]; neu[0] = 1.0; neu[1] = 0.0; neu[2] = 0.0; neu2xyz(recEll, neu, rx.data()); neu[0] = 0.0; neu[1] = -1.0; neu[2] = 0.0; neu2xyz(recEll, neu, ry.data()); // Effective Dipole of the Receiver Antenna // ---------------------------------------- ColumnVector dipRec = rx - rho * DotProduct(rho,rx) + crossproduct(rho, ry); // Resulting Effect // ---------------- double alpha = DotProduct(dipSat,dipRec) / (dipSat.norm_Frobenius() * dipRec.norm_Frobenius()); if (alpha > 1.0) alpha = 1.0; if (alpha < -1.0) alpha = -1.0; double dphi = acos(alpha) / 2.0 / M_PI; // in cycles if ( DotProduct(rho, crossproduct(dipSat, dipRec)) < 0.0 ) { dphi = -dphi; } _windUpSum[prn] = floor(_windUpSum[prn] - dphi + 0.5) + dphi; } return _windUpSum[prn]; }